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Abstract
The dynamical stability of optimization methods at the vicinity of minima of the loss has recently
attracted significant attention. For gradient descent (GD), stable convergence is possible only to
minima that are sufficiently flat w.r.t. the step size, and those have been linked with favorable
properties of the trained model. However, while the stability threshold of GD is well-known, to
date, no explicit expression has been derived for the exact threshold of stochastic GD (SGD). In this
paper, we derive such a closed-form expression. Specifically, we provide an explicit condition on
the step size that is both necessary and sufficient for the linear stability of SGD in the mean square
sense. Our analysis sheds light on the precise role of the batch size B. In particular, we show that
the stability threshold is monotonically non-decreasing in the batch size, which means that reducing
the batch size can only decrease stability. Furthermore, we show that SGD’s stability threshold
is equivalent to that of a mixture process which takes in each iteration a full batch gradient step
w.p. 1− p, and a single sample gradient step w.p. p, where p ≈ 1/B. This indicates that even with
moderate batch sizes, SGD’s stability threshold is very close to that of GD’s. We also prove simple
necessary conditions for linear stability, which depend on the batch size, and are easier to compute
than the precise threshold. Finally, we derive the asymptotic covariance of the dynamics around
the minimum, and discuss its dependence on the learning rate. We validate our theoretical findings
through experiments on the MNIST dataset.
Keywords: SGD, Dynamical systems, Linear stability, Mean square analysis

1. Introduction

The dynamical stability of optimization methods has been shown to play a key role in shaping the
properties of trained models. For instance, gradient descent (GD) can stably converge only to minima
that are sufficiently flat with respect to the step size (Cohen et al., 2021), and in the context of neural
networks, such minima were shown to correspond to models with favorable properties. These include
smoothness of the predictor function (Ma and Ying, 2021; Nacson et al., 2023; Mulayoff et al.,
2021), balancedness of the layers (Mulayoff and Michaeli, 2020), and arguably better generalization
(Hochreiter and Schmidhuber, 1997; Keskar et al., 2016; Jastrzębski et al., 2017; Wu et al., 2017;
Ma and Ying, 2021). While the stability threshold of GD is well-known, that of stochastic GD
(SGD) has yet to be fully understood. Several empirical works studied SGD’s stability (Jastrzębski
et al., 2019, 2020; Cohen et al., 2021; Gilmer et al., 2022), yet they did not determine a definitive
stability condition. Various theoretical works studied SGD’s dynamics using linear stability, i.e., via
second-order Taylor expansion at the vicinity of minima, focusing on stability in the mean square
sense (Wu et al., 2018; Granziol et al., 2022; Velikanov et al., 2023), higher moments (Ma and Ying,
2021), and in probability (Ziyin et al., 2023). However, these works either do not provide explicit
stability conditions or rely on strong assumptions. For example, Wu et al. (2018); Ma and Ying (2021)
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present the condition as a complex optimization problem. Similarly, Granziol et al. (2022) consider
infinite network widths and make strong assumptions on the nature of the batching noise. Likewise,
Velikanov et al. (2023) analyze SGD with momentum, assuming momentum parameter close to 1 and
“spectrally expressible” dynamics, and present their result in terms of a moment generating function.
Overall, the exact stability threshold of SGD in the general case remains unknown.

In this paper, we analyze the linear stability of SGD in the mean square sense. We start by
considering interpolating minima, which are common in training of overparametrized models. In
this case, we provide an explicit threshold on the step size η that is both necessary and sufficient
for stability. Our analysis sheds light on the precise role of the batch size B. In particular, we show
that the maximal step size allowing stable convergence is monotonically non-decreasing in the batch
size. Namely, decreasing the batch size can only decrease the stability threshold of SGD. Moreover,
we show that this threshold is equivalent to that of a mixture process that takes in each iteration a
full batch gradient step w.p. 1− p, and a single sample gradient step w.p. p, where p ≈ 1/B. This
suggests that even with moderate batch sizes, SGD’s stability threshold is very close to that of GD’s.
Although our result gives an explicit condition on the step size for stability, its computation may still
be challenging in practical applications. Thus, we also prove simple necessary criteria for stability,
which depend on the batch size and are easier to compute.

Next, we turn to study a broader class of minima which we call regular. Specifically, in
interpolating minima, the loss of each individual sample has zero gradient and a positive semi-
definite (PSD) Hessian. In regular minima, the individual Hessians are still required to be PSD, but
the gradients can be arbitrary. Only the average of the gradients over all samples has to vanish (as in
any minimum). In this setting, the dynamics can wander within the null-space of the Hessian, if the
gradients have nonzero components in that subspace. However, the interesting question is whether
the process is stable within the orthogonal complement of the null space. Here we again provide an
explicit condition on the step size that is both necessary and sufficient for linear stability. We further
derive the theoretical limit of the covariance matrix of the dynamics, as well as the limit values of
the expected squared distance to the minimum, the expected loss, and the expected squared norm
of the gradient, and show how they all decrease when reducing the learning rate. This provides a
theoretical explanation of the behavior encountered in common learning rate scheduling strategies.

Finally, we validate our theoretical results through experiments on the MNIST dataset (LeCun,
1998). These confirm that our theory correctly predicts the stability threshold of SGD, and its
dependence on the batch size. Furthermore, the experiments suggest that SGD converges at the
edge of its (mean-square) stability region at least in certain training regimes, which is an interesting
subject for future research.

Contributions. To summarize, our main contributions are as follows.

• We derive a closed-form expression for the maximal step size with which mini-batch SGD is
linearly stable in the mean square sense. The threshold depends on the batch size (Thm. 5).

• We prove that the stability threshold is monotonically non-decreasing with the batch size, so
that smaller batches can only compromise stability (Prop. 6).

• We show that the stability threshold of mini-batch SGD is the same as the stability threshold
of an algorithm that randomly chooses in each iteration whether to perform a GD step or a
single-sample SGD step, where the probability is roughly one over the batch size (Prop. 7).

• We determine a lower bound on the batch size such that the stability threshold of SGD is close
to that of GD (Prop. 8).
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• We provide simpler necessary conditions for the linear stability of mini-batch SGD (Prop. 9).
• Apart from the common setting of interpolating minima, we also study a large family of non-

interpolating minima. For interpolating minima, SGD converges below the stability threshold.
In contrast, for non-interpolating minima, SGD randomly wanders around the minimum. Here
we again derive a closed-form for the stability threshold, as well as an expression for the
covariance matrix of the dynamics (Thm. 11 and Thm. 12).

• Key to our derivations is a fundamental algebraic result, which we prove for sums of Kroneker
products of symmetric matrices (Thm. 14).

2. Background: Linearized dynamics

Let ℓi : Rd → R be differentiable almost everywhere for all i ∈ [n]. We consider the minimization
of a loss function

L(θ) = 1

n

n∑
i=1

ℓi(θ) (1)

using the SGD iterations
θt+1 = θt − η∇L̂t(θt). (2)

Here, η is the step size and L̂t is a stochastic approximation of L obtained as

L̂t(θ) =
1

B

∑
i∈Bt

ℓi(θ), (3)

where Bt is a batch of size B sampled at iteration t. We assume that the batches {Bt} are drawn
uniformly at random from the

(
n
B

)
possible options, independently across iterations. Namely, there

are distinct samples within each batch and possible repetitions between different batches.
Analyzing the full dynamics of this process is intractable in most cases. Yet near minima, accurate

characterization of the stability of the iterates can be obtained via linearization (Wu et al., 2018; Ma
and Ying, 2021; Mulayoff et al., 2021), as is common in the analysis of nonlinear systems.

Definition 1 (Linearized dynamics) Let θ∗ be a twice differentiable minimum of L, and denote

gi ≜ ∇ℓi(θ
∗), H i ≜ ∇2ℓi(θ

∗). (4)

Then the linearized dynamics of SGD near θ∗ is given by

θt+1 = θt −
η

B

∑
i∈Bt

H i(θt − θ∗)− η

B

∑
i∈Bt

gi. (5)

Note that since θ∗ is a minimum point of L we have that

∇L(θ∗) =
1

n

n∑
i=1

gi = 0. (6)

Furthermore, the Hessian of the loss, which we denote by H , is given by

H ≜ ∇2L(θ∗) =
1

n

n∑
i=1

H i. (7)

Thus, the linearized dynamics are in fact SGD iterates on the second-order Taylor expansion of L
at θ∗,

L̃(θ) = L(θ∗) +
1

2
(θ − θ∗)TH(θ − θ∗). (8)
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3. Stability of first and second moments

Our focus is on the stability of SGD’s dynamics at the vicinity of minima. We specifically examine
the dynamics within two subspaces: the null space of the Hessian H at the minimum, and its
orthogonal complement. We denote the projection of any vector v ∈ Rd onto the null space of H
by v∥, and its projection onto the orthogonal complement of the null space by v⊥.

Multiple works studied the stability of SGD’s dynamics. Commonly, this was done by analyzing
the evolution of the moments of the linearized dynamics (see Sec. 2) over time, with a specific
emphasis on the second moment, which is the approach we take here. However, before discussing the
evolution of the second moment, let us summarize the behavior of the first moment. Specifically, it is
easy to demonstrate that the first moment of SGD’s linearized trajectory {E[θt]} is the same as GD’s.
Since GD is stable if and only if η ≤ 2/λmax(H), we have the following (see proof in App. B.2).

Theorem 2 (Stability of the mean) Assume that θ∗ is a twice differentiable minimum. Consider
the linear dynamics of {θt} from Def. 1 and let

η∗mean ≜
2

λmax(H)
. (9)

Then

1. E
[
θ∥
t

]
= E

[
θ∥
0

]
for all t ≥ 0;

2. limsup
t→∞

∥∥E[θt

]
− θ∗∥∥ is finite if and only if η ≤ η∗mean;

3. lim
t→∞

∥∥E[θ⊥
t

]
− θ∗⊥∥∥ = 0 if η < η∗mean.

We next proceed to analyze the dynamics of the second moment, which determine stability in
the mean square sense. Note that boundedness of the first moment is a necessary condition for
boundedness of the second moment. Therefore, the condition η ≤ η∗mean is a prerequisite for stability
in the mean square sense. However, how much smaller than η∗mean is SGD’s mean square stability
threshold, is not currently known in closed-form. Here, we determine the precise threshold for the
mean square stability of SGD’s linearized dynamics. To achieve this, we leverage the approach taken
by Ma and Ying (2021), who investigated the stability of SGD in the context of interpolating minima.

3.1. Interpolating minima

We begin by studying interpolating minima, which are prevalent in the training of overparametrized
models. In this case, the model fits the training set perfectly, which means that these global minima
are also minima for each sample individually. This is expressed mathematically as follows.

Definition 3 (Interpolating minima) A twice differentiable minimum θ∗ is said to be interpolating
if for each sample i ∈ [n] the gradient gi = 0 and the Hessian H i is PSD.

In this setting, Ma and Ying (2021) showed that the evolution over time of any moment of SGD’s
linearized dynamics is fully tractable. Specifically, for the second moment, they proved the following.
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Theorem 4 (Ma and Ying (2021), Thm. 1 + Cor. 3) Assume that θ∗ is a twice differentiable inter-
polating minimum. Consider the linear dynamics of {θt} from Def. 1, and let

Q(η,B) ≜ (I − ηH)⊗ (I − ηH) +
n−B

B(n− 1)

η2

n

n∑
i=1

(H i ⊗H i −H ⊗H), (10)

where ⊗ denotes the Kronecker product. Then limsup
t→∞

E[∥θt − θ∗∥2] is finite if and only if

max
Σ∈S+(Rd×d)

∥Q(η,B) vec (Σ)∥
∥Σ∥F

≤ 1, (11)

where S+(Rd×d) denotes the set of all PSD matrices over Rd×d. Furthermore, if the spectral
radius ρ(Q(η,B)) ≤ 1 then limsup

t→∞
E
[
∥θt − θ∗∥2

]
is finite.

Below, we omit the dependence of Q on η and B whenever these are not essential for the discussion.
In this theorem, Σ represents the second-moment matrix of θt − θ∗. Specifically, the matrix
Σt = E[(θt−θ∗)(θt−θ∗)T] evolves over time as vec(Σt+1) = Q vec(Σt). Therefore, the stability
condition of (11) simply states that if the dynamics of the dominant initial state of the system
(which is restricted to PSD matrices) is bounded, then Σt is bounded and vice versa. However, this
characterization leaves us with a constrained optimization problem over a d2-dimensional space,
which is hard to solve numerically. Therefore, this approach does not reduce the problem into a
condition from which we can gain any theoretical insight into SGD’s stability.

Our first key result is that the constrained optimization problem in (11) can be reduced to an
eigenvalue problem. Specifically, we establish (see Sec. 3.3) that when the eigenvectors of the d2×d2

matrix Q are reshaped into d× d matrices, they correspond to either symmetric or skew-symmetric
matrices1. Moreover, the top eigenvalue of Q is a dominant eigenvalue, and always corresponds to a
PSD matrix. Consequently, the maximizer of (11) is the top eigenvector of Q, which we use, along
with some algebraic manipulation, to derive the following result (see proof in App. B.8).

Theorem 5 (Mean square stability for interpolating minima) Assume that θ∗ is a twice differ-
entiable interpolating minimum. Consider the linear dynamics of {θt} from Def. 1, and let

C ≜
1

2
H ⊕H, D ≜ (1− p)H ⊗H + p

1

n

n∑
i=1

H i ⊗H i, (12)

where ⊕ denotes the Kronecker sum and p ≜ n−B
B(n−1) ∈ [0, 1] . Define

η∗var ≜
2

λmax

(
C†D

) , (13)

where C† denotes the Moore-Penrose inverse of C. Then

1. θ∥
t = θ∥

0 (surely) for all t ≥ 0;

2. limsup
t→∞

E
[
∥θ⊥

t − θ∗⊥∥2
]

is finite if and only if η ≤ η∗var;

3. lim
t→∞

E
[
∥θ⊥

t − θ∗⊥∥2
]
= 0 if η < η∗var.

1. Eigenbases corresponding to eigenvalues of multiplicity greater than one, always have a basis consisting of symmetric
and skew-symmetric matrices.
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This result provides an explicit characterization of the mean square stability of SGD. Here we see
that the set of step sizes that are stable in the mean square sense, is an interval. This is in contrast to
stability in probability, where the stable learning rates can comprise of several disjoint intervals (Ziyin
et al., 2023). Moreover, SGD’s threshold, η∗var, has the same form as the threshold for GD, 2/λmax,
but with a different matrix. In App. J we show how Thm. 5 recovers GD’s condition when B = n.

The dependence of η∗var on the batch size B may not be immediate to see from the theorem.
However, we can prove the following (see proof in App. D).

Proposition 6 (Monotonicity of the stability threshold) Assume that θ∗ is a twice differentiable
interpolating minimum. Then η∗var is a non-decreasing function of B.

This result implies that decreasing the batch size can only impair stability, which settles with empirical
observations, e.g., in (Wu et al., 2018, Fig. 1). Additionally, since η∗var is non-decreasing with B, and
for B = n it equals η∗mean, we have that the gap between λmax(C

†D) and λmax(H) is nonnegative
for all B ∈ [1, n] and non-increasing in B. For stable minima, λmax(C

†D) is bounded from above
by 2/η. This suggests that training with smaller batches leads to lower λmax(H), i.e., flatter minima,
which aligns with experimental results (Keskar et al., 2016; Jastrzębski et al., 2017).

At what rate does η∗var increase with B towards η∗mean? To understand this, note that D is a
convex combination of two matrices, where p represents the combination weight. The first matrix,
H ⊗H , is associated with full batch SGD (B = n), while the second matrix, 1

n

∑n
i=1H i ⊗H i,

is related to single sample SGD (B = 1). We can use this fact to explain the effect of the batch
size on dynamical stability by presenting an equivalent stochastic process that has the same stability
threshold as SGD (see proof in App. E).

Proposition 7 (Equivalent mixture process) Let ALG(p) be a stochastic optimization algorithm
in which

θt+1 =

{
θt − η∇ℓit(θt) w.p. p,

θt − η∇L(θt) w.p. 1− p,
(14)

where {it} are i.i.d. random indices distributed uniformly over the training set. Assume that θ∗ is a
twice differentiable interpolating minimum. Then when p = n−B

B(n−1) , ALG(p) has the same stability
threshold in the vicinity of θ∗ as SGD with batch size B.

In simpler terms, ALG(p) is a mixture process that takes in each iteration a gradient step with a batch
of one sample (B = 1) with probability p and with a full batch (B = n) with probability 1 − p.
This result shows that the stability conditions of SGD and of ALG(p) are the same for p = n−B

B(n−1) .
For n ≫ B, we get p ≈ 1/B. Thus, Prop. 7 implies that, in the context of stability, even moderate
values of B make mini-batch SGD behave like GD. We next quantify how large B needs to be in
order for the gap between η∗var and η∗mean to be small (see proof in App. F).

Proposition 8 (Stability gap) Define E = 1
n

∑n
i=1(H i −H)⊗ (H i −H) and let ε ∈ (0, 1). If

B ≥ 1− ε

ε

λmax(C
†E)

λmax(H)
, (15)

then
(1− ε)η∗mean ≤ η∗var ≤ η∗mean. (16)
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Here E captures the variance of the per-sample Hessians. Thus, this result suggests that when these
Hessians are similar (i.e., the entries of E are small), moderate batch sizes are sufficient to guarantee
a small gap between η∗mean and η∗var. On the other hand, if the variance of the Hessians is large, then
the batch size B is expected to be large for the stability thresholds of SGD and GD to be close. We
note that while propositions 6-8 were presented in the context of interpolating minima, they also
apply to regular minima (see Sec. 3.2).

Although Thm. 5 provides an explicit threshold for the step size, its computation may be
challenging in practical applications, as it requires inverting, multiplying, and computing the spectral
norm of large (d2 × d2) matrices. Still, we can obtain necessary criteria for stability that are simple
and easier to verify, and which also depend on the batch size. To do so, we compute quadratic forms
over C†D with non-optimal yet interesting vectors. In this way, we bound λmax(C

†D) from below
to get the following result (see detail and proof in App. G).

Proposition 9 (Necessary conditions for stability) Let vmax be a top eigenvector of H . Then the
step size η∗var satisfies

η∗var ≤
2λmax(H)

λ2
max(H) + p

n

∑n
i=1(v

T
maxH ivmax − λmax(H))2

, (17)

as well as

η∗var ≤
2Tr(H)

(1− p) ∥H∥2F + p
n

∑n
i=1 ∥H i∥2F

. (18)

From (17), we can deduce a lower bound on the gap between the stability thresholds of GD and SGD.
Specifically, when the variance of H i along the direction of the top eigenvector of H is large, η∗var is
far from η∗mean for moderate p. In general, this condition is expected to be quite tight when there is
a clear dominant direction in H caused by some H i. In contrast, condition (18) is expected to be
tight if all {H i} have roughly the same spectrum but with different bases, i.e., when no sample is
dominant and the samples are incoherent.

It is worthwhile mentioning that if the stability condition of Thm. 5 is not met, then the linearized
dynamics diverge. However, in practice, the full (non-linearized) dynamics can just move to a
different point on the loss landscape, where the generalized sharpness λmax(C

†D) is lower. It was
shown that GD possesses such a stabilizing mechanism (Damian et al., 2023). An interesting open
question is whether a similar mechanism exists in SGD.

3.2. Non-interpolating minima

While for interpolating minima, we saw that θ⊥
t can converge to θ∗⊥, this is generally not the case

for non-interpolating minima. In this section, we explore the dynamics of SGD at the vicinity of a
broader class of minima. Specifically, we consider the following definition.

Definition 10 (Regular minima) A twice differentiable minimum θ∗ is said to be regular if for each
sample i ∈ [n] the Hessian H i is PSD.

This definition encompasses a broader class of minima than Def. 3, as it allows for arbitrary (nonzero)
gradients gi. Only the mean of the gradients has to vanish (as in any minimum). Intuitively speaking,
although a regular minimum does not necessarily fit all the training points, it does not involve a major
disagreement among them. This can be understood through the second-order Taylor expansion of the
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loss per sample, which can have descent directions in the parameter space, yet it can only decrease
(on behalf of raising the loss to other samples) linearly with the parameters, and not quadratically.

Clearly, having gradients with nonzero components in the null space of the Hessian pushes the
dynamics to diverge. Interestingly, for regular minima, the dynamics of SGD in the null space and in
its orthogonal complement are separable. Thus, despite having a random walk in the null space, we
can give a condition for stability within its orthogonal complement (see proof in App. B.9).

Theorem 11 (Mean square stability for regular minima) Assume that θ∗ is a twice differentiable
regular minimum. Consider the linear dynamics of {θt} from Def. 1. Then

1. lim
t→∞

E
[
∥θ∥

t − θ∗∥∥2
]
= ∞ if and only if

∑n
i=1 ∥g

∥
i ∥2 > 0;

2. If η < η∗var then limsup
t→∞

E
[
∥θ⊥

t − θ∗⊥∥2
]

is finite;

3. If limsup
t→∞

E
[
∥θ⊥

t − θ∗⊥∥2
]

is finite then η ≤ η∗var.

We see that η∗var is the stability threshold also for regular minima. Recall that when η < η∗var, we also
have stability of the first moment, and thus E[θ∥

t ] = E[θ∥
0] for any t ≥ 0. Namely, SGD’s dynamics

in the null space is a random walk without drift. Note that moving in the null space does not increase
the loss, however it might change the trained model. Furthermore, in the proof, we show that under a
mild assumption, limsup

t→∞
E[∥θ⊥

t − θ∗⊥∥2] is finite if and only if 0 ≤ η < η∗var.

Next, we turn to compute the limit of the second moment of the dynamics (see proof in App. H).

Theorem 12 (Covariance limit) Assume that θ∗ is a twice differentiable regular minimum. Con-
sider the linear dynamics of {θt} from Def. 1. If 0 < η < η∗var then

lim
t→∞

vec (Σ⊥
t ) = ηp (2C − ηD)† vec

(
Σ⊥

g

)
, (19)

where

Σ⊥
g =

1

n

n∑
i=1

g⊥
i (g⊥

i )
T
. (20)

Using this result we can obtain the mean squared distance to the minimum, the mean of the second-
order Taylor expansion of the loss, and the mean of the squared norm of the expansion’s gradient at
large times (see proof in App. I).

Corollary 13 Let θ∗ be a twice differentiable regular minimum. Consider the second-order Taylor
expansion of the loss, L̃ of (8) and the linear dynamics of {θt} from Def. 1. If η < η∗var then

1. lim
t→∞

E
[
∥θ⊥

t − θ∗⊥∥2
]
= ηp(vec (I))T

(
2C − ηD

)†
vec
(
Σ⊥

g

)
;

2. lim
t→∞

E
[
L̃(θt)

]
− L̃(θ∗) = 1

2ηp(vec (H))T
(
2C − ηD

)†
vec
(
Σ⊥

g

)
;

3. lim
t→∞

E
[
∥∇L̃(θt)∥2

]
= ηp

(
vec
(
H2
))T (

2C − ηD
)†
vec
(
Σ⊥

g

)
.

We see that these values depend linearly on the covariance matrix of the gradients. Specifically,
if Σg = 0 then we recover the results of interpolating minima. Moreover, note that for η ≪ η∗var,
we have that 2C − ηD ≈ 2C. Therefore, the main dependence on η comes from the factor of η
preceding these expressions. We thus get that when decreasing the learning rate, the loss level drops,
and the parameters θt get closer to the minimum. This explains the empirical behavior observed
when decreasing the learning rate in neural network training, which causes the loss level to drop.

8
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3.3. Derivation of the stability threshold η∗var

In this section, we give a sketch of the derivation of the stability threshold η∗var in the simple case of
interpolating minima (i.e., the second statement of Thm. 5). For the full proof, please see App. B.8.
In interpolating minima, the gradient vanishes for each sample, i.e., gi = 0 for all i ∈ [n]. Therefore,
from the linearized dynamics (5) we get

θt+1 − θ∗ =
(
I − η

B

∑
i∈Bt

H i

)
(θt − θ∗) = At(θt − θ∗), (21)

where At ≜ I− η
B

∑
i∈Bt

H i. Note that {At} are i.i.d. and that θt is constructed from A0, . . . ,At−1,
so that θt and At are statistically independent. Therefore, the covariance of the dynamics evolves as

Σt+1 = E
[
(θt+1 − θ∗) (θt+1 − θ∗)T

]
= E

[
At (θt − θ∗) (θt − θ∗)TAT

t

]
= E

[
AtE

[
(θt − θ∗) (θt − θ∗)T

∣∣∣At

]
AT

t

]
(22)

= E
[
AtE

[
(θt − θ∗) (θt − θ∗)T

]
AT

t

]
= E

[
AtΣtA

T
t

]
,

where in the first line we used (21), in the second we used the law of total expectation, and in the
third we used the fact that θt is statistically independent of At. Using vectorization we get

vec (Σt+1) = E [At ⊗At] vec (Σt) . (23)

Ma and Ying (2021) showed that E[At ⊗At] = Q, where Q is given in (10). Since Σt is PSD by
definition, we only care about the effect of Q on vectorizations of PSD matrices. Thus, {Σt} are
bounded if and only if (see proof in (Ma and Ying, 2021))

max
Σ∈S+(Rd×d)

∥Q(η,B) vec (Σ)∥
∥Σ∥F

≤ 1. (24)

This constrained optimization problem is hard to solve. Yet, if we ignore the constraint then the
solution becomes simple – it is the spectral radius of Q (since Q is symmetric). Surprisingly, it
turns out that removing the constraint does not affect the solution because the matrix Σ ∈ Rd×d

that maximizes the objective in (24) without constraints is guaranteed to be PSD, so that it also
maximizes the objective under the constraint Σ ∈ S+(Rd×d). Proving this fundamental algebraic
property is a main challenge and a key contribution of our work (see proof in App. C).

Theorem 14 (Symmetric Kronecker systems) Let {Y i} be symmetric matrices in Rd×d. Define

Q =

M∑
i=1

Y i ⊗ Y i, (25)

and let zmax be a top eigenvector of Q. Then

1. there always exists a complete set of eigenvectors {zj} for Q such that each Zj = vec−1(zj)
is either a symmetric or a skew-symmetric matrix;

2. the top eigenvalue is a dominant eigenvalue2, i.e., the spectral radius ρ(Q) = λmax(Q);
3. there exists a top eigenvector corresponding to a PSD matrix, i.e., vec−1(zmax) ∈ S+(Rd×d).

2. By “top” we refer to the largest eigenvalue, and by “dominant” we refer to the largest eigenvalues in absolute value.
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(a) Sharpness vs. step size (b) Sharpness vs. batch size

Figure 1: Sharpness vs. step size and batch size. We trained single hidden-layer ReLU networks
using varying step sizes and batch sizes on a subset of MNIST. Panel (a) visualizes the sharpness of
the converged minima versus learning rate for different batch sizes. For small batch sizes, λmax(H)
deviates significantly from 2/η. Yet as the batch size increases to a moderate value, these curves
coincide, indicating that in terms of stability, SGD behaves similarly to GD. Panel (b) plots the
sharpness against the batch size for three different learning rates η1 = 0.043, η2 = 0.012, η3 = 0.002.
Here we see a similar trend where SGD behaves like GD for B ≥ 32.

Taking {Y i} to be the
(
n
B

)
realizations that At can take, we obtain that Q = E[At ⊗At] is of the

form (25). Note that the realizations of At are symmetric, so that Thm. 14 applies. Therefore, the
matrix that attains the maximum in the optimization problem (24) without the constraint, whose vec-
torization is generally a dominant eigenvector of Q, is guaranteed to be a PSD matrix. Furthermore,
the corresponding objective value is λmax(Q). This implies that the linear system in (23) is stable
if and only if λmax(Q) ≤ 1. Since Q is symmetric, λmax(Q) ≤ 1 is equivalent to uTQu ≤ 1 for
all u ∈ Sd2−1. It is easy to show that Q = I − 2ηC + η2D (see (67)). In App. B.8 we prove that
uTQu = 1− 2ηuTCu+ η2uTDu ≤ 1 holds for all u ∈ Sd2−1 if and only if

η ≤ 2

λmax

(
C†D

) = η∗var. (26)

4. Experiments

In this section, we experimentally validate our theoretical results in a setting with nonlinear dynamics.
We trained single hidden-layer ReLU networks with varying step sizes and batch sizes on a subset of
the MNIST dataset (see App. K). Since training with cross-entropy in overparametrized networks
results in infima rather than minima, we used the quadratic loss. Specifically, each class was labeled
with a one-hot vector, and the network was trained to predict the label without softmax. Our primary
goal in this experiment is to test the stability threshold of SGD; hence, we initialized the training with
large weights to ensure that the minimum closest to the starting point is unstable (large weights imply
large Hessians, and are thus more likely to violate the stability criterion). We used the same initial
point for all the training runs to eliminate initialization effects. To avoid divergence, we started with
a very small step size and gradually increased it until it reached its designated value (i.e., learning
rate warm-up). Together, large initialization and warm-up force SGD out of the unstable region until
it finds a stable minimum and converges as closely as possible to the stability threshold. Convergence
was determined when the loss remained below 10−6 for 200 consecutive epochs.

10
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Figure 1(a) visualizes the sharpness of the converged minima versus the learning rate for several
values of B. Here we observe that for small batch sizes, λmax(H) is far from 2/η. Yet for moderate
batch sizes and above (e.g., B ≥ 32), these curves virtually coincide, indicating that, in the context of
stability, SGD behaves like GD. Figure 1(b) shows the sharpness versus the batch size for three step
sizes. Here the stability threshold of SGD rapidly converges to that of GD as the batch size increases.

Apart for the sharpness λmax(H), we also want to compare the generalized sharpness λmax(C
†D)

to 2/η. Since computing the generalized sharpness is impractical in this task, we underestimate it via
a lower bound, which results in a tighter necessary condition than (17). The bound corresponds to
restricting the optimization problem in (11) to rank one PSD matrices, and is given by (see App. G.1)

2

η∗var
= λmax

(
C†D

)
≥ max

v:∥v∥=1

{
vTHv + p

1
n

∑n
i=1(v

TH iv − vTHv)2

vTHv

}
. (27)

We solve this optimization problem numerically, by using GD on the unit sphere with predetermined
scheduled geodesic step size. In the following, we present graphs of the sharpness λmax(H)
at the minima to which we converged, as well as the bounds (27) and (17) on the generalized
sharpness λmax(C

†D). Using the color coding of Fig. 2, these correspond to

2

η
≥ λmax

(
C†D

) (
=

2

η∗var

)
≥ max

v:∥v∥=1

{
vTHv + p

1
n

∑n
i=1(v

TH iv − vTHv)2

vTHv

}

≥ λmax(H) + p
1
n

∑n
i=1(v

T
maxH ivmax − λmax(H))2

λmax(H)

≥ λmax(H), (28)

where vmax denotes the top eigenvector of H .
Figure 2 depicts the expressions in (28) versus the step size for six batch sizes. We see that

for B = 1 and B = 2, the gap between 2/η (red) and the optimized bound (27) (purple) upon
convergence is small. Particularly, they coincide over a wide range of step sizes η. Since the
generalized sharpness λmax(C

†D) must reside between those two curves, we can deduce two
things: (a) Our theory correctly predicts the stability threshold, while SGD converged at the edge of
stability (as designed in our experiment); (b) For small batches, the second order moment matrix
that maximizes (11) is rank one. As the batch size increases, the two curves draw apart, indicating
that the rank of the dominant second-order moment matrix becomes larger. Furthermore, the gap
between our simple necessary condition (17) (blue) and the trivial bound of 2/λmax(H) (yellow) is
large for high learning rates and small for small step sizes. This gap represents the variance of the
widths of the minima of the per-sample losses (corresponding to the widths of the quadratic functions
{(θ − θ∗)TH i(θ − θ∗)}) in the direction of vmax, the top eigenvector of H . Thus we find that for
small learning rates, this variance is small and the model is aligned in this direction, and for large
learning rates, this variance is high.

A comment is in place regarding the fluctuation of the optimized bound. As described above,
the value of this bound is obtained by an optimization problem which we solved using GD for each
pair of step size and batch size. It may be that we have not found the global optimum for every step
size, and got stuck at local maxima for some set of hyperparameters. This can explain why the curve

11



MULAYOFF MICHAELI

(G
en

er
al

iz
ed

)S
ha

rp
ne

ss

(a) B = 1 (b) B = 2 (c) B = 4

(G
en

er
al

iz
ed

)S
ha

rp
ne

ss

(d) B = 8 (e) B = 16 (f ) B = 32

Figure 2: (Generalized) Sharpness vs. step size. We trained single hidden-layer ReLU networks
using varying step sizes and batch sizes on MNIST dataset. For each pair of hyper-parameters (η,B),
we measured the sharpness of the minimum (yellow), our necessary condition for stability (blue),
and the optimized bound (purple), which their relations are given in (28). We see that for small
batch sizes B = 1 and B = 2, the optimized bound (27) coincides with 2/η, confirming that SGD
converged at the edge of stability (η = η∗var). For additional insights and detail, see Sec. 4.

falls down and then comes up again at some of the learning rates. Additionally, as we mentioned,
the optimized bound is equivalent to restricting the optimization problem from (11) to rank one
symmetric matrices. It is possible that for some minima of the loss, the optimal matrix of (11) is
rank one, and therefore the bound is tight, while for others the rank is higher and thus the bound is
not tight. Further study of SGD is needed to determine the cause of this behavior, which we leave for
future work. For more details and experimental results, please see App. K.

5. Related work

The stability of SGD in the vicinity of minima has been previously studied in multiple works. On the
theoretical side, Wu et al. (2018) examined stability in the mean square sense and gave an implicit
sufficient condition. Granziol et al. (2022) used random matrix theory to find the maximal stable
learning rate as a function of the batch size. Their work assumes some conditions on the Hessian’s
noise caused by batching, and the result holds in the limit of an infinite number of samples and batch
size. Velikanov et al. (2023) examined SGD with momentum and derived a bound on the maximal
learning rate. Their derivation uses “spectrally expressible” approximations and the result is given
implicitly through a moment-generating function. Ma and Ying (2021) studied the dynamics of
higher moments of SGD and gave an implicit necessary and sufficient condition for stability (see
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Thm. 4 and the discussion following it). Wu et al. (2022) gave a necessary condition for stability
via the alignment property. However, the result assumes and uses a lower bound on a property they
coin “alignment” but an analytic bound for this alignment property is lacking for the general case.
Ziyin et al. (2023) studied the stability of SGD in probability, rather than in mean square. Since
convergence in probability is a weaker requirement, theoretically, SGD can converge with high
probability to minima which are unstable in the mean square sense. Indeed, their theory predicts that
SGD can converge far beyond GD’s threshold. Yet this did not happen in extensive experiments done
in Cohen et al. (2021, App. G) and Gilmer et al. (2022). Finally, Mulayoff et al. (2021) analyzed the
stability in non-differentiable minima, and gave a necessary condition for a minimum to be “strongly
stable”, i.e., such that SGD does not escape a ball with a given radius from the minimum.

Liu et al. (2021) studied the covariance matrix of the stationary distribution of the iterates in the
vicinity of minima. Ziyin et al. (2022) improved their results while deriving an implicit equation
that relates this covariance to the covariance of the gradient noise. However, these works do not
discuss the conditions under which the dynamics converge to the stationary state. Lee and Jang
(2023) studied the stability of SGD along its trajectory and gave an explicit exact condition. Yet their
result does not apply to minima, since the denominator in their condition vanishes at minima.

On the empirical side, Cohen et al. (2021) examined the behavior of GD, and showed that it
typically converges at the edge of stability. Additionally, for SGD (see their App. G) they found that
with large batches, the sharpness behaves similarly to full-batch gradient descent. Moreover, they
found that the smaller the batch size, the lower the sharpness at the converged minimum. Gilmer et al.
(2022) studied how the curvature of the loss affects the training dynamics in multiple settings. They
observed that SGD with momentum is stable only when the optimization trajectory primarily resides
in a region of parameter space where η ≲ 2/λmax(H). Further experimental results in Jastrzębski
et al. (2020, 2019) show that the sharpness along the trajectory of SGD is implicitly regularized.

6. Conclusion

We presented an explicit threshold on SGD’s step size, which is both necessary and sufficient for
guaranteeing mean-square stability. We showed that this threshold is a monotonically non-decreasing
function of the batch size, which implies that decreasing the batch size can only make the process
less stable. Additionally, we interpreted the role of the batch size B through an equivalent process
that takes in each iteration either a full batch gradient step or a single sample gradient step. Our
interpretation highlights that even with moderate batch sizes, SGD’s stability threshold is very close
to that of GD. We also proved simpler necessary conditions for stability, which depend on the batch
size, and are easier to compute. Finally, we verified our theory through experiments on MNIST.
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Appendix A. Notations and the Kronecker product

Throughout our derivations, we use the following notations.

a Lower case non-bold letters for scalars
a Lower case bold letters for vectors
A Upper case bold for matrices

a[p], A[ℓ,p] p’th element of a, (ℓ, p) element of A
AT Transpose of A
A† Moore–Penrose inverse of A
P V Orthogonal projection matrix onto the subspace V

N (A) Null space of A
N⊥(A) Orthogonal complement of the null space of A
R(A) Range of A
R⊥(A) Orthogonal complement of the range of A

⊗ Kronecker product
⊕ Kronecker sum
⊙k k’th Hadamard power
E Expectation
P Probability

∥a∥ Euclidean norm of a
∥A∥ Top singular value of A
∥A∥F Frobenius norm of A
ρ(A) Spectral radius of A
vec(A) Vectorization of A (column stack)
vec−1(a) Reshaping a back to d× d matrix

L Loss function
θ Parameters vector of the loss
θ∗ Minimum point of the loss
d Dimension of θ
n Number of training samples
η Step size
B Batch size
p Defined to be (n−B)/

(
B(n− 1)

)
Id The d× d identity matrix (when the dimensions are clear, the subscript is omitted)
Σ Second moment matrix
H Hessian of the full loss at θ∗

H i Hessian of the loss of the sample i at θ∗

gi Gradient of the loss of the sample i at θ∗

a∥ Projection of a onto the null space of H
a⊥ Projection of a onto the orthogonal complement of the null space of H

S+(Rd×d) The set of all positive semi-definite (PSD) matrices over Rd×d

Sd−1 Unit sphere in Rd

Table 1: Table of notations
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Further notations that we use are given below.

µt ≜ E [θt − θ∗] , Σt ≜ E
[
(θt − θ∗) (θt − θ∗)T

]
,

µ⊥
t ≜ E [θ⊥

t − θ∗⊥] , Σ⊥
t ≜ E

[
(θ⊥

t − θ∗⊥) (θ⊥
t − θ∗⊥)

T
]
,

µ∥
t ≜ E

[
θ∥
t − θ∗∥] , Σ∥

t ≜ E
[(
θ∥
t − θ∗∥) (θ∥

t − θ∗∥)T] . (29)

Additionally, we make extensive use of the following properties of the Kronecker product throughout
the derivations. For any matrices M1,M2,M3,M4,

vec (M1M2M3) =
(
MT

3 ⊗M1

)
vec (M2) , (P1)(

M1 ⊗M2

)T
= MT

1 ⊗MT
2 , (P2)(

M1 ⊗M2

)(
M3 ⊗M4

)
=
(
M1M3

)
⊗
(
M2M4

)
, (P3)

[vec (M1)]
T (M2 ⊗M3)vec (M4) = Tr

(
MT

1 M3M4M
T
2

)
. (P4)

Finally, we give here the definition of Kronecker sum. If M1 is d1 × d1, M2 is d2 × d2 and Id

denotes the d× d identity matrix then

M1 ⊕M2 = M1 ⊗ Id2 + Id1 ⊗M2. (30)

Appendix B. Stability of the first and second moments

Using our notation (see App. A), for all v ∈ Rd we have v⊥ = PN⊥(H)v and v∥ = PN (H)v .
Since H is symmetric,

PN (H)H = HPN (H) = 0, and PN⊥(H)H = HPN⊥(H) = H. (31)

If H i ∈ S+(Rd×d) for all i ∈ [n], then the null space of H is contained in the null space of each
H i, and therefore we also have that

PN (H)H i = H iPN (H) = 0, and PN⊥(H)H i = H iPN⊥(H) = H i. (32)

B.1. Linearized dynamics

The linearized dynamics near θ∗ is

θt+1 = θt −
η

B

∑
i∈Bt

H i(θt − θ∗)− η

B

∑
i∈Bt

gi. (33)

Therefore,

θt+1 − θ∗ = θt − θ∗ − η

B

∑
i∈Bt

H i(θt − θ∗)− η

B

∑
i∈Bt

gi

=

(
I − η

B

∑
i∈Bt

H i

)
(θt − θ∗)− η

B

∑
i∈Bt

gi. (34)

Here we assume that the batches are chosen uniformly at random, independently across iterations.
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Linearized dynamics in the orthogonal complement. Under the assumption that H i ∈ S+(Rd×d)
for all i ∈ [n], the linearized dynamics in the orthogonal complement is given by

θ⊥
t+1 − θ∗⊥ = PN⊥(H) (θt+1 − θ∗)

= PN⊥(H)

(
I − η

B

∑
i∈Bt

H i

)
(θt − θ∗)− η

B

∑
i∈Bt

PN⊥(H)gi

=

(
PN⊥(H) −

η

B

∑
i∈Bt

PN⊥(H)H i

)
(θt − θ∗)− η

B

∑
i∈Bt

g⊥
i

=

(
PN⊥(H) −

η

B

∑
i∈Bt

H iPN⊥(H)

)
(θt − θ∗)− η

B

∑
i∈Bt

g⊥
i

=

(
I − η

B

∑
i∈Bt

H i

)
PN⊥(H)(θt − θ∗)− η

B

∑
i∈Bt

g⊥
i

=

(
I − η

B

∑
i∈Bt

H i

)(
θ⊥
t+1 − θ∗⊥)− η

B

∑
i∈Bt

g⊥
i . (35)

Here, in the second step, we used (34), and in the fourth we used (32).

Linearized dynamics in the null space. Under the assumption that H i ∈ S+(Rd×d) for all
i ∈ [n], the linearized dynamics in the null space is given by

θ∥
t+1 − θ∗∥ = PN (H) (θt+1 − θ∗)

= PN (H)

(
I − η

B

∑
i∈Bt

H i

)
(θt − θ∗)− η

B

∑
i∈Bt

PN (H)gi

=

(
PN (H) −

η

B

∑
i∈Bt

PN (H)H i

)
(θt − θ∗)− η

B

∑
i∈Bt

g∥
i

=
(
PN (H) − 0

)
(θt − θ∗)− η

B

∑
i∈Bt

g∥
i

= PN (H)(θt − θ∗)− η

B

∑
i∈Bt

g∥
i

= θ∥
t − θ∗∥ − η

B

∑
i∈Bt

g∥
i . (36)

Again, in the second step, we used (34), and in the fourth we used (32). Overall,

θ∥
t+1 = θ∥

t −
η

B

∑
i∈Bt

g∥
i . (37)

Note that if g∥
i = 0 for all i ∈ [n] then

θ∥
t+1 = θ∥

t . (38)

18



EXACT MEAN SQUARE LINEAR STABILITY ANALYSIS FOR SGD

B.2. Mean dynamics (proof of Theorem 2)

First, we compute the mean of the linearized dynamics.

µt+1 = E [θt+1 − θ∗] = E

[(
I − η

B

∑
i∈Bt

H i

)
(θt − θ∗)

]
− E

[
η

B

∑
i∈Bt

gi

]

= E

[(
I − η

B

∑
i∈Bt

H i

)
E [(θt − θ∗)|Bt]

]
− η

n

n∑
i=1

gi

= (I − ηH)E [(θt − θ∗)]

= (I − ηH)µt, (39)

where in the second step we used the law of total expectation, and in the third step we used (6). This
system is stable if and only if the spectral radius ρ(I − ηH) ≤ 1. This condition is equivalent to
λmax(H) ≤ 2/η (see proof in, e.g., Cohen et al. (2021); Mulayoff et al. (2021)), thus proving point
2 of Thm. 2.

Mean dynamics in the orthogonal complement. In a similar manner, taking the expectation of
both sides of (35) and using (6), we get

µ⊥
t+1 = (I − ηH)µ⊥

t , (40)

Note that for all t ≥ 0,

µ⊥
t+1 = PN⊥(H)µ

⊥
t+1 = PN⊥(H) (I − ηH)µ⊥

t =
(
PN⊥(H) − ηH

)
µ⊥
t . (41)

Namely, µ⊥
t =

(
PN⊥(H) − ηH

)t
µ⊥
0 , and thus

∥µ⊥
t ∥ =

∥∥∥∥(PN⊥(H) − ηH
)t

µ⊥
0

∥∥∥∥ ≤
∥∥∥PN⊥(H) − ηH

∥∥∥t ∥µ⊥
0 ∥ . (42)

It is easy to show that ∥∥∥PN⊥(H) − ηH
∥∥∥ = max

λi(H) ̸=0
{|1− ηλi(H)|} . (43)

Therefore, if 0 < η < 2/λmax, we have that
∥∥∥PN⊥(H) − ηH

∥∥∥ < 1 and thus

lim
t→∞

∥µ⊥
t ∥ ≤ lim

t→∞

∥∥∥PN⊥(H) − ηH
∥∥∥t ∥µ⊥

0 ∥ = 0. (44)

This proves point 3 of Thm. 2.

Mean dynamics in the null space. Taking the expectation of both sides of (36) and using (6), we
obtain

µ∥
t+1 = µ∥

t . (45)

This demonstrates that for all t ≥ 0,

E
[
θ∥
t − θ∗∥] = µ∥

t = µ∥
0 = E

[
θ∥
0 − θ∗∥] , (46)

so that
E
[
θ∥
t

]
= E

[
θ∥
0

]
. (47)

This proves Point 1 of Thm. 2.
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B.3. Covariance dynamics for the orthogonal complement

Before providing a complete proof for Thm. 5 (see App. B.8) and Thm. 11 (see App. B.9), we next
examine the evolution over time of the covariance of the parameter vector. We start by focusing on
the orthogonal complement space. Define

At = I − η

B

∑
i∈Bt

H i and vt =
η

B

∑
i∈Bt

gi, (48)

so that (35) can be compactly written as

θ⊥
t+1 − θ∗⊥ = At (θ

⊥
t − θ∗⊥)− v⊥

t . (49)

Recall that this holds under the assumption that H i ∈ S+(Rd×d) for all i ∈ [n]. Note that {At} are
i.i.d. and that θ⊥

t is constructed from A0, . . . ,At−1, so that θ⊥
t is independent of At. We therefore

have

Σ⊥
t+1 = E

[(
θ⊥
t+1 − θ∗⊥) (θ⊥

t+1 − θ∗⊥)T]
= E

[
(At (θ

⊥
t − θ∗⊥)− v⊥

t ) (At (θ
⊥
t − θ∗⊥)− v⊥

t )
T
]

= E
[
At (θ

⊥
t − θ∗⊥) (θ⊥

t − θ∗⊥)
T
AT

t

]
− E

[
At (θ

⊥
t − θ∗⊥) (v⊥

t )
T
]

− E
[
v⊥
t (θ⊥

t − θ∗⊥)
T
AT

t

]
+ E

[
v⊥
t (v

⊥
t )

T
]

= E
[
AtE

[
(θ⊥

t − θ∗⊥) (θ⊥
t − θ∗⊥)

T
]
AT

t

]
− E

[
AtE [θ⊥

t − θ∗⊥] (v⊥
t )

T
]

− E
[
v⊥
t E [θ⊥

t − θ∗⊥]
T
AT

t

]
+Σ⊥

v

= E
[
AtΣ

⊥
t A

T
t

]
− E

[
Atµ

⊥
t (v

⊥
t )

T
]
− E

[
v⊥
t (µ

⊥
t )

TAT
t

]
+Σ⊥

v , (50)

where in the second equality we used (49), and in the fourth the fact that At is independent of θ⊥
t .

Using vectorization, the above equation can be written as

vec
(
Σ⊥

t+1

)
= E

[
vec
(
AtΣ

⊥
t A

T
t

)]
− E

[
vec
(
Atµ

⊥
t (v

⊥
t )

T
)]

− E
[
vec
(
v⊥
t (µ

⊥
t )

TAT
t

)]
+ vec (Σ⊥

v )

= E [At ⊗At] vec (Σ
⊥
t )− E [v⊥

t ⊗At]µ
⊥
t − E [At ⊗ v⊥

t ]µ
⊥
t + vec (Σ⊥

v )

= Qvec (Σ⊥
t )− (E [v⊥

t ⊗At] + E [At ⊗ v⊥
t ])µ

⊥
t + vec (Σ⊥

v ) , (51)

where we denoted
Q ≜ E [At ⊗At] . (52)

Overall, the joint dynamics of Σ⊥
t and µ⊥

t is given by(
µ⊥
t+1

vec
(
Σ⊥

t+1

)) =

(
I − ηH 0

−E [v⊥
t ⊗At]− E [At ⊗ v⊥

t ] Q

)(
µ⊥
t

vec (Σ⊥
t )

)
+

(
0

vec (Σ⊥
v )

)
. (53)

In some cases, it is easier to look at a projected version of the transition matrix. In (41) we showed
that

µ⊥
t+1 =

(
PN⊥(H) − ηH

)
µ⊥
t . (54)

20



EXACT MEAN SQUARE LINEAR STABILITY ANALYSIS FOR SGD

Moreover, from (51),

vec
(
Σ⊥

t+1

)
= vec

(
PN⊥(H)Σ

⊥
t+1PN⊥(H)

)
=
(
PN⊥(H) ⊗ PN⊥(H)

)
vec
(
Σ⊥

t+1

)
=
(
PN⊥(H) ⊗ PN⊥(H)

)
(Qvec (Σ⊥

t )− (E [v⊥
t ⊗At] + E [At ⊗ v⊥

t ])µ
⊥
t + vec (Σ⊥

v ))

=
(
PN⊥(H) ⊗ PN⊥(H)

)
Qvec (Σ⊥

t )

−
(
PN⊥(H) ⊗ PN⊥(H)

)
(E [v⊥

t ⊗At] + E [At ⊗ v⊥
t ])µ

⊥
t + vec (Σ⊥

v ) . (55)

Therefore, the linear system in (53) can be written as(
µ⊥
t+1

vec
(
Σ⊥

t+1

)) =(
PN⊥(H) − ηH 0

−
(
PN⊥(H) ⊗ PN⊥(H)

)
(E [v⊥

t ⊗At] + E [At ⊗ v⊥
t ])

(
PN⊥(H) ⊗ PN⊥(H)

)
Q

)(
µ⊥
t

vec (Σ⊥
t )

)
+

(
0

vec (Σ⊥
v )

)
. (56)

B.4. The transition matrix of the covariance dynamics

We now proceed to develop an explicit expression for the covariance transition matrix Q of (52). We
have

Q = E [At ⊗At] = E

[(
I − η

B

∑
i∈Bt

H i

)
⊗

(
I − η

B

∑
i∈Bt

H i

)]

= E

I − η

B

∑
i∈Bt

(I ⊗H i +H i ⊗ I) +
η2

B2

∑
i,j∈Bt

H i ⊗Hj


= I − η (I ⊗H +H ⊗ I) + η2E

 1

B2

∑
i,j∈Bt

H i ⊗Hj

 . (57)

Note that

E

 1

B2

∑
i,j∈Bt

H i ⊗Hj

 = E

 1

B2

∑
i ̸=j∈Bt

H i ⊗Hj +
1

B2

∑
i∈Bt

H i ⊗H i


=

1

B2
×B(B − 1)E [H i ⊗Hj |i ̸= j ∈ Bt] +

1

B2
E

[∑
i∈Bt

H i ⊗H i

]

=
B − 1

B
E [H i ⊗Hj |i ̸= j ∈ Bt] +

1

nB

n∑
i=1

H i ⊗H i. (58)
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Specifically using symmetry and (7),

E [H i ⊗Hj |i ̸= j ∈ Bt] =

n∑
i ̸=j=1

1

n(n− 1)
H i ⊗Hj

=
n

(n− 1)

1

n2

n∑
i ̸=j=1

H i ⊗Hj

=
n

(n− 1)

(
H ⊗H − 1

n2

n∑
i=1

H i ⊗H i

)
. (59)

Hence,

B − 1

B
E [H i ⊗Hj |i ̸= j ∈ Bt] =

n(B − 1)

B(n− 1)

(
H ⊗H − 1

n2

n∑
i=1

H i ⊗H i

)

=
n(B − 1)

B(n− 1)
H ⊗H − B − 1

Bn(n− 1)

n∑
i=1

H i ⊗H i

= H ⊗H − n−B

B(n− 1)
H ⊗H − B − 1

Bn(n− 1)

n∑
i=1

H i ⊗H i.

(60)

Overall,

E

 1

B2

∑
i,j∈Bt

H i ⊗Hj

 = H ⊗H − n−B

B(n− 1)
H ⊗H − B − 1

Bn(n− 1)

n∑
i=1

H i ⊗H i

+
1

nB

n∑
i=1

H i ⊗H i

= H ⊗H − n−B

B(n− 1)
H ⊗H +

n−B

B(n− 1)
× 1

n

n∑
i=1

H i ⊗H i

= H ⊗H +
n−B

B(n− 1)

(
1

n

n∑
i=1

H i ⊗H i −H ⊗H

)
. (61)

Therefore, we have that Q is given by

Q(B, η) = I − η (I ⊗H +H ⊗ I) + η2H ⊗H + η2
n−B

B(n− 1)

(
1

n

n∑
i=1

H i ⊗H i −H ⊗H

)

= (I − ηH)⊗ (I − ηH) +
n−B

B(n− 1)

η2

n

n∑
i=1

(H i ⊗H i −H ⊗H), (62)

which reproduce the result of (10). Here we give an alternative form of Q, which is useful in many
derivations. We set

p =
n−B

B(n− 1)
, (63)
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and continue from the first line in (62).

Q(B, η) = I − η (I ⊗H +H ⊗ I) + η2H ⊗H + η2p

(
1

n

n∑
i=1

H i ⊗H i −H ⊗H

)

= I − η (I ⊗H +H ⊗ I) + (1− p)η2H ⊗H + p× η2

n

n∑
i=1

H i ⊗H i

= (1− p)I − (1− p)η (I ⊗H +H ⊗ I) + (1− p)η2H ⊗H

+ pI − pη (I ⊗H +H ⊗ I) + p× η2

n

n∑
i=1

H i ⊗H i

= (1− p)

[
I − η (I ⊗H +H ⊗ I) + η2H ⊗H

]
+ p

[
I − η (I ⊗H +H ⊗ I) +

η2

n

n∑
i=1

H i ⊗H i

]
= (1− p) (I − ηH)⊗ (I − ηH)

+ p

[
I − η

(
I ⊗

( 1
n

n∑
i=1

H i

)
+
( 1
n

n∑
i=1

H i

)
⊗ I

)
+

η2

n

n∑
i=1

H i ⊗H i

]

= (1− p) (I − ηH)⊗ (I − ηH) + p
1

n

n∑
i=1

[
I − η (I ⊗H i +H i ⊗ I) + η2H i ⊗H i

]

= (1− p)(I − ηH)⊗ (I − ηH) + p
1

n

n∑
i=1

(I − ηH i)⊗ (I − ηH i), (64)

where in the third step we add and subtract pI − pη (I ⊗H +H ⊗ I), and in the fifth we used (7).
Another useful form is the following. First, observe that

1

n

n∑
i=1

H i ⊗H i −H ⊗H =
1

n

n∑
i=1

H i ⊗H i −H ⊗H −H ⊗H +H ⊗H

=
1

n

n∑
i=1

H i ⊗H i −H ⊗H −H ⊗H +H ⊗H

=
1

n

n∑
i=1

H i ⊗H i −

(
1

n

n∑
i=1

H i

)
⊗H −H ⊗

(
1

n

n∑
i=1

H i

)
+H ⊗H

=
1

n

n∑
i=1

H i ⊗H i −
1

n

n∑
i=1

H i ⊗H − 1

n

n∑
i=1

H ⊗H i +H ⊗H

=
1

n

n∑
i=1

(H i −H)⊗ (H i −H) (65)

23



MULAYOFF MICHAELI

Then, starting from the first line in (62) and using (65), we have

Q(B, η) = I − η (I ⊗H +H ⊗ I) + η2H ⊗H + pη2

(
1

n

n∑
i=1

H i ⊗H i −H ⊗H

)

= (I − ηH)⊗ (I − ηH) + η2p

(
1

n

n∑
i=1

(H i −H)⊗ (H i −H)

)
(66)

Finally, we give the Q in terms of C and D. Again, we start from the first line in (62).

Q = I − η (I ⊗H +H ⊗ I) + η2H ⊗H + η2p

(
1

n

n∑
i=1

H i ⊗H i −H ⊗H

)

= I − η (I ⊗H +H ⊗ I) + η2

[
(1− p)×H ⊗H + p× 1

n

n∑
i=1

H i ⊗H i

]
= I + 2ηC + η2D. (67)

B.5. Covariance matrix of the gradient noise

We now develop an explicit expression for the covariance matrix of the gradient noise v of (48). We
have

Σv = E
[
vtv

T
t

]
=
( η

B

)2
E

 ∑
i,j∈Bt

gig
T
j


=
( η

B

)2
E

 ∑
i ̸=j∈Bt

gig
T
j +

∑
i∈Bt

gig
T
i


=
( η

B

)2(
B(B − 1)E

[
gig

T
j

∣∣i ̸= j ∈ Bt

]
+

B

n

n∑
i=1

gig
T
i

)
. (68)

Observe that

E
[
gig

T
j

∣∣i ̸= j ∈ Bt

]
=

n∑
i ̸=j=1

1

n(n− 1)
gig

T
j

=
1

n(n− 1)

 n∑
i,j=1

gig
T
j −

n∑
i=1

gig
T
i


=

1

n(n− 1)

( n∑
i=1

gi

)(
n∑

i=1

gi

)T

−
n∑

i=1

gig
T
i


= − 1

n(n− 1)

n∑
i=1

gig
T
i , (69)
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where in the last step we used (6). Thus,

Σv =
( η

B

)2(B

n
− B(B − 1)

n(n− 1)

) n∑
i=1

gig
T
i

=
( η

B

)2
× B(n−B)

n(n− 1)

n∑
i=1

gig
T
i

= η2
n−B

B(n− 1)
× 1

n

n∑
i=1

gig
T
i

= η2pΣg, (70)

where we denoted

Σg =
1

n

n∑
i=1

gig
T
i . (71)

B.6. The Null spaces of C, D and E

Let us now analyze the relation between the null spaces of C , D and E. First, it is easy to see that
under the assumption that H i ∈ S+(Rd×d) for all i ∈ [n],

N (H) =

n⋂
i=1

N (H i), (72)

where N (·) denotes null space of a matrix. Here we show the following.

Lemma 15 Assume that H i ∈ S+(Rd×d) for all i ∈ [n] and let

C =
1

2
H ⊕H,

D = (1− p)H ⊗H + p
1

n

n∑
i=1

H i ⊗H i,

E =
1

n

n∑
i=1

(H i −H)⊗ (H i −H). (73)

Then N (C) ⊆ N (D) and N (C) ⊆ N (E).

Proof Let u ∈ N (C) and denote U = vec−1(u), then

0 = 2Cu = H ⊕Hu = (H ⊗ I + I ⊗H)u. (74)

In matrix form we get
UH +HU = 0. (75)

Let us take the Frobenius norm, then

∥UH +HU∥2F = ∥UH∥2F + ∥HU∥2F + 2Tr
(
(UH)THU

)
= 0, (76)
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where
Tr
(
(UH)THU

)
= Tr

(
HUTHU

)
= Tr

(
H

1
2UTHUH

1
2

)
≥ 0 (77)

because H
1
2UTHUH

1
2 = (H

1
2UH

1
2 )T(H

1
2UH

1
2 ) is PSD. This implies that

∥UH∥2F = ∥HU∥2F = 0. (78)

Thus, u ∈ N (C) if and only if UH = 0 and HU = 0. Since the null space of H is the intersection
of {H i} (72) , we have that U also satisfies H iU = UH i = 0 for all i ∈ [n]. Now,

Du = (1− p)H ⊗Hu+ p
1

n

n∑
i=1

H i ⊗H iu, (79)

and in matrix form,

vec−1(Du) = (1− p)HUH + p
1

n

n∑
i=1

H iUH i = 0. (80)

Namely, u ∈ N (D). Similarly,

Eu =
1

n

n∑
i=1

(H i −H)⊗ (H i −H)u, (81)

and in matrix form,

vec−1(Eu) =
1

n

n∑
i=1

(H i −H)U(H i −H) = 0. (82)

Namely, u ∈ N (E).

B.7. Positivity of C and D

B.7.1. POSITIVITY OF C

The eigenvalues of a Kronecker sum are the pairwise sums of the eigenvalues of the summands (Laub,
2004, Thm. 13.16). In App. J we explicitly show this for C, where we derive that the eigenvalues of
C = 1

2H ⊕H are 1
2

(
λi(H) + λj(H)

)
, i = 1, . . . , d, j = 1, . . . , d. Note that H is the Hessian of

the loss at a minimum, and is therefore PSD. Therefore all eigenvalues of H are nonnegative, and as
a consequence, the eigenvalues of C are nonnegative, i.e., C is PSD.

B.7.2. POSITIVITY OF D

The eigenvalues of a Kronecker product are the pairwise products of the eigenvalues of the multipli-
cands (Laub, 2004, Thm. 13.12). This property asserts that for any PSD matrix M , namely with
nonnegative eigenvalues, the Kronecker product M ⊗M is PSD. Note that D is defined as

D = (1− p)H ⊗H + p
1

n

n∑
i=1

H i ⊗H i, (83)

with p ∈ [0, 1]. In our settings, i.e., regular and interpolating minima, we consider Hessian matrices
{H i} that are PSD. By the property above, all {H i ⊗H i} are PSD, and also {H ⊗H} is PSD.
Therefore, D is a convex combination of PSD matrices, which is PSD.
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B.8. Proof of Theorem 5

We are now ready to prove Thm. 5.

First statement. In (38) we showed that for interpolating minima θ∥
t+1 = θ∥

t , which completes the
proof for the first statement of the theorem.

Second statement. Ma and Ying (2021) showed that the second moment Σt = [(θt − θ∗)(θt −
θ∗)T] for interpolating minima evolves over time as

vec (Σt+1) = Q vec (Σt) , (84)

where Q is given in (10). Since Σt is PSD by definition, we only care about the effect of Q on
vectorizations of PSD matrices. Therefore, we have that {Σt} are bounded if and only if (see proof
in (Ma and Ying, 2021))

max
Σ∈S+(Rd×d)

∥Q(η,B) vec (Σ)∥
∥Σ∥F

≤ 1. (85)

To obtain the stability threshold of SGD in the mean square sense we first rearrange the terms in Q
as (see (64))

Q(η,B) = (1− p)× (I − ηH)⊗ (I − ηH) + p× 1

n

n∑
i=1

(I − ηH i)⊗ (I − ηH i). (86)

Here we explicitly see that Q can be written as a sum of Kronecker products, where each product
is of a symmetric matrix with itself, as required by Thm. 14. Applying this theorem, we have
that the spectral radius of Q equals its top eigenvalue, and the corresponding top eigenvector is a
vectorization of a PSD matrix. Note that since Q is symmetric, its spectral radius ρ(Q) is given by
the unconstrained optimization problem

ρ(Q) = max
Σ∈Rd×d

∥Q(η,B) vec (Σ)∥
∥Σ∥F

. (87)

Theorem 14 tells us that the top eigenvector of Q maximizes this unconstrained problem, and more
importantly, it always corresponds to a PSD matrix. Therefore, this top eigenvector also maximizes
the objective while restricting to the subset of PSD matrices, which is given by the constraint in (85).
Thus, we have that the maximizer for the constrained optimization problem in (85) is, in fact, the top
eigenvalue of Q. Hence, the linear system is stable if and only if λmax(Q) ≤ 1. Writing Q in terms
of C and D gives (see (67))

Q = I − 2ηC + η2D. (88)

Because Q is symmetric, the condition λmax(Q) ≤ 1 is equivalent to the requirement that uTQu ≤ 1
for all u ∈ Sd2−1. In App. B.6 we show that N (C) ⊆ N (D). Therefore, if u ∈ N (C) then
also u ∈ N (D) and we get

uTQu = 1− 2ηuTCu+ η2uTDu = 1. (89)

Namely, directions in the null space of C do not impose any constraint on the learning rate, and thus
can be ignored. Additionally, if u ∈ N (D) but u /∈ N (C), then

uTQu = 1− 2ηuTCu+ η2uTDu = 1− 2ηuTCu ≤ 1, (90)
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holds for all η ≥ 0, because C is PSD (see App. B.7). Now,

uTQu = 1− 2ηuTCu+ η2uTDu ≤ 1 (91)

holds for all u /∈ N (D) (which also results in u /∈ N (C)), if and only if

∀u /∈ N (D) ηuTDu ≤ 2uTCu. (92)

Since D is PSD (see App. B.7), and we assume that u /∈ N (D), we can divide both sides of this
equation by uTDu > 0 to get a condition on the learning rate as

0 ≤ η ≤ 2 inf
u∈Sd2−1:u/∈N (D)

{
uTCu

uTDu

}
. (93)

Therefore, the stability threshold η∗var is given by

η∗var = 2 inf
u∈Sd2−1:u/∈N (D)

{
uTCu

uTDu

}
= 2

(
sup

u∈Sd2−1:u/∈N (D)

{
uTDu

uTCu

})−1

. (94)

Note that the norm of u has no effect, and therefore we can remove the constraint u ∈ Sd2−1.
Additionally, we can also relax the constraint u /∈ N (D) to u /∈ N (C), because the supremum
in (94) is over a nonnegative function (both C and D are PSD, see App. B.7), and will not be affected
by adding to the domain points at which the function vanishes. Since N (C) ⊆ N (D) we have
that N⊥(D) ⊆ N⊥(C) and therefore

PN⊥(C)D = DPN⊥(C) = D, (95)

where PN⊥(C) is the projection matrix onto the orthogonal complement of the null space of C.

Additionally, C is PSD (see App. B.7), and therefore C
1
2 exists and is also PSD, so that

PN⊥(C) =
(
C

1
2

)†
C

1
2 = C

1
2

(
C

1
2

)†
. (96)

Therefore,

sup
u∈Sd2−1:u/∈N (D)

{
uTDu

uTCu

}
= sup

u/∈N (C)

{
uTDu

uTCu

}

= sup
u/∈N (C)

{
uTPN⊥(C)DPN⊥(C)u

uTCu

}

= sup
u/∈N (C)


uTC

1
2

(
C

1
2

)†
D
(
C

1
2

)†
C

1
2u

uTC
1
2C

1
2u


= sup

u/∈N (C)


(
C

1
2u
)T (

C
1
2

)†
D
(
C

1
2

)† (
C

1
2u
)

(
C

1
2u
)T (

C
1
2u
)

 , (97)
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where in the second step we used (95), and in the third step we used (96). By a simple change of
variables y = C

1
2u ∈ N⊥(C) we get

max
y∈N⊥(C)


yT
(
C

1
2

)†
D
(
C

1
2

)†
y

yTy

 = max
y∈Rd2


yT
(
C

1
2

)†
D
(
C

1
2

)†
y

yTy


= λmax

((
C

1
2

)†
D
(
C

1
2

)†)
, (98)

where in the first step we used the fact that adding to y a component in N (C) will increase the
denominator by ∥PN (C)y∥2 but will not affect the numerator. Namely, the optimum cannot be

attained by y /∈ N⊥(C). Now, let (λi, yi) be an eigenpair of (C
1
2 )†D(C

1
2 )†, then we have

λiyi =
(
C

1
2

)†
D
(
C

1
2

)†
yi. (99)

Since we only care about nonzero eigenvalues, we can assume that λi ̸= 0, and therefore yi /∈ N (C).
Multiplying by (C

1
2 )† from the left we get

λi

(
C

1
2

)†
yi =

(
C

1
2

)† (
C

1
2

)†
D
(
C

1
2

)†
yi = C†D

(
C

1
2

)†
yi. (100)

Namely, (C
1
2 )†yi ̸= 0 is an eigenvector of C†D with eigenvalue λi. Thus we have that if λi ̸= 0 is

an eigenvalue of (C
1
2 )†D(C

1
2 )†, then it is also an eigenvalue of C†D. Similarly, we can prove vice

versa, i.e., that if λi ̸= 0 is an eigenvalue of C†D, then it is also an eigenvalue of (C
1
2 )†D(C

1
2 )†.

This means that (C
1
2 )†D(C

1
2 )† and C†D have the same eigenvalues. Therefore,

λmax

((
C

1
2

)†
D
(
C

1
2

)†)
= λmax

(
C†D

)
. (101)

Overall, we showed that the condition in (11) is equivalent to

η ≤ 2

λmax

(
C†D

) . (102)

This completes the proof for the second statement of the theorem.

Third statement. For the third statement of the theorem, note that from (55) we have that ∀t ≥ 0

vec
(
Σ⊥

t+1

)
=
(
PN⊥(H) ⊗ PN⊥(H)

)
Q vec (Σ⊥

t ) . (103)

Namely, vec (Σ⊥
t ) =

[
(PN⊥(H) ⊗ PN⊥(H))Q

]t
vec (Σ⊥

0 ), and thus

∥vec (Σ⊥
t )∥ =

∥∥∥[(PN⊥(H) ⊗ PN⊥(H))Q]tvec (Σ⊥
0 )
∥∥∥ ≤

∥∥∥(PN⊥(H) ⊗ PN⊥(H))Q
∥∥∥t ∥vec (Σ⊥

0 )∥ .
(104)
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Here

(
PN⊥(H) ⊗ PN⊥(H)

)
Q =

(
PN⊥(H) ⊗ PN⊥(H)

)[
(1− p)(I − ηH)⊗ (I − ηH) + p× 1

n

n∑
i=1

(I − ηH i)⊗ (I − ηH i)

]
= (1− p)

(
PN⊥(H) − ηH

)
⊗
(
PN⊥(H) − ηH

)
+ p× 1

n

n∑
i=1

(
PN⊥(H) − ηH i

)
⊗
(
PN⊥(H) − ηH i

)
, (105)

where we used (64) for the value of Q. We see that
(
PN⊥(H) ⊗ PN⊥(H)

)
Q is a sum of Kro-

necker products, where each product is a symmetric matrix multiplied by itself. This means that
Thm. 14 applies to

(
PN⊥(H) ⊗PN⊥(H)

)
Q, and thus we have that

∥∥(PN⊥(H) ⊗PN⊥(H)

)
Q
∥∥ =

λmax

(
(PN⊥(H)⊗PN⊥(H))Q

)
. Moreover, it is easy to show that PN⊥(H)⊗PN⊥(H) = PN⊥(D),

and PN⊥(D)C = CPN⊥(D). Combining this with (67), we have

(PN⊥(H) ⊗ PN⊥(H))Q = PN⊥(D) − 2ηCPN⊥(D) + η2D. (106)

Thus, for all u ∈ N (D) we have

(PN⊥(H) ⊗ PN⊥(H))Qu = PN⊥(D)u− 2ηCPN⊥(D)u+ η2Du = 0. (107)

Since the eigenvectors of symmetric matrices are orthogonal, and N (D) is an eigenspace, we get that
the top eigenvector of (PN⊥(H)⊗PN⊥(H))Q should be in N⊥(D). Now, for u ∈ N⊥(D)∩Sd2−1

uT(PN⊥(H) ⊗ PN⊥(H))Qu = uTPN⊥(D)u− 2ηuTCPN⊥(D)u+ η2uTDu

= 1− 2ηuTCu+ η2uTDu, (108)

where in the second step we used the fact that u ∈ N⊥(D), and therefore PN⊥(D)u = u.
Additionally, note that

inf
u∈Sd2−1:u/∈N (D)

{
uTCu

uTDu

}
= inf

u∈Sd2−1∩N⊥(D)

{
uTCu

uTDu

}
. (109)

Namely, having a component of u in N (D) can only be non-optimal, since the denominator is
invariant to vectors in N (D), while the numerator can only increase (C is PSD, see App. B.7). Now,
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assuming η > 0 we have from the derivation of η∗var in the second statement (see (94))

η < η∗var

⇔ η < 2 inf
u∈Sd2−1:u/∈N (D)

{
uTCu

uTDu

}
⇔ η < 2 inf

u∈Sd2−1∩N⊥(D)

{
uTCu

uTDu

}
⇔ η < 2

uTCu

uTDu
∀u ∈ Sd

2−1 ∩N⊥(D)

⇔ ηuTDu < 2uTCu ∀u ∈ Sd
2−1 ∩N⊥(D) (D is PSD)

⇔ η2uTDu < 2ηuTCu ∀u ∈ Sd
2−1 ∩N⊥(D) (η > 0)

⇔ − 2ηuTCu+ η2uTDu < 0 ∀u ∈ Sd
2−1 ∩N⊥(D)

⇔ 1− 2ηuTCu+ η2uTDu < 1 ∀u ∈ Sd
2−1 ∩N⊥(D)

⇔ uT
(
PN⊥(H) ⊗ PN⊥(H)

)
Qu < 1 ∀u ∈ Sd

2−1 ∩N⊥(D)

⇔ λmax

((
PN⊥(H) ⊗ PN⊥(H)

)
Q
)
< 1 (110)

where in the fourth step we used the fact that D is PSD (see App. B.7), and in the penultimate step we
used (108). Overall we have that 0 < η < η∗var if and only if λmax

(
(PN⊥(H) ⊗ PN⊥(H))Q

)
< 1

(we will use this fact in later sections). Therefore, when η < η∗var then

∥∥(PN⊥(H) ⊗ PN⊥(H)

)
Q
∥∥ = λmax

(
(PN⊥(H) ⊗ PN⊥(H))Q

)
< 1. (111)

Hence, from (104) we get

lim
t→∞

∥vec (Σ⊥
t )∥ ≤

∥∥∥(PN⊥(H) ⊗ PN⊥(H)

)
Q
∥∥∥t ∥vec (Σ⊥

0 )∥ = 0, (112)

which proves the statement.

B.9. Proof of Theorem 11

First statement. Let us start by proving the first statement. In (37) we showed that if the minimum
is regular then

θ∥
t+1 − θ∗∥ = θ∥

t − θ∗∥ − η

B

∑
i∈Bt

g∥
i . (113)
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Let us compute the expected squared norm. We have

E
[∥∥θ∥

t+1 − θ∗∥∥∥2] = E

∥∥∥∥∥θ∥
t − θ∗∥ − η

B

∑
i∈Bt

g∥
i

∥∥∥∥∥
2


= E
[∥∥θ∥

t − θ∗∥∥∥2]+ E

∥∥∥∥∥ ηB ∑
i∈Bt

g∥
i

∥∥∥∥∥
2
− 2E

[(
θ∥
t − θ∗∥)T( η

B

∑
i∈Bt

g∥
i

)]

= E
[∥∥θ∥

t − θ∗∥∥∥2]+ E

∥∥∥∥∥ ηB ∑
i∈Bt

g∥
i

∥∥∥∥∥
2
− 2E

[
θ∥
t − θ∗∥]T E

[
η

B

∑
i∈Bt

g∥
i

]

= E
[∥∥θ∥

t − θ∗∥∥∥2]+ E

∥∥∥∥∥ ηB ∑
i∈Bt

g∥
i

∥∥∥∥∥
2
 , (114)

where in the third step we used the fact that θ∥
t is independent of Bt and in the last we used the fact

that

E

[
η

B

∑
i∈Bt

g∥
i

]
=

η

n

n∑
i=1

g∥
i = PN (H)

η

n

n∑
i=1

gi = 0. (115)

Calculating the right term in the last line of (114) using the definition of vt (see (48)) gives

E

∥∥∥∥∥ ηB ∑
i∈Bt

g∥
i

∥∥∥∥∥
2
 = E

[∥∥PN (H)vt

∥∥2]
= Tr

(
PN (H)E

[
vtv

T
t

]
PN (H)

)
= η2

n−B

B(n− 1)

1

n

n∑
i=1

Tr
(
PN (H)gig

T
i PN (H)

)
= η2p

1

n

n∑
i=1

∥∥PN (H)gi

∥∥2
= η2p

1

n

n∑
i=1

∥∥g∥
i

∥∥2 , (116)

where in the third step we used (70). Unrolling (114) we have that

E
[∥∥θ∥

t − θ∗∥∥∥2] = E
[∥∥θ∥

0 − θ∗∥∥∥2]+ t× η2p
1

n

n∑
i=1

∥∥g∥
i

∥∥2 . (117)

Thus, lim
t→∞

E[∥θ∥
t − θ∗∥∥2] = ∞ if and only if

∑n
i=1

∥∥g∥
i

∥∥2 > 0.

Second and third statements. Next, we turn to prove the second and third statements of the
theorem. In App. B.10 we show the following.

Lemma 16 Assume that θ∗ is a twice differentiable regular minimum. Consider the linear dynamics
of {θt} from Def. 1.
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1. If λmax

(
(PN⊥(H) ⊗ PN⊥(H))Q

)
< 1 then limsup

t→∞
E[∥θ⊥

t − θ∗⊥∥2] is finite.

2. If limsup
t→∞

E[∥θ⊥
t − θ∗⊥∥2] is finite then λmax

(
(PN⊥(H) ⊗ PN⊥(H))Q

)
≤ 1.

3. Let zmax denote the top eigenvector of (PN⊥(H) ⊗ PN⊥(H))Q, and assume that
zT
maxvec(Σ

⊥
g ) ̸= 0. If limsup

t→∞
E[∥θ⊥

t − θ∗⊥∥2] is finite then

λmax

(
(PN⊥(H) ⊗ PN⊥(H))Q

)
< 1.

In (110) we showed that λmax

(
(PN⊥(H) ⊗ PN⊥(H))Q

)
< 1 if and only if 0 < η < η∗var, which

proves the second and third statements. Note that under the mild assumption that zT
maxvec(Σ

⊥
g ) ̸= 0

we get that limsup
t→∞

E[∥θ⊥
t − θ∗⊥∥2] is finite if and only if 0 ≤ η < η∗var.

B.10. Proof of Lemma 16

First statement. Here we assume λmax

(
(PN⊥(H) ⊗ PN⊥(H))Q

)
< 1, and show this implies

that limsup
t→∞

E[∥θ⊥
t − θ∗⊥ ∥2] is finite. The (projected) transition matrix that governs the dynamics

of Σ⊥
t and µ⊥

t in (56) is given by

Ξ =

(
PN⊥(H) − ηH 0

−
(
PN⊥(H) ⊗ PN⊥(H)

)
(E [v⊥

t ⊗At] + E [At ⊗ v⊥
t ])

(
PN⊥(H) ⊗ PN⊥(H)

)
Q

)
.

(118)
Since this matrix is a block lower triangular matrix, its eigenvalues are

{
λj(Ξ)

}
=

{
λj

(
PN⊥(H) − ηH

)}⋃{
λj

((
PN⊥(H) ⊗ PN⊥(H)

)
Q
)}

. (119)

In Lemma 17 we show that if ρ
(
(PN⊥(H) ⊗ PN⊥(H))Q

)
< 1 then ρ(PN⊥(H) − ηH) < 1 (see

proof in App. B.11). Therefore, all the eigenvalues of Ξ are less than 1 in absolute value. Therefore,
∥vec(Σ⊥

t )∥2 = ∥Σ⊥
t ∥F is bounded. Since Σ⊥

t is PSD we have

∥Σ⊥
t ∥F =

√√√√ d∑
j=1

λ2
j

(
Σ⊥

t

)
≥ 1√

d

d∑
j=1

λj

(
Σ⊥

t

)
=

1√
d
Tr
(
Σ⊥

t

)
=

1√
d
E
[
∥θ⊥

t − θ∗⊥∥2
]
. (120)

Therefore, E[∥θ⊥
t − θ∗⊥∥2] is bounded.

Second statement. Here we assume that limsup
t→∞

E[∥θ⊥
t − θ∗⊥∥2] is finite, then we show

λmax

(
(PN⊥(H) ⊗ PN⊥(H))Q

)
≤ 1. The matrix

(
PN⊥(H) ⊗ PN⊥(H)

)
Q can be written as(

PN⊥(H) ⊗ PN⊥(H)

)
Q =

(
PN⊥(H) − ηH

)
⊗
(
PN⊥(H) − ηH

)
+ η2p

(
1

n

n∑
i=1

(H i −H)⊗ (H i −H)

)
, (121)
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where we used (66) for the value of Q. This expression is a sum of Kronecker products, where each
product is a symmetric matrix with itself. Therefore, according to Thm. 14, we get

λmax

(
(PN⊥(H) ⊗ PN⊥(H))Q

)
= ρ
(
(PN⊥(H) ⊗ PN⊥(H))Q

)
(122)

and Zmax = vec−1(zmax) is a PSD matrix, where zmax is a normalized top eigenvector of(
PN⊥(H) ⊗ PN⊥(H)

)
Q. Now, set3 Σ⊥

0 = Zmax and µ0 = 0, then in this case µ⊥
t =

(PN⊥(H) − ηH)tµ⊥
0 = 0 for all t > 0. Therefore, from (56)

vec (Σt+1) = (PN⊥(H) ⊗ PN⊥(H))Qvec (Σ⊥
t ) + vec (Σ⊥

v ) . (123)

Thus, taking an inner product w.r.t. zmax on both sides we get

zT
maxvec

(
Σ⊥

t+1

)
= zT

max(PN⊥(H) ⊗ PN⊥(H))Qvec (Σ⊥
t ) + zT

maxvec (Σ
⊥
v )

= λmax

(
(PN⊥(H) ⊗ PN⊥(H))Q

)
zT
maxvec (Σ

⊥
t ) + Tr(ZmaxΣ

⊥
v )

≥ λmax

(
(PN⊥(H) ⊗ PN⊥(H))Q

)
zT
maxvec (Σ

⊥
t ) , (124)

where in the last step we used the fact that Z
1
2
maxΣ

⊥
vZ

1
2
max is a PSD matrix, and thus

Tr (ZmaxΣ
⊥
v ) = Tr

(
Z

1
2
maxΣ

⊥
vZ

1
2
max

)
≥ 0. (125)

Therefore, using (124) t times we have

zT
maxvec (Σ

⊥
t ) ≥ λt

max

(
(PN⊥(H) ⊗ PN⊥(H))Q

)
zT
maxvec (Σ0)

= λt
max

(
(PN⊥(H) ⊗ PN⊥(H))Q

)
, (126)

where in the last step we used Σ0 = Zmax and ∥Zmax∥F = 1. Additionally, for all t > 0

zT
maxvec (Σ

⊥
t ) ≤ ∥zmax∥2 ∥vec (Σ

⊥
t )∥2

= ∥Σ⊥
t ∥F

=

√√√√ d∑
j=1

λ2
j

(
Σ⊥

t

)
≤

d∑
j=1

λj

(
Σ⊥

t

)
= Tr

(
Σ⊥

t

)
= E

[
∥θ⊥

t − θ∗⊥∥2
]
. (127)

Overall, combining (126) and (127) results with

λt
max

(
(PN⊥(H) ⊗ PN⊥(H))Q

)
≤ E

[
∥θ⊥

t − θ∗⊥∥2
]
. (128)

Since E[∥θ⊥
t − θ∗⊥∥2] is bounded then λmax

(
(PN⊥(H) ⊗ PN⊥(H))Q

)
≤ 1.

3. Since the eigenvectors of symmetric matrices are orthogonal, and N (D) is an eigenspace, we get that the top
eigenvector of (PN⊥(H) ⊗ PN⊥(H))Q should be in N⊥(D), i.e., PN⊥(H)ZmaxPN⊥(H) = Zmax. Therefore
this initialization is possible.
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Third statement. Furthermore, if zT
maxvec (Σ

⊥
v ) ̸= 0 we get from (125)

zT
maxvec (Σ

⊥
v ) > 0. (129)

Assume by contradiction that λmax

(
(PN⊥(H) ⊗ PN⊥(H))Q

)
= 1, then (124) gives

zT
maxvec

(
Σ⊥

t+1

)
= zT

maxvec (Σ
⊥
t ) + zT

maxvec (Σ
⊥
v ) . (130)

Unrolling this equation gives zT
maxvec (Σ

⊥
t ) = tzT

maxvec (Σ
⊥
v ). Then, by (127) we get

E
[
∥θt − θ∗∥2

]
≥ zT

maxvec (Σ
⊥
t ) = tzT

maxvec (Σ
⊥
v ) . (131)

Since zT
maxvec (Σ

⊥
v ) > 0, then E[∥θt − θ∗∥2] → ∞ and we have a contradiction. Therefore

λmax

(
(PN⊥(H) ⊗ PN⊥(H))Q

)
< 1.

B.11. Proof of Lemma 17

Lemma 17 Let H ∈ S+(Rd×d) and Q defined as in (10). If ρ((PN⊥(H)⊗PN⊥(H))Q) < 1 then
ρ(PN⊥(H) − ηH) < 1.

The matrix (PN⊥(H) ⊗ PN⊥(H))Q is(
PN⊥(H) ⊗ PN⊥(H)

)
Q =

(
PN⊥(H) − ηH

)
⊗
(
PN⊥(H) − ηH

)
+ η2p

(
1

n

n∑
i=1

(H i −H)⊗ (H i −H)

)
, (132)

where we used (66) for the value of Q. Note that PN⊥(H) − ηH is a symmetric matrix, and
thus each of its dominant eigenvectors ṽ ∈ Sd−1 satisfies ρ(PN⊥(H) − ηH) = |ṽT(PN⊥(H) −
ηH)ṽ|. Additionally, ∥ṽ ⊗ ṽ∥ =

∥∥ṽṽT
∥∥
F
= 1, i.e., ṽ ⊗ ṽ ∈ Sd2−1. Now, let the spectral radius

ρ
(
(PN⊥(H) ⊗ PN⊥(H))Q

)
< 1 then

1 > ρ
(
(PN⊥(H) ⊗ PN⊥(H))Q

)
≥
∣∣∣[ṽ ⊗ ṽ]T

(
PN⊥(H) ⊗ PN⊥(H)

)
Q[ṽ ⊗ ṽ]

∣∣∣
=
(
ṽT
(
PN⊥(H) − ηH

)
ṽ
)2

+ η2p
1

n

n∑
i=1

(
ṽT (H i −H) ṽ

)2
= ρ2(PN⊥(H) − ηH) + η2p

1

n

n∑
i=1

(
ṽT (H i −H) ṽ

)2
≥ ρ2(PN⊥(H) − ηH), (133)

where in the third step we used (132).
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Appendix C. Proof of Theorem 14

First statement. Let {Y i} be symmetric matrices in Rd×d, and let

Q =
M∑
i=1

Y i ⊗ Y i. (134)

First, note that Q ∈ Rd2×d2 is symmetric.

QT =

(
M∑
i=1

Y i ⊗ Y i

)T

=
M∑
i=1

(Y i ⊗ Y i)
T =

M∑
i=1

Y T
i ⊗ Y T

i =
M∑
i=1

Y i ⊗ Y i = Q, (135)

where in the third step we used (P2) property of the Kronecker product, and in the fourth we used the
fact that {Y i} are symmetric. Then, by the spectral theorem, we have that all its eigenvectors {zj}
and eigenvalues {λj} are real. Given an eigenvector z ∈ Rd2 of Q, we can examine its matrix form
Z = vec−1(z), where Z ∈ Rd×d. Here we show that Q always has a set of d2 eigenvectors that
correspond only to either symmetric or skew-symmetric matrices {Zj}. Let (λ, z) be an eigenpair
of Q, i.e., λz = Qz, and set Z = vec−1(z). Then,

λZ = vec−1(λz) = vec−1(Qz) = vec−1

(
M∑
i=1

Y i ⊗ Y iz

)
=

M∑
i=1

vec−1 (Y i ⊗ Y iz)

=
M∑
i=1

Y iZY T
i , (136)

where in the penultimate step we used (P1) property of the Kronecker product. By taking a transpose
on both ends of this equation we have

λZT =

(
M∑
i=1

Y iZY T
i

)T

=

M∑
i=1

(
Y iZY T

i

)T
=

M∑
i=1

Y iZ
TY T

i . (137)

Thus, we have that vec(ZT) is also an eigenvector of Q. If λ has multiplicity one, then it must be
that ZT = ±Z, i.e., symmetric or skew-symmetric matrix. If the multiplicity is greater than one and
ZT ̸= ±Z, then any linear combination of Z and ZT is also an eigenvector corresponding to λ. In
particular,

Ẑ1 =
1

2

(
Z +ZT

)
and Ẑ2 =

1

2

(
Z −ZT

)
. (138)

By construction, Ẑ1 and Ẑ2 are symmetric and skew-symmetric eigenvectors, corresponding to λ.
This procedure can be repeated while projecting the next eigenvectors of λ onto the orthogonal
complement of the already found vectors, until we find all eigenvectors of λ. In this way, we can find
a set of eigenvectors comprised solely of vectors that correspond to symmetric or skew-symmetric.

Second and third statement. Using the first statement, we can consider a complete set of eigenvec-
tors for Q that is comprised solely of vectors that correspond to either symmetric or skew-symmetric
matrices. Our next step is to show that there is at least one dominant eigenvector of Q that corre-
sponds to a symmetric matrix. Our final step will be to show that among the dominant eigenvectors
that correspond to symmetric matrices, at least one corresponds to a PDS matrix.
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To this end, we first bring the eigenvalues of Q, denoted by {Zj}, to a normal (canonical) form.
Here we assume without loss of generality that the eigenvectors are normalized, that is ∥Zj∥F = 1
for all j ∈ [d2]. For symmetric matrix Z, we have the spectral decomposition theorem, and thus
Z = V SV T, where V is an orthogonal matrix and S is diagonal. We can also bring a skew-
symmetric matrix to a similar form of Z = V SV T with orthogonal V , where S is a block diagonal
matrix, with ⌊d/2⌋ blocks of size 2× 2. Specifically, these blocks are in the form of (Zumino, 1962)[

0 sℓ
−sℓ 0

]
. (139)

If the dimension d is odd, then the last row and column of S are the zero vectors. For numerical
purposes, this normal (canonical) form can be computed using the real Schur decomposition.

For symmetric matrices, we define the vector ssym ∈ Rd to be the diagonal of S, and for skew-
symmetric matrices we define sskew ∈ R⌊d/2⌋ to be [s1, s2, · · · , s⌊d/2⌋]T. In App. C.1 we show that
for a symmetric matrix Z, its corresponding vector form z satisfies

zTQz = sTsym

M∑
i=1

M⊙2
i ssym, (140)

where M i = V TY iV , the superscript ⊙k denotes the Hadamard power and ∥ssym∥ = 1. For
skew-symmetric matrices, we define a set of matrices {T i} in R⌊d/2⌋×⌊d/2⌋, where

T i [ℓ,p] = M i [2ℓ−1,2p−1]M i [2ℓ,2p] −M i [2ℓ−1,2p]M i [2ℓ,2p−1], (141)

for all 1 ≤ ℓ, p ≤ ⌊d/2⌋. Namely, T i is the determinant of each 2× 2 block of M i without overlap.
We show in App. C.1 that for a skew-symmetric matrix Z, its corresponding vector form z satisfies

zTQz = 2sTskew

M∑
i=1

T isskew, (142)

where ∥sskew∥ = 1/
√
2. Let us define the projection matrix P ∈ R⌊d/2⌋×d as

P =
1√
2


1 1 0 0 0 · · · 0 0
0 0 1 1 0 · · · 0 0
...

. . .
...

0 0 0 0 0 · · · 1 1

 . (143)

If d is odd, then the last column of P is the zero vector. This matrix is semi-orthogonal, i.e., it
satisfies PPT = I . Note that[

PM⊙2
i PT

]
[ℓ,p]

=
1

2

(
M2

i [2ℓ−1,2p−1] +M2
i [2ℓ−1,2p] +M2

i [2ℓ,2p−1] +M2
i [2ℓ,2p]

)
. (144)

Therefore, for all 1 ≤ ℓ, p ≤ ⌊d/2⌋ and i ∈ [M ] we have∣∣T i [ℓ,p]

∣∣ = ∣∣M i [2ℓ−1,2p−1]M i [2ℓ,2p] −M i [2ℓ−1,2p]M i [2ℓ,2p−1]

∣∣
≤
∣∣M i [2ℓ−1,2p−1]M i [2ℓ,2p]

∣∣+ ∣∣M i [2ℓ−1,2p]M i [2ℓ,2p−1]

∣∣
≤ 1

2

(
M2

i [2ℓ−1,2p−1] +M2
i [2ℓ,2p]

)
+

1

2

(
M2

i [2ℓ−1,2p] +M2
i [2ℓ,2p−1]

)
=
[
PM⊙2

i PT
]
[ℓ,p]

, (145)
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where in the first step we used (141), in the second we used the triangle inequality, in the third we
used |ab| ≤ 1

2(a
2 + b2) twice, and in the last step we used (144).

Note that any pair of orthogonal matrix V and a vector sskew ∈ R⌊d/2⌋, such that ∥sskew∥ =
1/

√
2, define a skew-symmetric matrix Zskew with a vectorization zskew. Similarly, any pair of

orthogonal matrix V and a vector ssym ∈ Rd, such that ∥ssym∥ = 1, correspond to a symmetric
matrix Zsym with a vectorization zsym. Here we will show that given V , there exists ssym ∈ Sd−1 s.t.∣∣zT

skewQzskew
∣∣ ≤ zT

symQzsym (146)

for any sskew ∈ R⌊d/2⌋ for which ∥sskew∥ = 1/
√
2. To this end, we set r =

√
2sskew ∈ S⌊d/2⌋, then∣∣∣∣∣2sTskew

M∑
i=1

T isskew

∣∣∣∣∣ =
∣∣∣∣∣rT

M∑
i=1

T ir

∣∣∣∣∣
≤

d∑
ℓ=1

d∑
p=1

M∑
i=1

∣∣r[ℓ]∣∣ ∣∣T i [ℓ,p]

∣∣ ∣∣r[p]∣∣
≤

d∑
ℓ=1

d∑
p=1

M∑
i=1

∣∣r[ℓ]∣∣ [PM⊙2
i PT

]
[ℓ,p]

∣∣r[p]∣∣
=

d∑
ℓ=1

d∑
p=1

∣∣r[ℓ]∣∣ [ M∑
i=1

PM⊙2
i PT

]
[ℓ,p]

∣∣r[p]∣∣
≤ λmax

(
M∑
i=1

PM⊙2
i PT

)

= λmax

(
P

( M∑
i=1

M⊙2
i

)
PT

)

≤ λmax

(
M∑
i=1

M⊙2
i

)
, (147)

where in the second step we used the triangle inequality, in the third step we used (145), in the fifth
we used the fact that ∥r∥ = 1 and bound the quadratic form with the top eigenvalue (note that {M i}
are symmetric and thus the top eigenvalue is real), and in the last step we used the Cauchy interlacing
theorem (a.k.a. Poincaré separation theorem). Now, take ssym ∈ Sd−1 to be the top eigenvector
(normalized) of

∑M
i=1M

⊙2
i (note that {M i} are symmetric and thus this top eigenvector is real),

and pair it with the same basis V of Zskew to get a symmetric matrix Zsym that satisfies

∣∣zT
skewQzskew

∣∣ = ∣∣∣∣∣2sTskew

M∑
i=1

T isskew

∣∣∣∣∣ ≤ λmax

(
M∑
i=1

M⊙2
i

)
= sTsym

M∑
i=1

M⊙2
i ssym = zT

symQzsym,

(148)
where in the first step we used (142), in the second we used (147), in the third we used the fact that
ssym ∈ Sd−1 is the top eigenvector of

∑M
i=1M

⊙2
i , and in the last step we used (140). Since this

is true for any orthogonal V , we get that at least one dominant eigenvector of Q corresponds to a
symmetric matrix rather than a skew-symmetric one. Hence, from here onwards we can use the fact
that there exists a dominant eigenvector of Q that corresponds to a symmetric matrix.
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Let z̃ be a dominant eigenvector of Q which correspond to a symmetric matrix, and let Z̃ =

Ṽ S̃Ṽ
T

be its spectral decomposition. Set

Ψ =
M∑
i=1

M̃
⊙2
i , s.t. M̃ i = Ṽ

T
Y iṼ . (149)

Since Q is symmetric, then by the spectral theorem we have that all its eigenvectors and eigenvalues
are real, and they are given by the quadratic form using the corresponding eigenvectors. Thus,

ρ(Q) =
∣∣z̃TQz̃

∣∣
=

∣∣∣∣∣s̃Tsym

M∑
i=1

M̃
⊙2
i s̃sym

∣∣∣∣∣
=
∣∣s̃TsymΨs̃sym

∣∣
=

∣∣∣∣∣∣
d∑

ℓ=1

d∑
p=1

s̃sym [ℓ]Ψ[ℓ,p]s̃sym [p]

∣∣∣∣∣∣
≤

d∑
ℓ=1

d∑
p=1

∣∣s̃sym [ℓ]

∣∣Ψ[ℓ,p]

∣∣s̃sym [p]

∣∣
=
[
s̃abs

sym
]T

Ψ
[
s̃abs

sym
]

=
[
z̃abs]TQ

[
z̃abs] , (150)

where s̃abs
sym is the element-wise absolute value of s̃sym, and z̃abs = vec(Ṽ S̃

abs
Ṽ

T
). Namely, the

vector z̃abs that corresponds to the matrix built from the element-wise absolute value of the spectrum
of Z̃ yields a greater or equal result than the spectral radius of Q, while still having a unit Euclidean
norm. Thus, either s̃abs

sym = s̃sym, in which case Z̃ is PSD, or s̃abs
sym ̸= s̃sym, and then both z̃ and z̃abs

are dominant eigenvectors (or else we get a contradiction). Note that vec−1(z̃abs) is in fact a PSD
matrix. Therefore, there is always a dominant eigenvector for Q which corresponds to a PSD matrix.
Additionally, since maxj |λj(Q)| = ρ(Q) = [z̃abs]TQ[z̃abs], then [z̃abs] is also a top eigenvector
which corresponds to λmax(Q), i.e., ρ(Q) = λmax(Q) (λmax(Q) is a dominant eigenvalue).

C.1. Quadratic form calculation for symmetric and skew-symmetric matrices

Let z = vec(Z), and assume that Z = V SV T where V is orthogonal matrix. Then

zTQz =
[
vec
(
V SV T

)]T
Q vec

(
V SV T

)
= [(V ⊗ V ) vec (S)]TQ (V ⊗ V ) vec (S)

= [vec (S)]T
(
V T ⊗ V T

) M∑
i=1

Y i ⊗ Y i

(
V ⊗ V

)
vec (S)

= [vec (S)]T
M∑
i=1

(
V TY iV

)
⊗
(
V TY iV

)
vec (S)

=

M∑
i=1

[vec (S)]TM i ⊗M i vec (S) . (151)
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Writing the quadratic form explicitly for each i ∈ [M ] we have

[vec (S)]TM i ⊗M i vec (S) =
d2∑

m=1

d2∑
k=1

[M i ⊗M i][m,k] vec (S)[m] vec (S)[k] . (152)

Set m = d(m2 − 1) +m1 and k = d(k2 − 1) + k1 where m1,m2, k1, k2 ∈ [d], then

[M i ⊗M i][m,k] = [M i ⊗M i][d(m2−1)+m1,d(k2−1)+k1]
= M i [m1,k1]M i [m2,k2]. (153)

Moreover,

[vec (S)][m] = [vec (S)][d(m2−1)+m1]
= S[m1,m2],

[vec (S)][k] = [vec (S)][d(k2−1)+k1]
= S[k1,k2]. (154)

Therefore,

[vec (S)]TM i ⊗M i vec (S)

=
d2∑

m=1

d2∑
k=1

[M i ⊗M i][m,k] [vec (S)][m] [vec (S)][k]

=
d∑

m2=1

d∑
m1=1

d∑
k2=1

d∑
k1=1

[M i ⊗M i][d(m2−1)+m1,d(k2−1)+k1]
[vec (S)][d(m2−1)+m1]

[vec (S)][d(k2−1)+k1]

=

d∑
m2=1

d∑
m1=1

d∑
k2=1

d∑
k1=1

M i [m1,k1]M i [m2,k2]S[m1,m2]S[k1,k2], (155)

where in the last step we used (153) and (154).

C.1.1. SYMMETRIC EIGENVECTORS

Assume that Z is symmetric, then S is a diagonal matrix. Therefore, we only need to consider the
terms in the series above for which m1 = m2 = ℓ and k1 = k2 = p.

d∑
ℓ=1

d∑
p=1

M i [ℓ,p]M i [ℓ,p]S[ℓ,ℓ]S[p,p] =

d∑
ℓ=1

d∑
p=1

M2
i [ℓ,p]ssym [ℓ]ssym [p] = sTsymM

⊙2
i ssym. (156)

Overall,

zTQz = sTsym

M∑
i=1

M⊙2
i ssym. (157)

C.1.2. SKEW-SYMMETRIC EIGENVECTORS

Assume that Z is skew-symmetric, then S is a block diagonal matrix, where each block is 2× 2 in
the form of [

0 sℓ
−sℓ 0

]
. (158)
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If the dimension d is odd, then S has a row and column at the end filled with zeros. Here, the nonzero
elements are located above and below the main diagonal of S and they come in pairs. Specifically,
the following relations hold.

S[2ℓ−1,2ℓ] = sℓ = sskew [ℓ], S[2ℓ,2ℓ−1] = −sℓ = −sskew [ℓ]. (159)

Therefore, in the skew-symmetric scenario, we have four different cases to consider in the last line
of (155). The four cases are as follows.

Case I: m1 = 2ℓ− 1, m2 = 2ℓ, k1 = 2p− 1, k2 = 2p.

⌊d/2⌋∑
ℓ=1

⌊d/2⌋∑
p=1

M i [2ℓ−1,2p−1]M i [2ℓ,2p]S[2ℓ−1,2ℓ]S[2p−1,2p] =

⌊d/2⌋∑
ℓ=1

⌊d/2⌋∑
p=1

M i [2ℓ−1,2p−1]M i [2ℓ,2p]sskew [ℓ]sskew [p].

(160)

Case II: m1 = 2ℓ, m2 = 2ℓ− 1, k1 = 2p− 1, k2 = 2p.

⌊d/2⌋∑
ℓ=1

⌊d/2⌋∑
p=1

M i [2ℓ,2p−1]M i [2ℓ−1,2p]S[2ℓ,2ℓ−1]S[2p−1,2p] = −
⌊d/2⌋∑
ℓ=1

⌊d/2⌋∑
p=1

M i [2ℓ,2p−1]M i [2ℓ−1,2p]sskew [ℓ]sskew [p].

(161)

Case III: m1 = 2ℓ− 1, m2 = 2ℓ, k1 = 2p, k2 = 2p− 1.

⌊d/2⌋∑
ℓ=1

⌊d/2⌋∑
p=1

M i [2ℓ−1,2p]M i [2ℓ,2p−1]S[2ℓ−1,2ℓ]S[2p,2p−1] = −
⌊d/2⌋∑
ℓ=1

⌊d/2⌋∑
p=1

M i [2ℓ−1,2p]M i [2ℓ,2p−1]sskew [ℓ]sskew [p].

(162)

Case IV: m1 = 2ℓ, m2 = 2ℓ− 1, k1 = 2p, k2 = 2p− 1.

⌊d/2⌋∑
ℓ=1

⌊d/2⌋∑
p=1

M i [2ℓ,2p]M i [2ℓ−1,2p−1]S[2ℓ,2ℓ−1]S[2p,2p−1] =

⌊d/2⌋∑
ℓ=1

⌊d/2⌋∑
p=1

M i [2ℓ,2p]M i [2ℓ−1,2p−1]sskew [ℓ]sskew [p].

(163)
Summing over all these cases we get

zTQz =

M∑
i=1

⌊d/2⌋∑
ℓ=1

⌊d/2⌋∑
p=1

2
(
M i [2ℓ−1,2p−1]M i [2ℓ,2p] −M i [2ℓ−1,2p]M i [2ℓ,2p−1]

)
sskew [ℓ]sskew [p]

= 2

M∑
i=1

⌊d/2⌋∑
ℓ=1

⌊d/2⌋∑
p=1

T i [ℓ,p]sskew [ℓ]sskew [p]

= 2sTskew

M∑
i=1

T isskew. (164)
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Appendix D. Proof of Proposition 6

Here we focus on interpolating minima for simplicity. A similar proof can be derived for regular
minima. To begin with, note that (see (101))

λmax

(
C†D

)
= λmax

((
C

1
2

)†
D
(
C

1
2

)†)
. (165)

Additionally,

D = (1− p)H ⊗H + p
1

n

n∑
i=1

H i ⊗H i

= H ⊗H + p

(
1

n

n∑
i=1

H i ⊗H i −H ⊗H

)

= H ⊗H + p

(
1

n

n∑
i=1

(H i −H)⊗ (H i −H)

)
= H ⊗H + pE, (166)

where in the third step we used (65), and at the last step E ≜ 1
n

∑n
i=1(H i −H)⊗ (H i −H). Let

y ∈ Sd2−1 be the top eigenvector of (C
1
2 )†D(C

1
2 )†, then since (C

1
2 )†D(C

1
2 )† is symmetric we

have

∂

∂p
λmax

((
C

1
2

)†
D
(
C

1
2

)†)
= yT

[(
C

1
2

)†( ∂

∂p
D

)(
C

1
2

)†]
y

= yT

[(
C

1
2

)†
E
(
C

1
2

)†]
y. (167)

In App. D.1 we show that y has the form of y = C
1
2u such that vec−1(u) ∈ S+(Rd×d). Plugging

this into the equation above we get

yT

[(
C

1
2

)†
E
(
C

1
2

)†]
y = uTC

1
2

(
C

1
2

)†
E
(
C

1
2

)†
C

1
2u

= uTPN⊥(C)EPN⊥(C)u

= uTEu, (168)

where in the first step we used the fact that C is symmetric. Additionally, in the second step, we used
the fact that C

1
2 (C

1
2 )† and (C

1
2 )†C

1
2 are projection matrices onto the column space of C. Since

the null space of E contains the null space of C, we have that these projections can be removed
(see App. B.6). Note that vec−1(u) is PSD, and let V SV T be its spectral decomposition, then in
App. C.1 we show that in this case

uTEu = sT
n∑

i=1

M⊙2
i s, (169)
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where M i = V T(H i − H)V and s is a vector containing the eigenvalues of vec−1(u). Since
vec−1(u) is PSD, we have the right-hand side of (169) is a sum over nonnegative terms. Namely,

∂

∂p
λmax

((
C

1
2

)†
D
(
C

1
2

)†)
= uTEu = sT

n∑
i=1

M⊙2
i s ≥ 0. (170)

Therefore, λmax

(
C†D

)
is monotonically non-decreasing in p, which means that η∗var = 2/λmax

(
C†D

)
is monotonically non-decreasing with B.

D.1. Top eigenvector of (C
1
2 )†D(C

1
2 )†

Using the stability condition of Ma and Ying (2021), we have that {E[∥θt − θ∥2]} is bounded if and
only if (see proof in (Ma and Ying, 2021))

max
Σ∈S+(Rd×d)

∥Q(η,B) vec (Σ)∥
∥Σ∥F

≤ 1. (171)

Let us repeat the same steps from the proof of Thm. 5 in App. B.8 but without relaxing the constraint
of PSD matrices. Specifically, repeating the steps in equations in (91)-(94) without invoking Thm. 14
gives us that

uTQu = 1− 2ηuTCu+ η2uTDu ≤ 1 (172)

holds for any u ∈ Sd2−1 such that vec−1(u) ∈ S+(Rd×d) and u /∈ N (D), if and only if

η ≤ 2

λ∗ = η∗var, (173)

where

λ∗ = sup
u∈Sd2−1

{
uTDu

uTCu

}
s.t. vec−1(u) ∈ S+(Rd×d) and u /∈ N (D). (174)

(Note that the case u ∈ N (D) do not contribute any conditions on the learning rate, and therefore
can be ignored - see App. B.8). Using change of variables (see (97) and (98)) results with

λ∗ = max
y∈Sd2−1

yT
(
C

1
2

)†
D
(
C

1
2

)†
y s.t. y = (C

1
2u) and vec−1(u) ∈ S+(Rd×d). (175)

Since the alternative form of η∗var in (173) has to be equal to the definition in (13) (or else we will get
a contradiction), we get

λmax

((
C

1
2

)†
D
(
C

1
2

)†)
= λ∗. (176)

Namely, the top eigenvector y of (C
1
2 )†D(C

1
2 )† has the form of y = C

1
2u such that vec−1(u) ∈

S+(Rd×d).
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Appendix E. Proof of Proposition 7

Here we focus on interpolating minima for simplicity. A similar proof can be derived for regular
minima. Let {βt} and {κt} be i.i.d. random variables such that βt ∼ Bernoulli(p) and κt ∼
U({1, ..., n}), then

Bt =

{
κt if βt = 1,

{1, ..., n} otherwise.
(177)

Let us consider the following stochastic loss function

L̂t(θ) =
1

|Bt|
∑
i∈Bt

ℓi(θ), (178)

where |Bt| denotes the size of Bt (either 1 or n), and define the following notation

At = I − η

|Bt|
∑
i∈Bt

H i. (179)

First, for interpolating minima we have

θt+1 − θ∗ =

(
I − η

|Bt|
∑
i∈Bt

H i

)
(θt − θ∗) = At(θt − θ∗). (180)

Thus,

Σt+1 = E
[
(θt+1 − θ∗) (θt+1 − θ∗)T

]
= E

[
At (θt − θ∗) (θt − θ∗)TAt

]
= E

[
AtE

[
(θt − θ∗) (θt − θ∗)T

∣∣∣Bt

]
At

]
= E

[
AtE

[
(θt − θ∗) (θt − θ∗)T

]
At

]
= E [AtΣtAt] , (181)

where in the second step we used (180), in the third we used the law of total expectation, and in the
fourth we used the fact that θt is statistically independent of Bt. Using vectorization we get

vec (Σt+1) = E [At ⊗At] vec (Σt) . (182)

In (64) we show that for any given (fixed) batch size,

Q(B, η) =

(
1− n−B

B(n− 1)

)
(I − ηH)⊗ (I − ηH) +

n−B

B(n− 1)

1

n

n∑
i=1

(I − ηH i)⊗ (I − ηH i).

(183)
Specifically,

Q(η,B = 1) =
1

n

n∑
i=1

(I − ηH i)⊗ (I − ηH i), Q(η,B = n) = (I − ηH)⊗ (I − ηH).

(184)
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Using this result, let us compute the term in (182).

E [At ⊗At] = P (βt = 0)E [At ⊗At|βt = 0] + P (βt = 1)E [At ⊗At|βt = 1]

= (1− p)Q(η,B = n) + pQ(η,B = 1)

= (1− p)× (I − ηH)⊗ (I − ηH) + p× 1

n

n∑
i=1

(I − ηH i)⊗ (I − ηH i). (185)

This is the same matrix that we had for mini-batch SGD with batch size B such that p = n−B
B(n−1)

(see (183)). Namely, the covariance matrix of the parameters for the mixed process evolves in the
same way as mini-batch SGD, with a corresponding batch size. Therefore, the stability threshold of
both algorithms is the same.

Appendix F. Proof of Proposition 8

First, since η∗var is monotonically non-decreasing with B (Thm. 6), and for B = n we have η∗var =
η∗mean (App. J), we get that η∗var ≤ η∗mean for all values of B. Now, set ε ∈ (0, 1), then (1−ε)η∗mean ≤
η∗var holds whenever

(1− ε)
2

λmax(H)
≤ 2

λmax(C
†D)

⇔ (1− ε)λmax(C
†D) ≤ λmax(H). (186)

Note that D = H ⊗H + pE (see (166)), then

λmax

(
C†D

)
= λmax

(
C†H ⊗H + pC†E

)
≤ λmax

(
C†H ⊗H

)
+ pλmax

(
C†E

)
= λmax(H) + pλmax

(
C†E

)
, (187)

where we used λmax

(
C†H ⊗H

)
= λmax(H) (see App. J). Using the fact that λmax

(
C†E

)
is

nonnegative (see App. F.1) and that

p =
1

B

n−B

n− 1
≤ 1

B
, (188)

we can further bound (187) from above by

λmax

(
C†D

)
≤ λmax(H) + pλmax

(
C†E

)
≤ λmax(H) +

1

B
λmax

(
C†E

)
. (189)

Therefore, if

(1− ε)

(
λmax(H) +

1

B
λmax

(
C†E

))
≤ λmax(H) (190)

then (186) holds. It is easy to show that (190) is equivalent to

B ≥ 1− ε

ε

λmax(C
†E)

λmax(H)
. (191)

Overall, if the batch size satisfies this inequality then (1− ε)η∗mean ≤ η∗var ≤ η∗mean.
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F.1. Proof that λmax

(
C†E

)
is nonnegative

Since η∗var ≤ η∗mean for all values of B (see the beginning of this section), then λmax(H) ≤
λmax(C

†D). Therefore,

0 ≤ λmax(C
†D)− λmax(H) ≤ pλmax

(
C†E

)
, (192)

where in the last step we used both ends of (187).

Appendix G. Proof of Proposition 9

The stability threshold given by Thm. 5 and Thm. 11 is

η∗var =
2

λmax

(
C†D

) (193)

where

C =
1

2
H ⊕H, D = (1− p)H ⊗H + p

1

n

n∑
i=1

H i ⊗H i. (194)

This threshold corresponds to a necessary and sufficient condition for stability. Here we derive
simplified necessary conditions for stability. In App. B.8 we show that (see (94))

2

λmax

(
C†D

) = 2 inf
u∈Sd2−1:u/∈N (D)

{
uTCu

uTDu

}
. (195)

We shall upper bound the stability threshold by considering non-optimal yet interesting vectors u.
Specifically, in the following we look at u = vmax ⊗ vmax, where vmax is the top eigenvector of H ,
and u = vec(I) to obtain the results of Proposition 9.

G.1. Setting u = vmax ⊗ vmax

Let u = v ⊗ v /∈ N (D) where ∥v∥ = 1, then

uTCu =
1

2
uT (H ⊗ I + I ⊗H)u

=
1

2

[(
vT ⊗ vT

)
(H ⊗ I) (v ⊗ v) +

(
vT ⊗ vT

)
(I ⊗H) (v ⊗ v)

]
=

1

2

[(
vTHv

)
⊗
(
vTv

)
+
(
vTv

)
⊗
(
vTHv

)]
=

1

2

[(
vTHv

)
⊗ 1 + 1⊗

(
vTHv

)]
= vTHv. (196)

Similarly,

uT (H ⊗H)u =
(
vT ⊗ vT

)
(H ⊗H) (v ⊗ v)

=
(
vTHv

)
⊗
(
vTHv

)
=
(
vTHv

)
⊗
(
vTHv

)
=
(
vTHv

)2
. (197)
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And again

uT

(
1

n

n∑
i=1

H i ⊗H i

)
u =

1

n

n∑
i=1

(
vT ⊗ vT

)
(H i ⊗H i) (v ⊗ v)

=
1

n

n∑
i=1

(
vTH iv

)
⊗
(
vTH iv

)
=

1

n

n∑
i=1

(
vTH iv

)2
. (198)

Thus,

uTDu = (1− p)uT (H ⊗H)u+ puT

(
1

n

n∑
i=1

H i ⊗H i

)
u

= (1− p)
(
vTHv

)2
+ p

1

n

n∑
i=1

(
vTH iv

)2
=
(
vTHv

)2
+ p

[
1

n

n∑
i=1

(
vTH iv

)2 − (vTHv
)2]

=
(
vTHv

)2
+ p

[
1

n

n∑
i=1

(
vTH iv

)2 − 2
(
vTHv

) (
vTHv

)
+
(
vTHv

)2]

=
(
vTHv

)2
+ p

1

n

n∑
i=1

[(
vTH iv

)2 − 2
(
vTH iv

) (
vTHv

)
+
(
vTHv

)2]
=
(
vTHv

)2
+ p

1

n

n∑
i=1

(
vTH iv −

(
vTHv

))2
. (199)

Therefore, for general u = v ⊗ v we get

η∗var ≤ 2
uTCu

uTDu
=

2vTHv

(vTHv)2 + p
n

∑n
i=1(v

TH iv − vTHv)2
. (200)

Specifically, for u = vmax ⊗ vmax we get

η∗var ≤
2λmax(H)

λ2
max(H) + p 1

n

∑n
i=1 (v

T
maxH ivmax − λmax(H))2

. (201)

Finally, from (200) we get the following result which we used in Sec. 4.

λmax

(
C†D

)
=

2

η∗var
≥ vTHv + p

1
n

∑n
i=1(v

TH iv − vTHv)2

vTHv
. (202)

Since this inequality holds for every v /∈ N (H), we can take the maximum to obtain (27).
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G.2. Setting u = vec (I)

Let u = vec(I) /∈ N (D), then

uTCu =
1

2
uT (H ⊗ I + I ⊗H)u

=
1

2

(
[vec (I)]T (H ⊗ I) vec (I) + [vec (I)]T (I ⊗H) vec (I)

)
=

1

2

(
Tr
(
HT

)
+Tr

(
H
))

= Tr(H), (203)

where in the third step we used (P4). Moreover, using (P4) we have

uT (H ⊗H)u = [vec (I)]T (H ⊗H) vec (I) = Tr(HHT) = ∥H∥2F . (204)

Similarly,

uT (H i ⊗H i)u = [vec (I)]T (H i ⊗H i) vec (I) = Tr(H iH
T
i ) = ∥H i∥2F . (205)

Then,

uTDu = (1− p)uT (H ⊗H)u+ p
1

n

n∑
i=1

uTH i ⊗H iu

= (1− p) ∥H∥2F + p
1

n

n∑
i=1

∥H i∥2F . (206)

Therefore,

η∗var ≤ 2
uTCu

uTDu
=

2Tr(H)

(1− p) ∥H∥2F + p 1
n

∑n
i=1 ∥H i∥2F

. (207)

Appendix H. Proof of Theorem 12

In this section, we use the following result on the Moore–Penrose inverse of a sum of two matrices.

Theorem 18 (Fill and Fishkind (2000), Thm. 3) Let X,Y ∈ Rp×p with rank(X+Y ) = rank(X)+
rank(Y ). Then

(X + Y )† = (I −L)X†(I −O) +LY †O, (208)

where
L =

(
PR(Y T)PR⊥(XT)

)†
and O =

(
PR⊥(X)PR(Y )

)†
. (209)

Moreover, we use the following relations.

R(D) = R(PN⊥(H) ⊗ PN⊥(H)),

R(C) = R(I − PN (H) ⊗ PN (H)),

R(PN (D)C) = R(PN (H) ⊗ PN⊥(H) + PN⊥(H) ⊗ PN (H)). (210)
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The dynamics of µ⊥
t and Σ⊥

t are given by (see (56))(
µ⊥
t+1

vec
(
Σ⊥

t+1

)) = Ξ

(
µ⊥
t

vec (Σ⊥
t )

)
+

(
0

vec (Σ⊥
v )

)
. (211)

where

Ξ =

(
PN⊥(H) − ηH 0

−
(
PN⊥(H) ⊗ PN⊥(H)

)
(E [v⊥

t ⊗At] + E [At ⊗ v⊥
t ])

(
PN⊥(H) ⊗ PN⊥(H)

)
Q

)

≜

(
Ξ1,1 Ξ1,2

Ξ2,1 Ξ2,2

)
. (212)

In App. B.9 we show that if 0 < η < η∗var then the spectral radius of Ξ is less then one. Therefore,
the dynamical system is stable, and the asymptotic values of µ⊥

t and Σ⊥
t as t → ∞ are given by

lim
t→∞

(
µ⊥
t

vec (Σ⊥
t )

)
= (I −Ξ)−1

(
0

vec (Σ⊥
v )

)
. (213)

Using the inversion formula for block matrix and the fact that Ξ1,2 = 0 we have that

(I −Ξ)−1 =

(
I −Ξ1,1 −Ξ1,2

−Ξ2,1 I −Ξ2,2

)−1

=

(I −Ξ1,1 −Ξ1,2 (I −Ξ2,2)
−1Ξ2,1

)−1
0

0
(
I −Ξ2,2 −Ξ2,1 (I −Ξ1,1)

−1Ξ1,2

)−1


(

I Ξ1,2 (I −Ξ2,2)
−1

Ξ2,1 (I −Ξ1,1)
−1 I

)
=

(
(I −Ξ1,1)

−1 0

0 (I −Ξ2,2)
−1

)(
I 0

Ξ2,1 (I −Ξ1,1)
−1 I

)
. (214)

Therefore,

lim
t→∞

(
µ⊥
t

vec (Σ⊥
t )

)
=

(
(I −Ξ1,1)

−1 0

0 (I −Ξ2,2)
−1

)(
I 0

Ξ2,1 (I −Ξ1,1)
−1 I

)(
0

vec (Σ⊥
v )

)
=

(
(I −Ξ1,1)

−1 0

0 (I −Ξ2,2)
−1

)(
0

vec (Σ⊥
v )

)
. (215)

Namely,

lim
t→∞

µ⊥
t = 0 and lim

t→∞
vec (Σ⊥

t ) =
(
I − PN⊥(D)Q

)−1
vec (Σ⊥

v ) . (216)

Now, (
I − PN⊥(D)Q

)−1
=
(
I − PN⊥(D)Q

)†
=
(
PN (D) + PN⊥(D) − PN⊥(D)Q

)†
=
(
PN (D) + PN⊥(D) (I −Q)

)†
. (217)
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Let us apply Thm. 18 on (PD +PN⊥(D)(I−Q))†. Here, X1 = PN (D) and Y 1 = PN⊥(D)(I−
Q). Note that R(X1) = R⊥(D) and R(Y 1) = R(D) and therefore rank(X1 + Y 1) =
rank(X1) + rank(Y 1). Additionally,

PR(Y T
1 )

= PN⊥(D), PR⊥(XT
1 )

= PN⊥(D), PR⊥(X1) = PN⊥(D), PR(Y 1) = PN⊥(D).
(218)

Hence,

L1 =
(
PR(Y T

1 )
PR⊥(XT

1 )

)†
=
(
PN⊥(D)PN⊥(D)

)†
= PN⊥(D),

O1 =
(
PR⊥(X1)PR(Y 1)

)†
=
(
PN⊥(D)PN⊥(D)

)†
= PN⊥(D). (219)

Therefore, (
I − PN⊥(D)Q

)−1
=
(
PN (D) + PN⊥(D) (I −Q)

)†
= (X1 + Y 1)

†

= (I −L1)X
†
1(I −O1) +L1Y

†
1O1

= (I − PN⊥(D))(PN (D))
†(I − PN⊥(D))

+ PN⊥(D)

(
PN⊥(D)(I −Q)

)†
PN⊥(D)

= (I − PN⊥(D))PN (D)(I − PN⊥(D))

+ PN⊥(D)

(
PN⊥(D)(I −Q)

)†
PN⊥(D)

= PN (D) + PN⊥(D)

(
PN⊥(D)(I −Q)

)†
PN⊥(D), (220)

where in the third step we used Thm. 18. Thus we get the following intermediate result

lim
t→∞

vec (Σ⊥
t ) =

(
I − PN⊥(D)Q

)−1
vec (Σ⊥

v )

=

(
PN (D) + PN⊥(D)

(
PN⊥(D)(I −Q)

)†
PN⊥(D)

)
vec (Σ⊥

v )

= PN⊥(D)

(
PN⊥(D)(I −Q)

)†
PN⊥(D)vec (Σ

⊥
v ) , (221)

where in the final step we used PN (D)vec(Σ
⊥
v ) = 0. Now, note that R(PN (D)C) = R(PN (H) ⊗

PN⊥(H) + PN⊥(H) ⊗ PN (H)), whereas vec(Σ⊥
v ) ∈ R(D) = R(PN⊥(H) ⊗ PN⊥(H)) and

therefore (PN (D)C)†vec(Σ⊥
v ) = 0. Hence,

lim
t→∞

vec (Σ⊥
t ) = PN⊥(D)

(
PN⊥(D)(I −Q)

)†
PN⊥(D)vec (Σ

⊥
v )

=

((
2ηPN (D)C

)†
+ PN⊥(D)

(
PN⊥(D)(I −Q)

)†
PN⊥(D)

)
vec (Σ⊥

v ) .

(222)
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Let us apply again Thm. 18 but in the other direction. This time, X2 = 2ηPN (D)C and Y 2 =
PN⊥(D)(I−Q). Note that R(X2) = R(PN (H)⊗PN⊥(H)+PN⊥(H)⊗PN (H)) and R(Y 2) =
R(PN⊥(H) ⊗ PN⊥(H)) and therefore rank(X2 + Y 2) = rank(X2) + rank(Y 2). Additionally,

PR(Y T
2 )

= PN⊥(H) ⊗ PN⊥(H),

PR(Y 2) = PN⊥(H) ⊗ PN⊥(H),

PR⊥(XT
2 )

= PN (H) ⊗ PN (H) + PN⊥(H) ⊗ PN⊥(H),

PR⊥(X2) = PN (H) ⊗ PN (H) + PN⊥(H) ⊗ PN⊥(H). (223)

Hence,

L2 =
(
PR(Y T

2 )
PR⊥(XT

2 )

)†
=
(
PN⊥(H) ⊗ PN⊥(H)

(
PN (H) ⊗ PN (H) + PN⊥(H) ⊗ PN⊥(H)

))†
= PN⊥(H) ⊗ PN⊥(H)

= PN⊥(D),

O2 =
(
PR⊥(X2)PR(Y 2)

)†
=
((

PN (H) ⊗ PN (H) + PN⊥(H) ⊗ PN⊥(H)

)
PN⊥(H) ⊗ PN⊥(H)

)†
= PN⊥(H) ⊗ PN⊥(H) = PN⊥(D). (224)

Moreover, since R(X2) = R(PN (H)⊗PN⊥(H)+PN⊥(H)⊗PN (H)) and R⊥(Y 2) = R(PN (H)⊗
PN⊥(H)+PN⊥(H)⊗PN (H)+PN⊥(H)⊗PN⊥(H)) we have that R(X2) ⊆ R⊥(Y 2) = N (D).
Therefore,

(I −L2)X
†
2(I −O2) =

(
I − PN⊥(D)

)
X†

2

(
I − PN⊥(D)

)
= PN (D)X

†
2PN (D) = X†

2.

(225)
Therefore, applying Thm. 18 we get

(
2ηPN (D)C

)†
+ PN⊥(D)

(
PN⊥(D)(I −Q)

)†
PN⊥(D)

= X†
2 +L2Y

†
2O2

= (I −L2)X
†
2(I −O2) +L2Y

†
2O2

= (X2 + Y 2)
†

=
(
2ηPN (D)C + PN⊥(D) (I −Q)

)†
=
(
2ηPN (D)C + 2ηPN⊥(D)C − η2PN⊥(D)D

)†
=
(
2ηC − η2D

)†
. (226)
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where in the second step we used (225), and in the third step we used Thm. 18. Overall, together
with (70) we get

lim
t→∞

vec (Σ⊥
t ) =

(
2ηC − η2D

)†
vec (Σ⊥

v )

=

(
1

η
(2C − ηD)†

)(
η2p vec

(
Σ⊥

g

))
= ηp (2C − ηD)† vec

(
Σ⊥

g

)
. (227)

Appendix I. Proof of Corollary 13

From Thm. 12 we have that if 0 < η < η∗var then

lim
t→∞

vec (Σ⊥
t ) = ηp (2C − ηD)† vec

(
Σ⊥

g

)
, (228)

Using this result, we prove Corollary 13.

First statement. If 0 < η < η∗var then by Prop. 12

lim
t→∞

E
[
∥θ⊥

t − θ∗⊥∥2
]
= (vec (I))T lim

t→∞
vec (Σ⊥

t )

= (vec (I))T
(
ηp (2C − ηD)† vec

(
Σ⊥

g

))
= ηp(vec (I))T

(
2C − ηD

)†
vec
(
Σ⊥

g

)
. (229)

Second statement. Similarly, let us compute the limit of the expected value of the loss function to
obtain point 2.

lim
t→∞

E
[
L̃(θt)

]
− L(θ∗) =

1

2
lim
t→∞

E
[
(θt − θ∗)TH(θt − θ∗)

]
=

1

2
lim
t→∞

E
[
(θt − θ∗)TPN⊥(H)HPN⊥(H)(θt − θ∗)

]
=

1

2
lim
t→∞

E
[
(θ⊥

t − θ∗⊥)TH(θ⊥
t − θ∗⊥)

]
=

1

2
Tr
(
H lim

t→∞
E
[
(θ⊥

t − θ∗⊥)(θ⊥
t − θ∗⊥)T

])
=

1

2
Tr
(
H lim

t→∞
Σ⊥

t

)
=

1

2
(vec (H))T lim

t→∞
vec (Σ⊥

t )

=
1

2
(vec (H))T

(
ηp (2C − ηD)† vec

(
Σ⊥

g

))
=

1

2
ηp(vec (H))T

(
2C − ηD

)†
vec
(
Σ⊥

g

)
. (230)

Third statement. Finally, we prove point 3. The gradient of the second-order Taylor expansion of
the loss is given by

∇L̃(θ) = H (θ − θ∗) . (231)
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Therefore

lim
t→∞

E
[∥∥∥∇L̃(θt)

∥∥∥2] = lim
t→∞

E
[
(θt − θ∗)TH2(θt − θ∗)

]
= lim

t→∞
E
[
(θt − θ∗)TPN⊥(H)H

2PN⊥(H)(θt − θ∗)
]

= lim
t→∞

E
[
(θ⊥

t − θ∗⊥)TH2(θ⊥
t − θ∗⊥)

]
= Tr

(
H2 lim

t→∞
E
[
(θ⊥

t − θ∗⊥)(θ⊥
t − θ∗⊥)T

])
= Tr

(
H2 lim

t→∞
Σ⊥

t

)
=
(
vec
(
H2
))T

lim
t→∞

vec (Σ⊥
t )

= (vec
(
H2
)
)T
(
ηp (2C − ηD)† vec

(
Σ⊥

g

))
= ηp(vec

(
H2
)
)T
(
2C − ηD

)†
vec
(
Σ⊥

g

)
. (232)

Appendix J. Recovering GD’s stability condition

In this section, we show how our stability condition for SGD reduces to GD’s when B = n. In this
case p = 0 and thus

C =
1

2
H ⊕H, D = H ⊗H. (233)

Let H = V ΛV T be the eigenvalue decomposition of H , where V V T = V TV = I , then

C =
1

2
H ⊕H

=
1

2
(H ⊗ I +H ⊗ I)

=
1

2

((
V ΛV T

)
⊗
(
V V T

)
+
(
V V T

)
⊗
(
V ΛV T

))
=

1

2

(
(V ⊗ V ) (Λ⊗ I)

(
V T ⊗ V T

)
+ (V ⊗ V ) (I ⊗Λ)

(
V T ⊗ V T

))
= (V ⊗ V )

(
1

2
Λ⊗ I +

1

2
I ⊗Λ

)
(V ⊗ V )T . (234)

Note that

(V ⊗ V )T (V ⊗ V ) =
(
V T ⊗ V T

)
(V ⊗ V ) =

(
V TV

)
⊗
(
V TV

)
= I ⊗ I = I, (235)

i.e., (V ⊗ V ) is an orthogonal matrix. Since 1
2(Λ⊗ I + I ⊗Λ) is diagonal, then the last result in

(234) is an eigenvalue decomposition of C. Similarly,

D = H ⊗H

=
(
V ΛV T

)
⊗
(
V ΛV T

)
= (V ⊗ V ) (Λ⊗Λ)

(
V T ⊗ V T

)
= (V ⊗ V ) (Λ⊗Λ) (V ⊗ V )T , (236)
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where the last result here is the eigenvalue decomposition of D. We have that C and D have the
same set of eigenvectors, given by V ⊗ V . This means that we can look only at the eigenvalues.
Thus, set λℓ = Λ[ℓ,ℓ] = λℓ(H), and define the Moore–Penrose inverse for scalars

∀x ∈ R [x]† ≜

{
1
x , x ̸= 0,

0, x = 0.
(237)

Then

λmax

(
C†D

)
= max

ℓ,p∈[d]

{
λℓλp

[
1

2
(λℓ + λp)

]†}
. (238)

Note that the objective vanishes whenever λℓ = 0 or λp = 0. Restricting to only positive eigenvalues
gives

λmax

(
C†D

)
= max

λℓ,λp>0

{
λℓλp

1
2(λℓ + λp)

}
. (239)

Additionally
√

λℓλp ≤ 1
2(λℓ + λp) holds for all λℓ, λp > 0, therefore

λℓλp
1
2(λℓ + λp)

=
√
λℓλp

√
λℓλp

1
2(λℓ + λp)

≤
√
λℓλp

≤ λmax. (240)

Yet for λℓ = λp = λmax we have that

λℓλp
1
2(λℓ + λp)

= λmax. (241)

Hence we have

λmax

(
C†D

)
= max

λℓ,λp>0

{
λℓλp

1
2(λℓ + λp)

}
= λmax(H). (242)

Appendix K. Additional experimental results and detail

In this section, we complete the technical detail of the experiment shown in Sec. 4. For the experiment,
we used a single-hidden layer ReLU network with fully connected layers (with bias vectors). The
number of neurons is 1024, and the total number of parameters is 807, 940. We used four classes
from MNIST, 256 samples from each class, with a total of 1024 samples. To get large initialization,
we used standard torch initialization and multiplied the initial weights by a factor of 15. The maximal
number of epochs was set to 4× 104. If SGD did not converge within this number of epochs, then
we removed this run from the plots.
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Figure 3: Sharpness vs. learning rate. Additional results for the experiment in Sec. 4. These two
figures complete the results of Fig. 2. Here we see that SGD with big batch sizes behaves like GD.
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