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Abstract
We study the problem of online learning in contextual bandit problems where the loss function is
assumed to belong to a known parametric function class. We propose a new analytic framework
for this setting that bridges the Bayesian theory of information-directed sampling due to Russo and
Van Roy (2018) and the worst-case theory of Foster, Kakade, Qian, and Rakhlin (2021) based on
the decision-estimation coefficient. Drawing from both lines of work, we propose a algorithmic
template called Optimistic Information-Directed Sampling and show that it can achieve instance-
dependent regret guarantees similar to the ones achievable by the classic Bayesian IDS method, but
with the major advantage of not requiring any Bayesian assumptions. The key technical innovation
of our analysis is introducing an optimistic surrogate model for the regret and using it to define a
frequentist version of the Information Ratio of Russo and Van Roy (2018), and a less conservative
version of the Decision Estimation Coefficient of Foster et al. (2021).
Keywords: Contextual bandits, information-directed sampling, decision estimation coefficient,
first-order regret bounds.

1. Introduction

We present a framework for the analysis of a family of sequential decision-making algorithms
known as Information-Directed Sampling (IDS). First proposed by Russo and Van Roy (2018), IDS
is a Bayesian algorithm that selects its policies by optimizing a measure called the information-ratio,
which measures the tradeoff between instantaneous regret and information gain about the problem
instance at hand. In a Bayesian setup, both components of the information ratio are functions of the
posterior distribution over models, and can thus be explicitly calculated. As shown by Russo and
Van Roy (2018), the resulting algorithm can guarantee massive statistical gains over more common
approaches like Thompson sampling (Thompson, 1933) or optimistic exploration methods (Lai and
Robbins, 1985), and in particular can take advantage of the structure of the problem instance much
more effectively. Realizing the same gains in a non-Bayesian setup (which we will sometimes call
frequentist, for lack of a better word) is hard for multiple reasons, the most severe obstacle being
that the true model is entirely unknown and Bayesian posteriors cannot be used to quantify the un-
certainty about the model in a meaningful way. As such, defining appropriate notions of information
gain and information ratio is not straightforward. This is the problem we address in this paper.

Our main contribution is constructing a version of information-directed sampling that is im-
plementable without Bayesian assumptions, and yields frequentist versions of the same problem-
dependent guarantees as the ones achieved by the original IDSmethod in a Bayesian setup. The key
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element in our approach is the introduction of a surrogate model that allows for a meaningful defi-
nition of the information ratio that is amenable to a frequentist analysis. This surrogate model is the
function of an optimistically adjusted posterior distribution inspired by the “feel-good Thompson
sampling” algorithm of Zhang (2022), and is used to estimate the components of the information
ratio: the regret and the information gain. With these components, it becomes possible to define an
information ratio that is an explicit function of the optimistic posterior, which can then be optimized
to yield a decision-making rule that we call “optimistic information-directed sampling” (OIDS).

For the sake of concreteness, we focus on the problem of contextual bandits and show that
OIDS can not only recover worst-case optimal regret bounds in this case, but also satisfies problem-
dependent guarantees that are commonly referred to as first-order bounds (Cesa-Bianchi et al., 2005;
Agarwal et al., 2017; Allen-Zhu et al., 2018; Foster and Krishnamurthy, 2021). Besides these gen-
eral guarantees, we also provide some illustrative examples that show that OIDS can reproduce the
expedited learning behavior of IDS on easy problems, but without requiring Bayesian assumptions.

Our methodology also draws inspiration from the analytic framework of Foster, Kakade, Qian,
and Rakhlin (2021), developed for a very general range of sequential decision-making problems.
Their analysis revolves around the notion of the decision-estimation coefficient (DEC), which quan-
tifies the tradeoffs that need to be made between achieving low regret and gaining information
about the true model in a way that is similar to the information ratio of Russo and Van Roy (2016).
The main contribution of Foster et al. (2021) is showing that the minimax regret in any sequential
decision-making problem can be lower bounded in terms of the DEC, and they also show that nearly
matching upper bounds can be achieved via a simple algorithm they call estimation to decisions
(E2D). Unlike the information ratio, the DEC does not make use of a Bayesian posterior to quantify
uncertainty, but is rather defined as a worst-case notion, and as such provides frequentist guarantees
that hold uniformly for all problem instances. However, the worst-case nature of the DEC can also
be seen as an inherent limitation of their framework. In particular, the E2D algorithm is also based
on the same conservative notion of regret-information tradeoff, and thus all known guarantees for
this algorithm (and its variants such as the ones proposed by Chen et al., 2022; Foster et al., 2023a,b;
Kirschner et al., 2023) fail to take advantage of problem structures that may facilitate fast learning.

Our own framework unifies the advantages of the two threads of literature described above:
unlike E2D, it is able to achieve instance-dependent guarantees and learn faster in problems with
more structure, and, unlike standard IDS, it can do so without relying on Bayesian assumptions.
Our analysis draws on elements of both lines of work, and also on the techniques introduced by
Zhang (2022), as mentioned above.

We are not the first to attempt the generalization of IDS beyond the Bayesian setting. Kirschner
and Krause (2018) proposed a frequentist alternative to the information ratio for the special case of
loss functions that are linear in some unknown parameter, and constructed an appropriate version of
IDS that is able to take advantage of certain problem structures and obtain guarantees that improve
upon the minimax rates. Their approach has inspired a line of work aiming to prove tighter and
tighter problem-dependent bounds for a range of sequential decision-making problems, but so far
all of these results remained limited to linearly structured losses and observations (Kirschner et al.,
2020, 2021; Hao et al., 2022). In contrast, our notion of information ratio does not require any
specific problem structure like linearity. Another notable work is that of Xu and Zeevi (2023), who
propose and analyze a version of IDS based on optimizing a version of the DEC called the “algo-
rithmic information ratio”, and is subject to the same limitations as the DEC variants mentioned
above. We discuss this work in more detail in Appendix B.
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Notation. The squared Hellinger distance between two probability distributions P and P ′ (with
a common dominating measure Q) is defined as D2

H (P, P ′) = 1
2

∫ (√
dP
dQ −

√
dP ′

dQ

)2
dQ, and the

relative entropy (or Kullback–Leibler divergence) as DKL (P∥P ′) =
∫
log dP

dP ′dP .

2. Preliminaries

We study contextual bandit problems with finite action spaces and parametric loss functions. The
sequential interaction scheme between the learner and the environment consists of the following
steps being repeated for a sequence of rounds t = 1, 2, . . . , T :

• The environment picks a context Xt ∈ X , possibly using randomization and taking into
account the history of actions, losses and contexts,

• the learner observes Xt and picks an action At ∈ A, possibly using randomization and taking
into account the history of actions, losses and contexts,

• the learner incurs a loss Lt, drawn independently of the past from a fixed distribution that
depends on Xt, At.

We denote the sigma-algebra generated by the interaction history between the learner and the envi-
ronment up to the end of round t as Ft = σ(X1, A1, L1, . . . , Xt, At, Lt), and the probabilities and
expectations conditioned on the history as Pt [·] = P [ ·| Ft−1, Xt] and Et [·] = E [ ·| Ft−1, Xt].

We will suppose that the action space is finite with cardinality |A| = K, and that the loss
function belongs to a known parametric class, but is otherwise unknown to the learner. Specifically,
we assume that there is a known parameter space Θ that parametrizes a class of loss functions
ℓ : Θ × X × A → R, and a true parameter θ0 ∈ Θ such that Et [Lt|Xt, At] = ℓ(θ0, Xt, At).
We will refer to this condition as realizability. The distribution of random losses under parameter
θ generated in response to taking action a in context x will be denoted by p(θ, x, a), and we will
write p(·|θ, x, a) to designate the corresponding density with respect to a reference measure (usually
the counting measure or Lebesgue measure). Unless stated otherwise, we will assume that the loss
distribution is fully supported on the interval [0, 1] for all parameters θ. Furthermore, we will often
abbreviate ℓ(θ,Xt, a) as ℓt(θ, a) and p(θ,Xt, a) as pt(θ, a) to lighten our notation. Our formulation
will make central use of policies which prescribe randomized behavior rules for the learning agent.
Precisely, a policy π : X → ∆A maps each context x to a distribution over actions denoted as
π(·|x). Since we will mostly work with action distributions conditioned on the fixed contexts Xt,
we will mostly represent policies as distributions over actions, and use the same notation π ∈ ∆A
for this purpose. We will focus on learning algorithms that, in each round t, select a randomized
policy πt ∈ ∆A based on the interaction history Ft−1 and Xt. We also define the optimal loss in
round t under model parameter θ as ℓ∗t (θ) = mina ℓt(θ, a). The agent aims to make its decisions in
a way in that minimizes the expected sum of losses, and in particular aims to incur nearly as little
loss as the true optimal policy. The extent to which the learner succeeds in achieving this goal is
measured by the (total expected) regret defined as

RT (θ0) = E

[
T∑
t=1

(ℓt(θ0, At)− ℓ∗t (θ0))

]
. (1)

The expectation is over all sources of randomness: the agent’s randomization over actions, the
adversary’s randomization over contexts and the randomness of the realization of the losses. We
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also define instantaneous regret of an action a under parameter θ for each t as

rt(a; θ) = ℓt(θ, a)− ℓ∗t (θ),

and the instantaneous regret of policy π as rt(π; θ) =
∑

a π(a)rt(a; θ). With this notation, the
regret of the online learning algorithm can be written as RT (θ0) = E

[∑T
t=1 rt(πt; θ0)

]
.

3. Two competing theories of sequential decision making

Our work connects two well-established analytic frameworks for sequential decision making: the
Bayesian framework of Russo and Van Roy (2018) and the worst-case framework of Foster, Kakade,
Qian, and Rakhlin (2021). We review the two in some detail below, highlighting some of their merits
and limitations that we address in this paper, and relegate a more detailed discussion of variants of
these frameworks to Appendix B.

3.1. The information ratio and Bayesian information-directed sampling

The influential work of Russo and Van Roy (2016, 2018) set forth an analytic framework based on
a Bayesian learning paradigm where the true model parameter θ0 is supposed to be sampled from a
known prior distribution Q0 ∈ ∆Θ, and the performance of the learner is measured on expectation
with respect to this random choice of instance. We refer to the expected regret under this prior as the
Bayesian regret. Their work has established that the Bayesian regret of any algorithm can be upper
bounded in terms of a quantity called the Information Ratio (IR). For the sake of exposition, we will
follow the setup and notation of Neu et al. (2022), who study the Bayesian version of our contextual
bandit setting, and define the information ratio of policy π in the t-th round of interaction as

ρt(π) =

(
Eθ0∼Qt [rt(π; θ0)]

)2
IGt(π)

. (2)

In the above expression, both the numerator and the denominator are functions of the posterior dis-
tribution Qt of the parameter θ0, computed based on all information available to the learner up to the
beginning of round t. Specifically, the numerator is the squared expected regret in round t, where
the expectation is taken under the posterior distribution Qt, and the denominator is an appropriately
defined measure of information gain that serves to quantify the amount of new information revealed
about θ0 after having observed the latest loss Lt. The information gain is formally defined as

IGt(π) =
∑
a

π(a)

∫
DKL (pt(θ, a)∥pt(a)) dQt(θ), (3)

where pt(a) =
∫
pt(θ, a)dQt(θ) is the posterior predictive distribution of the loss Lt given that

action a is played in context Xt. In other words, the information gain is the mutual information
between the posterior-sample parameter θt ∼ Qt and a randomly sampled loss L̂t ∼ pt(θt, a).

Given the above definitions, Russo and Van Roy (2016, 2018) show that the Bayesian regret of
any algorithm can be upper bounded as follows:

Eθ0∼Q0 [RT (θ0)] ≤

√√√√E

[
T∑
t=1

ρt(πt)

]
· E

[
T∑
t=1

IG(πt)

]
. (4)
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The second sum above can be upper bounded by the entropy of θ0 under the prior distribution,
regardless of what algorithm is used to select the sequence of policies. This suggests that one can
achieve low regret by picking the sequence of policies in a way that minimizes the information ratio:
πt = arg minπ ρt(π). This algorithm is called information-directed sampling (IDS), and has been
shown to achieve regret guarantees that often improve significantly over worst-case bounds achieved
by more traditional methods based on posterior sampling or optimistic exploration methods. In
particular, for the contextual bandit setting we study in this paper, the works of Neu et al. (2022)
and Min and Russo (2023) have shown that the information ratio of IDS is bounded by the number
of actions K. When the parameter space is finite with cardinality N , this result implies that the
algorithm achieves the minimax optimal regret bound of O(

√
KT logN) for this Bayesian setting.

Despite their appealing properties, IDS-style methods have however remained largely limited
to the Bayesian setting, as there appears to be no universal way of defining an algorithmically use-
ful information ratio without Bayesian assumptions. In particular, the instantaneous regret rt(π; θ0)
cannot be computed without knowledge of θ0, and there is no reason to believe that the informa-
tion gain defined in terms of a Bayesian posterior would meaningfully measure the reduction in
uncertainty about θ0 in this more general setting.

3.2. The decision-estimation coefficient and the estimations-to-decisions algorithm

The fundamental work of Foster et al. (2021) provides a general theory of sequential decision mak-
ing, providing a range of upper and lower bounds depending on a quantity they call the decision-
estimation coefficient (DEC). With a little deviation from their notation and terminology, the DEC
associated with a policy π, a model class Θ and a “reference model” p̂t : A → ∆R is defined as

DECγ,t(π; Θ, p̂) = sup
θ∈Θ

∑
a

π(a)
(
ℓ(θ,Xt, a)− ℓ(θ,Xt, πθ)− γD2

H (pt(θ, a), p̂t(a))
)
, (5)

where γ > 0 is a trade-off parameter. With this notation, Foster et al. (2021) define the decision-
estimation coefficient associated with the model class Θ as

DECγ(Θ) = sup
t

sup
p̂∈∆R

inf
π∈∆A

DECγ,t(π; Θ, p̂).

Besides the remarkable feat of showing that the minimax regret can be lower bounded in terms
of the above quantity, they also show that nearly matching upper bounds can be achieved via a
simple algorithm they call estimation to decisions (E2D). In each round t, E2D takes as input a
reference model p̂t and outputs the policy achieving the minimum in the definition of the DEC:
πt = arg minπ DECγ,t(π; Θ, p̂t). They show that the regret of this method can be upper bounded in
terms of the DEC as follows:

RT (θ0) ≤ DECγ(Θ) · T + γ
T∑
t=1

D2
H (pt(θ0, a), p̂t(a)) .

This shows that the regret of E2D can be upper bounded as the sum of the DEC of the model class
Θ and the total estimation error associated with the sequence of predictions p̂t (measured in terms
of Hellinger distance). For the contextual bandit setting with finite parameter class of size N , they
show that the total estimation error can be upper bounded by γ logN (under an appropriate choice
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of the predictions p̂t), and that the DEC is upper bounded by K/γ, which once again recovers the
minimax optimal rate of order O(

√
KT logN) when γ is tuned correctly.

A significant problem with the approach outlined above is that the DEC is an inherently worst-
case measure of complexity due to the supremum taken over θ in its definition (5). Since the E2D
algorithm itself is based on this possibly loose bound on the regret-to-information gap, this looseness
may not only affect the bound but also the actual performance of the algorithm. Intuitively, one may
hope to be able to do better by replacing the supremum over model parameters by only considering
models that are still “statistically plausible” in an appropriate sense. In what follows, we provide an
algorithm that realizes this potential.

4. Optimistic information-directed sampling

Our approach solves the issues outlined in the previous sections with both the Bayesian information
ratio and the decision estimation coefficient. In particular, our method will extend Bayesian IDS
by being able to provide non-Bayesian performance guarantees, and will be able to address the
over-conservative nature of the DEC and provide strong instance-dependent guarantees.

Following Zhang (2022), we start by defining the optimistic posterior Q+
t ∈ ∆Θ via the follow-

ing recursive update rule (starting from an arbitrary prior Q+
1 (θ) ∈ ∆Θ):

dQ+
t+1

dQ+
t

(θ) ∝ (pt(Lt|θ,At))
η · exp(−λ · ℓ∗t (θ)). (6)

Here, η and λ are positive constants that will be specified later. For now, we will only say that η
should be thought of as a “large” constant of order 1, and λ as a “small” parameter of order 1/

√
T

in the worst case. To proceed, we define the optimistic posterior predictive distribution of the loss
for each t and a as the mixture pt(a) =

∫
pt(θ, a)dQ

+
t (θ), and the surrogate loss function and

surrogate optimal loss function respectively as

ℓ̄t(a) =

∫
ℓt(θ, a)dQ

+
t (θ) and ℓ̄∗t =

∫
ℓ∗t (θ)dQ

+
t (θ). (7)

In words, these quantities are averages with respect to a mixture model over all contextual bandit
instances with mixture weights given by the optimistic posterior Q+

t . Notably, they are improper
estimators of the true likelihood, loss, and optimal loss functions respectively, as there may be
no single θ ∈ Θ that corresponds to these exact functions (unless one assumes certain convexity
properties of the relevant objects). With these notations, we define the surrogate regret of policy π
in round t as rt(π) = ℓ̄t(π) − ℓ̄∗t . As we will see in the analysis, the optimistic posterior plays a
key role in ensuring that the surrogate regret does not overestimate the true regret by too much on
average, which makes it a sensible target for minimization.

It remains to define our notion of information gain that we will call surrogate information gain.
Formally, this quantity is defined for each policy π as follows:

IGt(π) =
∑
a∈A

π(a)

∫
D2

H

(
pt(θ, a), pt(a)

)
dQ+

t (θ). (8)

Notably, this definition matches the original notion of information gain used by Russo and Van
Roy (2016, 2018), up to the differences that the divergence being used is the squared Hellinger
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divergence instead of Shannon’s relative entropy, and that the expectation is taken over the opti-
mistic posterior instead of the plain Bayesian posterior. We will sometimes write rt(π;Q

+
t ) and

IGt(π;Q
+
t ) to emphasize that these are functions of the optimistic posterior Q+

t . With the above
definitions, we are now ready to introduce the central quantity of our algorithmic framework and
our analysis: the surrogate information ratio defined for each policy π as

IRt(π) =
(rt(π))

2

IGt(π)
=

(∑
a∈A π(a)

∫ (
ℓt(θ, a)− ℓ∗t (θ)

)
dQ+

t (θ)
)2∑

a∈A π(a)
∫
D2

H

(
pt(a), pt(θ, a)

)
dQ+

t (θ)
. (9)

Importantly, computing the surrogate information ratio does not require knowledge of θ0: both its
denominator and numerator can be expressed in terms of the optimistic posterior Q+

t . To emphasize
this fact, we will sometimes write IRt(π;Q

+
t ) for IRt(π).

We will also define the “offset” counterpart of the surrogate information ratio that is more
closely related to the decision-estimation coefficient of Foster et al. (2021). Following the terminol-
ogy introduced in Section 3.2, we introduce the averaged decision-estimation coefficient (ADEC)
of policy π for each µ > 0 as

DECµ,t(π) = r̄t(π)− µ · IGt(π)

=
∑
a

π(a)

∫ (
ℓt(θ, a)− ℓ∗t (θ)− µD2

H

(
pt(a), pt(θ, a)

))
dQ+

t (θ)
(10)

Once again, we also define the notation DECµ,t(π;Q
+
t ) = DECµ,t(π) to emphasize the dependence

of the ADEC on the posterior distribution Q+
t . This definition departs from the classic DEC in that,

instead of taking a supremum over model parameters, it is defined via an expectation with respect
to the optimistic posterior, thus preventing overly conservative choices of θ. It should be clear from
this definition that the ADEC is always smaller than its original counterpart defined by Foster et al.
(2021), as long the latter uses the optimistic posterior predictive distribution as its reference model:
DECµ,t(π;Q

+
t ) ≤ DECµ,t(π; pt,Θ).

The surrogate information ratio and the ADEC are related to each other by the inequality

DECµ,t(π) ≤
IRt(π)

4µ
(11)

that holds for all µ > 0. Conversely, it can be seen that

IRt(π) = inf

{
C > 0 : DECµ,t(π) ≤

C

4µ
(∀µ > 0)

}
. (12)

These are both direct consequences of the inequality of arithmetic and geometric means. That is,
whenever the ADEC behaves as Ct/µ for all µ, the surrogate information ratio succinctly summa-
rizes its behavior at all levels µ. We will dedicate special attention to this case below, but we also
note that there are several important cases where the ADEC behaves differently, and the information
ratio is a less appropriate notion of complexity. We defer further discussion of this to Section 7.

With the above notions, we are now ready to define the algorithmic framework we study in this
paper, with two separate versions depending on whether we consider the surrogate information ratio
or the average DEC as the basis of decision making. Both versions are referred to as optimistic
information-directed sampling (optimistic IDS or OIDS). Following the terminology of Hao and
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Lattimore (2022), we call the first variant which selects its policies as πt = arg minπ IR(π;Q+
t )

vanilla optimistic information-directed sampling (VOIDS), and the second variant that selects πt =
arg minπ DECµ(π;Q

+
t ) regularized optimistic information-directed sampling (ROIDS). We pro-

vide the pseudocode for these methods for quick reference as Algorithm 1.

Algorithm 1 Optimistic Information Directed Sampling (OIDS)
Input: prior Q+

1 , parameters η, λ, µ.
For t = 1, . . . , T , repeat:

1. Observe context Xt,

2a. VOIDS: play policy πt = arg minπ∈∆(A) IRt(π,Q
+
t ),

2b. ROIDS: play policy πt = arg minπ∈∆(A) DECt(π,Q
+
t , µ),

3. incur loss Lt,

4. update optimistic prior, Q+
t+1(·) ∝ Q+

t (·)(pt(·, At, Lt))
η exp (−λℓ∗t (·)).

5. Main results

We now present our main results regarding the two varieties of our optimistic IDS algorithm. We
first show a general worst-case regret bound stated in terms of the time horizon T and the informa-
tion ratio. More importantly, we also show instance-dependent guarantees on the performance of
OIDS that replace the scaling with T in the upper bounds by the total loss of the best policy after
T steps. For simplicity of exposition and easy comparison with existing results, we will present our
main results assuming that the parameter space Θ is finite with cardinality N , and that the losses
are almost surely bounded in the interval [0, 1]. We extend these results to compact metric param-
eter spaces in Section 5.3, and provide an extension to subgaussian losses in Section 5.4. Besides
these general results, we also present several examples where OIDS can achieve very low regret by
exploiting various flavors of problem structure, in Appendix A.

5.1. Worst-case bounds

We start by stating a general worst-case regret bound that relates the regret of any algorithm to
its surrogate information ratio. This result is the non-Bayesian counterpart of the bounds stated in
Russo and Van Roy (2018), Hao and Lattimore (2022) and Neu et al. (2022) in that it basically says
that any algorithm with bounded information ratio will enjoy bounded regret.

Theorem 1 Assume |Θ| = N < ∞ and let λ > 0 be arbitrary. Then, for any choice of prior
Q1 ∈ ∆Θ, the regret of any algorithm satisfies the following bound:

E [RT (θ0)] ≤
log 1

Q1(θ0)

λ
+ λT ·

(∑T
t=1 E

[
DEC1/10λ,t(πt;Q

+
t )
]

λT
+

21

4

)

≤
log 1

Q1(θ0)

λ
+ λT ·

(
10 ·

∑T
t=1 E

[
IRt(πt;Q

+
t )
]

T
+

21

4

)
.

(13)
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We provide a proof sketch, with pointers to the full technical proof details, in Section 6.1. As is
common in the information directed sampling literature, we will turn this guarantee into a more con-
crete bound on the regret of OIDS by exhibiting a “forerunner” algorithm that is able to control the
surrogate information ratio and is relatively easier to analyze. Indeed, this will certify a regret bound
for OIDS, since the latter precisely minimizes the surrogate information ratio at every round, and as
such is guaranteed to achieve the same or a better bound. In particular, we use the feel-good Thomp-
son sampling (FGTS) algorithm of Zhang (2022) as our forerunner, which samples a parameter θt
from the optimistic posterior and then plays the policy πt = arg maxπ

∑
a π(a)ℓt(θt, a).

Lemma 1 The surrogate information ratio and averaged decision-to-estimation-coefficient of VOIDS
and ROIDS satisfy for any µ ≥ 0

4µDECµ,t(ROIDS) ≤ 4µDECµ,t(VOIDS) ≤ IRt(VOIDS) ≤ IRt(FGTS) ≤ 8K. (14)

We note that the above result is more of a property of the posterior sampling policy than FGTS itself,
as the bound holds for any distribution that is handed to OIDS. This result is not especially new:
similar statements have been proven in a variety of papers including Russo and Van Roy (2016,
2018); Zhang (2022); Foster et al. (2021); Neu et al. (2022). We provide a proof in Appendix D.4.1.
Putting the two previous results together, we get the following upper bound on the regret of OIDS:

Corollary 1 Assume |Θ| = N < ∞, and let λ =
√

logN

(80K+ 21
4
)T

. Then, the regret of ROIDS with

input parameter µ = 1
10λ and VOIDS both satisfy

E [RT ] ≤
√
(320K + 21)T logN. (15)

In particular, this recovers the minimax optimal rate of O(
√
KT logN) for this problem.

5.2. First-order bounds

We now present a more interesting result that replaces the dependence on T in the previous bound
by the cumulative loss of the best policy—constituting an instance-dependent guarantee that is often
called first-order regret bound. In particular, in the important class of “noiseless” problems where
the optimal loss is zero, the result implies that OIDS achieves constant regret.

Theorem 2 Assume |Θ| = N < ∞, let L∗ be such that E
[∑T

t=1 ℓ
∗
t (θ0)

]
≤ L∗, and let λ =√

5 logN
(500K+108)L∗ ∧ 1

250K+54 . Then the regret of ROIDS with input parameter µ = 1
10λ and VOIDS

both satisfy
E [RT ] ≤

√
(2500K + 540) logNL∗ + (1250K + 270) logN. (16)

We provide a proof sketch in Section 6.2, with full details provided in Appendix C.1.

5.3. Infinite parameter spaces

We extend the result of Theorem 1 to work for infinite parameter spaces. For simplicity, we focus
on the case in which Θ is a bounded subset of a finite-dimensional vector space.
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Theorem 3 Assume Θ ⊂ Rd, maxx,y∈Θ ∥x− y∥ = 2R < ∞. Assume that for all x ∈ X, a ∈ A,
and L ∈ [0, 1], the log-likelihood of the losses p(·, x, a, L) is C-Lipschitz. Assume that a ball of

radius 1
CT containing θ0 is included in Θ and set λ =

√
2d log(RCT )

(20K+ 21
4
)T

and Q1 a uniform prior on Θ.

Then the regret of ROIDS with input parameter µ = 1
10λ and VOIDS both satisfy

E [RT ] ≤
√
(160K + 42)dT log(CRT ) + 1 = O(

√
dKT log(CRT )). (17)

We provide a proof in Appendix C.2.

5.4. Subgaussian losses

We also extend the basic result of Theorem 1 to work for a more general family of losses. In particu-
lar, we drop the assumption that the likelihood model is well-specified and allow the losses to be sub-
Gaussian. As the following result shows, we can still recover our regret bound of O(

√
KT logN)

with some minor tweaks of the algorithm and the analysis. The resulting method is called OIDS-SG,
and is presented in Appendix C.3 in full detail, along with the proof of the theorem below.

Theorem 4 Assume that the losses are v-sub-Gaussian, that |Θ| = N < ∞ and set

λ =

√
logN

( 1
4
+20(v∧1)(1+K))T

. Then the regret of ROIDS-SG with input parameter µ = 1
80λ(v∧1)

and VOIDS-SG both satisfy

E [RT ] ≤
√

(1 + 80(v ∨ 1)(1 +K))T logN = O(
√

KT logN). (18)

6. Analysis

This section provides an outline of the proofs of our main results. We first give a high-level overview
of the key ideas that are shared in all proofs, and then fill in provide further technical details that are
required to prove Theorems 1 and 2. Theorems 3 and 4 are proved in Appendices C.2 and C.3.

The core of our analysis is the following decomposition of the instantaneous regret in round t:

E [rt(πt; θ0)] = E [rt(πt)] + E [rt(πt; θ0)− rt(πt)]

= E [rt(πt)] + E
[
Et

[
ℓt(θ0, At)− ℓt(At)

]]
+ E

[
ℓ̄∗t − ℓ∗t (θ0)

]
(19)

= E
[
DECµ,t(πt) + µIGt(πt) + UEt + OGt

]
.

Here, in the last line we have introduced the notations UEt = Et

[
ℓt(θ0, At)− ℓt(At)

]
to denote

the underestimation error of the losses incurred by our own policy πt, and OGt = ℓ̄∗t − ℓ∗t (θ0) as
the optimatily gap between the best loss possible in our mixture of models and the optimal loss
attainable under the true parameter. The first term is small if the mixture model accurately evaluates
the losses seen during learning (which is generally easy to ensure on average), and the second term
is small if the model remains optimistic about the best attainable performance (which is facilitated
by the optimistic adjustment to the posterior updates). An important quantity in the analysis is the
(true) information gain of policy π defined as

IGt(π) =
∑
a∈A

π(a)

∫
D2

H (pt(θ0, a, ·), pt(θ, a, ·)) dQ+
t (θ). (20)
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This quantity is closely related to the surrogate information gain that is optimized by our algorithm,
and plays a key role in bounding the underestimation errors. In particular, the following simple
lemma establishes a connection between the true and surrogate information gains:

Lemma 2 For any t and policy π, the information gain satisfies IGt(π) ≤ 4IGt(π).

The proof can be found in Appendix D.2.1. Notably, the proof makes critical use of properties of the
squared Hellinger distance, and is the main reason that the surrogate information gain is defined the
way it is. In particular, the proof uses the fact that the Hellinger distance is a metric and as such it
satisfies the triangle inequality—which is the reason that we were not able to go with the otherwise
more natural choice of relative entropy in our definition of the information gain.

6.1. The proof of Theorem 1

We first use the following worst-case bound on the underestimation error:

Lemma 3 For any t and γ > 0, the underestimation error is bounded as |UEt| ≤ γ
2 + IGt(πt)

γ .

The proof is relegated to Appendix D.1.1. Putting this bound together with the previous derivations,
we get a regret bound that only depends on the averaged Decision-to-Estimation-Coefficient, the
information gain and the optimality gap:

E [rt] ≤ E
[

DECµ,t(πt) +

(
4µ+

1

γ

)
IGt(πt) + OGt

]
+

γ

2
. (21)

Following the terminology of Foster et al. (2023b), we will refer to the sum
(
4µ+ 1

γ

)
IGt(πt)+OGt

as the optimistic estimation error. The following result establishes that the optimistic posterior
updates can effectively control a quantity that is closely related to this term.

Lemma 4 Let 0 < η < 1
2 , λ > 0, and β = 1

1−2η . Then, the following inequality holds :

E

[
T∑
t=1

(
2η

λ
· IGt(πt) + OGt

)]
≤

log 1
Q1(θ0)

λ
+

λβT

8
. (22)

See Appendix D.3.1 for the proof. It remains to pick the hyperparameters in a way that the left-
hand side matches the total optimistic estimation error, which is achieved when setting way that
2η
λ = 4µ + 1

γ . To make sure that this holds while minimizing the final constant, we choose η = 1
4 ,

β = 2, and γ = 1
µ = 10λ. Plugging these constants into the bound above, and putting the result

together with the bound of Equation (21) completes the proof of Theorem 1.

6.2. The proof of Theorem 2

We start our analysis from the regret decomposition of Equation (19) and apply Lemma 2 to obtain

E [rt] ≤ E
[
DECµ,t(πt) + 4µIGt(πt) + UEt + OGt

]
.

As before, we can control the ADEC of OIDS by producing a suitable forerunner. In particular, we
use the inverse-gap weighting IGW algorithm of Foster and Krishnamurthy (2021)

11
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Lemma 5 The surrogate information ratio and averaged decision-to-estimation-coefficient of VOIDS
and ROIDS satisfy for any µ ≥ 0

4µDECµ,t(ROIDS) ≤ 4µDECµ,t(VOIDS) ≤ IRt(VOIDS) ≤ IRt(IGW) ≤ 40Kmin
a∈A

ℓt(a). (23)

See Appendix D.4.2 for a definition of the (IGW) algorithm and the proof. The term on the right-
hand side can be further bounded as

DECµ,t(πt) ≤
10K

µ
min
a

ℓt(a) ≤
10K

µ
(Et

[
ℓt(At)

]
) =

10K

µ
(Et [ℓt(θ0, At)]− UEt)

The final tool is a refined version of Lemma 3 that controls the underestimation error in terms
of the information gain and the current estimate of the loss.

Lemma 6 For any t and γ > 0, the underestimation error is bounded as

UEt ≤
IGt(πt)

γ
+ 2γEt [ℓt(θ0, At)] . (24)

See Appendix D.1.2 for the proof. Putting this together with the previous regret decomposition, as
long as 10K

µ ≤ 1, we get:

E [rt] ≤ E
[(

4µ+
1

γ
·
(
1− 10K

µ

))
IGt(πt) + OGt +

(
2γ

(
1− 10K

µ

)
+

10K

µ

)
ℓt(θ0, At)

]
,

(25)
As before, we will regard the term

(
4µ + 1

γ ·
(
1 − 10K

µ

))
IGt + OGt as the optimistic estimation

error, and adapt Lemma 4 to provide a refined bound on this quantity:

Lemma 7 Let 0 < η < 1
2 , λ > 0, and β = 1

1−2η . Then, the optimistic estimation error satisfies

T∑
t=1

(
2η

λ
· IGt(πt) +

(
1− λβ

2

)
OGt

)
≤ logN

λ
+

λβ

2

T∑
t=1

ℓ∗t (θ0). (26)

See Appendix D.3.2 for the proof. The claim of the theorem is then proved by tuning the hy-
perparameters in a way that the quantity bounded in the previous Lemma matches the optimistic
estimation error. We provide the details of this in Appendix C.1.

7. Discussion

We have proposed a new analysis framework that bridges the concepts of information ratio and
decision-estimation coefficient, and unifies the advantages of both frameworks. We provide some
further discussion on our results below.

General bounded losses. At the surface level, it may seem that our results only apply to well-
specified models where the likelihood model correctly captures the distribution of the random losses.
This is of course a very restrictive assumption. However, it is easy to see that our framework can
tackle arbitrary bounded losses via a standard binarization trick (Agrawal and Goyal, 2013): sup-
posing that the losses are bounded in [0, 1], they can be randomly rounded to {0, 1} to apply OIDS
with a Bernoulli likelihood. It is easy to see that the regret bounds for these post-processed losses
continue to hold for the original losses as well. We presume that our approach can be generalized
beyond such sub-Bernoulli and sub-Gaussian losses to more general sub-exponential-family losses,
but we leave the investigation of this generalization open for future work.
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Multiplicative or additive tradeoff? All of our results are stated in terms of both the surrogate
information ratio, which measures the regret-to-information tradeoff multiplicatively, and the aver-
aged DEC, which does so in an additive fashion. Based on these results, it is not immediately clear
which of the two notions is more useful. Equations (11) and (12) suggest that the ADEC is always
smaller than the information ratio, which may suggest that it may yield better guarantees. To a cer-
tain degree, Russo and Van Roy (2018) have already addressed this question: their Proposition 11
shows that measuring the regret-information tradeoff additively results in strictly worse regret for
a range of hyperparameter choices. While at the surface, this seems to defy the intuition provided
our results, in reality their additive tradeoff is only vaguely related to the one we consider, and the
regularization range for which the result holds does not seem to be practical in the first place. On the
other hand, Foster et al. (2021) make a more robust argument against the information ratio in com-
parison with the DEC, showing that there are some hard problems for which the information ratio
is infinite but the DEC remains finite (see their Section 9.3). Besides the fact that their information
ratio is defined in an unorthodox way via the same conservative supremum as what appears in the
definition of the DEC, this claim seems to miss some important follow-up work on IDS that has
already addressed this issue. Specifically, Lattimore and György (2021) have pointed out that the
information ratio is only suitable for problems where the minimax regret is of the order

√
T (which

one can already notice by inspecting the general bound of Equation 4), and studying harder games
with larger minimax regret may be done by introducing a generalized notion of information ratio
that features a different power of the regret in the denominator. In the present paper, we decided to
stay impartial and state our results for both flavors of optimistic IDS, and we hope that this debate
will progress productively in the future.

Connection with the Bayesian DEC. The attentive reader may have noticed that a notion closely
related to our averaged DEC has already been mentioned in the original work of Foster et al.
(2021). Indeed, their Section 4.2 proposes a Bayesian version of the E2D algorithm that optimizes
DECγ,t(·;Qt), where Qt is the exact Bayesian posterior over the model parameters. They show that
the resulting algorithm enjoys essentially the same guarantees on the Bayesian regret as the worst-
case guarantees obtained by the standard E2D method. Our approach effectively considers the same
optimization objective, with the important change that the standard Bayesian posterior is replaced
with the optimistic posterior of Zhang (2022). This not only strengthens the mentioned results of
Foster et al. (2021) by removing the Bayesian assumption necessary for its analysis, but also allows
us to obtain instance-dependent guarantees as well. We believe that the same instance-dependent
improvements (and more) should be directly provable for the Bayesian E2D method of Foster et al.
(2021), but we did not pursue this direction as we preferred to focus on pointwise regret guarantees
this time. We provide further discussion on variants of the DEC (including the Bayesian DEC) and
the information ratio in Appendix B.

Beyond contextual bandits. For the sake of simplicity, we have presented our results within the
relatively modest framework of contextual bandits. That said, it is clear that our framework can be
generalized to the much broader setting of “decision making with structured observations” studied
by Foster et al. (2021), and that it can be used to prove regret bounds of the form of Theorem 1
straightforwardly in said setting. However, so far we could only prove quantitative improvements
over the DEC for contextual bandits, and thus we decided not to let down the reader by introducing
a very general setting and then only providing interesting results in a narrow special case. Neverthe-
less, our results demonstrate that our framework can achieve strictly superior upper bounds on the

13
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regret in a highly nontrivial setting that has been studied extensively (see, e.g., Agarwal et al., 2017;
Allen-Zhu et al., 2018; Foster and Krishnamurthy, 2021; Bubeck and Sellke, 2020; Olkhovskaya
et al., 2023).

Lower bounds. A very important question is if our notion of averaged DEC can also serve as a
lower bound on the minimax regret like its original version proposed by Foster et al. (2021). Since
the ADEC is a lower bound on the DEC under a special choice of nominal model, we conjecture
that it can also be used to lower bound the minimax regret in the same “low-probability” fashion
as the original results of Foster et al. (2021). On the same note, we remark that it seems unlikely
that our DEC variant can be reconciled with the “constrained DEC” of Foster et al. (2023a), which
has so far yielded the tightest lower bounds on the regret within this family of complexity notions.
Whether or not the averaging idea we advocate for in this paper will turn out to be useful for fully
characterizing the minimax regret in sequential decision making remains to be seen.

Noiseless problems and Safe Bayes. It is interesting to observe that the optimistic posterior up-
dates used by our method simplify drastically in the special case of “noiseless” problems where
ℓ∗(θ,Xt) = 0 holds for all θ. This condition holds in two of the examples discussed in Appendix A,
and more broadly in all problems where the optimal policy is guaranteed to achieve zero loss un-
der all candidate parameters θ. As a more concrete example, we highlight the problem of bandit
linear classification with surrogate losses, which satisfies this condition if the data is separable with
a margin (Kakade et al., 2008; Beygelzimer et al., 2017, 2019). In such noise-free problems, the

optimistic posterior update collapses to
dQ+

t+1

dQ+
t

(θ) ∝ (pt(Lt|θ,At))
η, which is closer to the stan-

dard Bayesian update up to the important difference that it involves the “stepsize” parameter η.
Interestingly, such “generalized” or “safe” Bayesian updates have been studied extensively in the
context of statistical learning under misspecified models—see, e.g., Zhang (2006a,b); Grünwald
(2012); de Heide et al. (2020). This connection leads to a multitude of questions that we cannot
hope to address in this short discussion, so we close with mentioning only one aspect that we find
to be particularly exciting. Specifically, we wonder if the techniques established in these works
could be useful for addressing misspecification in the context of sequential decision making under
uncertainty, where this issue has been notoriously hard to formalize and handle (Du et al., 2019;
Lattimore et al., 2020; Weisz et al., 2021). We leave this exciting question open for future research.
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Appendix A. Examples

The most appealing property of IDS in the Bayesian setting is that it can take advantage of the struc-
ture of the problem at hand to achieve extremely good performance that is otherwise not achievable
by methods like Thompson sampling or UCB. Indeed, unlike these methods, IDS has the ability to
pick actions that are not optimal under any statistically plausible model, but can reveal useful infor-
mation about the problem. Russo and Van Roy (2018) demonstrate several examples of situations
where IDS provably achieves massive speedups via such queries. It is not clear that such speedups
are achievable without Bayesian assumptions, although some evidence was offered by the work of
Kirschner and Krause (2018) in the case of linear rewards. In this section, we demonstrate that
our version of IDS can fully reproduce the fast learning behavior of Bayesian IDS on the original
examples of Russo and Van Roy (2018), thus suggesting that OIDS may inherit many more good
properties of its Bayesian counterpart than what our main theoretical results show. We also provide
an additional example on which we demonstrate that OIDS can outperform DEC-based methods by
addressing the over-conservatism encoded in the definition of the DEC.

A.1. Revealing action

We first adapt the “revealing actions” example of the original work of Russo and Van Roy (2018).
This example features the action set A = {0, 1, . . . ,K}, the set of parameters Θ = {1, . . . ,K},
and the loss function ℓ(θ, a) = I{a>0, a ̸=θ} + I{a=0}(1 − 1

2θ
). The losses are deterministic and the

agent gets loss 0 by picking the action corresponding to the unknown parameter θ0. Action 0 is
special, it results in a large loss that however encodes the identity of the optimal action. Thus, the
optimal exploration strategy is to pick this revealing action once, read out the identity of the optimal
action, and play that action until the end of time. Russo and Van Roy (2018) show that IDS follows
this exact strategy, and here we show that OIDS does the same when taking as input a (completely
noninformative) uniform prior over the parameters.

To show this, we will compute for any action the surrogate reward and surrogate information
gain under the optimistic posterior (which is identical to the uniform prior, given that we are in the
first round). For a ̸= 0, the surrogate regret is written as

r1(a) =

∫
Θ
ℓ(θ, a)− ℓ(θ) dQ0(θ) =

1

K

K∑
θ=1

(1− I{a=θ}) = 1− 1

K
,

while for the revealing action, the surrogate regret is

r1(0) = 1− 1

K
+

2−K

K
.

In particular r̄t(0) > r̄t(a) so the action 0 has the worst expected reward under our model. As for
the information gain, we an explicit computation of the Hellinger distance for a ̸= 0 shows

IGt(a) =
1

K
·

(
1−

√
1

K

)
+

K − 1

K
·

(
1−

√
K − 1

K

)
= O

(
1

K

)
.

Meanwhile, for action 0 we have

IGt(0) = 1−
√

1

K
= Θ(1).
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A.2. Sparse linear model

Our second example is a linear bandit problem where the action space corresponds to a finite subset
of the Euclidean unit ball A = { x

∥x∥1
: x ∈ {0, 1}d, x ̸= 0}, the parameter space consists of the set

of coordinate vectors Θ = {θ′ ∈ {0, 1}d, ∥θ′∥1 = 1}, and the loss function is ℓ(θ, a) = 1− ⟨a, θ⟩.
As in the previous example, the losses are again deterministic. This is a linear bandit problem
where the parameter θ is known to be 1-sparse. In particular, the optimal action under the model θ
consists in only selecting action a = θ so any Thompson Samling based algorithm will only select
one coordinate at a time and will take up to d steps to determine the true parameter θ0. In contrast,
the optimal exploration policy will perform binary search on the action space and find the optimal
action exponentially faster.

To investigate the behaviour of OIDS on this problem, we will compute the surrogate regret and
surrogate information gain of an action a. Since our prior is uniform, we have

r1(a) = ℓ̄1(a) = P [⟨θ0, a⟩ > 0] · 1

∥a∥1
=

∥a∥1
d

· 1

∥a∥1
=

1

d

and

IG1(a) =
∥a∥1
d

·

(
1−

√
∥a∥1
d

)
+

d− ∥a∥1
d

·

(
1−

√
d− ∥a∥1

d

)

= 1−
(
∥a∥1
d

) 3
2

−
(
1−

∥a∥1
d

) 3
2

Thus, the expected reward of all actions is the same, and the information gain is maximized for
actions with norm ∥a∥1 = d

2 . IDS thus picks an action A1 uniformly at random and updates the
posterior as follows. If the observed loss is 1, all parameters with ⟨θ,A1⟩ > 0 will be eliminated by
the posterior update. If the observed loss is smaller than 1, all parameters satisfying ⟨θ,A1⟩ = 0 are
excluded. The posterior is thus set as uniform over all surviving parameters and the process repeats.
Continuing along the same lines, we can see that both versions of OIDS will continue performing
binary search and identify the true parameter in log2 d time steps.

A.3. Bandits with a revelatory zero

Our final example is a multi-armed bandit problem where the losses keep looking exactly the same
until a low-probability event happens that reveals the optimal action perfectly. In this setup (vaguely
inspired by Example 3.3 of Foster et al., 2021), Θ = [K], and the losses are defined as uniformly
distributed random variables in [0, 1] for all actions except a = θ. For this special action, the loss
is defined as BtUt, with Ut uniform on [0, 1], and Bt is Bernoulli with mean 1 − 2∆ ∈ [0, 1]. The
mean loss for this action is 1

2 − ∆. For this model, there is essentially no way for any algorithm
to discover the optimal action until the first time that a loss of zero is observed. In this case, the
(optimistic) posterior immediately collapses on θ0. Consequently, OIDS keeps drawing uniform
random actions until the first zero is observed, and plays the optimal action in all remaining rounds.
The number of time steps spent with uniform exploration are geometrically distributed with mean
K
2∆ , thus making for a total regret of approximately K

2 . Note that in this instance, the optimistic
adjustment to the posterior is not necessary as the optimal loss of all models are the same, so the
performance of the algorithm is unaffected by the choice of λ or µ.
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Interestingly, the E2D algorithm of Foster et al. (2021) cannot take advantage of the structure
of this problem so effectively. When using the posterior predictive distribution pt as the nominal
model, the Hellinger distance will approximately behave as D2

H (p(θ, a), p̂t(a)) ≈ I{θ ̸=θ0} after
observing the first zero. Thus, the worst-case DEC associated with policy π is written as

DECγ(π; pt,Θ) = sup
θ

{
ℓ(θ, π)− ℓ(θ, aθ)− γI{θ ̸=θ0}

}
= sup

θ

∆
∑
a̸=θ

π(a)− γI{θ ̸=θ0}


= sup

θ

{
∆(1− π(θ))− γI{θ ̸=θ0}

}
.

When γ ≥ ∆, the expression in the supremum can be positive for certain policies π and parameters
θ ̸= θ0, and thus the θ player will prefer picking θ ̸= θ0 for some policies. More precisely, the DEC
for any policy will be given as

DEC(π; Θ, p̂t) = max

{
∆(1− min

a̸=θ0
π(a))− γ, ∆(1− π(θ0))

}
.

In the extreme case γ = 0, the policy achieving maximum value is approximately uniform, and it
approximates the optimal policy π∗ gradually as γ increases. When γ is large enough, the alterna-
tive θ ̸= θ0 stops being attractive to the max player and E2D starts outputting π∗. This happens at
the threshold γ > ∆ at the latest. This observation matches the discussion of Foster et al. (2021,
Example 3.3) and Foster et al. (2023a, p. 8), who demonstrate the same threshold behavior of the
DEC and point out that this leads to tight lower bounds, without discussing the potential shortcom-
ings of E2D that prevents it from obtaining tight upper bounds. It is easy to see that E2D fails
because of the over-conservative definition of the DEC: while there is sufficient evidence to reject
all alternative parameters, E2D still computes its optimization objective by taking a supremum over
all model parameters θ, including ones that have already been ruled out by the observations. This
clearly demonstrates the advantage of the surrogate model used by OIDS, which computes its ob-
jective with the help of the optimistic posterior distribution that allows faster elimination of unlikely
parameters.

Appendix B. A tour of the complexity zoo of sequential decision-making

The DEC and IDS frameworks that serve as foundations of our work (as described in Section 3)
come in a variety of flavors, with a number of possible choices for how one can trade off estimation
errors and regret. We attempt to do justice to this literature here by discussing some of the most
prominent variants of the DEC and the information ratio that have appeared in previous work.

Decoupling coefficient. Zhang (2022) defined the decoupling coefficient as a technical tool for
analyzing the regret of the so-called “feel-good Thompson sampling” (FGTS) algorithm that sam-
ples its actions At by sampling θt ∼ Q+

t from the optimistic posterior (defined in the same terms as
in our paper), and then following the policy πθt . The resulting policy is called πt. We give a sim-
plified definition here and refer the reader to Section 4 of Zhang (2022) for the full details. In our
notation, the decoupling coefficient δ∗t is defined as the smallest constant δ such that the following
inequality holds:

Eθ∼Q+
t
[ℓt(θ, πθ)− ℓt(θ0, πθ)] ≤ inf

µ≥0

{
µ
∑
a

πt(a)Eθ∼Q+
t

[(
ℓt(θ, a)− ℓt(θ0, a)

)2]
+

δ

4µ

}
.
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Evaluating the infimum and reordering gives that the optimal value of δ∗t is given as

δ∗t =

(
Eθ∼Q+

t
[ℓt(θ, πθ)− ℓt(θ0, πθ)]

)2∑
a πt(a)Eθ∼Q+

t

[(
ℓt(θ, a)− ℓt(θ0, a)

)2] .
When specialized to the Bayesian setting where θ0 is sampled from the posterior distribution Qt

and the optimistic posterior is replaced by the true posterior, this coefficient can be seen to be very
closely related to the information ratio of Russo and Van Roy (2016, 2018). Indeed, if the losses are
assumed to follow a Gaussian distribution, Neu et al. (2022) point out that the decoupling coefficient
becomes identical to the information ratio. Importantly, a limitation of the decoupling coefficient
is that, without Bayesian assumptions, it cannot serve as a foundation for designing algorithms
since it depends on the unknown parameter θ0 and as such it cannot be optimized in an IDS-
like algorithmic framework. This limits the usefulness of the decoupling coefficient to analyzing
Thompson-sampling-like algorithms, as done by Zhang (2022) and Agarwal and Zhang (2022).

Optimistic DEC. Foster et al. (2024) define an optimistic version of the original DEC of Foster
et al. (2021), which makes two important changes to the standard definition. The first is that the
optimistic DEC (that we’ll abbreviate as ODEC below) replaces the reference model by a reference
distribution Q and also makes a change to the definition of regret in the tradeoff between low losses
and low estimation errors. Specifically, the ODEC associated with a reference distribution Q, a
model class Θ and a policy π is defined as

ODECγ,t(π; Θ, Q) = sup
θ∈Θ

∑
a

π(a)E
θ̂∼Q

[(
ℓ(θ̂, Xt, a)− ℓ(θ,Xt, πθ)− γD2

H

(
pt(θ, a), pt(θ̂, a)

))]
.

This quantity bears some superficial similarity with the ADEC in the sense that it replaces the
reference model with a distribution over model that resembles the optimistic posterior our notion
is based on. Also, the ODEC requires controlling the same notion of optimistic estimation error
that our analysis makes use of (cf. Section 6.1). Importantly however, the main difference between
the ODEC and the ADEC is that the former takes a supremum over model parameters as opposed
to averaging them out according to the optimistic posterior. This supremum ultimately makes the
ODEC more similar to the DEC than the ADEC, and inherits all the conservativeness of the DEC.

Bayesian DEC. Section 4.2 of Foster et al. (2021) defines a Bayesian version of the DEC, defined
in terms of the posterior distribution Qt as

BDECγ,t(π) =
∑
a

π(a)

∫ (
ℓt(θ, a)− ℓ∗t (θ)− µD2

H

(
pt(a), pt(θ, a)

))
dQt(θ),

where ℓ̄t(π) =
∫
ℓt(θ, π)dQt(θ). This exactly matches our definition of the ADEC up to the im-

portant difference that the BDEC is defined in terms of the true Bayesian posterior Qt and not the
optimistic posterior Q+

t . Theorem 4.2 of Foster et al. (2021) provides a Bayesian regret bound for
this method that follows via a few lines of straightforward calculations, thanks to being free from
the burden of having to control the optimistic estimation error as we need to do in our analysis. In-
deed, in the Bayesian setting, the estimation errors are much easier to control via a straightforward
application of the standard exponential weights analysis (as done in, e.g., Neu et al. (2022)). Due
to the counterexample provided by Zhang (2022) for Thompson sampling, we find it unlikely that
Bayesian algorithms derived from the BDEC can guarantee bounded worst-case regret in general.
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Algorithmic information ratio. The work of Xu and Zeevi (2023) defined a notion of informa-
tion ratio (called the “algorithmic information ratio” or AIR) that does not require any Bayesian
assumptions. Their methodology is closely related to the framework developed by Lattimore and
György (2021) and Foster et al. (2022) for adversarial decision-making, and results in guarantees
that hold without having to assume that the parameter θ0 remains fixed over time. Here we discuss
a variant of the AIR that Xu and Zeevi (2023) call the “model-index AIR” (MAIR), and adapt the
notations to allow a more evocative comparison between the MAIR and the ADEC. The MAIR for
policy π is defined in terms of a reference distribution Q of models and a posterior belief distribution
ν ∈ ∆Θ as follows:

MAIRρ,γ(π, ν) =
∑
a

π(a)

∫
(ℓt(θ, a)− ℓ∗t (θ)− µDKL (pt(a)∥pt(θ, a))) dν(θ)− µDKL (ν∥ρ) ,

with pt(a) =
∫
pt(θ, a)dν(θ). This quantity is very similar to the ADEC with the choice ν = Q+

t ,
up to the difference that the MAIR is defined in terms of the relative entropy instead of the Hellinger
distance, and the presence of the additional regularization term µDKL (ν∥ρ) that penalizes beliefs
that are very different from the reference distribution ρ (and can be eliminated in principle by setting
ν = ρ). The key difference between the algorithms proposed by Xu and Zeevi (2023) and the ones
studied in the present work and all the others discussed so far is in how a policy is derived from the
complexity notions. Following Lattimore and György (2021) and Foster et al. (2022), Xu and Zeevi
(2023) propose to choose their policies by finding a solution (πt, νt) to the saddle-point optimization
problem infπ∈∆K

supν∈∆Θ
MAIRρt,γ(π, ν), where the reference distribution is updated as ρt+1 =

νt(·|At, Lt) (the Bayesian posterior derived from the belief νt given the observations Lt and At).
This method has the merit of giving an update rule for the reference distribution that is defined
without explicit Bayesian posterior updates, and being robust to adversarially chosen loss functions.
On the other hand, the updates are arguably hard to compute in general (potentially even harder than
computing exact posterior updates), and the robustness to adversarial data may come at the price
of efficient exploitation of easy problem instances. Indeed, the supremum taken over parameter
distributions ν may result in similarly conservative updates as other DEC-based algorithms, and
may make it very challenging (if not impossible) to prove problem-dependent guarantees of the
type we achieve in our work. We find it an intriguing open question to find out if this limitation
of their method can be removed, and problem-dependent guarantees for algorithms based on the
MAIR can be proved.

Appendix C. Proofs of the main results

We now give the complete proofs of our main results. We relegate most of the technical content into
Appendix D and only provide the main arguments here for better readability.

C.1. The proof of Theorem 2

We continue from the regret bound obtained at the end of the analysis in Equation 25, that holds
under the condition 10K

µ ≤ 1:

E [rt] ≤ E
[(

4µ+
1

γ
·
(
1− 10K

µ

))
IGt(πt) + OGt +

(
2γ

(
1− 10K

µ

)
+

10K

µ

)
ℓt(θ0, At)

]
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≤ E
[(

4µ+
1

γ

)
IGt(πt) + OGt +

(
2γ +

10K

µ

)
ℓt(θ0, At)

]
,

where in the last line we also used that IGt and ℓt(θ0, At) are nonnegative to upper bound 1 −
10K
µ ≤ 1. In order to apply Lemma 7, we would like to manipulate the above expression so that the

coefficients of IGt and OGt match. To this end, we use the condition that λβ
2 ≤ 1

5 , which ensures
that 1 ≤ 1

1−λβ
2

≤ 5
4 and thus we can continue the above bound as

E [rt] ≤ E
[
5

4
·
((

4µ+
1

γ

)
IGt(πt) +

(
1− λβ

2

)
OGt +

(
2γ +

10K

µ

)
ℓt(θ0, At)

)]
.

To apply Lemma 7, we choose η = 1
4 , β = 2, γ = 1

µ = 10λ, and sum over all rounds to obtain

E [RT ] ≤ E

[
5

4
· logN

λ
+

5λ

4

T∑
t=1

ℓ∗t (θ0) + (125K + 25)λ
T∑
t=1

ℓt(θ0, At)

]

≤ E

[
5

4
· logN

λ
+ (125K + 27)λ

T∑
t=1

ℓt(θ0, At)

]
,

where we upper-bounded the optimal loss 5λ
4 ℓ∗t (θ0) by 2λℓt(θ0, At) in the last step. Introducing

the notation L̂T =
∑T

t=1 ℓt(θ∗, At) and L∗
t =

∑T
t=1 ℓ

∗
t (θ0), the two sides of the equation can be

rewritten as

RT = L̂T − L∗
t ≤ E

[
5

4
· logN

λ
+ (125K + 27)λL̂T

]
.

Hence, after some reordering we arrive at

E [RT ] · (1− (125K + 27)λ) ≤ E
[
5

4
· logN

λ
+ (125K + 27)λL∗

T

]
.

If λ < 1
2(125K+30) , we can divide both sides of the inequality by (1− (125K + 27)λ) to obtain

E [RT ] ≤ E
[
5

2
· logN

λ
+ (250K + 54)λL∗

]
,

where L∗ is an upper bound on E [L∗
T ]. Finally, we plug the value λ =

√
5 logN

(500K+108)L∗ ∧ 1
250K+54

to get the regret bound of Theorem 2.

C.2. The proof of Theorem 3

The only difference with the finite parameter space analysis is in the control of the optimistic estima-
tion error. In particular, we only need to adapt our analysis of the optimistic posterior and Lemma 4
to get the regret bound claimed in Theorem 3. We do this with the following lemma.

Lemma 8 Let 0 < η < 1
2 , λ > 0, and β = 1

1−2η , assume the hypothesis of Theorem 3 hold. Then,
the following inequality holds :

E

[
T∑
t=1

(
2η

λ
· IGt(πt) + OGt

)]
≤

d log R
ϵ

λ
+

λβT

8
+
(η
λ
+ 1
)
· CTϵ. (27)
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The proof is found in Appendix D.3.4. We can now put this together with the regret decomposition
of Equation (21). As in the proof of Theorem 1, we need to pick the hyperparameters such that the
optimistic estimation error matches the left hand side of the previous lemma. The same choice of
hyperparameters η = 1

4 , β = 2, and γ = 1
µ = 10λ combined with Lemma 1 gives us the following

bound

E [RT ] ≤ λT (20K +
1

4
+ 5) +

d log R
ϵ

λ
+

(
1

4λ
+ 1

)
· CTϵ. (28)

Picking ϵ = 1/(CT ) gives us

E [RT ] ≤
2d logRCT

λ
+ λT

(
20K +

21

4

)
+ 1, (29)

where we used 1
4 ≤ d logRCT . Finally picking λ =

√
2d log(RCT )

T(20K+ 21
4 )

recovers the claim of Theo-

rem 3.

C.3. The proof of Theorem 4

One of the appeals of our approach is that with minor tweaking, we can extend the previous guar-
antees so subgaussian losses. To do that, we consider the following family of likelihoods:

p(c|θ, x, a) ∝ exp

(
−(c− ℓ(θ, x, a))2

2

)
.

We also readjust our definition of information gain for this setting by replacing the squared Hellinger
distance by the square loss. In particular, the Gaussian surrogate information gain is defined as

IGG
t (π) =

∑
a∈A

π(a)

∫ (
ℓt(θ, a)− ℓt(a)

)2
dQ+

t (θ)

and the (true) Gaussian information gain as

IGG
t (π) =

∑
a∈A

π(a)

∫
(ℓt(θ, a)− ℓt(θ0, a))

2 dQ+
t (θ).

The surrogate information ratio and averaged DEC are adapted as any policy π

IRG
t (π) =

rt(π)

IGG
t (π)

and DECG
µ,t(π) = rt(π)− µ · IGG

t (π). (30)

Then, we define the corresponding algorithm template (called Optimistic Information Directed Sam-
pling for subgaussian losses, OIDS-SG) as the method that either picks πt as the minimizer of IRG

t

or DECG
T . The two varieties are referred to as VOIDS-SG and ROIDS-SG.

Replacing the surrogate information gain by its Gaussian counterpart, the regret decomposition
of Equation (19) is still valid:

E [rt] = E
[
DECG

t (πt, µ) + µIGG
t (πt) + UEt + OGt

]
.

The surrogate and true information gains are related to each other by the following lemma:

24



OPTIMISTIC IDS

Lemma 9 For any t and policy π, the information gain for Gaussians satisfies IGG
t (π) ≤ 4IGG

t (π).

See Appendix D.2.2 for the proof. We also relate the underestimation error to the information gain
through the following lemma

Lemma 10 For any t and γ > 0, the underestimation error is bounded as

|UEt| ≤
γ

4
+

IGG
t (πt)

γ
.

The proof is presented in Appendix D.1.3. Putting these together, we get a regret bound that only
depends on the average DEC, the information gain and optimality gap:

E [rt] ≤ E
[

DECG
µ,t(πt) +

(
4µ+

1

γ

)
IGG

t (πt) + OGt +
γ

4

]
. (31)

We again refer to the sum
(
4µ+ 1

γ

)
IGG

t (πt) as the optimistic estimation error and will control it
through an analysis of the optimistic posterior adapted to the sub-Gaussianity of the losses. This is
done in the following lemma, whose proof we relegate to Appendix D.3.3.

Lemma 11 Assume that the losses are v sub-Gaussian and that for all θ ∈ Θ, x ∈ X, a ∈ A,
ℓ(θ, x, a) ∈ [0, 1], then setting η = 1+

√
1−1∧v
2v the following inequality holds :

E

[
T∑
t=1

1

16λ(v ∨ 1)
· IGG

t (πt) + OGt

]
≤ logN

λ
+

λT

4
. (32)

Now we pick µ = 1
γ = 1

80λ(v∨1) and apply the previous lemma to obtain the bound

E [RT ] ≤ E

[
T∑
t=1

DECG
1

80λ(v∨1)
,t(πt)

]
+

logN

λ
+ λT

(
1

4
+ 20(v ∨ 1)

)
. (33)

It remains to bound the ADEC. We do this by exhibiting a “forerunner” algorithm that is able
to control the Surrogate Information Ratio. In particular, we use again the feel-good Thompson
sampling (FGTS) algorithm of Zhang (2022) for this purpose.

Lemma 12 The surrogate information and averaged decision-to-estimation-coefficient of OIDS
and VOIDS satisfy the following bound for any µ > 0:

4µDECG
µ,t(ROIDS-SG) ≤ 4µDECG

µ,t(VOIDS-SG) ≤ IRG
t (VOIDS-SG) ≤ IRG

t (FGTS) = K
(34)

Putting everything together, we obtain the bound

E [RT ] ≤
logN

λ
+ λT

(
1

4
+ 20(v ∨ 1)(1 +K)

)
, (35)

from which the bound claimed in Theorem 4 follows by picking the optimal choice of λ.
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Appendix D. Technical proofs

This section presents the more technical parts of the analysis, along with detailed proofs. The
content is organized into four main parts: Appendix D.1 presents techniques for bounding the un-
derestimation error, Appendix D.2 provides techniques for relating the surrogate information gain
to the true information gain, Appendix D.3 presents the analysis of the optimistic posterior updates
to control the optimistic estimation error, and Appendix D.4 provides bounds on the surrogate in-
formation ratio and the ADEC. All subsections include a variety of results, stated respectively for
the worst-case bounds, first-order bounds, and subgaussian losses.

D.1. Analysis of the Underestimation error

D.1.1. WORST CASE ANALYSIS: THE PROOF OF LEMMA 3

We define the total variation distance between two distributions P , Q sharing a common dominating
measure λ as

TV(P,Q) =
1

2

∫
|p(x)− q(x)| dλ(x),

where p, q are their densities with respect to λ. The total variation distance can be upper bounded
by the Hellinger distance as follows:

TV(P,Q) =
1

2

∫ ∣∣∣(√p(x)−
√
q(x)) · (

√
p(x) +

√
q(x))

∣∣∣ dλ(x)
≤ 1

2

√∫ (√
p(x)−

√
q(x)

)2
dλ(x) ·

∫ (√
p(x) +

√
q(x)

)2
dλ(x)

≤ 1

2

√
2D2

H(P,Q) · 2
∫
(p(x) + q(x)) dλ(x)

=
√
2D2

H(P,Q) ≤ γ

2
+

D2
H(P,Q)

γ
.

Here, the first two inequalities follow from applying Cauchy–Schwarz, and the last one from the
inequality of arithmetic and geometric means. Thus, we proceed as

|UEt| =

∣∣∣∣∣∑
a

πt(a)

∫
ℓt(θ0, a)− ℓt(θ, a) dQ

+
t (θ)

∣∣∣∣∣
≤
∑
a

πt(a)

∫ ∣∣ℓt(θ0, a)− ℓt(θ, a)
∣∣ dQ+

t (θ)

=
∑
a

πt(a)

∫
TV
(
Ber(ℓt(θ0, a)),Ber(ℓt(θ, a))

)
dQ+

t (θ)

≤
∑
a

πt(a)

∫
TV
(
pt(θ0, a), pt(θ, a)

)
dQ+

t (θ)

≤ γ

2
+

∑
a πt(a)

∫
D2

H

(
pt(θ0, a), pt(θ, a)

)
dQ+

t (θ)

γ

=
γ

2
+

IGt

γ
.
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The first inequality above uses the boundedness of the losses in [0, 1], the second inequality is the
data-processing inequality for the total variation distance (applied on the noisy channel X → Y that
randomly rounds X ∈ [0, 1] to Y ∈ {0, 1}), and the last one is the inequality we have just proved
above. This concludes the proof.

D.1.2. INSTANCE-DEPENDENT ANALYSIS: THE PROOF OF LEMMA 6

This proof requires a more sophisticated technique based on careful specialized handling of the
“underestimated” and ”overestimated” actions. The argument is vaguely inspired by the techniques
of Bubeck and Sellke (2020) and Foster and Krishnamurthy (2021). Specifically, for a parameter θ,
we define A−

θ = {a ∈ A : ℓt(θ, a) < ℓt(θ0, a)} as the set of actions where ℓt(θ, a) underestimates
ℓt(θ0, a). With this notation, we write

UEt =
∑
a

πt(a)(ℓt(θ0, a)− ℓt(a))

=

∫ ∑
a

πt(a)
(
ℓt(θ0, a)− ℓt(θ, a))

)
dQ+

t (θ)

≤
∫ ∑

a∈A−
θ

πt(a)
(
ℓt(θ0, a)− ℓt(θ, a)

)
dQ+

t (θ)

=

∫ ∑
a∈A−

θ

πt(a) ·
√

γ(ℓt(θ0, a) + ℓt(θ, a))√
γ(ℓt(θ0, a) + ℓt(θ, a))

(ℓt(θ0, a)− ℓt(θ, a)) dQ
+
t (θ),

where the inequality follows by dropping the negative terms of the sum. Now, the inequality of
arithmetic and geometric means implies that for any x, y ≥ 0, xy ≤ x2+y2

2 . We apply it to x =

2
√
γ(ℓt(θ0, a) + ℓt(θ, a)) and y = (ℓt(θ0,a)−ℓt(θ,a))

2
√

γ(ℓt(θ0,a)+ℓt(θ,a))
to obtain

UEt ≤
∫ γ

∑
a∈A−

θ

πt(a) ·
(
ℓt(θ0, a) + ℓt(θ, a)

)
+

1

4γ

∑
a∈A−

θ

πt(a)

(
ℓt(θ0, a)− ℓt(θ, a)

)2
ℓt(θ0, a) + ℓt(θ, a)

 dQ+
t (θ).

To proceed, we use the inequality (ℓt(θ0,a)−ℓt(a))2

ℓt(θ0,a)+ℓt(θ,a)
≤ 4D2

H(pt(θ, a), pt(θ0, a)) that holds for all a
and θ, and is proved separately as Lemma 23. Hence,

UEt ≤ 2γ
∑
a

πt(a)ℓt(θ0, a) +
1

γ

∫ ∑
a

D2
H(pt(θ, a), pt(θ0, a)) dQ

+
t (θ)

≤ 2γ
∑
a

πt(a)ℓt(θ0, a) +
IGt

γ
,

which concludes the proof.

D.1.3. SUBGAUSSIAN ANALYSIS: THE PROOF OF LEMMA 10

The claim follows from the following calculations:

|UEt| =

∣∣∣∣∣∑
a

πt(a)

∫
ℓ(θ0, a)− ℓt(a) dQ

+
t (θ)

∣∣∣∣∣
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≤
∑
a

πt(a)

∫ ∣∣ℓ(θ0, a)− ℓt(a)
∣∣ dQ+

t (θ)

≤
√∑

a

πt(a)

∫ (
ℓ(θ0, a)− ℓt(a)

)2
dQ+

t (θ)

=

√
IGG

t (πt)

≤ γ

4
+

IGG
t (πt)

γ
.

Here, the second inequality is Cauchy–Schwarz and the last one is the inequality of arithmetic and
geometric means.

D.2. Analysis of the Surrogate Information Gain and the True Information Gain

D.2.1. BOUNDED LOSSES: THE PROOF OF LEMMA 2

The claim is proved as

IGt(π) =
∑
a

π(a)

∫
D2

H

(
ℓt(a), ℓt(θ, a)

)
dQ+

t (θ)

≤ 2 ·
∑
a

π(a)

∫
D2

H

(
ℓt(a), ℓt(θ0, a)

)
dQ+

t (θ)

+ 2 ·
∑
a

π(a)

∫
D2

H (ℓt(θ0, a), ℓt(θ, a)) dQ
+
t (θ)

≤ 4 ·
∑
a

π(a)

∫
D2

H

(
ℓt(θ0, a), ℓt(θ, a)

)
dQ+

t (θ) = 4IGt(π),

where the first inequality critically uses that the Hellinger distance is a metric and as such it satisfies
the triangle inequality, and thus D2

H (P, P ′) ≤ 2D2
H (P,Q)+ 2D2

H (Q,P ′) holds for any P , P ′ and
Q by an additional application of Cauchy–Schwarz. The final inequality then uses the convexity of
the Hellinger distance and Jensen’s inequality.

D.2.2. SUBGAUSSIAN LOSSES: THE PROOF OF LEMMA 9

The claims follows from writing

IGG
t (π) =

∑
a

π(a)

∫ (
ℓt(a)− ℓ(θ, a)

)2
dQ+

t (θ)

≤ 2 ·
∑
a

π(a)

∫ (
ℓt(a)− ℓ(θ0, a)

)2
dQ+

t (θ)

+ 2 ·
∑
a

π(a)

∫
(ℓ(θ0, a)− ℓ(θ, a))2 dQ+

t (θ)

≤ 4 ·
∑
a

π(a)

∫
(ℓ(θ0, a)− ℓ(θ, a))2 dQ+

t (θ) = 4IGG
t (π),

where the first inequality comes an application of the triangle inequality and Cauchy–Schwarz, and
the second one comes from the convexity of the squared loss and Jensen’s inequality.
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D.3. Analysis of the Optimistic Posterior

We start by providing a general statement about the properties of the optimistic posterior updates,
which will then prove useful for bounding the optimistic estimation error.

Lemma 13 Consider the optimistic posterior defined recursively by

dQ+
t+1

dQ+
t

(θ) =
exp

(
−η log( 1

pt(Lt|θ,At)
)− λℓ∗t (θ)

)
∫
exp

(
−η log( 1

pt(Lt|θ′,At)
)− λℓ∗t (θ

′)
)
dQ+

t (θ
′)
, (36)

where Q+
1 = Q1 is some prior distribution on Θ and pt(·|θ, a) ∈ ∆R+ is the density the loss

distribution associated with parameter θ. For any T > 0, for any α, β > 0 such that 1
α + 1

β = 1, for
any distribution Q∗ ∈ ∆(Θ), and for any sequence of actions A1, . . . , AT and losses L1, . . . , LT ,
the following inequality holds:

− 1

λα

T∑
t=1

log

∫
pt(θ,At, Lt)

ηαdQ+
t (θ)−

1

λβ

T∑
t=1

log

∫
exp (−λβℓ∗t (θ)) dQ

+
t (θ)

≤
∫ (

1

λα
·

T∑
t=1

log
1

pt(θ,At, Lt)ηα
+

T∑
t=1

ℓ∗t (θ)

)
dQ∗(θ) +

1

λ
· DKL (Q

∗∥Q1) .

(37)

Proof We study the potential function Φ defined for all c ∈ RΘ as

Φ(c) =
1

λ
log

∫
Θ
exp(−λc(θ))dQ1(θ).

We define ct(θ) =
η
λ log 1

pt(θ,At,Lt)
+ ℓ∗t (θ) and evaluate Φ

(∑T
t=1 ct

)
:

Φ

(
T∑
t=1

ct

)
=

1

λ
log

∫
Θ
exp

(
− λ

T∑
t=1

ct(θ)

)
dQ1(θ) ≥ −

∫
Θ

T∑
t=1

ct(θ)dQ
∗(θ)− DKL (Q

∗∥Q1)

λ
.

where the inequality is the Donsker-Varadhan variational formula (cf. Section 4.9 in Boucheron
et al., 2013). We also have

Φ

(
T∑
t=1

ct

)
=

T∑
t=1

(
Φ

(
t∑

k=1

ck

)
− Φ

(
t−1∑
k=1

ck

))

=
T∑
t=1

1

λ
log

∫
Θ exp

(
−λ
∑t

k=1 ck(θ)
)
dQ1(θ)∫

Θ exp
(
−λ
∑t−1

k=1 ck(θ)
)
dQ1(θ)

=

T∑
t=1

1

λ
log

∫
Θ

exp
(
−λ
∑t−1

k=1 ck(θ)
)

∫
Θ exp

(
−λ
∑t−1

k=1 ck(θ)
)
dQ1(θ)

· exp (−λct(θ))dQ1(θ)

=

T∑
t=1

1

λ
log

∫
Θ
exp (−λct(θ))dQ

+
t (θ)
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=
T∑
t=1

1

λ
log

∫
Θ
pt(θ,At, Lt)

η · exp (−λℓ∗t (θ))dQ
+
t (θ),

where the fourth equality is by definition of Q+
t and ct.

We can now apply Hölder’s inequality with α, β > 0 such that 1
α + 1

β = 1, obtaining

Φ

(
T∑
t=1

ct

)
≤ 1

λ
·

T∑
t=1

(
1

α
log

∫
Θ
pt(θ,At, Lt)

ηαdQ+
t (θ) +

1

β
log

∫
Θ
exp (−λβℓ∗t (θ))dQ

+
t (θ)

)
.

Plugging both bounds together, we get the claim of the lemma.

The following statement will be useful for turning the above guarantee into a bound on the
information gain:

Lemma 14 For any t ≥ 1 and any policy πt ∈ ∆(A), the following inequality holds:

E [IGt(πt)] ≤ E

[
− log

∫
Θ

(
pt(θ,At, Lt)

pt(θ0, At, Lt)

) 1
2

dQ+
t (θ)

]
. (38)

Proof Let τ be the dominating measure used to define the densities pt(·|θ, a). We write:

E [IGt(πt)] = E

[∫
Θ

∑
a

πt(a)D2
H (pt(θ0, a), pt(θ, a)) dQ

+
t (θ)

]

= E

[∫
Θ

∑
a

πt(a)

(
1−

∫
R
(pt(c|θ,At)pt(c|θ0, At))

1
2 dτ(c)

)
dQ+

t (θ)

]

= E

[∫
Θ
Et

[∫
R

(
1−

(
pt(c|θ,At)

pt(c|θ0, At)

) 1
2

)
pt(c|θ0, At)dτ(c)

]
dQ+

t (θ)

]

= E

[∫
Θ
Et

[∫
R

(
1−

(
pt(Lt|θ,At)

pt(Lt|θ0, At)

) 1
2

)
pt(Lt|θ0, At)

]
dQ+

t (θ)

]

≤ E

[
Et

[
− log

∫ (
pt(Lt|θ,At)

pt(Lt|θ0, At)

) 1
2

dQ+
t (θ)

]]

= E

[
− log

∫
Θ

(
pt(θ,At, Lt)

pt(θ0, At, Lt)

) 1
2

dQ+
t (θ)

]
.

Here, we used the tower rule of expectation several times, and also the elementary inequality
log(x) ≤ x− 1 that holds for all x. This concludes the proof.

D.3.1. WORST CASE ANALYSIS: THE PROOF OF LEMMA 4

Lemma 15 For any t ≥ 1, β, λ > 0, as long as ℓ∗t (θ) ∈ [0, 1] for all values of θ, the following
inequality holds

1

λβ
log

∫
Θ
exp (−λβℓ∗t (θ))dQ

+
t (θ) ≤ −ℓ̄∗t +

λβ

8
. (39)
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Proof This is a direct consequence of Hoeffding’s lemma for bounded random variables, see for
example Section 2.3 of Boucheron et al. (2013).

The proof of Lemma 4 then follows directly by applying Lemma 13 with η, α such that ηα = 1
2

(which means β = 1/(1 − 2η)) and with Q∗ a dirac distribution in θ0, and combining the result
with Lemmas 14 and 15 above.

D.3.2. INSTANCE DEPENDENT ANALYSIS AND PROOF OF LEMMA 7

Lemma 16 For any t ≥ 1, β, λ > 0, as long as ℓ∗t (θ) ∈ [0, 1] for all values of θ, the following
inequality holds

1

λβ
log

∫
Θ
exp
(
(−λβℓ∗t (θ))

)
dQ+

t (θ) ≤ −ℓ̄∗t

(
1− λβ

2

)
. (40)

Proof We use the two elementary inequalities log(x) ≤ x − 1 that holds for all x ∈ R and
e−x ≤ 1− x+ x2

2 that holds for all x ≥ 0 to show

1

λβ
log

∫
Θ
exp
(
−λβℓ∗t (θ)

)
dQ+

t (θ) ≤
1

λβ

(∫
Θ
1− λβℓ∗t (θ) +

(
λβ

2
ℓ∗t (θ)

)2

dQ+
t (θ)− 1

)

≤ 1

λβ

(∫
Θ
−λβℓ∗t (θ) +

(
λβ

2

)2

ℓ∗t (θ)dQ
+
t (θ)

)

= −ℓ̄∗t

(
1− λβ

2

)
,

where we used the fact that for all θ ∈ Θ, we have ℓ∗t (θ) ∈ [0, 1] and thus ℓ∗t (θ)
2 ≤ ℓ∗t (θ).

We use again Lemma 13 with η, α such that ηα = 1/2 and with Q∗ a dirac distribution in θ0. Then
we apply Lemma 16 and Lemma 14 to conclude the proof of Lemma 7.

D.3.3. SUBGAUSSIAN ANALYSIS: THE PROOF OF LEMMA 11

Lemma 17 Assume that the losses are v sub-Gaussian and that for all θ ∈ Θ, x ∈ X , a ∈
A, ℓ(θ, x, a) ∈ [0, 1]. For any t ≥ 1, η, α ≥ 0 such that δ = ηα

2

(
1− ηαv

2

)
≥ 0 and any pol-

icy πt ∈ ∆(A), the following inequality holds

δ(1− 2δ) · E
[
IGG

t (πt)
]
≤ E

[
− log

∫
Θ

(
pt(θ,At, Lt)

pt(θ0, At, Lt)

)ηα

dQ+
t (θ)

]
. (41)

Proof We remind the reader than Ft = θ(X1, A1, L1, . . . , Xt−1, At−1, Lt−1) is the σ-algebra
generated by the interaction history between the learner and the environment up to the end of round
t. By the tower rule of expectation, we have

E
[
− log

∫
Θ

(
pt(θ,At, Lt)

pt(θ0, At, Lt)

)ηα

dQ+
t (θ)

]
= E

[
E
[
− log

∫
Θ

(
pt(θ,At, Lt)

pt(θ0, At, Lt)

)ηα

dQ+
t (θ)

∣∣∣∣Ft−1, Xt, At

]]
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≤ E
[
− logE

[∫
Θ

(
pt(θ,At, Lt)

pt(θ0, At, Lt)

)ηα

dQ+
t (θ)

∣∣∣∣Ft−1, Xt, At

]]
= E

[
− log

∫
Θ

∫
R

(
pt(θ,At, L)

pt(θ0, At, L)

)ηα

dPLt|Xt,At
(L)dQ+

t (θ)

]
. (42)

Where the first inequality comes from Jensen’s Inequality applied to the logarithm and PLt|Xt,At
is

the conditional law of Lt given Xt and At. We fix θ ∈ Θ, drop the subscripts for simplicity and
define ℓ = ℓt(At), ℓ0 = ℓt(θ0, At) and Pt = PLt|Xt,At

. Using the definition of the likelihood pt,
we get ∫ (

pt(θ,At, L)

pt(θ0, At, L)

)ηα

dPt(L)

=

∫
exp

(
−ηα

(
(L− ℓt(θ,At))

2

2
+

(L− ℓ(θ0, At))
2

2

))
dPt(L)

=

∫
exp

(ηα
2
(2L− ℓ− ℓ0) · (ℓ− ℓ0)

)
dPt(L)

= exp
(
−ηα

2
(ℓ+ ℓ0) · (ℓ− ℓ0)

)
·
∫

exp (ηαL(ℓ− ℓ0)) dPt(L)

= exp
(ηα

2
(ℓ∗20 − ℓ2)

)
·
∫

exp (ηαL(ℓ− ℓ0)) dPt(L)

≤ exp
(ηα

2
(ℓ20 − ℓ2)

)
· exp (ηαℓ0 · (ℓ− ℓ0)) exp

(
η2α2v

2
(ℓ− ℓ0)

2

)
≤ exp

(
−(ℓ− ℓ0)

2 · ηα
2

(
1− ηαv

2

))
.

Now we define δ = ηα
2 (1− ηαv

2 ) we have :∫ (
pt(θ,At, L)

pt(θ0, At, L)

)ηα

dPt(L)

≤ exp
(
−(ℓ− ℓ0)

2 · δ
)

≤1− δ(ℓ− ℓ0)
2 +

δ2

2
(ℓ− ℓ0)

4

≤1− δ(ℓ− ℓ0)
2 + 4δ2(ℓ− ℓ0)

2

≤1− δ(1− 2δ)(ℓ− ℓ0)
2.

Where we use that |ℓ − ℓ0| ≤ 2. Finally using that for any x > 0, log x ≤ x − 1 and equation 42,
we get the claim of the Lemma.

It remains to pick the best values for η, α and β and apply Lemma 13 with Q∗ a dirac distribution
in θ0 and Lemma 15. To finish the proof of Lemma 17, we combine the previous Lemma (17) with
Lemma 15 and Lemma 13. We want the quantity δ(1 − 2δ) to be as big as possible, this happens
when δ = 1

4 . This is only possible if v ≤ 1 and ηα
2 = 1+

√
1−v

2v . If v > 1, our best choice of ηα
2 is

1
2v and in that case δ(1− 2δ) = 1

4v

(
1− 1

2v

)
≥ 1

8v . Finally, uniting both cases, we set α = β = 2,

η = 1+
√
1−v∧1
2v and we have that δ(1− 2δ) ≥ 1

8(1∨v) .
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D.3.4. METRIC PARAMETER ANALYSIS : THE PROOF OF LEMMA 8

We start by a technical lemma on the Lipschtzness of the losses and the optimal losses.

Lemma 18 For any x, θ, a, ℓt(·, x, a) and ℓ∗t (·, x) are C-Lipschitz.

Proof Let τ be the measure against which the densities p(·|θ, x, a) are defined. Without loss of
generality, we can assume that

∫
[0,1] dτ(c) = 1. Letting θ1, θ2 ∈ Θ, we have

|ℓ(θ1, x, a)− ℓ(θ2, x, a)| =

∣∣∣∣∣
∫
[0,1]

c(p(c|θ1, x, a)− p(c|θ2, x, a))dτ(c)

∣∣∣∣∣
≤
∫
[0,1]

|(p(c|θ1, x, a)− p(c|θ2, x, a))|dτ(c)

=

∫
[0,1]

|exp (log(p(c|θ1, x, a)))− exp (log(p(c|θ2, x, a)))| dτ(c)

≤
∫
[0,1]

C ∥θ1 − θ2∥dτ(c)

= C ∥θ1 − θ2∥ ,

where the second inequality comes from the C-Lipschtzness of the composition of the exponential
that is 1-Lipschitz on the negative numbers and the log likelihood that is C-Lipschitz. This proves
the C-Lipschtzness of ℓt(·, x, a). Now it easily follows that ℓ∗(·, x) is also C-Lipschitz, being an
infimum of a family of C-Lipschitz functions.

Now we introduce two further lemmas related to Lemma 13 when Q∗ is chosen as a uniform distri-
bution on a ball of radius ϵ.

Lemma 19 Fix θ0 ∈ Θ, and ϵ > 0, and assume that a ball including θ0 with radius ϵ is contained
in Θ. Letting Q∗ be the uniform distribution on such a ball, we have

DKL (Q
∗∥Q1) = d log

(
R

ϵ

)
. (43)

Proof Since both Q∗ and Q1 are uniform, the ratio of their density is equal to the ratio of the volume
of Θ and the volume of a ball of radius ϵ. Since Θ is included in a ball of radius R, this ratio is
bounded by (Rϵ )

d. Finally

DKL (Q
∗∥Q1) =

∫
Θ

dQ∗

dQ1
(θ) log

(
dQ∗

dQ1
(θ)

)
dQ1(θ) ≤ log

(
R

ϵ

)d ∫
Θ
dQ∗(θ) = d log

(
R

ϵ

)
.

Lemma 20 Under the same conditions as Lemma 19, we have∣∣∣∣∣
∫ (

1

λα
·

T∑
t=1

log
pt(θ0, At, Lt)

ηα

pt(θ,At, Lt)ηα
+

T∑
t=1

(ℓ∗t (θ)− ℓ∗t (θ0))

)
dQ∗(θ)

∣∣∣∣∣ ≤
(η
λ
+ 1
)
· CTϵ.

(44)
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Proof This is a direct consequence of the Lipschitzness of the log-likelihood and Lemma 18.

Putting Lemma 13 together with this choice of Q∗ and with Lemma 14 and Lemma 15, we finish
the proof of Lemma 8

D.4. Upper bounds on the averaged DEC and the Surrogate Information ratio

Here we provide the technical tools to bound the surrogate information ratio and the averaged DEC
for some appropriately chosen forerunner algorithms.

D.4.1. WORST-CASE ANALYSIS: THE PROOF OF LEMMAS 1 AND 12

Here we study the performance of Thompson sampling as the forerunner algorithm, which will cer-
tify a bound on the surrogate information ratio of OIDS. The Thompson sampling policy πt works
by sampling θt according to the posterior Q+

t and then playing the action At ∈ arg mina ℓt(θt, a).
To facilitate the derivations below, we define a∗t : Θ → A the greedy action selector by a∗t (θ) =
arg mina ℓt(θ, a) (with ties broken arbitrarily). By definition of the policy, sampling according to
πt is the same as sampling according to dQ+

t and then applying the greedy action selector. More
formally, for any measurable function f , we have∫

Θ
f(a∗t (θ))dQ

+
t (θ) =

∑
a

πt(a)f(a).

Moreover, we have that ℓ̄∗t =
∫
Θ ℓ∗t (θ)dQ

+
t (θ) =

∫
Θ ℓt(θ, a

∗
t (θ))dQ

+
t (θ). Putting these observa-

tions together, we can write the surrogate regret as

rt(πt) =
∑
a

πt(a)
(
ℓt(a)− ℓ̄∗t

)
=

∫
Θ
ℓt(a

∗
t (θ))− ℓt(θ, a

∗
t (θ)). (45)

Observe that the regret is the difference of the expectation of the same function under the joint
distribution of θt and At and their product distribution, and thus measures the extent to which the
two are “coupled”. We will analyze this quantity by a decoupling argument inspired by Zhang
(2022) and Neu et al. (2022).

For setting up the decoupling analysis, we first need some technical lemmas. We start by a
corollary of the Fenchel–Young inequality for strongly convex functions that will come handy.

Lemma 21 Let I be an interval on the real line and let D : I2 → R be a convex function satisfying
the following conditions:

• For any y ∈ I , the function x → D(x, y) is proper, closed and C-strongly convex.

• For any x ∈ I , D(x, x) = 0.

Then for any x, y ∈ I and any µ ∈ R we have

(x− y)u ≤ D(x, y) +
u2

2C
. (46)

Proof Let y ∈ I . We compute the Legendre–Fenchel conjugate of x → D(x, y), defined for any
u ∈ R as

D∗(u, y) = sup
x∈I

{xu− f(y)} .
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Since y is a minimum of x → D(x, y) and D(y, y) = 0, we have that D∗(0, y) = 0. Moreover using
Lemma 15 of Shalev-Shwartz (2007), we directly have that D∗ is 1

C smooth in its first coordinate
and that ∂D∗

∂u (0, y) = y, so that for any u ∈ R we have

D∗(u, y) ≤ D∗(0, y) + u
∂D∗

∂u
(0, y) +

u2

2C
≤ yu+

u2

2C
.

Then, by the Fenchel–Young inequality, this implies the following for any x ∈ I and any u ∈ R:

x · µ ≤ D(x, y) +D∗(u, y) ≤ y · u+
u2

2C
.

This proves the statement.

We use this inequality to prove the following general decoupling lemma that can handle arbitrary
joint distributions of random variables.

Lemma 22 Let D : [0, 1]2 → R be C-strongly convex and satisfy the same hypothesis as for the
previous lemma. Let Q ∈ ∆(Θ), f : Θ × A → [0, 1] and a∗ : Θ → A. Assume f and a∗ are
measurable. We define π ∈ ∆(A) by π(a) =

∫
Θ I{a∗(θ)=a}dQ(θ) and f̄(a) =

∫
Θ f(θ, a)dQ(θ).

Then for any µ > 0 the following holds∫
Θ
f̄(a∗(θ))− f(θ, a∗(θ))dQ(θ) ≤ µ

∫
Θ

∑
a

π(a)D(f̄(a), f(θ, a))dQ(θ) +
K

2µC
(47)

Proof We start by writing∫
Θ
f̄(a∗(θ))− f(θ, a∗(θ)) =

∫
Θ

∑
a

µπ(a)

µπ(a)
I{a∗(θ)=a}

(
f̄(a)− f(θ, a)

)
dQ(θ)

=

∫
Θ

∑
a

µπ(a)

(I{a∗(θ)=a}

µπ(a)

(
f̄(a)− f(θ, a)

))
dQ(θ)

≤
∫
Θ

∑
a

µπ(a)

(
D(f̄(a), f(θ, a)) +

I{a∗(θ)=a}

2Cµ2π(a)2

)
dQ(θ),

where we used Lemma 21 with u =
I{a∗(θ)=a}

µπ(a) in the last line. Finally, we have∫
Θ
f̄(a∗(θ))− f(θ, a∗(θ)) ≤ µ

∫
Θ

∑
a

π(a)D(f̄(a), f(θ, a))dQ(θ) +
1

2µC

∑
a

∫
Θ

Ia∗(θ)=a

π(a)
dQ(θ)

≤ µ

∫
Θ

∑
a

π(a)D(f̄(a), f(θ, a))dQ(θ) +
K

2µC
,

where we used π(a) =
∫
Θ Ia∗(θ)=adQ(θ) in the last line.

To prove Lemma 1, we use the above result with Q = Q+
t , f = ℓt and a∗ = ajt and D chosen

as the squared Hellinger distance D2
H , which is 1

4 -strongly convex in its first argument by Lemma 24
provided in Appendix D.5. Thus, applying Lemma 22 we get for any µ > 0 that

rt(πt) ≤ µ

∫
Θ

∑
a

πt(a)D2
H(ℓt(a), ℓt(θ, a))dQ

+
t (θ) +

2K

µ
.
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This concludes the proof of Lemma 1.
Lemma 12 is proved by choosing D(x, y) = (x − y)2 that is 2-strongly convex in its first

argument, which yields the advertised result as

rt(πt) ≤ µ

∫
Θ

∑
a

πt(a)(ℓt(a)− ℓt(θ, a))
2dQ+

t (θ) +
K

4µ
.

D.4.2. INSTANCE-DEPENDENT ANALYSIS: THE PROOF OF LEMMA 5

This analysis uses the so-called inverse-gap weighting algorithm of Abe and Long (1999) as forerunner—
see also the works of Foster and Rakhlin (2020) and Foster and Krishnamurthy (2021) that reignited
interest in this method. Our analysis below is especially inspired by the latter work.

We define the inverse gap weighting policy with scale parameter γ and with respect to a nominal
loss function f : A → R+ as

π(IGW)
γ,f (a) =

{
f(b)

Kf(b)+γ(f(b)−f(a)) if a ̸= b

1−
∑

a̸=b π
(IGW)
γ,f (a) if a = b

where b ∈ arg mina f(a) is fixed (with ties broken arbitrarily). We fix θ and apply Lemma 4 of
Foster and Krishnamurthy (2021) with nominal loss ℓt : A → R and true loss ℓt(θ) : A → R to get

ℓt(b)− ℓt(θ, a
∗
t (θ)) ≤

K

4γ
ℓt(b) + 2γ · π(IGW)

γ,ℓt
(a∗(θ))

(ℓt(a
∗(θ))− ℓt(θ, a

∗(θ)))2

ℓt(a∗t (θ)) + ℓt(θ, a∗t (θ))

≤ K

4γ
ℓt(b) + 2γ ·

∑
a

π(IGW)
γ,ℓt

(a)
(ℓt(a)− ℓt(θ, a))

2

ℓt(a) + ℓt(θ, a)
,

where b ∈ arg mina ℓt(a) and a∗t (θ) ∈ arg mina ℓt(θ, a). To proceed, we use that for any p, q ∈
[0, 1], we have (p−q)2

p+q ≤ 4 · D2
H(Ber(p),Ber(q)) (cf. Lemma 23 in Appendix D.5). We combine

this with the data processing inequality for f -divergences to obtain

ℓt(b)− ℓt(θ, a
∗
t (θ))) ≤

K

4γ
ℓt(b) + 8γ ·

∑
a

π(IGW)
γ,ℓt

(a)D2
H(Ber(ℓt(a)),Ber(ℓt(θ, a)))

≤ K

4γ
ℓt(b) + 8γ ·

∑
a

π(IGW)
γ,ℓt

(a)D2
H(pt(a, ·), pt(θ, a, ·)).

(48)

On the other hand, we can rewrite the surrogate regret of the inverse gap weighting policy as

rt(π
(IGW)
γ,ℓt

) =

∫ ∑
a

π(IGW)
γ,ℓt

(a)(ℓt(a)− ℓ∗t (θ)) dQ
+
t (θ)

=

∫ ∑
a

π(IGW)
γ,ℓt

(a)(ℓt(a)− ℓt(θ, a
∗
t (θ))) dQ

+
t (θ)

=

∫ ∑
a̸=b

π(IGW)
γ,ℓt

(a)(ℓt(a)− ℓt(b)) dQ
+
t (θ) +

∫ ∑
a

π(a)(ℓt(b)− ℓt(θ, a
∗
t (θ))) dQ

+
t (θ).
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The second term in the above decomposition can be bounded using Equation (48). As for the first
term, we can exploit the definition of the policy to write

∑
a̸=b

π(IGW)
γ,ℓt

(a)(ℓt(a)− ℓt(b)) =
∑
a̸=b

ℓt(b)(ℓt(a)− ℓt(b))

Kℓt(b) + γ(ℓt(a)− ℓt(b))
≤ Kℓt(b)

γ
.

Putting these bounds together gives

rt(π
(IGW)
γ,ℓt

) ≤ Kℓt(b)

γ
+

Kℓt(b)

4γ
+ 8γ ·

∫ ∑
a

D2
H(pt(a, ·), pt(θ, a, ·)) dQ+

t (θ)

≤ 5Kℓt(b)

4γ
+ 8γ · IGt,

Optimizing over γ, we get the claim of Lemma 5.

D.5. Auxiliary results

Lemma 23 (Proposition 3 Foster and Krishnamurthy, 2021) For any p, q ∈ [0, 1], we have

(p− q)2

p+ q
≤ 4D2

H(Ber(p),Ber(q)).

Proof The statement follows from the simple calculation

D2
H(p, q) ≥ 1

2
(
√
p−√

q)2 =
1

2

(
(
√
p−√

q)(
√
p+

√
q)

√
p+

√
q

)2

=
1

2

(p− q)2

(
√
p+

√
q)2

≥ 1

4

(p− q)2

p+ q
,

where the last step uses the elementary inequality (x+ y)2 ≤ 2(x2 + y2) that holds for any x, y.

Lemma 24 For any fixed q ∈ [0, 1], the function p 7→ D2
H(Ber(p),Ber(q)) is 1

4 -strongly convex.

Proof The proof is based on showing that the second derivative of the function of interest is uni-
formly lower bounded by a positive constant. This follows from calculating the first derivative as

∂D2
H(p, q)

∂p
=

1

2

(
−
√

q

p
+

√
1− q

1− p

)
,

and then lower-bounding the second derivative as

∂2D2
H(p, q)

∂2p
=

1

4

(√
q

p3
+

√
1− q

(1− p)3

)
≥ 1

4

(√
q +

√
1− q

)
≥ 1

4
.

This inequality is tight when q = 0 or q = 1.
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