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Abstract
We study the computational and sample complexity of learning a target function f∗ : Rd → R with
additive structure, that is, f∗(x) = 1√

M

∑M
m=1 fm(⟨x, vm⟩), where f1, f2, ..., fM : R → R are

nonlinear link functions of single-index models (ridge functions) with diverse and near-orthogonal
index features {vm}Mm=1, and the number of additive tasks M grows with the dimensionality
M ≍ dγ for γ ≥ 0. This problem setting is motivated by the classical additive model literature,
the recent representation learning theory of two-layer neural network, and large-scale pretraining
where the model simultaneously acquires a large number of “skills” that are often localized in
distinct parts of the trained network. We prove that a large subset of polynomial f∗ can be efficiently
learned by gradient descent training of a two-layer neural network, with a polynomial statistical and
computational complexity that depends on the number of tasks M and the information exponent of
fm, despite the unknown link function and M growing with the dimensionality. We complement
this learnability guarantee with computational hardness result by establishing statistical query (SQ)
lower bounds for both the correlational SQ and full SQ algorithms.

1. Introduction

We study the problem of learning a polynomial function f∗ : Rd → R on isotropic Gaussian
data. Specifically, given pairs of training example {(xi, yi)}ni=1, where xi ∈ Rd is drawn from
some distribution Px and yi = f∗(xi) + εi, we aim to construct an estimator f̂ that achieves small
population error: Ex∼Px |f∗(x) − f̂(x)| ≤ ε. Since the space of degree-q polynomials in Rd is of
dimension Θ(dq), without additional structural assumptions on f∗, the sample complexity required
to achieve small error should scale as n ≳ dq, which is computationally prohibitive for learning
high-degree polynomials in high dimensions. Many prior works have therefore imposed the constraint
that f∗ exhibits certain low-dimensional latent structure [APVZ14; CM20; DLS22], as in the multi-
index model: f∗(x) = g(V x) where V ∈ Rk×d for k = Od(1). However, such a low-dimensional
restriction may rule out many interesting classes of target functions; for instance, when specialized
to the learning of two-layer neural network, these prior results only apply to the setting where the
network width k is much smaller than the ambient dimensionality d.

In this work, we investigate the efficient learning of f∗ under a different kind of structural
assumption: we allow the target function to depend on a large number of directions which grows
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with d, but we impose an additive structure; specifically, we consider f∗ to be the sum of M ≍ dγ

single-index models (also known as ridge functions) as follows:

f∗(x) =
1√
M

M∑
m=1

fm(⟨x, vm⟩), (1.1)

where v1, v2, ..., vM ∈ Rd are the index features, and f1, f2, ..., fM : R→ R are the unknown link
functions; the

√
1/M prefactor ensures that ∥f∗∥L2 = Θd(1) when the set of directions {vm}Mm=1 is

diverse, i.e., ⟨vi, vj⟩ = od(1) for i ̸= j. Our setting is motivated by the following lines of literature:

• Estimation of additive model. In statistical learning theory, additive model is a classical method
employed in high-dimensional nonparametric regression [Sto85; HT87; RLLW09]; especially,
when the individual functions take the form of single-index model (ridge function), the estimation of
ridge combinations has been extensively studied [FS81; P+97; KB16]. While efficient algorithms
have been proposed when the basis is given a priori [Bac08; RJWY12; SS12], when the index
features {vm}Mm=1 are unknown, most existing approaches involve non-convex optimization, which
has been treated as a black box without convergence guarantees [KSP15; AMF+21], or solved
with computationally inefficient algorithm [Bac17].

• Learning two-layer neural network. An important example in the model class (1.1) is a two-layer
neural network with M neurons, and it is natural to ask whether such a network can be efficiently
learned via standard gradient-based training. Prior works have shown that in the “narrow width”
setting M = Θd(1), gradient descent can learn f∗ with polynomial sample complexity depending
on the information exponent of the target function [AAM22; BES+22; DLS22; BBSS22]. On
the other hand, the regime where M,d jointly diverge is not well-understood, and most existing
analyses on the complexity of gradient-based training require significant simplification such as
quadratic activation [GKZ19; MVEZ20; MBB23].

• Skill localization & fine-tuning. Pretrained large neural networks (e.g., language models) can
efficiently adapt to diverse downstream tasks by fine-tuning a small set of trainable parameters
[DCLT18; LL21; HSW+21]. Recent works have shown that “skills” for each individual task are
often localized in a subset of neurons [DDH+21; WWZ+22; PSZA23; TLS+23; AG23]. Moreover,
high-level features of the input can be expressed by a linear function of the neural network’s internal
representation [MYZ13; AB16; EHO+22]. The additive model (1.1) gives an idealized setting
where learning exhibits such skill localization (we interpret each fm as corresponding to one task)
and linear representation property. As we will see, gradient descent training of the first-layer
localizes neurons to the target index features, and as a result, the network can linearly represent the
downstream tasks on top of the intermediate (“hidden”) representation.

Our goal is to characterize the statistical and computational complexity of learning the additive
model (1.1), when (i) the number of single-index tasks is large, that is, M grows with the ambient
dimensionality d, and (ii), the tasks are diverse, i.e., the index features of fm do not significantly
overlap with one another (see Section 2 for precise definition). We ask the following questions:

1. Can we efficiently learn (1.1) via gradient descent (GD) training of a neural network?

2. What is the hardness of learning (1.1) as measured by statistical query (SQ) lower bounds?
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Information
theoretic limit

SQ lower bound
[Theorem 11]

CSQ lower bound
[Theorem 9]

Online SGD
[Theorem 4]

Kernel methods
[GMMM21]

Md (Md)ρp,q,γ Mdp/2 Õ(Mdp−1) dq

Table 1: Complexity upper bound for gradient-based learning and (C)SQ lower bounds for the additive model (1.1),
where the single-index tasks have degree q and information exponent p. Our upper bound applies to a subclass
of (1.1) specified in Section 2. For the full SQ lower bound we take d ≍ Mγ , and for any fixed γ > 0 we may
set p, q > 0 such that the exponent is arbitrarily large, that is, ρp,q,γ

p,q→∞→ ∞. We translate the tolerance in
the (C)SQ lower bounds to sample complexity using the concentration heuristic τ ≈ n−1/2.

1.1. Our Contributions

We address the two questions by providing complexity upper and lower bounds for learning the
additive model class (1.1), both of which depend on the number of tasks M , and the information
exponent p ∈ N of the link functions fm defined as the lowest degree in the Hermite expansion
[BAGJ21]. Our findings are summarized as follows (see Table 1 for details).

• In Section 3 we show that a representative subclass of (1.1) can be efficiently learned by gradient-
based training (using correlational information) of two-layer neural network, although the number
of single-index tasks M is large and the link functions fm are unknown. Specifically, for M =
Ω̃(
√
d) tasks with information exponent p, we prove that a layer-wise SGD algorithm (similar to

[BBSS22; AAM23]) achieves small population loss in n = Θ̃(Mdp−1) samples. To establish this
learning guarantee, we show that neurons localize into the task directions during SGD training.

• In Section 4 we establish computational lower bounds for learning (1.1). For correlational SQ
algorithms, we prove that a tolerance of τ−2 ≳ Mdp/2 is required when link functions fm have
degree q and information exponent p ≤ q. We also provide a full SQ lower bound in the form
of τ−2 ≳ (Md)ρp,q , where ρp,q can be made arbitrarily large by varying p and q; under the
standard τ ≈ n−1/2 heuristic for concentration error, this suggests that prior SQ algorithms that
achieve linear sample complexity in the finite-M regime [CM20] cannot attain the same statistical
efficiency in our additive model setting with large M .

1.2. Related Works

Gradient-based learning. Recent works have shown that neural network trained by gradient
descent can learn useful representation and adapt to low-dimensional target functions such as
single-index [BES+22; BBSS22; MHPG+23; BMZ23] and multi-index models [DLS22; AAM22;
BBPV23]. In this finite-M setting, the complexity of gradient-based learning is governed by the
information exponent [BAGJ21] or leap complexity [AAM23] of the target function. However, these
learning guarantees for low-dimensional f∗ yield superpolynomial dimension dependence when M
grows with d. Another line of works goes beyond the low-dimensional assumption by considering
the well-specified setting where f∗ and the student network have the same architecture and special
activation function [GKZ19; ZGJ21; AS21; VSL+22; MBB23]. The setting we consider (1.1) lies
between the two regimes: we allow the width to diverge with dimensionality M = ωd(1) but do
not assume the nonlinear activation is known, and we show that gradient descent can learn f∗ with
polynomial sample complexity depending on the information exponent when the target weights are
“diverse”. We also note that beyond gradient descent training, various SQ algorithms have been
introduced to solve related polynomial regression tasks [DH18; CM20; GKS20; DKK+23].
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Statistical query lower bound. A statistical query learner [Kea98; Rey20] can access the target
function via noisy queries ϕ̃ with error tolerance τ : |ϕ̃− Ex,y[ϕ(x, y)]| ≤ τ . Lower bound on the
performance of SQ algorithm is a classical measure of computational hardness. An often-studied
subclass of SQ is the correlational statistical query (CSQ) [BF02] where the query is restricted
to (noisy version of) Ex,y[ϕ(x)y]. Many existing results on the CSQ complexity assume f∗ is
low-dimensional (M = Od(1)), in which case the tolerance scales with τ ≍ d−Ω(p), where p is
the information exponent or leap complexity of f∗ [DLS22; ABA22; AAM23]. On the other hand,
[VW19; DKKZ20; GGJ+20] established CSQ lower bounds for learning two-layer ReLU network
without structural assumption on the weights, where the error tolerance τ ≍ d−Ω(M) implies a
superpolynomial complexity when M = ωd(1). Similar superpolynomial lower bound was shown
for three-layer networks in the full SQ model [CGKM22]. Our result connects these two lines of
analyses: we show that when the weights {vm}Mm=1 are diverse, the (C)SQ complexity is polynomial
in M,d, where the dimension dependence is specified by the information exponent of fm.

2. Problem Setting

Notations. Throughout the analysis, ∥ · ∥ denotes the ℓ2 norm for vectors and the ℓ2 → ℓ2 operator
norm for matrices. Od(·) and od(·) stand for the big-O and little-o notations, where the subscript
highlights the asymptotic variable d and suppresses dependence on p, q; we write Õ(·) when (poly-
)logarithmic factors are ignored. Ω(·),Θ(·) are defined analogously. We say an event A happens with
high probability when the failure probability is bounded by exp(−C log d) where C is a sufficiently
large constant; the high probability events are closed under union over sets of size poly(d).

Assumptions on target function. We focus on learning a sum of single-index polynomials over
Gaussian input, the complexity of which depends on the information exponent [DH18; BAGJ21]
defined as the smallest degree of non-zero coefficients for the Hermite expansion of the link function.

Definition 1 (Information exponent) Let {Hej}∞j=0 be the normalized Hermite polynomials. Given
square-integrable g : R→ R in its Hermite expansion g(z) =

∑∞
j=0 αjHej(z), the information

exponent IE(g) := p ∈ N+ is defined as p := min{j > 0 : αj ̸= 0}.

For example, prior works have shown that online SGD can learn a single-index polynomial with
information exponent p over d-dimensional Gaussian input with O(dp−1) samples for p > 2
[BAGJ21]. With this definition, we state the class of additive models (1.1) analyzed in this work.

Assumption 1 (Additive model) We consider the following problem class Fp,q
d,M,ς :

x ∼ N (0, Id), y = f∗(x) + ν, where f∗(x) =
1√
M

∑M
m=1 fm(v⊤mx), ν ∼ N (0, ς2),

where each fm is a univariate polynomial with information exponent p > 2 and degree q, and
we assume proper normalization Et∼N (0,1)[fm(t)2] = 1, and ∥vm∥ = 1. We write the Hermite

expansion of fm as fm =
∑q

i=p αm,iHei, and define constant Cp =
(

maxm |αm,p|
minm′ |αm′,p|

) 2
p−2 .

Remark 2
• We restrict ourselves to {fm}Mm=1 with the same information exponent p; this simplifies the

optimization dynamics in that all directions are learned at roughly the same rate. To handle
heterogeneous tasks with different information exponents, one may consider a student model with
mixture of different nonlinearities.
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• We focus on the high information exponent setting p > 2, which corresponds to target functions
that are more “difficult” to learn via gradient descent. To handle lower information exponent fm,
we may employ a pre-processing procedure analogous to that in [DLS22]: we first fit f∗ with a
quadratic function, and subtract it from the labels before running Algorithm 1.

We place the following diversity assumption on the index features {vm}Mm=1.

Assumption 2 (Task diversity) We assume the following diversity condition on {vm}Mm=1:

M ≤ cv max

{(
max
m̸=m′

|v⊤mvm′ |
)−1

,
√
d

}
, where cv ≍ 1/polylog(d).

Remark 3
• This condition ensures that the single-index tasks are diverse, in that the index feature directions

do not significantly overlap (similar assumption also appeared in [WNL23]). When each vm is an
independent sample from the (d− 1)-dimensional unit sphere Sd−1, via a standard concentration
argument, Assumption 2 is satisfied with high probability for M ≍ dγ , γ ∈ [0, 1/2).

• The assumption justifies the prefactor of 1√
M

instead of 1
M : since vm are almost orthogonal and

the first Hermite coefficient of fm(t) is zero, fm(v⊤mx) are weakly dependent mean-zero variables.
Thus the scaling prefactor should be 1√

M
for the output scaling to be Θ(1) due to CLT.

3. Complexity of Gradient-based Training

Neural Network Architecture. In this section we show that a representative subset of our additive
model class can be learned via gradient-based training of a neural network. Specifically, we consider
the following two-layer network with trainable parameters Θ = (aj , wj , bj)

J
j=1 ∈ R(1+d+1)×J :

fΘ =
1

J

J∑
j=1

ajσj(w
⊤
j x+ bj). (3.1)

For each neuron, we define the Hermite expansion of ajσj(·+bj) as ajσj(·+bj) =
∑∞

i=0 βj,iHei(·).
Note that the Hermite coefficient βj,i may differ across neurons. To ensure a descent path from weak
recovery to strong recovery, we further require for each task fi, there exist some neurons j such that

αm,iβj,i > 0 for i = p, and αm,iβj,i ≥ 0 for p < i ≤ q. (3.2)

Note that (3.2) is automatically satisfied in the well-specified setting, i.e., the student and teacher
models share the same nonlinearity as in [BAGJ21]. In the misspecified setting, such condition has
been directly assumed in [MHWSE24]. We defer further discussions to Appendix B.2. Below, we
give two concrete settings where (3.2) hold despite the link mismatch.

Assumption 3 (Activation function) We consider the nonlinearity of the student model (3.1) and
the link functions {fi}Mi=1 that satisfy one of the following:
1. σj is a random polynomial activation defined in Appendix B.2.2, and fi satisfies Assumption 1.

2. σj is the ReLU activation function, and we additionally require that for each fi, all the non-zero
Hermite coefficients αm,i have the same sign.

In both settings, we utilize the “diversity” of student nonlinearities to deduce that when the network
width J is sufficiently large (quantified in Theorem 4), a subset of neurons can achieve alignment
with each target task even though the link functions are unknown.
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Optimization procedure. The training procedure is presented in Algorithm 1. First, the first-layer
parameters are trained to minimize the correlation loss L = −yfΘ(x). We use the correlation loss to
ignore the interaction between neurons; analogous strategies appeared in prior analyses of feature
learning, for example, by the “one-step” analysis [BES+22; DLS22] or by considering the squared
loss with sufficiently small second-layer initialization [AAM23]. Similar to [BAGJ21; DNGL23],
we use the spherical gradient ∇̃wf(w) := (I −ww⊤)∇wf(w), where∇w is the Euclidean gradient.

After T1 steps, we can show that for each sub-problem there exist some students neurons
aligning with the class direction vm. Then, we train the second-layer parameters (which is a convex
problem) with either of L2 or L1 regularization. While ridge regression is easier to implement,
L1-regularization gives the better generalization error due to the induced sparsity; more specifically,
because not all neurons are aligned with fi after first-layer training, we need L1 regularization to
efficiently single out neurons that succeeded in aligning with one of the single-index tasks.

Algorithm 1: Gradient-based training of two-layer neural network
Input :Learning rates ηt, regularization λ, sample size T1, T2, initialization scale Cb.
Initialize w0

j ∼ Unif(Sd−1(1)), aj ∼ Unif{±1}.
Phase I: normalized SGD on first-layer parameters

for t = 0 to T1 − 1 do
Draw new sample (xt, yt).
wt+1
j ← wt

j + ηtyt∇̃wf(aj ,bj ,wt
j)

J
j=1

(xt),

wt+1
j ← wt+1

j /∥wt+1
j ∥, (j = 1, . . . , J).

end
Initialize bj ∼ Unif([−Cb, Cb]) and let ŵj ← δjw

T1
j (δj ∼ Unif({±1}))

Phase II: Convex optimization for second-layer parameters
Draw new samples (xt, yt)T1+T2−1

t=T1
.

â← argmina∈RJ
1
T2

∑T1+T2−1
t=T1

(
f(aj ,bj ,ŵj)Jj=1

(xt)− yt
)2

+ λ̄∥a∥rr, (r = 1 or 2).

Output :Prediction function x→ fΘ̂(x) with Θ̂ = (âj , ŵj , bj)
J
j=1.

Now we present our main theorem for gradient-based training of neural networks.

Theorem 4 Under Assumptions 1 2, and 3, take the number of neurons J = Θ̃(MCp+
1
2 ε−1), the

number of steps for first-layer training T1 = Θ̃(Mdp−1 ∨Mdε−2 ∨M
5
2 ε−3), and the number of

steps for second-layer training (i) when r = 2 (ridge) T2 = Θ̃(MCpε−2), and (ii) when r = 1
(LASSO) T2 = Θ̃(M1+υε−2(1+υ)) for an arbitrary fixed υ > 0. Then, under appropriate choices of
ηt and λ, with probability 1− od(1), Algorithm 1 outputs fΘ̂(x) such that

Ex∼N (0,Id)

[∣∣f∗(x)− fΘ̂(x)
∣∣] ≤ ε.

Due to the online SGD update, the runtime complexity T1 + T2 directly translates to a sample
complexity of n = Õ(Mdp−1) (focusing on the term whose exponent depends on the information
exponent p). We make the following remarks on the obtained sample complexity.

• Comparison with prior results. For single-index model with known link function, [BAGJ21]
proved that the online SGD learns the degree-p Hermite polynomial with Õ(dp−1) samples;
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whereas for the misspecified setting (unknown fm), a sample complexity of n = Õ(dp) has been
established in [BBSS22]. Our bound with M = 1 matches the Õ(dp−1) sample complexity in
[BAGJ21] despite the link misspecification (under the additional restriction that fm is polynomial).

• Superiority over kernel methods. By a dimension argument [KMS20; HSSVG21; AAM22], we
know that kernel methods (including neural networks in the lazy regime [JGH18]) require n ≳ dq

samples to learn degree-q polynomials in Rd. Since M < d and p ≤ q, the sample complexity of
Algorithm 1 is always better than that achieved by kernels, due to the presence of feature learning.

• The role of additive structure. Without structural assumptions, learning an M -index model
of degree q requires Ω(M q) samples. In contrast, in our bound the exponent in the dimension
does not depend on q, and the exponent of M is independent of p and q; hence we achieve better
complexity when q is large and M diverging with dimensionality. This illustrates the benefit of the
additive structure in Assumption 1.

3.1. Outline of Theoretical Analysis

3.1.1. TRAINING OF THE FIRST LAYER

We provide a proof sketch of the first-layer training, where the goal is to show that starting from
random initialization, a subset of neurons will achieve alignment with one of the target directions vm.
The following lemma establishes that while the initial correlation with any target direction is small,
student neurons may have a constant-factor difference in the magnitude of alignment.

Lemma 5 Consider the neural network with hyperparameters specified in Theorem 4. Then with
high probability, for each m, there exist Jmin = Ω̃(M

1
2 ε−1) neurons at initialization satisfying

w⊤
j vm ≥ maxm′ ̸=m

∣∣∣ βm,p

βm′,p

∣∣∣ 1
p−2 |w⊤

j vm′ |+ Ω̃(d−1/2).

Next we show that this small difference in the initial alignment is amplified during SGD update, so
that the student neurons will eventually specialize to the target direction vm with largest overlap at
random initialization. Consider the dynamics of one neuron wj , the update of which is written as

wt+1
j =

wt
j+ηtjy

tajσ
′(wt

j
⊤
xt+b)(I−wt

jw
t
j
⊤
)xt

∥wt
j+ηtjy

tajσ′(wt
j
⊤xt+b)(I−wt

jw
t
j
⊤)xt∥

≈ wt
j + ηtj

1√
M

∑M
m=1 αj,pβm,p(v

⊤
mwt

j)
p−1vm + Zt,

where Zt is a mean-zero random variable corresponding to the SGD noise, and the approximation
step is due to Hermite expansion in which we ignored the effect of normalization for simplicity. For
projection onto a specific target direction vm, we have the following estimate,

v⊤mwt+1
j ≈ v⊤mwt

j + ηtj
αj,pβm,p√

M
(v⊤mwt

j)
p−1 + ηtjv

⊤
mZt.

Following [BAGJ21], by using the optimal step size ηtj = Θ̃(M− 1
2d−

p
2 ), the SGD dynamics

approximately follows the ODE:

d
dtv

⊤
mwt

j ≈ η
αj,pβm,p√

M
(v⊤mwt

j)
p−1 ⇒ v⊤mwt

j ≈
v⊤mw0

j(
1−

η(p−2)αj,pβm,p(v
⊤
mw0

j
)p−2

√
M

t

) .
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This means that v⊤mwt
j ≈ d−1/2 for a long period, but the SGD dynamics rapidly escapes the

high-entropy equator and achieves nontrivial overlap (i.e., weak recovery) at the critical time tj :=√
Mη−1(p− 2)−1α−1

j,pβ
−1
m,p(v

⊤
mw0

j )
−(p−2) = Õ(Mdp−1), as specified by the following lemma.

Lemma 6 Consider the SGD dynamics with ηtj = Θ̃(M− 1
2d−

p
2 ). There exists t0 = Õ(Mdp−1) and

small constant c = Θ̃(1), such that ⟨wt0
j , vm⟩ ≥ c, and |v⊤mwt0

j | ≤ cM− 1
2 for all m = 2, . . . ,M .

After a nontrivial overlap with vm is obtained, we continue to run online SGD to amplify the
alignment. A technical challenge here is that as the student neuron develop alignment with one
direction vm, the influence from the other m− 1 directions is no longer negligible, while the signal
from vm gets smaller due to the projection (1−wtwt⊤); this complication is addressed in Lemma 30.

Finally, in Lemma 33 we prove a local convergence result (analogous to [ZGJ21; AS21]) which
entails that for each task direction vm, there exist some student neurons that that localize to the
task, i.e., ⟨vm, wj⟩ > 1 − ε. Here we exploit the local convexity (more specifically, Łojasiewicz
condition) of the loss landscape due to the small overlap between the single-index tasks as specified
in Assumption 2. The following proposition describes the configuration of parameters after first-layer
training. Here, ε̃ indicates the desired level of alignment, which is later set to ε̃ = Θ̃(M− 1

2 ε), where
ε is the desired final generalization error Ex[|fâ(x)− f∗(x)|] ≲ ε.

Lemma 7 (Informal) Take T1,1 = Θ̃(Mdp−1), T1,2 = Θ̃(Md
p
2 ), T1,3 = Θ̃(ε̃−2Md∨Mε̃−3), and

the number of neurons as J ≳ JminM
Cp log d. Suppose that |v⊤m′vm| = Õ(M−1) for all m′ ̸= m,

and M = Õ(d1/2). Then under appropriate learning rate ηt, with high probability, for each class m
there exist at least Jmin neurons that achieves v⊤mwT1

j ≥ 1− ε̃.

3.1.2. TRAINING OF THE SECOND LAYER

Once localization to each task is achieved, we optimize the second-layer with L2- or L1-regularization.
Because the objective is convex, gradient-based optimization can efficiently minimize the empirical
loss. The learnability guarantee follows from standard analysis analogous to that in [AAM22; DLS22;
BES+22], where we construct a “certificate” a∗ ∈ RJ that achieves small loss

Ex∼N (0,Id)

(
f∗(x)− 1

J

∑J
j=1 a

∗
jσ(w

⊤
j x+ bj)

)2
≤ ε

for r = 1, 2. Then, the population loss of the regularized empirical risk minimizer can be bounded
via standard Rademacher complexity argument, using the norm ∥a∗∥rr. Observe that in Theorem 4, by
using L1-regularization, we can avoid the dependency on Cp determined by the Hermite coefficients
of fi. This is because if some fi is too large, more students neurons are required to satisfy the
initial alignment condition (Lemma 5). Since not all neurons are guaranteed to align with the target
directions, the sparsity-inducing L1-regularization allows us to ignore the redundant neurons and
obtain better generalization error rate.

Fine-tuning & linear representation property. L1-regularization is also useful for efficient fine-
tuning on a different downstream task, in which a subset of learned features of size M̃ is used to
define the target function: f̃∗(x) = M̃−1/2

∑M̃
m=1 gm(v⊤mx), where g1, g2, ..., gm are link functions

that may differ from the training observations. In this setting, retraining the second-layer with
L1-regularization requires Õ(M̃ε−2) sample to achieve an L1-error of ε, which is especially useful
when the number of the downstream features is small M̃ ≪ M . This indeed has connections to
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Figure 1: Alignment between neurons and true signals v1 and v2, before (blue) and after (purple) SGD
training. Left: neural network optimized by online SGD (Algorithm 1), Right: NTK regime.

practical fine-tuning where sparsity is induced to extract relevant features, as seen in localization of
skills [DDH+21; WWZ+22; PSZA23] and LoRA [HSW+21].

The existence of second-layer parameters for efficient adaptation also implies a linear represen-
tation property [MYZ13; AB16; EHO+22; BTB+23], which roughly states that the trained neural
network representation can linearly represent a large set of functions. While most theoretical results
established this property for representing low-dimensional functions (see [BA24, Appendix A] for
discussions), we consider a function class that is not low-dimensional but exhibits additive structure.

Remark 8 Prior theoretical results on fine-tuning & transfer learning for downstream tasks typ-
ically showed that gradient-based pretraining “localizes” the neural network parameters to a
low-dimensional subspace spanned by the target functions (tasks), which enables efficient adap-
tation [DHK+20; DLS22; CHS+23]; for instance, fine-tuning for a degree-q polynomial task in
M -dimensional subspace requires n ≳ M q samples [DLS22]. However, when the collection of tasks
becomes sufficiently diverse (i.e. M diverges with dimensionality), which is the relevant regime for
large-scale pretraining, the benefit of low-dimensional representation diminishes. In contrast, in
our setting we prove a different kind of localization, where each neuron aligns with a different vm
depending on the initialization; this leads to efficient fine-tuning despite M being large.

3.2. Numerical Illustration

We conduct numerical experiments to illustrate the feature learning process for additive models via
gradient descent on a two-layer network. The target function is an additive model (1.1), where we
set M = 16 and d = 64, fm(x) = He3(x), and {vm}Mm=1 are the canonical basis vectors. The
student network is a two-layer ReLU network (3.1), where J = 8192 and weights are initialized as
w0
j ∼ Sd−1, a0j ∼ Unif{±1}, and b0j ∼ Unif([−1, 1]), respectively. First, we train the first-layer

parameters via online SGD for T = 106 steps. The initial step size is chosen as η0 = 0.3, and from
T ′ = T/2, we anneal the step size as ηt = η0

(t/T ′)2 .
In Figure 1 we plot the alignment between the student neurons and the true signal: the horizontal

axis represents the alignment between wj and v1, that is, ⟨wj , v1⟩/∥wj∥, and the vertical axis
⟨wj , v2⟩/∥wj∥. For comparison, we also train a network in the NTK regime ([JGH18]), where the
magnitude of second layer is Θ(1/

√
J) and feature learning is suppressed [YH20]. We observe that,

via Algorithm 1, a subset of student neurons almost perfectly aligned with one of the true signal
directions (Left figure), in contrast to the NTK model (Right figure) where no alignment is observed.

9
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4. Statistical Query Lower Bounds

In Section 3 we showed that two-layer ReLU network optimized via online SGD can learn a
representative subset of the additive model class (1.1) with polynomial sample complexity. This
being said, due to the introduced diversity condition (Assumption 2), it is not clear if the resulting
function class is still intrinsically hard to learn. To understand the fundamental complexity of the
learning problem we are addressing, in this section we present several computational lower bounds.
Specifically, we consider the statistical query learner [Kea98; BF02], which submits a function of x
and y, and receives its expectation within a tolerance τ . The question we ask is how many accurate
queries are needed to learn the target function up to certain population L2-loss.

4.1. Correlational Statistical Query

First, we derive lower bounds for the correlational statistical query (CSQ) learner, which is an
important subclass of SQ learners often discussed in the context of feature learning with neural
networks [DLS22; AAM23]. For a function g : X → R with ∥g∥L2 = 1 and parameter τ , a
correlational SQ oracle CSQ(g, τ) returns Ex,y[yg(x)] + ε, where ε is an arbitrary (potentially
adversarial) noise that takes value in ε ∈ [−τ, τ ].

The CSQ learner can model gradient-based training as follows: for a neural network fΘ, the
SGD update of the parameters with the minibatch size b using the squared loss is written as

Θt+1 ← Θt − 2η
b

∑b
i=1 y

t
i∇ΘfΘt(xti) +

2η
b

∑b
i=1 fΘt(xti)∇ΘfΘt(xti).

Here, the network gains information of the true function from the correlation 2η
b

∑b
i=1 y

t
i∇ΘfΘt(xti).

Roughly speaking, since each coordinate of the gradient concentrates around the expectation with
O( 1√

b
) fluctuation, the noisy correlational query can be connected to gradient-based training by

matching the tolerance τ with the concentration error 1√
b
. We note that there is a gap between CSQ

and SGD update due to the different noise structure, see [AAM23, Remark 6]; nevertheless, a lower
bound on CSQ learner serves as a baseline comparison for the sample complexity of SGD learning
in many recent works [DLS22; ABA22; DNGL23].

We obtain the following CSQ lower bounds with different dependencies on the target L2 error
and the number of queries. Note that both bounds imply the sample complexity of Ω̃(Md

p
2 ) under

the standard τ ≈ n−1/2 concentration heuristic.

Theorem 9 (CSQ lower bound) For any p ≥ 1, ς > 0 and C > 0, there exists a problem class
F ⊂ Fp,p

d,M,ς satisfying Assumptions 1 and 2 such that a CSQ learner using Q queries (outputting f̂ )
requires the following to learn a random choice f∗ ∼ F:

(a) tolerance of

τ ≲
(logQd)

p
4

M
1
2d

p
4

,

otherwise, we have ∥f∗ − f̂∥2L2 ≳ 1/M with probability at least 1−O(d−C).

(b) tolerance of

τ ≲
Q

1
2 (log dQ)

p
4
+1

M
1
2d

p
4

,

otherwise, we have ∥f∗ − f̂∥2L2 ≳ 1 with probability at least 1−O(d−C).

10



GRADIENT-BASED TRAINING AND COMPUTATIONAL HARDNESS FOR ADDITIVE MODELS

Recall that the CSQ lower bound for single-index model translates to a statistical complexity of
n ≳ d

p
2 ; intuitively, our theorem hence implies that for a CSQ algorithm, the difficulty of learning

one additive model with M tasks is the same as learning M single-index models separately. To
establish this lower bound, we construct a function class F by choosing fm = Hep and randomly
sampling the directions vm from some set S ∈ Sd−1. Here we briefly explain the difference between
the two statements, both implying the same dependence on the number of tasks M and ambient
dimensionality d, but the target L2 error and dependence on the number of queries Q differ.

Remark 10 The target error of the first lower bound is Ω( 1
M ), and the query dependence is loga-

rithmic; this is obtained by a straightforward extension of the single-index analysis in [DLS22].
On the other hand, establishing the latter bound with Ω(1) error, which implies the failure to

identify a constant fraction of {v1, · · · , vM}, is nontrivial. This is because in the additive setting
1√
M

∑M
m=1

1√
p!
Hep(v

⊤
mx), the query is not known beforehand, and hence the (adversarial) oracle

need to simultaneously prevent the learning of as many directions from v1, v2, ..., vM as possible;
whereas in the single-index setting 1√

p!
Hep(v

⊤
1 x), the oracle only need to “hide” one direction.

Consequently, we cannot directly connect the identification of Ω(1)-fraction of target directions in
the additive setting to the CSQ lower bound for single-index model. To overcome this issue, we
introduce a sub-class of CSQ termed noisy correlational statistical query, which adds a random
(instead of adversarial) noise to the expected query. For this query model, proving the lower bound
for learning single-index models can indeed be translated to our additive setting. However, because
the noise is random, the dependency on the number of queries no longer logarithmic but Q

1
2 .

4.2. Full Statistical Query

In this subsection we present a lower bound for full SQ algorithms. For a function g : X×Y → [−1, 1]
and parameter τ , a full statistical query oracle SQ(g, τ) returns Ex,y[g(x, y)] + ε, where ε is an
arbitrary noise that is bounded by the tolerance τ . Note that unlike the CSQ learner, here the query
can apply transformations to the target label y and hence reduce the computational complexity.

The full SQ setting is partially motivated by the fact that for sparse polynomials with a constant
number of relevant dimensions, a more efficient SQ algorithm that departs from gradient-based
training is available: [CM20] showed that general multi-index polynomials of degree q can be
learned with Õ(d) samples. Core to their analysis is a transformation of the label y that reduces
the leap complexity [AAM23] to at most 2 (similar transformations also appeared in phase retrieval
[MM18; BKM+19]); this enables a warm-start from the direction that overlaps with the relevant
dimensions of f∗, from which point projected gradient descent can efficiently learn the target.

One might therefore wonder if the polynomial dimension dependence in Theorem 9 is merely
a result of restriction to correlational queries. However, we show that for general SQ algorithms,
(1.1) is also challenging to learn despite the additive structure and near-orthogonality constraint. We
consider the scaling where M increases with d, i.e., M ≍ dγ with some γ > 0, and prove that the
dimension dependence in the SQ lower bound can be arbitrarily large with p, q = Od(1).

Theorem 11 (SQ lower bound) Fix 0 < γ ≤ p and ς > 0 arbitrarily, and consider the number of
tasks M = Θ(dγ). For any ρ > 0, there exist constants p, q = Od(1) depending only on γ and ρ,
and a problem class F ⊂ Fp,q

d,M,ς satisfying Assumptions 1 and 2 for which an SQ learner outputting

f̂ from Q queries requires the following tolerance to learn a random choice of f∗ ∼ F ,

τ ≲ d−ρ,

11
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otherwise, we have ∥f∗ − f̂∥2L2 ≳ 1 with probability at least 1−Qe−Ω(
√
d).

This lower bound illustrates the intrinsic difficulty of our large-M setting compared to the
well-studied low-dimensional polynomial regression. For the latter, gradient-based training of
polynomial-width network can achieve low loss using n = Ω(dp−1) samples [AAM23], and the CSQ
lower bound gives a Ω(dp/2) complexity [DLS22]; however, by applying nonlinear transformation
to the labels, an efficient SQ algorithm can achieve Õ(d) complexity [CM20]. In contrast, while our
additive model has O(Md) total parameters to be estimated, the dimension dependence in the SQ
lower bound can be arbitrarily larger than M times the single-index complexity. Therefore, unlike
the CSQ lower bound (Theorem 9), Theorem 11 suggests that for an SQ algorithm, learning one
additive model with M tasks is more difficult than learning M single-index models separately. See
Section 4.2.2 for more discussions.

Remark 12 A concurrent work [DPVLB24] established an SQ lower bound for single-index model
that implies a sample complexity of n ≳ dk

∗/2, where k∗ is a prescribed generative exponent that
can be made arbitrarily large. While this also entails the existence of link functions not learnable by
SQ algorithms with Õ(d) samples, the source of computational hardness is fundamentally different
than our setting: [DPVLB24] constructed “hard” non-polynomial link functions that preserve high
information exponent after arbitrary transformations; in contrast, we consider polynomial link
functions which have generative exponent k∗ ≤ 2, so the lower bound relies on the additive structure
with a large number of tasks M = Ω(1).

4.2.1. OUTLINE OF THEORETICAL ANALYSIS

In the proof of the CSQ lower bounds, Hermite polynomials were used to construct the “worst-
case” target functions [DLS22]. This is because higher-order Hermite polynomials have small
L2-correlation under Gaussian input, and hence correlational queries are ineffective. For the SQ
learner, which goes beyond correlational queries, a hard function class should also “hide” information
from nonlinear transformations to the target labels. As we will see, for our additive model, the class
of target functions should maintain orthogonality after polynomial transformations. We refer to this
property as superorthogonality, and the following proposition shows the existence of such functions.

Proposition 13 (Superorthogonal polynomials) For any K and L, there exists a polynomial f :
R→ R that is not identically zero and satisfies the following:∫

(f(x))kHel(x)e
−x2/2dx = 0,

for every 1 ≤ k ≤ K and 1 ≤ l ≤ L.

Because the proof is not constructive, it is difficult to determine the specific form of f for general K
and K. Below, we present specific examples for small K,L:

Example 1 Examples of link function f in Proposition 13 are given as follows.

(i) For K = 1 and L ∈ N, f(x) = HeL+1(x).

(ii) For K = L = 2, f(x) = He4(x)− 4
15
He6(x)+

11
280

He8(x)− 19
4725

He10(x)+
311

997920
He12(x)− 719

37837800
He14(x)+

14297
15567552000

He16(x)− 35369
1042053012000

He18(x) + ( 35369
41682120480000

− 1
83364240960000

√
11163552839

38
)He20(x).
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Remark 14 While the K = 1 case follows from the orthogonality of Hermite polynomials, the
K = L = 2 case is already nontrivial — it implies the existence of link functions with information
exponent p > 2, and furthermore, squaring the function cannot reduce the information exponent to 1
or 2; note that for f(x) = Hek(x), the information exponent of f2 is at most 2.

In the lower bound construction we use the polynomial f from the above lemma with suitably
large K and L. Specifically, we let fm = f for all m and sample vm from a set S ⊂ Sd−1

with almost orthogonal elements. We prove that the two target functions 1√
M

∑M
m=1 f(v

⊤
mx) and

1√
M

∑M
m=1 f(v

′
m

⊤x), where {v′m}Mm=1 is an independent copy of {vm}Mm=1, cannot be distinguished
by SQ unless the tolerance is below d−ρ. To show this, we Taylor expand the target function and
perform an entry-wise swapping of f(v⊤mx) with f(v′m

⊤x), in which smoothness of the function is
entailed by additive Gaussian noise. Specifically, for δ ≪ 1, we have

Eε∼N (0,ς2)[g(x, z + δ + ε)] =
∑K

k=0 ak(x, z)δ
k +O(δK+1),

where ak(x, z) = 1
k!

∫
g(x,w)

(
dk

dzk
e−(w−z)2/2ς2

)
dw = O(1) (see Lemma 46 for derivation). Below

we heuristically demonstrate how swapping is conducted for m = 1:

E
[
g
(
x, 1√

M

∑M
m=1 f(v

⊤
mx) + ε

)]
(i)
≈ E

[
g
(
x, 1√

M

∑M
m=2 f(v

⊤
mx) + ε

)]
+
∑K

k=1 E
[
ak

(
x, 1√

M

∑M
m=2 f(v

⊤
mx)

)
fk(v⊤1 x)

M
i
2

]
(ii)
≈ E

[
g
(
x, 1√

M

∑M
m=2 f(v

⊤
mx) + ε

)]
+
∑K

k=1 E
[
ak

(
x, 1√

M

∑M
m=2 f(v

⊤
mx)

)]E[fk(v⊤1 x)]

M
i
2

(iii)
≈ E

[
g
(
x, 1√

M

∑M−1
m=1 f(v⊤mx) + 1√

M
f(v′1

⊤x) + ε
)]

,

where (i) follows from Taylor expansion, (ii) is due to fk being orthogonal to He1, . . . ,HeL and
hence its correlation to ak (which does not contain information of v1) is approximated by its He0
component, and (iii) is obtained by swapping E[fk(v1

⊤x)] and E[fk(v′1
⊤x)].

4.2.2. STATISTICAL-TO-COMPUTATIONAL GAP

The additive model (1.1) contains M directions v1, v2, ...vM ∈ Rd and M univariate link functions
f1, f2, ...fM : R→ R to be estimated; therefore, we intuitively expect a sample size of n ≳ Md to be
information-theoretically sufficient to learn this function class. Indeed, following [Suz18], it is easy
to check that the covering number of the width-J neural network is logN (δ, { 1J

∑M
j=1 ajσj(w

⊤
j ·

+bj)}, ∥ ·∥∞) ≲ Jd(log J+log d). If we take J = Mq and let σj = Hei(·) ((q−1)M < j ≤ qM),
the network 1

J

∑M
j=1 ajσj(w

⊤
j ·+bj) can perfectly approximate the additive model (1.1). Therefore,

by applying a standard generalization error bound (e.g., see [SH20, Lemma 4]), we can upper bound
the squared loss by logN (δ, { 1J

∑M
j=1 ajσj(w

⊤
j · +bj)}, ∥ · ∥∞)/n, which yields the following

proposition (the detailed derivation of which we omit due to the standard proof).

Proposition 15 For the additive model (1.1) with any p and q, there exists an (computationally
inefficient) algorithm that returns a function f̂ with L2-error of ε using n = Õ(Mdε−2) samples.

13
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The procedure in Proposition 15 involves finding the empirical risk minimizer of a neural network,
which can be computationally infeasible in polynomial time [BR88; ABMM16]. Nevertheless, the ex-
istence of a statistically efficient algorithm that learns (1.1) in n ≳ Md samples suggests a statistical-
to-computational gap under the SQ class (with polynomial compute; see [DH22; DPVLB24] for
related discussions), since the lower bound in Theorem 11 implies a worse sample complexity of
n ≳ (Md)ρ for SQ learners, where ρ can be made arbitrarily large by varying p and q.

Importantly, the same statistical-computational gap is not present in the finite-M setting due to
the restriction of f∗ being polynomial; specifically, when M = Od(1), there exists an SQ algorithm
that learns multi-index polynomials using n = Õd(d) samples [CM20], and in the single-index
setting, polynomial link functions have generative exponent at most 2 [DPVLB24], and hence the
SQ lower bound only implies that a sample size of n ≳ d is necessary. In contrast, in our large-M
setting, the sample complexity of SQ algorithms may have large polynomial dimension dependence,
despite the link functions being polynomial. The key observation is that when the number of tasks
M is diverging, the nonlinear label transformation cannot obtain higher-order exponentiation of the
individual single-index tasks, which is employed by SQ learners such as [MM18; CM20]; hence the
information exponent of the link function may still be large after the nonlinear transformation.

5. Conclusion and Future Directions

We studied the learning of additive models, where the number of (diverse) single-index tasks M
grows with the dimensionality d. We showed that a layer-wise SGD algorithm achieves Õ(Mdp−1)
sample complexity, and a subset of first-layer neurons localize into each additive task by achieving
significant alignment. We also investigated the computational barrier in learning the additive model
class by establishing lower bounds for both Correlational SQ and Full SQ learners. Our lower bound
suggests a computational-to-statistical gap under the SQ class, which highlights the fundamental
difference between our large M setting and the previously studied finite-M multi-index regression.

We highlight a few future directions. First observe that there is a gap between our complexity
upper bound for gradient-based training and the computational lower bounds, and one would hope to
design more efficient algorithms that close such gap. It is also worth noting that in certain regimes,
SGD on the squared loss may outperform the CSQ complexity due to the presence of higher-order
(non-correlational) information, as demonstrated in recent works [DTA+24; LOSW24; ADK+24];
an interesting direction is to examine if similar mechanisms can improve the statistical efficiency
of SGD in our setting. It is also important to relax the near-orthogonality condition for the true
signals, and explore how our derived upper and lower bounds are affected. Last but not least, we may
theoretically analyze task localization in more complicated architectures beyond two-layer neural
network, such as multi-head attention [CSWY24].
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Appendix A. Preliminaries

A.1. Hermite Polynomials

For k ∈ Z+, the k-th Hermite polynomial Hek : R→ R is a univariate function defined as Hek(t) =

e
t2

2
dk

dtk
e−

t2

2 . The Hermite polynomials form an orthogonal basis for the Hilbert space of square-
integrable functions. We provide several basic properties of the Hermite polynomials.

Lemma 16 The Hermite polynomials satisfy the following properties:

• Derivatives:
d

dt
Hek(t) = kHek−1(t).

• Integration by parts (I):∫
Hek(t)f(t)

1√
2π

e−
t2

2 dt =

∫
Hek−1(t)f

′(t)
1√
2π

e−
t2

2 dt.

• Integration by parts (II): For u ∈ Sd−1(1) and v ∈ Rd,∫
Hek(u

⊤x)f(v⊤x)
1√
(2π)d

e−
∥x∥2

2 dx = (u⊤v)

∫
Hek−1(u

⊤t)f ′(v⊤x)
1√
(2π)d

e−
∥x∥2

2 dx.

• Orthogonality (I): ∫
Hek(t)Hel(t)

1√
2π

e−
t2

2 dt = k!δk,l.

• Orthogonality (II): For u, v ∈ Sd−1(1),∫
Hek(u

⊤x)Hel(v
⊤x)

1√
(2π)d

e−
∥x∥2

2 dx = k!(u⊤v)kδk,l.

• Hermite expansion: if f ∈ R→ R is square-integrable with respect to the standard Gaussian,

f(t)
L2

=
∞∑
k=0

αk

k!
Hek(t), αk =

∫
f(t)Hek(t)

1√
2π

e−
t2

2 dt.

A.2. High Probability Bound on y

Recall that in the definition of f∗, we used a scaling factor of 1√
M

instead of 1
M in order to ensure

that the output is of order Θ(1) with high probability. This subsection proves the Θ(1) output
scale rigorously. Since vm are almost orthogonal and fm(t) are mean-zero, fm(v⊤mx) are almost
independent mean-zero variables. Thus we expect 1√

M

∑M
m=1 fm(v⊤mx)→ N (0, 1) by central limit

theorem.
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Lemma 17 Let ∥vm∥ = 1 for all m = 1, 2, · · · ,M . If M ≤ maxm̸=m′ |v⊤mvm′ |−p and S is even,
we have

E

[∥∥∥∥∥ 1√
M

M∑
m=1

fm(v⊤mx)

∥∥∥∥∥
S

]
≤ E

∥∥∥∥∥ 1√
M

M∑
m=1

fm(v⊤mx)

∥∥∥∥∥
S

S

1/S

≲ Sq+1. (A.1)

Thus, by applying Lemma 18, we have∣∣∣∣∣ 1√
M

M∑
m=1

fm(v⊤mx)

∣∣∣∣∣ ≲ (log 1/δ)q+1 = Õ(1), (A.2)

with probability at least 1− δ.

Proof. Recall the Hermite expansion of fm: fm(t) =
∑q

i=p αm,iHei(t). We decompose the LHS of
(A.1) as

E

∣∣∣∣∣ 1√
M

M∑
m=1

fm(v⊤mx)

∣∣∣∣∣
S


≤ 1
√
M

S

∑
(m1,··· ,mS)∈[M ]S

E
[
fm1(v

⊤
m1

x) · · · fmS (v
⊤
mS

x)
]
.

≤ 1
√
M

S

∑
(m1,··· ,mS)∈[M ]S

∑
(i1,··· ,iS)∈[q−p+1]S

(αm1,i1 · · ·αmS ,iS )E
[
Hei1(v

⊤
m1

x) · · ·HeiS (v
⊤
mS

x)
]
.

(A.3)

We evaluate each term of (A.3). If i1 + · · ·+ iS is odd, the term is 0. Otherwise, we bound the value
of E[Hei1(v⊤m1

x) · · ·HeiS (v⊤mS
x)] recursively.

For T ∈ N, i = (i1, · · · , iT ), and m = (m1, · · · ,mT ), let us define

A(T, i,m) := E[Hei1(v⊤m1
x) · · ·HeiT (v

⊤
mT

x)],

and

B(T − 1, i) =

{
j = (j1, · · · , jT−1) ∈ ZT−1

+

∣∣∣∣∣
T−1∑
t=1

jt = iT , jt ≤ it (t = 1, · · · , T − 1)

}
.

For j ∈ B(T − 1, i), the multinomial coefficient for permuting a multiset of
∑T−1

t=1 jt elements
(where jt is the multiplicity of each of the t-th element) is denoted by

cj :=
(
∑T−1

t=1 jt)!

(j1)! · · · (jT−1)!
.

By the basic property of Hermite polynomials, we have

A(T, i,m) = E
[

∂iT

∂(v⊤mT
x)iT

(Hei1(v
⊤
m1

x) · · ·HeiT−1(v
⊤
mT−1

x))

]
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=
∑

j∈B(T−1,i)

cj

T−1∏
t=1

[
(v⊤mT

v⊤mt
)jt itPjt

]
A(T − 1, i1:T−1 − j,m1:T−1).

We can bound the coefficients as cj ≤ iT ! ≤ q! and
∏T−1

t=1 itPjt ≤ qq. We also bound the size of
B(T − 1, i) by Sq. We define I(m1, · · · ,mS) as the number of m distinct in (m1, · · · ,mS). Then,
by recursively bounding A, we have

A(S, (i1, · · · , iS), (m1, · · · ,mS)) ≤ (q!qqSq)S
(
max
m ̸=m′

|v⊤mvm′ |
) pI(m1,··· ,mS)

2

. (A.4)

Moreover,

∑
(m1,··· ,mS)∈[M ]S

(
max
m ̸=m′

|v⊤mvm′ |
) pI(m1,··· ,mS)

2

=
S∑

i=0

∑
(m1,··· ,mS)∈[M ]S

1[I(m1, · · · ,mS) = i]

(
max
m ̸=m′

|v⊤mvm′ |
) pi

2

≤
S∑

i=0

1

[
i ≥ S − i

2
,
S − i

2
∈ Z+

]
MPM−i · iPS−i

2

(
S − i

2

)S−i
2
(
max
m̸=m′

|v⊤mvm′ |
) pi

2

≤ max
0≤i≤S

M iSS

(
max
m ̸=m′

|v⊤mvm′ |
) pi

2

. (A.5)

If M ≤ (maxm̸=m′ |v⊤mvm′ |)−p, applying (A.4) and (A.5) to (A.3), we obtain

E

∣∣∣∣∣ 1√
M

M∑
m=1

fm(v⊤mx)

∣∣∣∣∣
S


≤ 1
√
M

S

∑
(m1,··· ,mS)∈[M ]S

∑
(i1,··· ,iS)∈[q−p+1]S

|αm1,i1 · · ·αmS ,iS |(q!q
qSq)S

(
max
m ̸=m′

|v⊤mvm′ |
) pI(m1,··· ,mS)

2

≤ ((q − p+ 1)q!qqSq max |αms,is |)
S

√
M

S

∑
(m1,··· ,mS)∈[M ]S

(
max
m ̸=m′

|v⊤mvm′ |
) pI(m1,··· ,mS)

2

≤ ((q − p+ 1)q!qqSq max |αms,is |)
S

√
M

S
max
0≤i≤S

M iSS

(
max
m ̸=m′

|v⊤mvm′ |
) pi

2

≤
(
(q − p+ 1)q!qqSq+1max |αms,is |

)S
,

which yields (A.1).
By applying Lemma 18 with c1 = q + 1, we have∣∣∣∣∣ 1√

M

M∑
m=1

fm(v⊤mx)

∣∣∣∣∣ ≲ (log 1/δ)q+1,
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with probability 1− δ, which yields (A.3). ■

The above proof makes use of the following classical inequality.

Lemma 18 Let δ > 0 and X be a mean-zero random variable satisfying

E[|X|S ] ≤ C1S
c1 for S =

log 1/δ

c1

for C1, c1 > 0. Then, with probability at least 1− δ, we have

|X| ≤ C1(eS)
c1 .

Proof. The proof follows from [DNGL23].

P[|X| ≥ C1(eS)
c1 ] = P[|X|S ≥ CS

1 (eS)
c1S ] ≤ E[|X|S ]

CS
1 (eS)

c1S
≤ CS

1 S
c1S

CS
1 (eS)

c1S
≤ e−c1S = δ,

which concludes the proof. ■

A.3. Bihari–LaSalle Inequality and Gronwall Inequality

For later use, we provide the proofs of the Bihari–LaSalle inequality and the Grönwall’s inequality
for completeness. The proof of the Bihari–LaSalle inequality is borrowed from [BAGJ21].

Lemma 19 (Bihari–LaSalle inequality and Gronwall inequality) For p ≥ 3 and c > 0, con-
sider a positive sequence (at)t≥0 such that

at+1 = at + c(at)p−1.

Then, we have

at ≥ a0(
1− c(p− 2)(a0)(p−2)t

) 1
p−2

.

Moreover, when at ≤ 1 holds for all t ≤ T − 1, we have

at ≤ a0(
1− c(1 + c)p−1(p− 2)(a0)(p−2)t

) 1
p−2

for all t ≤ T .

Proof. From definition, we have

c =
at+1 − at

(at)p−1
≤
∫ at+1

t=at

1

xp−1
≤ 1

p− 2

[
1

(at)p−2
− 1

(at+1)p−2

]
.

Taking the summation and re-arranging the terms yield

(at)−(p−2) ≤ (a0)−(p−2) − c(p− 2)t,
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∴ at ≥ a0(
1− c(p− 2)(a0)(p−2)t

) 1
p−2

,

which gives the lower bound.
On the other hand, when at ≤ 1, we have at+1 ≤ (1 + c)at, and therefore

c =
at+1 − at

(at)p−1
≥ (1 + c)−(p−1)

∫ at+1

t=at

1

xp−1
= (1 + c)−(p−1) 1

p− 2

[
1

(at)p−2
− 1

(at+1)p−2

]
.

By taking the summation and re-arranging the terms yield

(at)−(p−2) ≤ (a0)−(p−2) − c(1 + c)p−1(k − 1)t,

∴ at ≤ a0(
1− c(1 + c)p−1(p− 2)(a0)(p−2)t

) 1
p−2

,

which gives the upper bound. ■

A.4. Orthonormal Basis from Nearly Orthogonal Vectors

In case where the feature vectors vm are not orthogonal, the following lemma shows an orthonormal
basis can be constructed as a linear combination of vm.

Lemma 20 Let {vm}Mm=1 ⊂ Sd−1 be a set of unit vectors in Rd, and suppose that maxm̸=m′ |v⊤mvm′ | ≤
1
2M

−1 holds. Then, we can construct an orthonormal basis {ṽm}Mm=1 ⊂ Sd−1 so that ṽm is a linear
combination of v1, · · · , vm. Specifically, we can take ṽ1 = v1 and

ṽm =

m∑
m′=1

cm,m′vm′ , (A.6)

so that |cm,m′ | ≤ 4maxm′,m′′ |v⊤m′vm′′ | for m′ = 1, · · · ,m−1, |1−cm,m| ≤ 20M maxm′ ̸=m′′ |v⊤m′vm′′ |,
and ṽ⊤mvm′ = 0 for m′ = 1, · · · ,m− 1 hold.

Proof. First, we show that dim(span{v1, · · · , vm}) = m for all m. Assume the opposite and then
we have

vm =
m−1∑
m′=1

am,m′vm′

for some m and {am,m′}1≤m′≤m−1. Then, we have

1 = ∥vm∥2 ≥
m−1∑
m′=1

a2m,m′ +
∑

m′ ̸=m′′

am,m′am,m′′v⊤m′vm′′

≥
m−1∑
m′=1

a2m,m′ −
∑

m′ ̸=m′′

|am,m′ ||am,m′′ |
2M
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≥
m−1∑
m′=1

a2m,m′ −
1

2M

(
m−1∑
m′=1

|am,m′ |

)2

≥
m−1∑
m′=1

a2m,m′ −
1

2

m−1∑
m′=1

a2m,m′ =
1

2

m−1∑
m′=1

a2m,m′ , (A.7)

where we used the Cauchy–Schwarz inequality for the last step. Thus, we have |am,m′ | ≤
√
2 and

therefore

1=∥vm∥2=
m−1∑
m′=1

am,m′v⊤m′vm≤(M − 1)max
m′ ̸=m

|am,m′ | ·max
m′ ̸=m

|v⊤m′vm|≤(M − 1)·
√
2· 1

2M
<1,

which yields the contradiction.
Therefore, we have an orthogonal basis {ṽm}Mm=1 such that (A.6) and ṽ⊤mvm′ = 0 (1 ≤ m ≤

M, 1 ≤ m′ ≤ m − 1) hold, with some {cm,m′}1≤m≤M,1≤m′≤m. Similarly to (A.7), we have
|cm,m′ | ≤

√
2 for all 1 ≤ m ≤ M and 1 ≤ m′ ≤ m. What remains is to bound the coefficients.

Since we have

ṽm =
m∑

m′=1

cm,m′vm′

for all m, taking an inner product with
∑m−1

m′=1 sign(cm,m′)vm′ , we get

0 = ṽ⊤m

m−1∑
m′=1

sign(cm,m′)vm′ =

(
m∑

m′=1

cm,m′vm′

)⊤ m−1∑
m′=1

sign(cm,m′)vm′

=

m−1∑
m′=1

|cm,m′ |+
m−1∑
m′=1

∑
m′′ ̸=m′,m

cm,m′sign(cm,m′′)v⊤m′vm′′ +

m−1∑
m′=1

cm,msign(cm,m′)v⊤mvm′

≥
m−1∑
m′=1

|cm,m′ | −
m−1∑
m′=1

m
√
2

1

2M
−
√
2m

1

2M

≥
(
1− 1√

2

) m−1∑
m′=1

|cm,m′ | − 1√
2
.

Thus,
∑m−1

m′=1 |cm,m′ | is bounded by
√
2+1 ≤ 3 and

∑m
m′=1 |cm,m′ | is bounded by

√
2+1+

√
2 ≤ 4.

Also considering an inner product with sign(cm,m′)vm′ (1 ≤ m′ ≤ m− 1), we get

0 = ṽ⊤msign(cm,m′)vm′ =

(
m∑

m′′=1

cm,m′′vm′′

)⊤

sign(cm,m′)vm′

= |cm,m′ |+
∑

m′′ ̸=m′

cm,m′′sign(cm,m′)v⊤m′vm′′

≥ |cm,m′ | −
m∑

m′=1

|cm,m′ | max
m′ ̸=m′′

|v⊤m′vm′′ |.
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Thus, |cm,m′ | (1 ≤ m′ ≤ m−1) is bounded by
∑m

m′=1 |cm,m′ |maxm′ ̸=m′′ |v⊤m′vm′′ | ≤ 4maxm′ ̸=m′′ |v⊤m′vm′′ |.
Finally, we get

1 = ∥ṽm∥2 =
m∑

m′=1

c2m,m′ +
m∑

m′=1

∑
m′′ ̸=m′

cm,m′cm,m′′v⊤m′vm′′

∴ |1− c2m,m| ≤
m−1∑
m′=1

|cm,m′ |+
m∑

m′=1

|cm,m′ |
∑

m′′ ̸=m′

|cm,m′′ ||v⊤m′vm′′ |

≤ 4M max
m′ ̸=m′′

|v⊤m′vm′′ |+ 16 max
m′ ̸=m′′

|v⊤m′vm′′ | ≤ 20M max
m′ ̸=m′′

|v⊤m′vm′′ |,

which implies that |1− cm,m| ≤ 20M maxm′ ̸=m′′ |v⊤m′vm′′ |. ■

Appendix B. Proof of Gradient-based Training

Overview of analysis. We define polylogarithmic constants with the following order of strength:

C1 ≲ c−1
1 ≲ c−1

2 ≲ C2 ≲ c−1
3 ≲ c−1

4 = Õ(1).

Here c1 and C1 are different from those in Lemma 18. c4 is the same as cv used in Assumption 2. C1

will be used to represent any polylogarithmic factor that comes from high probability bounds. Also,
Section B.1 will introduce another constant Cp.

In Algorithm 1 we first train the first-layer parameters, where we aim to show that a for each class
m, there exist sufficiently many neurons that almost align with vm to approximate each fm(v⊤mx).
We define the alignment for the m-th task at time t as κtm = vmwt

j . The goal of first-layer training

is to prove the following. We introduce the error ε̃ = Θ̃(M− 1
2 ε), where ε is the desired final

generalization error Ex[|fâ(x)− f∗(x)|] ≲ ε.

Lemma 7 (formal) Let T1,1 = Θ̃(Mdp−1), T1,2 = Θ̃(Md
p
2 ), T1,3 = Θ̃(ε̃−2Md ∨ ε̃−3M), and

T1 = T1,1 + T1,2 + T1,3. Take the step size as ηt = Θ̃(M− 1
2d−

p
2 ) for 0 ≤ t ≤ T1,1 + T1,2 − 1

and ηt = Θ̃(ε̃M− 1
2d−1 ∧ ε̃2M− 1

2 ) for T1,1 + T1,2 ≤ t ≤ T1,1 + T1,2 + T1,3, and the number
of neurons as J ≳ JminM

Cp log d. Suppose that |v⊤m′vm| = Õ(M−1) for all m′ ̸= m, and
M = Õ(d

1
2 ). Then, with high probability, for each class m there exist at least Jmin neurons that

achieves v⊤mwT1
j ≥ 1− 3ε̃.

We let T ′
1 = T1 + T2 in Theorem 4. The proof for Lemma B will be divided into the following

parts. First we consider the initialization and activation functions.

• In Section B.1 we analyze the random initialization. We show that, at the time of initialization,
for each class m, there exist Jmin neurons classified into some class Jm (i.e., with slightly higher
overlap with vm).

• Section B.2 discusses the assumptions on the target/activation functions. We show that Assump-
tion 4 is satisfied with a constant probability (i.e., Ω(1) fraction of neurons). Since neurons do
not interact in the correlation loss update, in the subsequent sections of the first-layer training,
we focus on the dynamics of one neuron in J1 that satisfies Assumption 4 and omit the subscript
wt = wt

j without loss of generality.
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Next we consider the training of the first-layer weights via a power-method like dynamics.

• In Section B.3, we decompose the gradient update into the population dynamics and noise fluctua-
tion. The training dynamics consist of following three different phases.

• The first phase corresponds to Section B.4. Here, we show that neurons in Jm will obtain a small
Ω̃(1) alignment to the class vm after t1(≤ T1,1) iterations.

• The second phase corresponds to Section B.5, where we show that neurons continue to grow in the
direction of vm and achieves 1− Õ(1) alignment within t2(≤ T1,2) iterations, while remaining
almost orthogonal to other directions.

• Finally, in Section B.6, we show that, after (T1,1 − t1) + (T1,2 − t2) + T1,3 iterations, neurons in
Jm will eventually achieve w⊤

j vm ≥ 1− ε̃ with high probability.

After first-layer training is completed, in Section B.7 we prove the existence of suitable second-
layer parameters with small norm that can approximate f∗ (Lemma 38). Section B.8 concludes the
generalization error analysis, which is stated as follows:

Lemma 21 Suppose that J = Θ̃(JminM
Cp), and σ be either of the ReLU activation or any

univariate polynomial with degree q. There exists λ > 0 such that for ridge regression (p = 2), we
have

Ex[|fâ(x)− f∗(x)|] ≲ M
1
2 (|Jmin|−1 + ε̃) +

√
dMCp

T2

with probability 1 − od(1). Therefore, by taking T2 = Θ̃(dMCpε−2), ε̃ = Θ̃(M− 1
2 ε), Jmin =

Θ̃(M
1
2 ε−1), and J = Θ̃(MCp+

1
2 ε−1), we have Ex[|fâ(x)− f∗(x)|] ≲ ε.

On the other hand, for LASSO (p = 1), we have

Ex[|fâ(x)− f∗(x)|] ≲ M
1
2 (|Jmin|−1 + ε̃) +

√
dM

T2

with probability 1 − od(1). Therefore, by taking T2 = Θ̃(dMε−2), ε̃ = Θ̃(M− 1
2 ε), Jmin =

Θ̃(M
1
2 ε−1), and J = Θ̃(MCp+

1
2 ε−1), we have Ex[|fâ(x)− f∗(x)|] ≲ ε.

Combining Lemma 21 and Lemma B completes the proof of Theorem 4.

B.1. Initialization

To begin with, we need diversity of the neurons at initialization. Note that we do not require neurons
to achieve Θ(1) alignment with vm, as this requires exponential width. Instead, we prove that, for
each class vm, there exist some neurons w0

j that are more aligned to this direction vm than others —
in other words, v⊤mw0

j ≳ maxm′ ̸=m |v⊤m′w0
j |. The statement is formalized as follows. In the proof,

the subscript t is omitted because we only consider the initialization t = 0.

Lemma 5 (formal) Suppose that the first layer weight of each neuron is initialized as an inde-
pendent sample from the uniform distribution over Sd−1(1). Let p > 2, δ = (log d)−

p−2
2 , and
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Cp =
(

maxm |βm,p|
minm′ |βm′,p|

) 2
p−2 . We define a set of indexes of neurons Jm that have the highest alignment

with fm(v⊤mx) as

Jm :=

{
j ∈ [J ]

∣∣∣∣∣ w⊤
j vm ≥

1√
d
, (w⊤

j vm)p−2 ≥ max
m′ ̸=m

C
p−2
2

p |w⊤
j vm′ |p−2 + δ

(
1√
d

)p−2
}
.

For Jmin > 0, if

J≥AJminM
Cp(log d)

3
2 , with A = exp

(
O
(
max
m̸=m′

|v⊤mvm′ | log d+ 1
))

,

then |Jm| ≥ Jmin for all m with high probability.

Since w⊤
j vm = O(

√
log d) with high probability, we have the following corollary, where we use a

small constant c1 ≲ (log d)(p−2).

Corollary 22 When J ≳ JminM
Cp log d, for each class m, we have at least Jmin neurons wj such

that

w⊤
j vm ≥

1√
d
, and |βm,p|(w⊤

j vm)p−2 ≥ max
m′
|βm′,p| max

m′′ ̸=m
|w⊤

j vm′′ |p−2 + c1(w
⊤
j vm)p−2. (B.1)

To prove the lemma, we make use of the following upper and lower bounds.

Lemma 23 (Theorems 1 and 2 of [CCM11]) For any β > 1 and x ∈ R, we have√
2e(β − 1)

2β
√
π

e−
βx2

2 ≤
∫ ∞

x

1√
2π

e−
t2

2 dt ≤ 1

2
e−

x2

2

Proof of Lemma 5. Note that wj ∼ Unif(Sd−1(1)) can be obtained by sampling w̃j ∼ N (0, 1dId)

and setting wj =
w̃j

∥w̃j∥ . With high probability, we have ∥w̃j∥ ≈ 1 ≤ 2
1

p−2 . Thus we will instead
show that

w̃⊤
j vm ≥

2√
d
, and (w̃⊤

j vm)p−2 ≥ max
m′ ̸=m

C
p−2
2

p |w̃⊤
j vm′ |p−2 +

2δ

d
p−2
2

.

Fix m ∈ [M ]. For each m′ ̸= m, consider the value of w̃⊤
j (I − vmv⊤m)vm′ and w̃⊤

j vmv⊤mvm′ .
The distribution of w̃⊤

j (I − vmv⊤m)vm′ follows N (0, ∥(I − vmv⊤m)vm′∥), therefore by Lemma 23,

P
[
for all m′ ̸= m, |w̃⊤

j (I − vmv⊤m)vm′ | ≤ t
]

≤ 1− (M − 1) exp

(
− dt2

2maxm′ ̸=m ∥(I − vmv⊤m)vm′∥

)
. (B.2)

By taking

t = t1 :=

(
2d−1 max

m′ ̸=m
∥(I − vmv⊤m)vm′∥ log 2M

) 1
2

,
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(B.2) is bounded by M+1
2M .

Note that w̃⊤
j vmv⊤mvm′ = O(d−

1
2
√
log dmaxm ̸=m′ |v⊤mvm′ |) with high probability. When

|w̃⊤
j (I − vmv⊤m)vm′ | ≤ t1 for all m′ ̸= m and w̃⊤

j vmv⊤mvm′ = O(d−
1
2
√
log dmaxm ̸=m′ |v⊤mvm′ |),

we have |w̃⊤
j vm′ | ≤ t1+O(d−

1
2
√
log dmaxm̸=m′ |v⊤mvm′ |). To satisfy (w̃⊤

j vm)p−2 ≥ C
p−2
2

p |w̃⊤
j vm′ |p−2+

2δ

d
p−2
2

and w̃⊤
j vm ≥ 2√

d
, it suffices for w̃⊤

j vm to be w⊤
j vm ≥ t2 := C

1
2
p t1+C

1
2
p O(d−

1
2
√
log dmaxm ̸=m′ |v⊤mvm′ |)+

2
1

p−2 δ
1

p−2√
d

.

We lower bound the probability that w⊤
j vm ≥ t2 holds. For any β > 1, Lemma 23 implies that

P
[
w̃⊤
j vm ≥ t2

]
≥
√
2e(β − 1)

2β
√
π

exp

(
−dβt22

2

)
≥
√

2e(β − 1)

2β
√
π

exp

(
− Cpβ

[
max
m′ ̸=m

∥(I − vmv⊤m)vm′∥ log 2M

+O(
√
log d max

m ̸=m′
|v⊤mvm′ |+ δ

1
p−2 )

√
logM +O(log d max

m ̸=m′
|v⊤mvm′ |2 + δ

2
p−2 )

])

≥ 1

(
√
log 2M + 1√

log 2M
)
√
π
exp

(
−Cp

[
log 2M +O

(
max
m̸=m′

|v⊤mvm′ | log d+ δ
2

p−2

√
log d+ 1

)])
,

where we took β = 1 + 1
log 2M and used logM ≲ log d, δ < 1, and maxm′ ̸=m |v⊤mvm′ | ≤ 1 for the

last inequality. To simplify the notation, by letting

A = exp

(
O
(
max
m ̸=m′

|v⊤mvm′ | log d+ δ
1

p−2

√
log d+ 1

))
= exp

(
O
(
max
m̸=m′

|v⊤mvm′ | log d+ 1
))

,

we have

P
[
w̃⊤
j vm ≥ t2

]
≥ 2M−Cp

A
√
log 2M

.

Note that this argument is independent from the one for (B.2), because (I − vmv⊤m)vm′ and vm are
orthogonal.

To sum up, (B.2) ensures that |w̃⊤
j (I − vmv⊤m)vm′ | ≤ t1 for all m′ ̸= m with probability at

least M+1
2M , under which w̃⊤

j vmv⊤mvm′ = O(d−
1
2
√
log dmaxm ̸=m′ |v⊤mvm′ |) for all m′ ̸= m with

high probability and w̃⊤
j vm ≥ t2 holds with probability at least 2M−Cp

A
√
logM

. w̃⊤
j vm ≥ t2 implies

that (w̃⊤
j vm)p−2 ≥ C|w̃⊤

j vm′ |p−2 + 2δ

d
p−2
2

and w̃⊤
j vm ≥ 2√

d
. Therefore, over the randomness of

initialization of wj , w⊤
j vm ≥ 1√

d
and (w⊤

j vm)p−2 ≥ C|w⊤
j vm′ |p−2 + δ( 1√

d
)p−2 for all m′ ̸= m

with probability at least M−Cp

A
√
logM

. Taking the uniform bound over all vm, we know that the number

of required neurons to satisfy |Jm| ≥ Jmin for all m is at most J ≥ AJminM
Cp(log d)

3
2 (up to a

constant factor, which can be absorbed in the definition of A). ■
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B.2. Descent Path for Population Gradient

This section discusses the assumption on the target/activation functions. To translate weak recovery
to strong recovery and establish alignment, we require that at any (positive) level of alignment
u = v⊤1 w

t > 0, the population correlation loss between the neuron and the target sub-problem
f1(v

⊤
1 x) has the descent path on the sphere. In other words, the population correlation loss as

a function of u should be monotonically decreasing with respect to u ∈ (0, 1]. Observe that
without such monotonicity, if the alignment α becomes large, higher-order terms in the Hermite
expansion may generate a repulsive force that prevents the neuron from further aligning with the target
direction vm. For the well-specified setting (matching activation), this condition is automatically
satisfied as shown in [BAGJ21]; whereas for the misspecified scenario, such a condition appeared
in [MHWSE24] as an assumption, which we restate below, and then verify for specific choices of
student activation functions.

Recall the Hermite expansion of one neuron a0σ(z + b0):

a0σ(z + b0) =

∞∑
i=0

αi√
i!
Hei(z)

and the Hermite expansion of each sub-problem of the target function

fm(z) =

p∑
i=p

βm,i√
i!
Hei(z).

Assumption 4 (Descent path) The neuron satisfies αiβ1,i > 0 for all p ≤ i ≤ q.

This assumption ensures that

Ex∼N (0,Id)[a
0σ(x⊤wt + b0)f1(v

⊤
1 x)] =

q∑
i=p

(αiβm,i)
i

is monotonically increasing with respect to u = αiβm,i ∈ (0, 1]. We show that for certain choices
of (randomized) activation function, a Ω̃(1) fraction of student neurons satisfy Assumption 4. This
indicates that Assumption 4 only affects the required width up to constant factor. In the subsequent
sections, we focus on the training dynamics of individual neurons that satisfy Assumption 4 (without
explicitly mentioning so).

B.2.1. RELU ACTIVATION

For the ReLU activation, we verify this condition for target function in which at each task fm, the
non-zero Hermite coefficients have the same sign, i.e., for βm,i, βm,j ̸= 0, we have sign(βm,i) =
sign(βm,j). For example, this condition is met when the link functions are pure Hermite polynomial.
Then, the following lemma adapted from [BES+23] ensures that αi > 0 for all i with probability at
least 1

4 . Because the distribution of a0 is symmetric, Assumption 4 holds with probability at least 1
8 .

Lemma 24 Given degree q ≥ 0 and b ∼ [−Cb, Cb], the i-th Hermite coefficient of ReLU(z + b) is
positive with probability 1

4 for all p ≤ i ≤ q, if Cb is larger than some constant that only depends on
q.
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Proof. First note that for i = 1, we have

Ez∼N (0,1)[ReLU(z + b)He1(z)] =
1

2

∫ ∞

z=b

1√
2π

e−
z2

2 dz +
1

2
> 0.

Moreover, for i ≥ 2, we have

Ez∼N (0,1)[ReLU(z + b)Hei(z)] =
(−1)i√

2π
e−

b2

2 Hei−2(b),

Because limb→−∞Hei(b) = ∞ for even i and −∞ for odd i, there exists some b0 such that if

b ≤ C ′
b then (−1)pe

b2

2 Hei(b) > 0. By taking Cb ≥ 2C ′
b, b ≤ C ′

b (and thus the assertion) holds with
probability 1

4 . ■

B.2.2. GENERAL POLYNOMIAL LINK FUNCTIONS

To deal with general polynomial link functions, we randomize the student activations as follows,

σj(z) =

q∑
i=p

εi,j√
i
Hei(z),

where εi are independent Rademacher variables (taking 1,−1, and 0 with equiprobability).

Lemma 25 Given degree q ≥ 0 and b ∼ [−Cb, Cb], for each pmin ≤ p′ ≤ pmax, the i-th Hermite
coefficient of a0σ(z + b0) is non-zero with probability Ω(C−1

b ), for all p′ ≤ i ≤ q. Here Ω hides
constant only depending on q.

Proof. Because of the randomized Hermite coefficient of the activation function, a0σ(z) has positive
coefficients with probability 2−(q−p+1). As long as the bias b0 is small, a0σ(z + b0) also have
positive coefficients. ■

B.3. Decomposition of Gradient Update

From now, we discuss the training dynamics of the first layer. We focus on one neuron in J1 that
satisfies Assumption 4. To track the alignment during the dynamics, we define κtm = v⊤mwt

j . We first
consider the decomposition of the update into population and stochastic terms:

Lemma 26 Suppose that ηt = η ≤ c4d
−1 and κt1 ≥ 1

2d
− 1

2 . With high probability, the update of κtm
can be bounded as

κt+1
1 ≥ κt1 +

η√
M

M∑
m=1

q∑
i=p

[
iαiβm,i(κ

t
m)i−1(v⊤1 vm − κt1κ

t
m)
]
− κt1η

2C2
1d+ ηv⊤1 (I − wtwt⊤)Zt.

(B.3)

Moreover, κt+1
m is evaluated as

κtm +
η√
M

M∑
m′=1

q∑
i=p

[
iαiβm′,i(κ

t
m′)i−1(v⊤mvm′ − κtmκtm′)

]
− |κ

t
m|+ ηC1d

1
2

2
η2C2

1d
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+ ηv⊤m(I − wtwt⊤)Zt

≤ κt+1
m

≤ κtm +
η√
M

M∑
m′=1

q∑
i=p

[
iαiβm′,i(κ

t
m′)i−1(v⊤mvm′ − κtmκtm′)

]
+
|κtm|+ ηC1d

1
2

2
η2C2

1d

+ ηv⊤m(I − wtwt⊤)Zt.

Here Zt is a mean-zero random variable satisfying ∥Zt∥ = Õ(1) with high probability. For any
v ∈ Rd with ∥v∥ = O(1) that is independent from Zt, |v⊤Zt| = Õ(1) with high probability. Also,
|κtm − κt+1

m | = Õ(η) with high probability.

To prove Lemma 26, we first establish the following characterization of the stochastic gradient.

Lemma 27 The stochastic gradient −∇wy
tatσ(wt⊤xt + bt) is decomposed as

−∇wy
tatσ(wt⊤xt + bt)

= − 1√
M

M∑
m=1

q∑
i=p

[
iαiβm,i(κ

t
m)i−1vm +

√
(i+ 2)(i+ 1)αi+2βm,i(κ

t
m)iwt

]
+ Zt,

where Zt is a mean-zero random variable such that ∥Zt∥ = Õ(d
1
2 ) and |v⊤Zt| = Õ(1) for any

fixed v ∈ Sd−1 with high probability. Also, ∥∇wy
tatσ(wt⊤xt + bt)∥ = Õ(d

1
2 ) with high probability,

and for any fixed v with ∥v∥ = O(1),
(
∇wy

tatσ(wt⊤xt + bt)
)⊤

v = Õ(1) with high probability.

Proof. For i-th Hermite polynomial Hei and u ∈ Sd−1, we have that

Ex∼N (0,Id)[Hei(x1)f(u
⊤x)x1] = iui−1

1 Ex∼N (0,Id)[f
(i−1)(u⊤x)] + ui+1

1 Ex∼N (0,Id)[f
(i+1)(u⊤x)],

Ex∼N (0,Id)[Hei(x1)f(u
⊤x)x2] = ui1u2Ex∼N (0,Id)[f

(i+1)(u⊤x)].

Therefore,

Ex∼N (0,Id)[Hei(x1)f(u
⊤x)x] =


iui−1

1

0
...
0

Ex∼N (0,Id)[f
(i−1)(u⊤x)] + ui1uEx∼N (0,Id)[f

(i+1)(u⊤x)].

Using this fact, the population gradient is computed as

∇wE
[
ytatσ(wt⊤x+ bt)

]
= E

[
1√
M

M∑
m=1

fm(v⊤mx)atσ′(wt⊤x+ bt)x

]

= E

 1√
M

 M∑
m=1

p∑
i=p

βm,i√
i!
Hei(z)

( ∞∑
i=0

iαi√
i!
Hei−1(z)

)
x


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=
1√
M

M∑
m=1

q∑
i=p

[
i2αiβm,i(v

⊤
mwt)i−1vm +

√
(i+ 2)(i+ 1)αi+2βm,i(v

⊤
mwt)iwt

]

=
1√
M

M∑
m=1

q∑
i=p

[
iαiβm,i(κ

t
m)i−1vm +

√
(i+ 2)(i+ 1)αi+2βm,i(κ

t
m)iwt

]
.

We define Zt as the difference between the population gradient and the empirical gradient:

Zt = −∇wy
tatσ(wt⊤xt + bt) +∇wE

[
ytatσ(wt⊤x+ bt)

]
.

We have

−∇wy
tatσ(wt⊤xt + bt)

= − 1√
M

M∑
m=1

q∑
i=p

[
iαiβm,i(κ

t
m)i−1vm +

√
(i+ 2)(i+ 1)αi+2βm,i(κ

t
m)iwt

]
+ Zt

It is easy to see that Ext,yt [Z
t] = 0, and ∥Zt∥ = Õ(d

1
2 ) with high probability by (A.2) of Lemma 17.

(A.2) also yields that |v⊤Zt| = Õ(1) with high probability for any fixed v ∈ Sd−1. Finally, the norm
of∇wy

tatσ(wt⊤xt + bt) = ytatσ′(wt⊤xt + bt)xt is of order Õ(d
1
2 ) with high probability, and for

any fixed v with ∥v∥ = O(1),
(
∇wy

tatσ(wt⊤xt + bt)
)⊤

v = Õ(1) with high probability. ■

Proof of Lemma 26. First, we consider κt1. We have

∥wt − η(I − wtwt⊤)∇w(−ytatσ(wt⊤xt + bt))∥−1

=
(
1 + η2∥(I − wtwt⊤)∇wy

tatσ(wt⊤xt + bt)∥2
)− 1

2

≥ 1− η2

2
∥(I − wtwt⊤)∇wy

tatσ(wt⊤xt + bt)∥2

≥ 1− η2

2
∥∇wy

tatσ(wt⊤xt + bt)∥2.

By using this, with high probability,

v⊤1 w
t+1 = v⊤1

wt − η(I − wtwt⊤)∇w(−ytatσ(wt⊤xt + bt))

∥wt − η(I − wtwt⊤)∇w(−ytatσ(wt⊤xt + bt))∥

≥ κt1 + ηv⊤1 (I − wtwt⊤)∇wy
tatσ(wt⊤xt + bt)− κt1η

2

2
∥∇wy

tatσ(wt⊤xt + bt)∥2

− η3

2
|v⊤1 (I − wtwt⊤)∇w(−ytatσ(wt⊤xt + bt))|∥∇wy

tatσ(wt⊤xt + bt)∥2

≥ κt1 + ηv⊤1 ∇wE
[
ytatσ(wt⊤xt + bt)

]
+ v⊤1 Z

t − κt1η
2

2
∥∇wy

tatσ(wt⊤xt + bt)∥2

− η3

2
∥∇wy

tatσ(wt⊤xt + bt)∥3

36



GRADIENT-BASED TRAINING AND COMPUTATIONAL HARDNESS FOR ADDITIVE MODELS

(i)

≥ κt1 + ηv⊤1 (I − wtwt⊤)
1√
M

M∑
m=1

q∑
i=p

[
iαiβm,i(κ

t
m)i−1vm

]
+ ηv⊤1 (I − wtwt⊤)Zt

− κt1η
2C2

1d

2
− η3C3

1d
3
2

2

(ii)

≥ κt1 + η
1√
M

M∑
m=1

q∑
i=p

[
iαiβm,i(κ

t
m)i−1(v⊤1 vm − κt1κ

t
m)
]
− κt1η

2C2
1d

+ ηv⊤1 (I − wtwt⊤)Zt,

where we used Lemma 27 in (i), and (ii) is due to the fact that we take η ≤ c4d
−1 and κt1 ≥ d−

1
2 ,

and hence η3C3
1d

3
2 ≤ κt1η

2C2
1d and −κt

1η
2C2

1d
2 − η3C3

1d
3
2

2 ≥ −κt1η2C2
1d. Thus we obtained (B.3).

In the same way, for the lower bound on κtm, we have

κt+1
m ≥ κtm + ηv⊤m(I − wtwt⊤)∇wy

tatσ(wt⊤xt + bt)− |κ
t
m|η2

2
∥∇wy

tatσ(wt⊤xt + bt)∥2

− η3

2
|v⊤m(I − wtwt⊤)∇w(−ytatσ(wt⊤xt + bt))|∥∇wy

tatσ(wt⊤xt + bt)∥2

≥ κtm +
η√
M

M∑
m′=1

q∑
i=p

[
iαiβm′,i(κ

t
m′)i−1(v⊤mvm′ − κtmκtm′)

]
− |κ

t
m|+ ηC1d

1
2

2
η2C2

1d

+ ηv⊤m(I − wtwt⊤)Zt.

As for the upper bound,

κt+1
m ≤ κtm + ηv⊤m(I − wtwt⊤)∇wy

tatσ(wt⊤xt + bt) +
|κtm|η2

2
∥∇wy

tatσ(wt⊤xt + bt)∥2

+
η3

2
|v⊤m(I − wtwt⊤)∇w(−ytatσ(wt⊤xt + bt))|∥∇wy

tatσ(wt⊤xt + bt)∥2

≤ κtm +
η√
M

M∑
m′=1

q∑
i=p

[
iαiβm′,i(κ

t
m′)i−1(v⊤mvm′ − κtmκtm′)

]
+
|κtm|+ ηC1d

1
2

2
η2C2

1d

+ ηv⊤m(I − wtwt⊤)Zt.

Finally, we check that |κtm − κt+1
m | = Õ(η). From the above argument, we have

|κt+1
m − κtm| ≤ η

∣∣∣v⊤m(I − wtwt⊤)∇wy
tatσ(wt⊤xt + bt)

∣∣∣+ |κtm|η2
2
∥∇wy

tatσ(wt⊤xt + bt)∥2

+
η3

2
|v⊤m(I − wtwt⊤)∇w(−ytatσ(wt⊤xt + bt))|∥∇wy

tatσ(wt⊤xt + bt)∥2.

The first term is bounded by Õ(η) because
∣∣∣v⊤m(I − wtwt⊤)∇wy

tatσ(wt⊤xt + bt)
∣∣∣ = Õ(1). The

second term is bounded by Õ(η) when η ≤ c4d
−1, because ∥∇wy

tatσ(wt⊤xt + bt)∥2 = Õ(d). The
third term is bounded by Õ(η) when η ≤ c4d

−1, because |v⊤m(I − wtwt⊤)∇w(−ytatσ(wt⊤xt +

bt))| = Õ(1) and ∥∇wy
tatσ(wt⊤xt + bt)∥2 = Õ(d). Therefore, we obtained that |κtm − κt+1

m | =
Õ(η). ■

37



OKO SONG SUZUKI WU

B.4. Phase I: Weak Recovery for One Direction

Based on Lemma 26, we analyze the stochastic gradient update of the first-layer parameters. The
goal of this subsection is to prove the formal version of Lemma 6.

Lemma 6 (formal) Suppose that |v⊤m′vm| ≤ c4M
−1 for all m ̸= m′ and M ≤ c4d

1
2 , and ηt =

η ≤ c4M
− 1

2d−
p
2 . Then, with high probability, there exists some time t1 ≤ T1,1 = Θ(η−1M

1
2d

p−2
2 )

such that the following holds:

(i) κt11 > c2, and

(ii) |κt1m| ≤ 5c3M
−1, for all m = 2, · · · ,M .

We start with the following lemma, which introduces (deterministic) auxiliary sequences that upper
and lower bound the stochastic updates of κtm.

Lemma 28 Suppose that |v⊤m′vm| ≤ c4M
−1 for all m ̸= m′ and M ≤ c4d

1
2 . For all s =

0, 1, · · · , t, we assume that

(a) κs1 ≤ c2 (only required for (i): Lower bound),

(b) |κsm| ≤ κs1 for all m = 2, · · · ,M , and

(c) |κsm| ≤ C2c3M
−1 for all m = 2, · · · ,M .

Then, taking ηt = η ≤ c4M
− 1

2d−
p
2 , we have the following bounds.

(i): Lower bound of κs1: For κt1, we have

κs+1
1 ≥ (1− c2)κ

0
1 + η(1− c2)

s∑
s′=0

pαpβ1,p√
M

(κs
′
1 )

p−1, (B.4)

for s = 0, 1, · · · , t. Consequently, by introducing an auxiliary sequence (P s)t+1
s=0 with P 0 =

(1− c2)κ
0
1, and

P s+1 = P s + ηc2
pαpβ1,p√

M
(P s)p−1 (s = 0, 1, · · · , t), (B.5)

κs1 is lower-bounded by P s for all s = 0, 1, · · · , t+ 1, with high probability.

(ii): Upper bound of maxm ̸=1 |κsm|: For an auxiliary sequence (Qs)t+1
s=0 with Q0 = (1+c2)max{maxm̸=1 |κ0m|,

1
2d

− 1
2 }, and

Qs+1 = Qs + (1 + c2)
η√
M

pmax
m
|αpβm,i|(Qs)p−1 + c3

η

M
3
2

pαpβ1,p(κ
s
1)

p−1,

maxm̸=1 |κsm| is upper-bounded by Qs for all s = 0, 1, · · · , t+ 1, with high probability.

Proof.
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(i) Lower bound of κs1 by P s. If κt1 ≥ 1
2d

− 1
2 , we have κt1 ≥ ηC1d

1
2 by the choice of η. If

κs1 ≥ 1
2d

− 1
2 , by Lemma 26, we have

κs+1
1 ≥ κs1 +

η√
M

M∑
m=1

q∑
i=p

[
iαiβm,i(κ

s
m)i−1(v⊤1 vm − κs1κ

s
m)
]
− κs1η

2C2
1d+ ηv⊤1 (I − wsws⊤)Zs

≥ κs1 +
η√
M

pαpβ1,p(1− (κs1)
2)(κs1)

p−1 +
η√
M

M∑
m=2

q∑
i=p

[
iαiβm,i(κ

s
m)i−1(v⊤1 vm − κs1κ

s
m)
]

− κs1η
2C2

1d+ ηv⊤1 (I − wsws⊤)Zs

≥ κs1 +
η√
M

pαpβ1,p(1− (κs1)
2)(κs1)

p−1 − q2η
√
M max

m̸=1
|κsm|p−1max

m ̸=1
|v⊤1 vm|max

m,i
|αiβm,i|

− q2η
√
M max

m̸=1
|κsm|pmax

m,i
|αiβm,i| − κs1η

2C2
1d+ ηv⊤1 (I − wsws⊤)Zs (B.6)

≥ κs1 +
η√
M

pαpβ1,p(1− (κs1)
2)(κs1)

p−1 − q2η
√
M(κs1)

p−1c4M
−1

− q2η
√
M(κs1)

p−1C2c3M
−1 − ηκs1c4M

− 1
2d−

p−2
2 C2

1 + ηv⊤1 (I − wsws⊤)Zs.

Note that (κs1)
2 ≤ c22 ≤ 1

5c2, q2η
√
M(κs1)

p−1c4M
−1 ≤ 1

5c2
η√
M
pαpβ1,p(κ

s
1)

p−1, q2η
√
M(κs1)

p−1C2c3M
−1 ≤

1
5c2

η√
M
pαpβ1,p(κ

s
1)

p−1, and ηκs1c4M
− 1

2d−
p−2
2 C2

1 ≤ 1
5c2

η√
M
pαpβ1,p(κ

s
1)

p−1, (where we used

κs1 ≥ 1
2d

− 1
2 for the last statement). Thus, we obtained that

κs+1
1 ≥ κs1 + (1− 4

5
c2)

η√
M

pαpβ1,p(κ
s
1)

p−1 + ηv⊤1 (I − wsws⊤)Zs. (B.7)

We prove the assertion by induction. Suppose that (B.4) holds for s = 0, · · · , τ for some τ ≤ t.
Note that this implies κs1 ≥ (1− c2)κ

0
1 and κs1 ≥ 1

2d
− 1

2 . By applying (B.7), we have

κτ+1
1 ≥ κτ1 + (1− 4

5
c2)

η√
M

pαpβ1,p(κ
τ
1)

p−1 + ηv⊤1 (I − wτwτ⊤)Zτ

≥ κ01 +
τ∑

s=0

(1− 4

5
c2)

η√
M

pαpβ1,p(κ
s
1)

p−1 +
τ∑

s=0

ηv⊤1 (I − wsws⊤)Zs. (B.8)

If τ ≤ C2M(κ01)
2−2p, then

τ∑
s=0

ηv⊤1 (I − wsws⊤)Zs ≤ ηC1

√
τ ≤ c4C1κ

0
1 ≤ c2κ

0
1, (B.9)

with high probability. If τ > C2M(κ01)
2−2p,

τ∑
s=0

ηv⊤1 (I − wsws⊤)Zs ≤ ηC1

√
τ ≤ ητC1C

− 1
2

2 M− 1
2 (κ01)

p−1 ≤ 1

5
c2

η√
M

τpαpβ1,p((1− c2)κ
0
1)

p−1

≤ 1

5

τ∑
s=0

c2
η√
M

pαpβ1,p(κ
s
1)

p−1, (B.10)
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with high probability. Applying the above evaluations to (B.8), we have

(B.8) ≥ (1− c2)κ
0
1 +

τ∑
s=0

(1− c2)
η√
M

pαpβ1,p(κ
s
1)

p−1.

Thus the (B.4) holds also for s = τ + 1. The induction proves that (B.4) holds until s = t.
By repeatedly using (B.5), the update of (P t)τt=0 is equivalent to

P t+1 = P 0 +
t∑

s=0

η√
M

(1− c2)pαpβ1,p(P
s)p−1

By comparing this and (B.4), we conclude that κs1 is lower bounded by P s for s = 1, 2, · · · , t+ 1.

(ii) Upper bound of maxm ̸=1 |κsm| by Qs: According to Lemma 26, |κs+1
m − κsm| ≤ C1η with

high probability. Thus, the sign of κs+1
m is the same as that of κsm, or |κs+1

m | ≤ C1η. Therefore,

|κs+1
m |

≤ max

{
C1η,

∣∣∣∣κsm +
η√
M

M∑
m=1

q∑
i=p

[
iαiβm,i(κ

s
m)i−1(v⊤1 vm − κtmκsm)

]
+
|κsm|+ ηC1d

1
2

2
η2C2

1d+ ηv⊤m(I − wsws⊤)Zs

∣∣∣∣}
≤ max

{
C1η,

∣∣∣∣κsm +
η√
M

q∑
i=p

[
iαiβ1,i(κ

s
1)

i−1(v⊤mv1 − κsmκs1)
]

+
η√
M

M∑
m′ ̸=1

q∑
i=p

[
iαiβm′,i(κ

s
m′)i−1(v⊤mvm′ − κsmκsm′)

]

+
|κsm|+ ηC1d

1
2

2
η2C2

1d+ ηv⊤m(I − wsws⊤)Zs

∣∣∣∣}
≤ max

{
C1η,

∣∣∣∣κtm +
η√
M

q∑
i=p

iαiβ1,i(κ
s
1)

i−1v⊤mv1

+
η√
M

M∑
m′ ̸=1

q∑
i=p

[
iαiβm′,i(κ

s
m′)i−1(v⊤mvm′ − κsmκsm′)

]

+
|κsm|+ ηC1d

1
2

2
η2C2

1d+ ηv⊤m(I − wsws⊤)Zs

∣∣∣∣}.
We have∣∣∣∣ q∑
i=p

iαiβ1,i(κ
s
1)

i−1v⊤mv1 +
M∑

m′ ̸=1

q∑
i=p

[
iαiβm′,i(κ

s
m′)i−1(v⊤mvm′ − κsmκsm′)

]∣∣∣∣
≤
∣∣∣∣ q∑
i=p

iαiβ1,i(κ
s
1)

i−1v⊤mv1

∣∣∣∣+ ∣∣∣∣ q∑
i=p

[
iαiβm,i(κ

s
m)i−1(1− (κsm)2)

]∣∣∣∣
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+

∣∣∣∣ M∑
m′ ̸=1

q∑
i=p

[
iαiβm′,i(κ

s
m′)i−1(v⊤mvm′ − κsmκsm′)

]∣∣∣∣
≤ q2max

i
|αiβ1,i|(κs1)p−1max

m′
|v⊤1 vm′ |+ pmax

m′
|αpβm′,p||κsm|p−1 + q2max

m′,i
|αiβm′,i||κsm|p

+Mq2max
m′,i
|αiβm′,i|max

m̸=1
|κsm|p−1(max

m′,m
|v⊤mvm′ |+ max

m′ ̸=1
|κsm|)

≤ q2max
i
|αiβ1,i|(κs1)p−1c4M

−1 + pαpβm,p(κ
s
m)p−1 + q2max

m,i
|αiβm,i|(κsm)p−1C2c3M

−1

+Mq2max
m,i
|αiβm,i|max

m ̸=1
(κsm)p−1(c4M

−1 + C2c3M
−1)

≤ (1 +
1

3
c2)pmax

m
|αpβm,p|max

m ̸=1
|κsm|p−1 + c3

pαpβ1,p
M

(κs1)
p−1.

Also, |κs
m|+ηC1d

1
2

2 η2C2
1d ≤

|κs
m|+c4M

− 1
2 d−

p
2 C1d

1
2

2 ηc4M
− 1

2d−
p−2
2 C2

1 ≤ 1
3c2ηpαpβm,pmax{|κsm|, 12d

− 1
2 }p−1.

Therefore, κτ+1
m is bounded as

|κτ+1
m | ≤ max

{
C1η,

∣∣∣∣κτm + (1 +
1

3
c2)

η√
M

pmax
m
|αpβm,p|max

m̸=1
|κsm|p−1 + c3

η

M
3
2

pαpβ1,p(κ
τ
1)

p−1

+
1

3
c2ηpαpβ1,pmax{|κsm|,

1

2
d−

1
2 }p−1 + ηv⊤m(I − wsws⊤)Zτ

∣∣∣∣}
≤ max

{
C1η,

∣∣∣∣κ0m + (1 +
2

3
c2)

τ∑
s=0

η√
M

pmax
m
|αpβm,p|max{max

m ̸=1
|κsm|p−1, (

1

2
d−

1
2 )p−1}

+ c3

τ∑
s=0

η

M
3
2

pαpβ1,p(κ
s
1)

p−1 +
τ∑

s=0

ηv⊤m(I − wsws⊤)Zs

∣∣∣∣}

≤ max

{
C1η,max

m ̸=1
|κ0m|+ (1 +

2

3
c2)

τ∑
s=0

η√
M

pmax
m
|αpβm,p|max{max

m̸=1
|κsm|p−1, (

1

2
d−

1
2 )p−1}

+ c3

τ∑
s=0

η

M
3
2

pαpβ1,p(κ
s
1)

p−1 +max
m̸=1

∣∣∣∣ τ∑
s=0

ηv⊤m(I − wsws⊤)Zs

∣∣∣∣}. (B.11)

According to the update of Qt, Qt ≥ 1
2d

− 1
2 ≥ C1η for all t. Moreover, by η ≤ c4M

− 1
2d−

p
2 ,

max
m̸=1

∣∣∣∣∣
τ∑

s=0

ηv⊤m(I − wsws⊤)Zs

∣∣∣∣∣
≤ ηC1

√
τ

≤


1

2
c2d

− 1
2 (τ ≤ C2Mdp−1)

τc2η

3
√
M

pαpβ1,p(
1

2
d−

1
2 )p−1 (τ > C2Mdp−1)

Therefore, (B.11) is further upper bounded as

max
m̸=1
|κτ+1

m | ≤ (1 + c2)max{max
m ̸=1
|κ0m|,

1

2
d−

1
2 }
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+ (1 + c2)

τ∑
s=0

η√
M

pmax
m
|αpβm,p|max{max

m̸=1
|κsm|, Qs}p−1 + c3

τ∑
s=0

η

M
3
2

pαpβ1,p(κ
s
1)

p−1

(B.12)

On the other hand, Qτ+1 is written as

Qτ+1 ≤ (1 + c2)max{max
m ̸=1
|κ0m|,

1

2
d−

1
2 }+ (1 + c2)

τ∑
s=0

η√
M

pmax
m
|αpβm,p|(Qs)p−1

+ c3

τ∑
s=0

η

M
3
2

pαpβ1,p(κ
s
1)

p−1 (B.13)

Comparing (B.12) and (B.13) with the update of Qt, we conclude that maxm̸=1 |κτm| ≤ Qτ (τ =
0, 1, · · · , t+ 1) holds by induction. ■

The previous lemma assumed (a)-(c). Next we show that (b) and (c) hold along the trajectory via
induction. (here we use a different notation for the coefficient in (c).)

Lemma 29 Take ηt = η ≤ c4M
− 1

2d−
p
2 . Suppose that, for all s = 0, 1, · · · , t,

(a) κs1 ≤ c2,

(b) |κsm| ≤ κs1 for all m = 2, · · · ,M , and

(c)’ |κsm| ≤ 4c3M
−1 for all m = 2, · · · ,M .

Then, if we have M ≤ c4d
1
2 and (a) κt+1

1 ≤ c2 for t+ 1, (b) and (c)’ hold for s = t+ 1 with high
probability.

Proof. First consider the case when

(1 + c2)
pmaxm |αpβm,p|√

M
(Qs)p−1 >

c3

M
3
2

pαpβ1,p(P
s)p−1 (B.14)

holds for all s = 0, 1, · · · , t. Then, for s = 0, 1, · · · , t,

c3

M
3
2

pαpβ1,p(P
s)p−1 < c−1

2 c3(1 + c2)
pmaxm |αpβm,p|√

M
(Qs)p−1 < c2

pmaxm |αpβm,p|√
M

(Qt)p−1,

and therefore

Qs+1 ≤ Qs + (1 + 2c2)
η√
M

pmax
m
|αpβm,i|(Qs)p−1

for all s = 0, 1, · · · , t. According to Lemma 19, we have

Qs≤ Q0(
1− ηp(p− 2)(1 + 3c2)(maxm |αpβm,p|)M− 1

2 (Q0)(p−2)s
) 1

p−2

(B.15)

for all s = 0, 1, · · · , t+ 1 (here (1 + c)p−1 in the original bound is absorbed in (1 + 3c2)).
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On the other hand, P s is lower bounded by

P s ≥ P 0(
1− ηp(p− 2)(1− c2)(αpβ1,p)M

− 1
2 (P 0)(p−2)s

) 1
p−2

(B.16)

for all s = 0, 1, · · · , t + 1. According to (B.1), Q0 = (1 + c2)max{maxm̸=1 |κ0m|, 12d
− 1

2 } ≤
P 0 = (1 − c2)κ

0
1. Moreover, (B.1) implies that maxm |αpβm,p|(1 + 3c2)(maxm̸=1 |κ0m|)p−2 ≤

(1−c2)αpβ1,p(κ
0
1)

p−2, yielding that the denominator of (B.15) is larger than that of (B.16). Therefore,
Qt+1 ≤ P t+1 holds, which implies that maxm ̸=1 |κt+1

m | ≤ κt+1
1 .

Next we check Qt+1 < c3M
−1 (RHS is smaller than (c)’ by a factor of 4). From P t ≤ κt1 ≤ c2

and (B.16),

t ≤ η−1M
1
2 ((P 0)−(p−2) − (c2)

−(p−2))

p(p− 2)(1− c2)(αpβ1,p)
≤

η−1M
1
2 (1 + 5c2)

maxm |αpβm,p|
αpβ1,p

(P 0)−(p−2)

p(p− 2)(1 + 3c2)(maxm |αpβm,p|)
. (B.17)

On the other hand, according to (B.15), Qt+1 > c3M
−1 holds only if

t >
η−1M

1
2 ((Q0)−(p−2) − (c3M

−1)−(p−2) − ηM− 1
2 p(p− 2)(1 + 3c2)(maxm |αpβm,p|))

p(p− 2)(1 + 3c2)(maxm |αpβm,p|)
.

(B.18)

If M ≤ c4d
1
2 , (c3M−1)−(p−2) ≤ (c3c

−1
4 d−

1
2 )−(p−2) ≤ c2(κ

0
1)

−(p−2) ≤ c2(P
0)−(p−2) ≤ c2(Q

0)−(p−2).
Moreover, ηM− 1

2 p(p − 2)(1 + 5c2)(maxm |αpβm,p|) ≤ c2(Q
0)−(p−2). Thus, (B.18) is further

bounded by

(B.18) ≥ η−1M
1
2 (1− 2c2)(Q

0)−(p−2)

p(p− 2)(1 + 3c2)(maxm |αpβm,p|)
. (B.19)

According to (B.1), (1 + 8c2)maxm |αpβm,p|(maxm ̸=1 |κ0m|)p−2 < αpβ1,p(κ
0
1)

p−2. By using this,
we have (RHS of (B.19)) > (RHS of (B.17)). Thus, Qt+1 > c3M

−1 does not hold, and we have
obtained Qt+1 ≤ c3M

−1 (and (c)’).
Now we consider the case when (B.14) holds for s = 0, 1, · · · , τ1 − 1 but

(1 + c2)
pmaxm |αpβm,p|√

M
(Qs)p−1 ≤ c3

M
3
2

pαpβ1,p(P
s)p−1 (B.20)

holds for s = τ1 ≤ t. We show that (B.20) holds for all s = τ1, · · · , t+1 in this case. Assuming the
inequality holds for all s = τ1, · · · , τ with τ ≤ t. For s = τ1, · · · , τ , the update of Qs is evaluated
as

Qs+1 ≤ Qs + 2c3
η

M
3
2

pαpβ1,p(P
s)p−1.

Thus, when p ≥ 3,

Qτ+1 ≤ Qτ1 +
τ∑

s=τ1

2c3
η

M
3
2

pαpβ1,p(P
s)p−1
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≤ Qτ1 +
2c3(1− c2)

−1

M

(
P τ+1 − P τ1

)
(B.21)

≤
(

αpβ1,p
maxm |αpβm,p|

(1 + c2)
−1M−1

) 1
p−1

P τ1 +
2c3(1− c2)

−1

M

(
P τ+1 − P τ1

)
≤
(

αpβ1,p
maxm |αpβm,p|

(1 + c2)
−1M−1

) 1
p−1

P τ+1,

which yields (B.20) for s = τ + 1. (B.20) with s = t + 1 implies that Qt+1 ≤ P t+1, and hence
maxm ̸=1 |κt+1

m | ≤ κt+1
1 . Similar to (B.21), we have

Qt+1 ≤ Qτ1 +
2c3(1− c2)

−1

M

(
P t+1 − P τ1

)
≤ Qτ1 +

2c3(1− c2)
−1

M
P t+1 ≤ Qτ1 + 3c3M

−1.

For Qτ1 , as we proved Qt+1 ≤ c3M
−1 in the first case, we have Qτ1 ≤ c3M

−1. Thus, Qt+1 is
bounded by 4c3M

−1, which yields (c)’. ■

Proof of Lemma 6. Suppose that (a) holds for all s = 0, 1, · · · , T1,1, where

T1,1 =

⌊(
ηp(p− 2)(1− 5c2)(αpβ1,p)M

− 1
2 (P 0)(p−2)

)−1
⌋
.

According to Lemma 29, if M ≤ c4d
1
2 , η ≤ c4M

− 1
2d−

p
2 , and (a) holds for all s = 0, 1, · · · , T1,1,

(b) and (c) of Lemma 29 holds with high probability for all s = 0, 1, · · · , T1,1 and the bounds of
Lemma 28 holds for all s = 0, 1, · · · , T1,1.

From Lemma 28 and Lemma 19,

κt1 ≥ P t ≥ P 0(
1− ηp(p− 2)(1− c2)(αpβ1,p)M

− 1
2 (P 0)(p−2)s

) 1
p−2

. (B.22)

However, at t = T1,1,

(RHS of (B.22)) ≥ P 0(
ηp(p− 2)(1− c2)(αpβ1,p)M

− 1
2 (P 0)(p−2)

) 1
p−2

=
1(

ηp(p− 2)(1− c2)(αpβ1,p)M
− 1

2

) 1
p−2

,

and thus RHS of (B.22) is clearly larger than 1. This yields the contradiction because κ
T1,1

1 ≤ 1.
Therefore, with high probability, there exists some t1 ≤ T1,1 such that κt11 > c3 and κt1 ≤ c3 (t =
0, 1, · · · , t1 − 1).

As for (ii), recall that |κt1−1
m | ≤ 4c3M

− 1
2 . Moreover, according to Lemma 26,

|κt11 − κt1−1
1 |

≤ C1η ≤ C1c4M
− 1

2d−
p
2 ≤ c3M

− 1
2 .

Thus, |κt1m| ≤ |κt1−1
m |+ |κt11 − κt1−1

1 | ≤ 4c3M
− 1

2 + c3M
− 1

2 ≤ 5c3M
− 1

2 . ■
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B.5. Phase II: Amplification of Alignment

In the previous section (Lemma 6), we proved that neurons in J1 achieve a small constant (c2)
alignment. However, as the alignment κt1 becomes larger, the effect from other directions becomes
non-negligible, while the signal from v1 gets smaller because of the projection (1− wtwt⊤). Hence
the previous weak recovery analysis is not sufficient to show that the neurons will continue to grow
in the direction of v1.

The goal of this subsection is to prove the following lemma.

Lemma 30 Suppose η = ηt ≤ c4M
− 1

2d−
p
2 , |v⊤m′vm| ≤ c4M

−1 for all m ̸= m′, and M ≤ c4d
1
2 ,

and consider a neuron that satisfies (i) and (ii) of Lemma 6. Then, with high probability, there exists
some time t2 ≤ T1,2 = Θ̃(M

1
2 η−1) such that κt21 > 1− c2.

Similar to the Phase I analysis, we bound the update by deterministic auxiliary sequences. To simplify
the notation, we let t← t− t1 throughout this subsection.

Lemma 31 Suppose that |v⊤m′vm| ≤ c4M
−1 for all m ̸= m′ and M ≤ c4d

1
2 . For all s =

0, 1, · · · , t, we assume that

(a) κs1 ≤ 1− c2 (only required for (i): Lower bound),

(b) |κsm| ≤ κs1 for all m = 2, · · · ,M , and

(c) |κsm| ≤ C2c3M
−1 for all m = 2, · · · ,M .

Take ηt = η ≤ c4M
− 1

2d−
p
2 . Then, we have the following bounds.

(i): Lower bound of κs1: For an auxiliary sequence (P s)t+1
s=0 with P 0 = (1− c2)κ

0
1, and

P s+1 = P s + c2
η√
M

pαpβm,p(P
s)p−1,

κs1 is lower-bounded by P s for all s = 0, 1, · · · , t+ 1, with high probability.

(ii): Upper bound of maxm ̸=1 |κsm|: For an auxiliary sequence (Qs)t+1
s=0 with Q0 = 6c3M

−1, and

Qs+1 = Qs + (1 + c2)
η√
M

pmax
m
|αpβm,i|(Qs)p−1 + c3

η

M
pαpβ1,p(κ

s
1)

p−1,

maxm̸=1 |κsm| is upper-bounded by Qs for all s = 0, 1, · · · , t+ 1, with high probability.

Proof.

(i) Lower bound of κs1 by P s: If κs1 ≥ 1
2d

− 1
2 , by following the argument for (B.6) in Lemma 28,

we have

κs+1
1 ≥ κs1 +

η√
M

pαpβ1,p(1− (κs1)
2)(κs1)

p−1 − q2η
√
M max

m̸=1
|κsm|p−1max

m ̸=1
|v⊤1 vm|max

m,i
|αiβm,i|

− q2η
√
M max

m̸=1
|κsm|pmax

m,i
|αiβm,i| − κs1η

2C2
1d+ ηv⊤1 (I − wsws⊤)Zs

≥ κs1 +
η√
M

pαpβ1,p(1− (1− c2)
2)(κs1)

p−1 − q2η
√
M |κs1|p−1c4M

−1
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− q2η
√
M(κs1)

p−1C2c3M
−1 − ηκs1c4M

− 1
2d−

p−2
2 C2

1 + ηv⊤1 (I − wsws⊤)Zs.

Note that 1−(1−κs1)2 ≥ 9
5c2, q2η

√
M(κs1)

p−1c4M
−1 ≤ 1

5c2
η√
M
pαpβ1,p(κ

s
1)

p−1, q2η
√
M(κs1)

p−1C2c3M
−1 ≤

1
5c2

η√
M
pαpβ1,p(κ

s
1)

p−1 and ηκs1c4M
− 1

2d−
p−2
2 C2

1 ≤ 1
5c2

η√
M
pαpβ1,p(κ

s
1)

p−1 (where we used κs1 ≥
1
2d

− 1
2 for the last statement).

If κs1 ≥ 1
2d

− 1
2 for all s = 0, 1, · · · , τ , following (B.9) and (B.10), we know that

τ∑
s=0

ηv⊤1 (I − wsws⊤)Zs ≤ c2κ
0
1 +

1

5

τ∑
s=0

c2
η√
M

pαpβ1,p(κ
s
1)

p−1,

with high probability.
Given κs1 ≥ 1

2d
− 1

2 for all s = 0, 1, · · · , τ , we obtain

κτ+1
1 ≥ (1− c2)κ

0
1 + c2

τ∑
s=0

η√
M

pαpβ1,p(κ
s
1)

p−1, (B.23)

and κτ+1
1 ≥ 1

2d
− 1

2 . Therefore, κτ1 ≥ 1
2d

− 1
2 holds for all τ = 0, 1, · · · , t, and (B.23) holds for all

τ = 0, 1, · · · , t By comparing (B.23) with the update of P τ , we obtain the desired bound.

(ii) Upper bound of maxm̸=1 |κsm| by Qs: We have already established the upper bound with
Q0 = (1 + c2)max{maxm̸=1 |κ0m|, 12d

− 1
2 } in Lemma 28. Because the choice of Q0 = 6c3M

−1 is
larger than that when M ≤ c4d

1
2 , the desired bound follows. ■

Now we show that assumptions (b) and (c) in the previous lemma can be verified along the
trajectory via induction.

Lemma 32 Take ηt = η ≤ c4M
− 1

2d−
p
2 . Suppose that, for all s = 0, 1, · · · , t,

(a) κs1 ≤ 1− c2,

(b) |κsm| ≤ κs1 for all m = 2, · · · ,M , and

(c)’ |κsm| ≤ C2c3M
−1 for all m = 2, · · · ,M .

Then, if M ≤ c4d
1
2 and (a) κt+1

1 ≤ 1 − c2 for t + 1, (b) and (c)’ hold for s = t + 1 with high
probability.

Proof. We only need to prove (c)’: maxm̸=1 |κt+1
m | ≤ 7c3M

−1. This is because if (a) and (c)’ for
t+1 hold, then κ01 > c2 and Lemma 31 yields that κt+1

1 ≥ P t+1 ≥ P 0 = (1− c2)κ
0
1 ≥ 2c3M

−1 ≥
maxm ̸=1 |κt+1

m |, which proves (b) for t+ 1. If

(1 + c2)
pmaxm |αpβm,p|√

M
(Qs)p−1 ≤ c3

M
3
2

pαpβ1,p(P
s)p−1 (B.24)

holds for all s = 0, 1, · · · , τ , according to Lemma 31, the update of Qs is evaluated as

Qs+1 ≤ Qs + 2c3
η

M
3
2

pαpβ1,p(P
s)p−1
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for all s = 0, 1, · · · , τ . Note that (B.24) holds for s = 0. Thus, if (B.24) holds for all s = 0, 1, · · · , τ ,
we have,

Qτ+1 ≤ Qτ1 +
τ∑

s=τ1

2c3
η

M
3
2

pαpβ1,p(P
s)p−1

≤ Qτ1 +
2c−1

2 c3
M

(
P τ+1 − P τ1

)
(B.25)

≤
(

αpβ1,p
maxm |αpβm,p|

(1 + c2)
−1M−1

) 1
p−1

P τ1 +
2c−1

2 c3
M

(
P τ+1 − P τ1

)
≤
(

αpβ1,p
maxm |αpβm,p|

(1 + c2)
−1M−1

) 1
p−1

P τ+1,

which implies (B.24) for s = τ + 1. Thus, (B.24) holds for all s = 0, 1, · · · , t+ 1.
Moreover, similar to (B.25),

Qt+1 ≤ Q0 +
2c−1

2 c3
M

(
P t+1 − P 0

)
≤ Q0 +

2c−1
2 c3
M

P t+1 ≤ Q0 + 2C2c3M
−1.

Q0 is bounded by 6c3M
−1 Thus, Qt+1 is bounded by C2c3M

−1, which yields (c). ■

Proof of Lemma 30. Suppose that (a) holds for all s = 0, 1, · · · , T1,2, where

T1,2 =

⌊(
ηp(p− 2)c2(αpβ1,p)M

− 1
2 (P 0)(p−2)

)−1
⌋
.

According to Lemma 32, if M ≤ c4d
1
2 , η ≤ c4M

− 1
2d−

p
2 , and (a) for all s = 0, 1, · · · , T1,22 hold,

(b) and (c) of Lemma 32 holds with high probability for all s = 0, 1, · · · , T1,2 and the bounds of
Lemma 31 holds for all s = 0, 1, · · · , T1,2.

According to Lemma 31 and Lemma 19,

κt1 ≥ P t ≥ P 0(
1− ηp(p− 2)c2(αpβ1,p)M

− 1
2 (P 0)(p−2)s

) 1
p−2

. (B.26)

However, at t = T1,2,

(RHS of (B.26)) ≥ P 0(
ηp(p− 2)c2(αpβ1,p)M

− 1
2 (P 0)(p−2)

) 1
p−2

=
1(

η(p− 2)c2(αpβ1,p)M
− 1

2

) 1
p−2

,

and thus RHS of (B.26) is clearly larger than 1. This yields the contradiction because κT1,2

1 should be
smaller than 1. Therefore, with high probability, there exists some t2 ≤ T1,2 such that κt21 > 1− c2.
■
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B.6. Phase III: Strong Recovery and Localization

In the previous section (Lemma 30), we proved that neurons can achieve alignment of 1− c2, which
sets up the local convergence argument. To simplify the notation, we let t← t− t1 − t2 throughout
this subsection. We write v̄m = (I − v1v

⊤
1 )vm and κ̄tm = v̄⊤mwt

j .
The goal of this subsection is to prove the following lemma.

Lemma 33 Take ηt = η1 ≤ c4M
− 1

2d−
p
2 for 0 ≤ t ≤ (T1,1− t1) + (T1,2− t2)− 1, and ηt = η2 ≤

min{c4ε̃M− 1
2d−1, c4ε̃

2M− 1
2 } for (T1,1−t1)+(T1,2−t2) ≤ t ≤ T1,3+(T1,1−t1)+(T1,2−t2)−1.

Suppose |v⊤m′vm| ≤ c4M
−1 for all m′ ̸= m and T1,3 = Θ̃(ε̃−1M

1
2 η−1), and consider a neuron that

satisfies κ01 ≥ 1− c2.
Then, κ(T1,1−t1)+(T1,2−t2)+T1,3

1 > 1− 3ε̃ with high probability.

We bound the update by deterministic auxiliary sequences.

Lemma 34 Let 0 < ε̄ < c2. If ηt = η ≤ min{c4ε̄M− 1
2d−1, c4ε̄

2M− 1
2 }, 1−2c2 ≤ κ01, κs1 ≤ 1− ε̄

for s = 0, 1, · · · , t, and |v⊤m′vm| ≤ c4M
−1 for all m′ ̸= m, we have the following bound:

• Lower bound of κs1:

κs1 ≥ κ01 − c2ε̄+ sε̄
η√
M

pαpβm,p,

for all s = 0, 1, · · · , t+ 1, with high probability.

Proof. If κs1 ≥ 1
2d

− 1
2 , by Lemma 28,

κs+1
1 ≥ κs1 +

η√
M

M∑
m=1

q∑
i=p

[
iαiβm,i(κ

s
m)i−1(v⊤1 vm − κs1κ

s
m)
]
− κs1η

2C2
1d+ ηv⊤1 (I − wsws⊤)Zs

≥ κs1 +
η√
M

pαpβ1,p(1− (κs1)
2)(κs1)

p−1 +
η√
M

M∑
m=2

q∑
i=p

[
iαiβm,i(κ

s
m)i−1(v⊤1 vm − κs1κ

s
m)
]

− κs1η
2C2

1d+ ηv⊤1 (I − wsws⊤)Zs

≥ κs1 +
η√
M

pαpβ1,p(1− (κs1)
2)(κs1)

p−1 +
η√
M

M∑
m=2

q∑
i=p

[
iαiβm,i(κ

s
m)i−1v⊤1 vm(1− (κs1)

2)
]

+
η√
M

M∑
m=2

q∑
i=p

[
iαiβm,i(κ

s
m)i−1κ̄smκs1

]
− κs1η

2C2
1d+ ηv⊤1 (I − wsws⊤)Zs. (B.27)

We bound each term of (B.27) from now. If κs1 ≥ 1− 3c2, the second term is bounded by

pαpβ1,p(1− (κs1)
2)(κs1)

p−1 ≥ pαpβ1,p(1− (κs1)
2)(κs1)

p−1 ≥ 9

5
pαpβ1,p(1− κs1).

Next, the third term is bounded by∣∣∣∣ M∑
m=2

q∑
i=p

[
iαiβm,i(κ

s
m)i−1v⊤1 vm(1− (κs1)

2)
]∣∣∣∣ ≤ q2M max

m,i
|αiβm,i|max

m ̸=1
|v⊤1 vm|(1− (κs1)

2)
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≤ 2q2M max
m,i
|αiβm,i|c4M−1(1− (κs1)

2)

≤ 1

5
pαpβ1,p(1− κs1).

Then we consider the fourth term,∣∣∣∣ M∑
m=2

q∑
i=p

[
iαiβm,i(κ

s
m)i−1κ̃smκs1

]∣∣∣∣
≤ q2max

i,m
|αiβm,i|

M∑
m=2

|κsm||κ̄sm|

≤ 2q2max
i,m
|αiβm,i|

M∑
m=2

|κ̄sm|3 + 2q2max
i,m
|αiβm,i|

M∑
m=2

|v⊤1 vm|2|κ̄sm|. (B.28)

To upper bound the above, we consider the value of
∑M

m=2 |κ̄sm|2. This can be represented as∑M
m=2 |κ̄sm|2 = ws⊤(I − v1v

⊤
1 )

⊤A(I − v1v
⊤
1 )w

s, where A =
∑M

m=2 vmv⊤m.
Consider ṽm defined in Lemma 40 with coefficients {cm,m′}. Let us define B ∈ RM×M as

Bi,j =

{
ci,j (j ≤ i ≤M)

0 (otherwise).

Then we have (
ṽ1 · · · ˜vM

)
=
(
v1 · · · vM

)
B⊤.

Since the non-diagonal terms are bounded by c4M
−1 ≤ 1

3M
−1 and the absolute value of diagonal

terms is no smaller than 1− 20c2 ≥ 2
3 , we know that B⊤ is invertible and (the absolute value of) the

maximum eigenvalue of (B⊤)−1 is bounded by 3. Each vm is computed as

vm =
(
ṽ1 · · · ˜vM

)
(B⊤)−1e⊤m

and

A =

M∑
m=1

(
ṽ1 · · · ˜vM

)
(B⊤)−1eme⊤m((B⊤)−1)⊤

 ṽ1
⊤

...
˜vM

⊤

.

Thus,

λmax(A) ≤ λ2
max

((
ṽ1 · · · ˜vM

))
λ2
max((B

⊤)−1)λmax((

M∑
m=1

eme⊤m)) ≤ 9.

Therefore,
∑M

m=2 |κ̄sm|2 = ws⊤(I − v1v
⊤
1 )

⊤A(I − v1v
⊤
1 )w

s ≤ 9∥(I − v1v
⊤
1 )w

s∥2 = 9(1− (κs1)
2).

Based on this, if κs1 ≥ 1− 3c2, we have

(B.28) ≤ 54q2max
i,m
|αiβm,i|(1− (κs1)

2)
3
2 + 6q2max

i,m
|αiβm,i|max

m̸=1
|v⊤1 vm|2(1− (κs1)

2)
1
2
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≤ 1

5
pαpβ1,p(1− κs1).

The fifth term κs1η
2C2

1d of (B.27) is bounded by η

5
√
M
pαpβ1,p(1− κs1), when η ≤ c4ε̄M

− 1
2d−1.

Putting things together, if 1− 3c2 ≤ κs1 ≤ 1− ε̄ for all s = 0, 1, · · · , τ , we have

κτ+1
1 ≥ κτ1 +

6

5

η√
M

pαpβ1,p(1− κτ1) + ηv⊤1 (I − wτwτ⊤)Zτ

≥ κ01 +
τ∑

s=0

6

5

η√
M

pαpβ1,p(1− κs1) + η
τ∑

s=1

v⊤1 (I − wsws⊤)Zs. (B.29)

Moreover, by η ≤ c4M
− 1

2 ε̄2,∣∣∣∣∣
τ∑

s=0

ηv⊤1 (I − wsws⊤)Zs

∣∣∣∣∣
≤ ηC1

√
τ

≤

c2ε̄ (τ ≤ C2Mε̄−2)
τη

5
√
M

pαpβ1,p(1− κs1) (τ > C2Mε̄−2)

Therefore, if 1− 3c2 ≤ κs1 ≤ 1− ε̄ for all s = 0, 1, · · · , τ , (B.29) is bounded by

κτ+1
1 ≥ κ01 − c2ε̄+

τ∑
s=0

η√
M

pαpβ1,p(1− κs1)

≥ κ01 − c2ε̄+
τ∑

s=0

η√
M

pαpβ1,pε̄

≥ κ01 − c2ε̄+ τ
η√
M

pαpβ1,pε̄, (B.30)

and 1− 3c2 ≤ κs1 holds for s = τ + 1. By induction, 1− 3c2 ≤ κs1 holds for all s = 0, 1, · · · , t+ 1,
and the bound (B.30) holds for all τ = 0, 1, · · · , t. ■

Proof of Lemma 33. First, consider 0 ≤ t ≤ (T1,1 − t1) + (T1,2 − t2). By the choice of
η1 ≤ c4M

− 1
2d−

p
2 , η ≤ min{c4M− 1

2d−
p
2 , c4ε̄

2M− 1
2 } is satisfied with ε̄ = d−

1
2 in Lemma 34. Thus,

according to Lemma 34, until κt1 > 1− ε̄ holds (we let τ be the earliest time this condition holds),
κt1 is lower bounded by κ01 − ε̄ ≥ 1− 2c2.

One can also see that κt1 ≥ 1− 2c2 holds for all τ ≤ t ≤ (T1,1− t1) + (T1,2− t2). Suppose that
there exists some τ ′ < (T1,1 − t1) + (T1,2 − t2) such that κt1 < 1− ε̄. Among such τ ′, we focus on
the earliest time. According to Lemma 26, |κτ ′1 − κτ

′−1
1 | ≤ C1η1, which implies that κτ

′
1 ≥ 1− 2ε̄.

Then, According to Lemma 34, κt1 ≥ κτ
′

1 − c2 ≥ 1− 2c2 until κt1 gets larger than 1− ε̄ again. By
repeating this argument, we obtain that κ01 − ε̄ ≥ 1− 2c2 for all 0 ≤ t ≥ (T1,1 − t1) + (T1,2 − t2).

Then, we consider (T1,1− t1)+(T1,2− t2) ≤ t ≤ (T1,1− t1)+(T1,2− t2)+T1,3. By the choice
of η2 ≤ min{c4ε̃M− 1

2d−1, c4ε̃
2M− 1

2 }, η ≤ min{c4ε̄M− 1
2d−1, c4ε̄

2M− 1
2 } is satisfied with ε̄ = ε̃
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in Lemma 34. Suppose that κs1 ≤ 1− ε̃ holds for all s = (T1,1− t1)+ (T1,2− t2), · · · , (T1,1− t1)+
(T1,2 − t2) + T1,3, where

T1,3 =

⌊
3c2

(
η√
M

ε̃pαpβ1,p

)−1
⌋
+ 1.

According to Lemma 34, the bound of Lemma 34 holds for all s = (T1,1 − t1) + (T1,2 −
t2), · · · , (T1,1 − t1) + (T1,2 − t2) + T1,3:

κs1 ≥ 1− 2c2 − c2ε̃+ sε̃
η√
M

pαpβ1,p ≥ 1− 3c2 + sε̃
η√
M

pαpβ1,p. (B.31)

However, at t = (T1,1 − t1) + (T1,2 − t2) + T1,3,

(RHS of (B.31)) ≥ 1,

and thus RHS of (B.31) is clearly larger than 1− ε̃. This yields the contradiction. Therefore, with
high probability, there exists some t3 ≤ (T1,1 − t1) + (T1,2 − t2) + T1,3 such that κt31 > 1− ε̃.

Finally, suppose that there exists some t > t3 such that κt1 < 1− ε̃. Among such t > t3, we focus
on the smallest τ . According to Lemma 26, |κτ1 − κτ−1

1 | ≤ C1η2, which implies that κτ1 ≥ 1− 2ε̃.
Then, According to Lemma 34, κt1 ≥ 1 − 3ε̃ until κt1 gets larger than 1 − ε̃ again. By repeating
this argument, we obtain that κt1 > 1− 3ε̃ for all t3 ≤ t ≤ (T1,1 − t1) + (T1,2 − t2) + T1,3, which
concludes the proof. ■

B.7. Expressivity of the Trained Feature Map

In this section we discuss the expressivity of the feature map after first-layer training. First, we
consider the approximation of single-index polynomials and show the existence of suitable second-
layer parameters with small approximation error and low norm.

ReLU activation. For σ = ReLU, we have the following result.

Lemma 35 Suppose that bj ∼ Unif([−Cb, Cb]) with Cb = Õ(1), and consider the approximation
of degree-q polynomial h(s), where q = Od(1). Let v ∈ Sd−1(1) and v− = −v. Then, there exists
a1, . . . , a2N such that

sup
t=T1+1,··· ,T1+T2

∣∣∣∣∣∣ 1

2N

N∑
j=1

ajσ(v
⊤xt + bj)−

1

2N

2N∑
j=N+1

ajσ(v
⊤
−x

t + bj)− h(v⊤xt)

∣∣∣∣∣∣ = Õ(N−1),

Moreover, we have
∑2N

j=1 a
2
j = Õ(N) and

∑2N
j=1 |aj | = Õ(N).

Proof. According to Lemma 9 of [DLS22], if b ∼ Unif([−1, 1]) and δ ∼ Unif({−1, 1}), for any
k ≥ 0, there exists vk(δ, b) with |vk(δ, b)| ≲ 1 such that for all s with |s| ≤ 1,

E[vk(δ, b)σ(δs+ b)] = sk.
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Thus, for Cb = Õ(1), if b ∼ Unif([−Cb, Cb]) and δ ∼ Unif({−1, 1}), there exists v̄(δ, b;h) with
|v̄(δ, b;h)| = Õ(1) such that for all s with |s| ≤ Cb,

E[v̄(δ, b;h)σ(δs+ b)] = h(s).

We take Cb = Θ̃(1) sufficiently large so that for all xt (t = T1+1, · · · , T1+T2), |v⊤xt| ≤ Cb holds,
with high probability. For A = Θ̃(N), we consider 2A intervals [−Cb, Cb(−1 + 1

A)), [Cb(−1 +
1
A), Cb(−1 + 2

A)), · · · , [Cb(1− 1
A), Cb]. By taking the hidden constant sufficiently small, for each

interval there exists at least one bj . Then, for bj corresponding to [Cb(−1 + i
A), Cb(−1 + i+1

A )),

we set aj = N
2

∫ Cb(−1+ i+1
A

))

Cb(−1+ i
A
)

v̄(1, b;h)db for 1 ≤ j ≤ N , and aj =
N
2

∫ Cb(−1+ i+1
A

))

Cb(−1+ i
A
)

v̄(−1, b;h)db

otherwise. Here we note that |aj | = Õ(1) holds for all j. If each interval contains more than one bj ,
we ignore all but one component by letting aj = 0. In doing so, since σ(s+ b) is 1-Lipschitz with
respect to s, we have

sup
t=T1+1,··· ,T1+T2

∣∣∣∣∣∣ 1

2N

N∑
j=1

ajσ(v
⊤xt + bj)−

1

2N

2N∑
j=N+1

ajσ(v
⊤
−x

t + bj)− h(v⊤xt)

∣∣∣∣∣∣ = Õ(N−1),

with high probability. Thus we obtain the assertion. ■

Polynomial Activation If σ is a degree-q polynomial, we have the following result.

Lemma 36 Suppose that bj ∼ Unif([−Cb, Cb]) with Cb = Õ(1), and consider the approximation
of degree-q polynomial h(s), where q = Od(1). Then, there exists a1, . . . , aN such that

sup
t=T1+1,··· ,T1+T2

∣∣∣∣∣∣ 1N
N∑
j=1

ajσ(v
⊤xt + bj)− h(v⊤xt)

∣∣∣∣∣∣ = Õ(N−1)

with high probability, where v ∈ Sd−1. Moreover, we have
∑N

j=1 a
2
j = Õ(N) and

∑N
j=1 |aj | =

Õ(N).

The lemma depends on the following result.

Lemma 37 Suppose that Cb ≥ q. For any polynomial h(s) with degree at most q, there exists
v̄(b;h) with |v̄(b;h)| ≲ Cb such that for all s,

E[v̄(b;h)σ(δs+ b)] = h(s).

Proof. When gq(s) = σ(s) is a degree-q polynomial,

gq(s) =

∫ 0

b=−q
σ(s+ b)db

is also a degree-q polynomial.
Let us repeatedly define

gq−i(s) := gq−(i−1)(s+ 1)− gq−(i−1)(s) (i = 1, 2, · · · , q),
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and let (ci,j) be coefficients so that (s− 1)i =
∑i

j=0 ci,js
j holds for all z. Then, by induction, gi(s)

is a degree-i polynomial. Moreover, we have

gq−i(s) =
i∑

j=0

ci,j

∫ 0

b=−q
σ(s+ b+ j)db

= 2CbEb∼Unif([−Cb,Cb])

[( i∑
j=0

ci,j1[j − q ≤ b ≤ j]

)
σ(s+ b)

]
,

when Cb ≥ q. Therefore, for any polynomial h(s) with its degree at most q, there exists v̄(b;h) with
|v̄(b;h)| ≲ Cb such that for all s,

E[v̄(b;h)σ(δs+ b)] = h(s).

■

Proof of Lemma 36. We now discretize Lemma 37. For A = Θ̃(N) (with a sufficiently
small hidden constant), we consider 2A intervals [−Cb, Cb(−1 + 1

A)), [Cb(−1 + 1
A), Cb(−1 +

2
A)), · · · , [Cb(1 − 1

A), Cb]. By taking the hidden constant sufficiently small, for each interval
there exists at least one bj . Then, for bj corresponding to [Cb(−1 + i

A), Cb(−1 + i+1
A )), we set

aj =
N
2

∫ Cb(−1+ i+1
A

))

Cb(−1+ i
A
)

v̄(b;h)db. Here we note that |aj | = Õ(1) holds for all j. Due to Lipschitzness

of σ, we have ∣∣∣∣∣∣ 1N
N∑
j=1

ajσ(s+ bj)− h(s)

∣∣∣∣∣∣ = Õ(N)

for all s = Õ(1). Because |v⊤xt| = Õ(1) with high probability, we have

sup
t=T1+1,··· ,T1+T2

∣∣∣∣∣∣ 1N
N∑
j=1

ajσ(v
⊤xt + bj)− h(v⊤xt)

∣∣∣∣∣∣ = Õ(N−1)

with high probability, which yields the assertion. ■

Next, by using the expressivity results above, we show that there exists some a∗ that can
approximate the additive target function f∗.

Lemma 38 If J ≳ JminM
Cp log d, and σ is either of the ReLU activation or any univariate

polynomial with degree q, there exists some parameters a∗ = (a∗j )
J
j=1 ∈ RJ such that

1

T2

T1+T2∑
t=T1+1

 1

J

J∑
j=1

a∗jσ(ŵ
⊤
j x

t + bj)−
1√
M

M∑
m=1

fm(v⊤mxt)

2

≤ C1M(|Jmin|−2 + ε̃2),

where ∥a∗∥22 = Õ(J2|Jmin|−1) and ∥a∗∥1 = Õ(JM
1
2 ).
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Proof. We only discuss the case of the ReLU activation; the result for degree-q polynomial link
functions follows from the exact same analysis. Let J̃m,+ be a set of neurons satisfying ŵj ≥ 1− 3ε̃
and J̃m,− be a set of neurons with ŵj ≤ −1 + 3ε̃. Also, we let J̃m = J̃m,+ ∪ J̃m,−. According to
Lemma B, when J ≳ JminM

Cp log d, we have |J̃m,+|, |J̃m,−| ≥ Jmin with high probability.
If j /∈

⋃
m J̃m, we set aj = 0. Also, if J̃m,+ or J̃m,− contains more than Jmin neurons, we

ignore the rest by simply setting aj = 0. Then,

1

T2

T1+T2∑
t=T1+1

 1

J

J∑
j=1

ajσ(ŵ
⊤
j x

t + bj)−
1√
M

M∑
m=1

fm(v⊤mxt)

2

=
1

M

M∑
m,m′=1

1

T2

T1+T2∑
t=T1+1

(√
M

J

∑
j∈J̃m

ajσ(ŵ
⊤
j x

t + bj)− fm(v⊤mxt)

)
(√

M

J

∑
j∈J̃m′

ajσ(ŵ
⊤
j x

t + bj)− fm′(v⊤m′xt)

)
.

For each m, we evaluate |
√
M
J

∑
j∈J̃m ajσ(ŵ

⊤
j x+ b∗j )− fm(v⊤mx)|. For the j-th neuron in J̃m,+, by

using aj in Lemma 35 with N = |J̃min|, we define a∗j ← J
2|Jmin|

√
M
aj ; similarly for the j-th neuron

in J̃m,−, we define a∗j ← J
2|J̃min|

√
M
aN+j . We obtain that∣∣∣∣∣

√
M

J

∑
j∈J̃m

a∗jσ(ŵ
⊤
j x+ b∗j )− fm(v⊤mx)

∣∣∣∣∣
≤

∣∣∣∣∣
√
M

J

∑
j∈J̃m

a∗jσ(δjv
⊤
mx+ b∗j )− fm(v⊤mx)

∣∣∣∣∣+
∣∣∣∣∣
√
M

J

∑
j∈J̃m

(a∗jσ(ŵ
⊤
j x+ b∗j )− a∗jσ(δjv

⊤
mx+ b∗j ))

∣∣∣∣∣
≤ C1(|Jmin|−1 + ε̃).

The norm can be calculated from the construction. ■

B.8. Fitting the Second Layer

This subsection proves the generalization error in Lemma 21, which concludes the proof of Theorem 4
together with the guarantee for the first-layer training (Lemma B).

Let â be the regularized empirical risk minimizer with L1 or L2 norm regularization:

â := argmin
a∈RJ

L̂(a) + λ̄

r
∥a∥rr,

where L̂(a) := 1
T2

∑T1+T2−1
t=T1+1 (yt − 1

J

∑J
j=1 ajσ(ŵ

⊤
j x

t + bj))
2 and r ∈ {1, 2}. Let fa(x) :=

1
J

∑J
j=1 ajσ(ŵ

⊤
j x+ bj). Then, by the equivalence between convex regularizer and norm-constraint,

there exists λ̄ > 0 (which can be data dependent) such that

L̂(â) ≤ L̂(a∗), ∥a∥r ≤ ∥a∗∥r (r = 1 or 2). (B.32)
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Indeed, let gB : RJ → R ∪ {∞} be the indicator function of the Lp-norm ball with radius B > 0:

gB(x) =

{
0 (∥x∥r ≤ B)

∞ (∥x∥r > B)
. Then, the minimizer of the following norm constraint optimization

problem
x̂ := argmin

x∈RJ

L̂(x) + gB(x),

should satisfy ∇L̂(x̂) ∈ −∂gB(x̂) where ∂gB(x̂) is the subgradient of gB at x̂. We notice that
any element v in ∂gB(x̂) can be expressed by v = cv′ for some c ≥ 0 and v′ ∈ ∂∥x∥r|x=x̂. This
means that the minimizer x̂ of the norm-constrained problem is also the minimizer of the regularized
objective L̂(x) + c∥x∥r. By resetting the value c as c← c/(p∥x̂∥r−1), it is also the minimizer of the
objective L̂(x) + c∥x∥rr.

Lemma 21 Suppose that J = Θ(JminM
Cp log(d)), and σ be either of the ReLU activation or any

univariate polynomial with degree q. There exists λ > 0 such that the ridge estimator â satisfies

Ex[|fâ(x)− f∗(x)|] ≲ M
1
2 (|Jmin|−1 + ε̃) +

√
MCp log(d)

T2

with probability 1 − od(1). Therefore, by taking T2 = Θ̃(MCpε−2), ε̃ = Θ̃(M− 1
2 ε), Jmin =

Θ̃(M
1
2 ε−1), and J = Θ̃(MCp+

1
2 ε−1), we have Ex[|fâ(x)− f∗(x)|] ≲ ε.

On the other hand, for LASSO (r = 1) we have

Ex[|fâ(x)− f∗(x)|] ≲ M
1
2 (|Jmin|−1 + ε̃) +

√
J
2/s
minM

2Cp/s+1 log(d)2/s

T2

with probability 1 − od(1), for arbitrary s < ∞ (where the hidden constant may depend on

s). Therefore, by taking T2 = Θ̃(M1+
2Cp+1

s ε−2− 2
s ), ε̃ = Θ̃(M− 1

2 ε), Jmin = Θ̃(M
1
2 ε−1), and

J = Θ̃(MCp+
1
2 ε−1), we have Ex[|fâ(x)− f∗(x)|] ≲ ε (here we ignore polylogarithmic factors).

Proof. Let Fa∗ := {fa | ∥a∥r ≤ ∥a∗∥r} and PT2 be the empirical distribution of the second stage:
PT2 := 1

T2

∑T1+T2
t=T1+1 δxt . If we choose λ as mentioned above, â satisfies the condition (B.32), which

yields that fâ ∈ Fa∗ . Therefore, we have that

∥fâ − f∗∥L1(Px)

= ∥fâ − f∗∥L1(Px) − ∥fâ − f∗∥L1(PT2
) + ∥fâ − f∗∥L1(PT2

)

≤ sup
a∈RJ :∥a∥≤∥a∗∥

[
∥fa − f∗∥L1(Px) − ∥fa − f∗∥L1(PT2

)

]
+ ∥fâ − f∗∥L2(PT2

). (B.33)

(1) First, we bound the second term ∥fâ − f∗∥L2(PT2
). Since L̂(fâ) ≤ L̂(fa∗), we have that

∥fâ − f∗∥2L2(PT2
) ≤ ∥fa∗ − f∗∥2L2(PT2

) +
2

T2

T1+T2∑
t=T1+1

(fa∗(x
t)− fâ(x

t))νt.
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By the Hoeffding inequality, we have that

2

T2

T1+T2∑
t=T1+1

(fa∗(x
t)− fâ(x

t))ϵt = Õ

√∥fa∗ − fâ∥2L2(PT2
)

T2

,

with high probability. The right hand side can be further bounded by

Õ

√∥fa∗ − fâ∥2L2(PT2
)

T2

 ≤ Õ

√∥fa∗ − f∗∥2L2(PT2
)
+ ∥fâ − f∗∥2L2(PT2

)

T2


≤ 1

2
∥fâ − f∗∥2L2(PT2

) +
1

2
∥fa∗ − f∗∥2L2(PT2

) + Õ

(
1

T2

)
,

by the Cauchy-Schwarz inequality. Then, by moving the term 1
2∥fâ − f∗∥2L2(PT2

) in the right hand
side to the left hand side, we have that

∥fâ − f∗∥2L2(PT2
) ≤ 3∥fa∗ − f∗∥2L2(PT2

) + Õ

(
1

T2

)
,

with high probability. This also yields that

∥fâ − f∗∥L2(PT2
) ≤
√
3∥fa∗ − f∗∥L2(PT2

) + Õ

(
1√
T2

)
= Õ

(
M

1
2 (|Jmin|−

1
2 + ε̃

1
2 ) +

1√
T2

)
,

where we used ∥fa∗ − f∗∥L2(PT2
) = Õ(M

1
2 (|Jmin|−

1
2 + ε̃

1
2 )) by Lemma 38.

(2) The first term in (B.33) can be bounded by the standard Rademacher complexity argument (e.g.,
Chapter 4 of [Wai19]). Specifically, its expectation can be bounded as

E
(xt)

T1+T2
t=T1+1

[
sup
a∈RJ

(
∥fa − f∗∥L1(Px) − ∥fa − f∗∥L1(PT2

)

)]
(B.34)

≤2E
(xt,σt)

T1+T2
t=T1+1

 sup
a∈RJ

 1

T2

T1+T2∑
t=T1+1

σt|fa(xt)− f∗(x
t)|


≤4E

(xt,σt)
T1+T2
t=T1+1

 sup
a∈RJ

 1

T2

T1+T2∑
t=T1+1

σtfa(x
t)


︸ ︷︷ ︸

=:Rad(Fa∗ )

+4E
(xt,σt)

T1+T2
t=T1+1

 1

T2

T1+T2∑
t=T1+1

σtf∗(x
t)

, (B.35)

where (σt)
T1+T2
t=T1+1 is the i.i.d. Rademacher sequence which is independent of (xt)T1+T2

t=T1+1 and
we used the vector valued contraction inequality of the Rademacher complexity in the last in-
equality [Mau16]. Unfortunately, f∗(X) is neither bounded nor sub-exponential, and thus we
cannot naively apply the Bernstein type concentration inequality to evaluate the right hand side.
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Hence, we utilize Markov’s inequality instead to convert (B.34) to a high probability bound on
supa∈RJ :∥a∥≤∥a∗∥

[
∥fa − f∗∥L1(Px) − ∥fa − f∗∥L1(PT2

)

]
.

From Lemma 48 of [DLS22] and its proof, for either of ReLU and polynomial activation, we
have

Rad(Fa∗) ≲

√
1

T2

∥a∗∥r
J

max
j
{(JEx[σj(ŵ

⊤
j x+ bj)

s])1/s},

for arbitrary s ≤ 1/(1−1/r). However, since maxj{ŵj , bj} = O(1), we have maxj{Ex[σj(ŵ
⊤
j x+

bj)
s]} = O(1) whenever s < ∞ by noting that ŵ⊤

j x is a Gaussian distribution with variance
Var(ŵ⊤

j x) = O(1), which yields that the right hand side can be bounded as

Rad(Fa∗) ≲

√
1

T2

∥a∗∥2
J1/2

(r = 2),

Rad(Fa∗) ≲

√
1

T2

∥a∗∥1
J1−1/s

(r = 1),

where arbitrary s <∞ (the hidden constant depends on s).
Applying Lemma 17 to the second term of (B.35) yields that

E

 1

T2

T1+T2∑
t=T1+1

σtf∗(x
t)

 ≤
√√√√√E

 1

T2

T1+T2∑
t=T1+1

f2
∗ (x

t)


=

1√
T2

√
E[f2

∗ (X)] ≲
2q+1

√
T2

.

(3) By combining evaluations of (1) and (2) together and ignoring polylogarithmic factors, we
obtain that

∥fâ − f∗∥L1(Px) ≲ M
1
2 (|Jmin|−1 + ε̃) +

1√
T2

+

√
1

T2

∥a∗∥r
J1/2

. (B.36)

We set J = Θ(JminM
Cp log d). Thus, for r = 2, by using Theorem 38, we have

(B.36) ≲ M
1
2 (|Jmin|−1 + ε̃) +

1√
T2

+

√
1

T2
J

1
2 |Jmin|−

1
2

≲ M
1
2 (|Jmin|−1 + ε̃) +

√
MCp log(d)

T2
.

Thus, by setting T2 = Θ̃(MCpε−2), ε̃ = Θ̃(M− 1
2 ε), and Jmin = Θ̃(M

1
2 ε−1), we obtain that

(B.36) ≲ ε.
Similarly, for r = 1, by Theorem 38, we have

(B.36) ≲ M
1
2 (|Jmin|−1 + ε̃) +

1√
T2

+

√
1

T2

JM
1
2

J1−1/s
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≲ M
1
2 (|Jmin|−1 + ε̃) +

√
J
2/s
minM

2Cp/s+1 log(d)1/s

T2
.

Thus, by setting T2 = Θ̃(M1+
2Cp+1

s ε−2− 2
s ), ε̃ = Θ̃(M− 1

2 ε), and Jmin = Θ̃(M
1
2 ε−1) with a suffi-

ciently large s, we obtain that (B.36) ≲ ε. ■

Appendix C. Proof of CSQ Lower Bounds

We consider the CSQ lower bound for the following class Fp,q
d,M,ς :

x ∼ N (0, Id), y =
1√
M

M∑
m=1

fm(v⊤mx) + ν,

where fm =
∑q

i=p am,iHei with vk ∈ Sd−1, |am,p| ≳ 1, Et∼N (0,1)[|fm(t)|2] = 1 (m = 1, · · · ,M),
and ν ∼ N (0, ς2). For the lower bound we may assume ς = 0 since this is the easiest case for the
learner.

The correlational statistical query (CSQ) returns an expectation of the correlation between y and
a query function q : X → R up to an arbitrary (adversarial) error bounded by τ .

Definition 39 (Correlational statistical query) For a function g : X → R and parameters ς , the
correlational statistical query oracle CSQ(g, ς, τ) returns

Ex,y[yg(x)] + ν,

where ν is an arbitrary noise that takes any value in ν ∈ [−τ, τ ].

Without loss of generality, we assume ∥g∥L2 = 1. We prove the lower bounds on CSQ learner below.

C.1. Proof of Theorem 9(a)

We consider the following model with ς = 0:

x ∼ N (0, Id), y = f∗(x) =
1√
M

M∑
m=1

1√
p!
Hep(v

⊤
mx),

where {v1, · · · , vM} is a randomly sampled subset (without duplication) of the set S specified below.
Also, the following lemma guarantees that when M = õ(d

p
4 ) we have |E[y2]− 1| = o(1).

Lemma 40 For any A and d, there exists a set S of A unit vectors in Rd such that, for any u, v ∈ S,
u ̸= v, the inner product |u⊤v| is bounded by d−

1
2
√
2 logA.

Proof. Let us sample A independent vectors v1, · · · , vA from the d-dimensional hypercube
[
−

1√
d
, 1√

d

]d. For each pair of vi and vj (i ̸= j), Hoeffding’s inequality yields

P[|v⊤i vj | ≥ t] ≤ 2e−t2d.
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By setting t = d−1/2
√
2 logA, we have |v⊤i vj | ≤ d−1/2

√
2 logA with probability no less than

1 − 2
A2 . Taking the union bound, |v⊤i vj | ≤ d−1/2

√
2 logA holds for all (i, j) with probability no

less than 1− A(A−1)
A2 > 0. This proves the existence of the desired S. ■

As a result, we obtain a set of functions
{

1√
p!
Hep(v

⊤x) | v ∈ S
}

with small pairwise correlation:∫
1√
p!
Hep(u

⊤x) · 1√
p!
Hep(v

⊤x)
1

(2π)
d
2

e−
∥x∥2

2 dx = (u⊤v)p ≤ d−
p
2 (2 logA)

p
2 .

Based on this calculation, we know that each correlational query cannot obtain information of
the true function, except for the case when the true function is in a polynomial-sized set, as shown in
[Szö09].

Lemma 41 Suppose thatF = {f1, · · · , fK} is a finite set of functions such that |Ex∼N (0,Id)[fi(x)fj(x)]| ≤
ε for all pairs of fi and fj with fi ̸= fj . Then, for any query h satisfying ∥h∥L2 ≤ 1, there are at
most 2

τ2−ε
functions fi that satisfy

∣∣Ex∼N (0,Id)[f(x)h(x)]
∣∣ ≥ τ.

Proof. Let

S+ :=
{
i ∈ [K] | Ex∼N (0,Id)[fi(x)h(x)] > τ

}
and S− :=

{
i ∈ [K] | Ex∼N (0,Id)[fi(x)h(x)] < −τ

}
.

Then, because ∥h∥ ≤ 1, Cauchy-Schwarz inequality yields

|S+|2τ2≤ E

h(x) ∑
i∈S+

fi(x)

2

≤ E

∑
i∈S+

fi(x)

2≲ |S+|+ ε(|S+|2 − |S+|).

Therefore, we have that

|S+| ≤
1− ε

τ2 − ε
≤ 1

τ2 − ε
.

The same argument applies to |S−|. ■

Proof of Theorem 9(a).
Consider the number of queries Q, the sequence of query {g1, · · · , gQ}, and tolerance τ .
According to Lemmas 40 and 41, if

Q · 2dC

τ2 − d−
p
2 (2 logA)

p
2

≤ A, (C.1)

for some C > 0, there exists at least A(1− d−C) vectors v ∈ S such that∣∣∣∣E[ 1√
p!
Hep(v

⊤x)gi(x)

]∣∣∣∣ ≤ τ (i = 1, · · · , Q).

Now we consider the minimum value of τ to satisfy (C.1). If we take

A ≳ Qd
p
4
+C and τ ≳ d−

p
4 (2C logQd)

p
4 ,
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we have

(LHS of (C.1)) ≲ Q · d
p
4 (C logQd)−

p
4 ≲ A(C logQd)−

p
4 ≤ A,

which confirms (C.1).
Now consider the width-M additive model, for each query, we return the value of

E

[
1√
M

M−1∑
m=1

1√
p!
Hep(v

⊤
mx)gi(x)

]

so that the learner cannot find the true vM among A(1− d−C) possible directions, with probability at
least 1− d−C . Failing to do so incurs an L2-error of Ω

(
1
M

)
. This is because for two sets of vectors

{vm}Mm=1 and {ṽm̃}Mm̃=1 in the set S, we have

E

(
1√
M

M∑
m=1

1√
p!
Hep(v

⊤
mx)− 1√

M

M∑
m=1

1√
p!
Hep(ṽ

⊤
mx)

)2

≥ 2− 2
1

M

M∑
m,m̃=1

(ṽ⊤m̃vm)p,

and ṽ⊤m̃vm = 1 holds for at most M − 1 pairs and |ṽ⊤m̃vm| ≤ d−
p
2 (2 logA)

p
2 for the others if

{vm}Mm=1 ̸= {ṽm̃}Mm̃=1. Therefore, we conclude that if τ ≳ M− 1
2d−

p
4 (C logQd)

p
4 , the CSQ learner

cannot achieve an L2-error smaller than O
(

1
M

)
with probability more than d−C . ■

C.2. Noisy CSQ and Proof of Theorem 9(b)

Now we prove the latter part of Theorem 9. We first explain why a lower bound with Ω(1) error
cannot be achieved by naively extending the argument for Theorem 9(a).

A naive argument would go as follows. Suppose we construct some f̂(x) = 1√
M

∑M
m=1

1√
p!
Hep(v̂

⊤
mx),

where {v̂1, · · · , v̂M} ⊂ S using queries with tolerance τ0. Then ∥f∗(x)− f̂(x)∥L2 ≤ 1 entails that
a constant fraction of {v1, · · · , vM} should be identified. Therefore, we may use such a CSQ learner
to learn a single-index function 1√

M
1√
p!
Hep(v

⊤
1 x) as follows. If we add 1√

M

∑M
m=2

1√
p!
Hep(v

⊤
mx)

and apply the CSQ learner for 1√
M

∑M
m=1

1√
p!
Hep(v

⊤
mx), the learner would identify Ω(1)-fraction

of {v1, · · · , vM} with probability Ω(1). On the other hand, according to Theorem 9(a), learning
1√
M

1√
p!
Hep(v

⊤
1 x) requires τ ≲ M− 1

2d−
p
4 (C logQd)

p
4 = Õ(M− 1

2d−
p
4 ), with high probability. We

may identify v1 with high probability by repeating this process for Õ(1) rounds; the CSQ lower
bound for single-index model therefore implies that τ0 ≲ M− 1

2d−
p
4 .

The mistake in the above derivation is that, for the additive model 1√
M

∑M
m=1

1√
p!
Hep(v

⊤
mx),

since the target direction v1 to be hidden is not known by the oracle beforehand, the (adversarial)
oracle should prevent the identification of as many directions v1, v2, ..., vM as possible; whereas in
the single-index setting 1√

p!
Hep(v

⊤
1 x), the oracle only need to “hide” one direction. Consequently,

we cannot directly connect the identification of Ω(1)-fraction of target directions in the additive
model setting to the CSQ lower bound for learning single-index model.

To overcome this issue, we introduce the following sub-class of CSQ algorithms with i.i.d. noise.
Because the noise is not adversarial but random, the oracle for the single index model does not
use the information of the target direction, and hence the lower bound for single-index model now
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implies the failure of learning Ω(1) fraction of directions. On the other hand, since the noise is no
longer adversarial, our lower bound in Theorem 9(b) has weaker the query dependence compared to
Theorem 9(a).

Definition 42 (Noisy CSQ) For a function g : X → R and parameters (ς, τ), noisy correlational
statistical query oracle NoisyCSQ(g, ς, τ) returns

Ex,y[yg(x)] + ν,

where ν follows from the following clipped Gaussian distribution:

ν = max{−τ,min{ν̃, τ}}, ν̃ ∼ N (0, ς2).

The clipping operation matches the noisy CSQ with (ς, τ) with the standard CSQ with a tolerance
τ . The following theorem gives a lower bound for noisy CSQ algorithms to learn a single-index
polynomial.

Theorem 43 For any p ≥ 0, ς > 0, 1 > τ > 0, Q > 0, C ≫ 0 and M = õ(d
p
4 ), consider learning

f(x) = 1√
p!
Hep(v

⊤x), where v is sampled from some distribution over Sd−1. Suppose that

ς ≲
τ√

logQd
. (C.2)

Then, for any learner using Q noisy correlational queries NoisyCSQ(g, ς, τ), the tolerance τ must
satisfy

τ ≲ Q
1
2

√
d−

p
2 (log dQ)

p
2
+2.

Otherwise, the learner cannot return f̂(x) = 1√
p!
Hep(v̂

⊤x) such that ∥f(x) − f̂(x)∥L2 ≤ 1 with

probability more than O(d−C).

Proof. Due to the choice (C.2), we know that the clipping operation on the Gaussian noise does not
make a difference with probability 1− d−C . Thus in the following we simply consider that the pure
Gaussian noise is added to the expectation. We assume that the distribution where v is sampled from
is the uniform distribution over the set S consisting of A vectors, which is defined in Lemma 40.
Here A is taken as

A ≃ Qd
p
2
+2,

so that it satisfies

Q · 2dC

2d−
p
2 (2 logA)

p
2 − d−

p
2 (2 logA)

p
2

≤ A.

As an intermediate claim, we show that if E[q1(x)y], · · · ,E[qi(x)y] are bounded by d−
p
2 (2 logA)

p
2 ,

then E[qi+1(x)y] is also bounded by 2d−
p
2 (2 logA)

p
2 with probability at least 1−O(Q−1d−C). As-

sume that E[q1(x)y], · · · ,E[qi(x)y] are bounded by d−
p
2 (2 logA)

p
2 . According to Lemma 41, for

each query q(x), there are at most 2

d−
p
2 (2 logA)

p
2

vectors that has correlation larger than d−
p
2 (2 logA)

p
2 .
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Thus, there are at least (1− d−C) 2QdC

d−
p
2 (2 logA)

p
2

possible vectors that satisfy the assumption. Under

this, use Lemma 44 with amax =

√
2d−

p
2 (2 logM)

p
2 and D = Ω( QdC

d−
p
2 (logA)

p
2
). Then, when

ς ≳ Q
1
2

√
d−

p
2 (log dQ)

p
2
+1,

we cannot find the desired vector with probability more than O(D−1) = O( Q−1d−C

d
p
2 (2 logA)−

p
2
). This also

implies that we cannot find any vector that satisfies |E[qi+1(x)y]| > d−
p
2 (2 logA)

p
2 with probability

more than O(Q−1d−C); this is because otherwise we can select one of 2

2d−
p
2 (2 logA)

p
2 −d−

p
2 (2 logA)

p
2

vectors that satisfy |E[qi+1(x)y]| > d−
p
2 (2 logA)

p
2 and output as the prediction of the true vector,

which would succeed with probability more than O( Q−1d−C

d
p
2 (2 logA)−

p
2
).

Now, we obtain that, with probability at least 1 − O(d−C), E[q1(x)y], · · · ,E[qQ(x)y] are all
bounded by d−

p
2 (2 logA)

p
2 . Again, there are at least (1− d−C) 2QdC

d−
p
2 (2 logA)

p
2

possible vectors that

satisfy the conditions E[q1(x)y], · · · ,E[qQ(x)y] ≤ d−
p
2 (2 logA)

p
2 . Under this, we apply Lemma 44

with the same amax and D−1 as previously, and hence we cannot identify the right vector with
probability more than O(D−1) = O( Q−1d−C

d
p
2 (2 logA)−

p
2
) ≲ O(d−C).

Therefore, we cannot return the correct vector in A with probability more than O(d−C). ■

Lemma 44 Let Ai = (ai,1, · · · , ai,Q) ∈ RQ (i = 1, · · · , D) be sequences of Q real values
satisfying |ai,j | ≤ amax. Suppose that one of Ai is uniformly randomly chosen an observation
(b1, · · · , bQ) ∈ RQ is generated as

bj ∼ N (ai,j , ς
2) (j = 1, · · · , Q).

Then, if

ς ≳ Q
1
2amax

√
logD, (C.3)

any algorithm cannot identify which Ai is selected with probability more than 1−O(D−1).

Proof. The optimal strategy is to calculate the likelihood function and select the one with which the
index i takes the largest value. Let the likelihood function of the i-th sequence be pi(b) for B ∈ RQ.
We aim to bound the success probability by O(D−1).∫

1

D
max

i
pi(B)dB ≲

1

D
. (C.4)

To simplify the discussion, we assume ς = 1 (because scaling does not affect whether the statement
holds). Then, (C.3) implies a2max ≤ 2Q−1. We have

(C.4)×D ≤ 1

(2π)
Q
2

∫
exp

(
−∥B∥

2

2
+ max

i
B⊤Ai

)
dB. (C.5)
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We bound the expectation of exp(maxiB
⊤Ai) conditioned on ∥B∥. By Hoeffding’s inequality,

maxiB
⊤Ai ≤ amax∥B∥

√
log δ−1 with probability at least 1− δ. Thus,

EB∼SQ−1(∥B∥)[exp(max
i

B⊤Ai)] ≤
∞∑
i=1

1

2i
exp

(
amax∥B∥

√
log(D2i)

)
≲
∫ ∞

t=1
exp
(
amax∥B∥

√
log(D2t)− t log 2

)
dt

≲ eamax∥B∥
√
logD

∫ ∞

t=1
exp
(
amax∥B∥

√
t log 2− t log 2

)
dt

≲ amax∥B∥ exp
(
a2max∥B∥2

4
+ amax∥B∥

√
logD

)
+ 1.

Applying this to (C.5) yields

(C.5) ≲
1

(2π)
Q
2

∫
amax∥B∥ exp

(
−(1−Q−1)∥B∥2

2
+ amax∥B∥

√
logD

)
dB + 1.

Here we used a2max ≤ 2Q−1. We bound the first term as follows:

1

(2π)
Q
2

∫
amax∥B∥ exp

(
−(1−Q−1)∥B∥2

2
+ amax∥B∥

√
logD

)
dB

=
(1−Q−1)−

Q+1
2

(2π)
Q
2

∫
amax∥B′∥ exp

(
−∥B

′∥2

2
+

amax∥B′∥
√
logD√

1−Q−1

)
dB′ (B′ = (1−Q−1)

1
2B)

=
2amax(1−Q−1)−

Q+1
2

2
Q
2 Γ(Q2 )

∫ ∞

s=0
e
− s2

2
+amaxs

√
logD√

1−Q−1 sQds (s = ∥B′∥)

=
amax2

Q+1
2 (1−Q−1)−

Q+1
2

2
Q
2 Γ(Q2 )

[√
2amax

√
logD√

1−Q−1
Γ

(
Q

2
+ 1

)
1F1

(
Q

2
+ 1;

3

2
;
a2max logD

2(1−Q−1)

)

+ Γ

(
Q+ 1

2

)
1F1

(
Q+ 1

2
;
1

2
;
a2max logD

2(1−Q−1)

)]
, (C.6)

where 1F1(x1;x2;x3) is the confluent hypergeometric function of the first kind defined as

1F1(x1;x2;x3) =
∞∑
n=0

x1(x1 + 1) · · · (x1 + n− 1)

x2(x2 + 1) · · · (x2 + n− 1)

xn3
n!

=
∞∑
n=0

1

n!

n−1∏
i=0

(x1 + i)x3
x2 + i

.

We can evaluate 1F1

(
Q
2 + 1; 32 ;

a2max logD
2(1−Q−1)

)
as

1F1

(
Q

2
+ 1 :

3

2
;
a2max logD

2(1−Q−1)

)
=

∞∑
n=0

1

n!

n−1∏
i=0

(Q2 + 1 + i)a
2
max logD
2(1−Q−1)

3
2 + i

≲ 1,
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if (Q2 +1)a
2
max logD
2(1−Q−1)

≤ 3
2 ⇔ 1 ≳ Qa2max logD holds. In the same way, we have 1F1

(
Q+1
2 ; 12 ;

a2max logD
2(1−Q−1)

)
≲

1 if 1 ≳ Qa2max logD holds. Also, (1−Q−1)−
Q+1
2 ≲ 1. Thus, we have

(C.6) ≲
amax2

Q+1
2

2
Q
2 Γ(Q2 )

[
amax

√
logDΓ

(
Q

2
+ 1

)
+ Γ

(
Q+ 1

2

)]

≤ amax2
1
2

Γ(Q2 )

[
amax

√
logDΓ

(
Q

2
+ 1

)
+ Γ

(
Q+ 1

2

)]

≤ a2max

√
2
√

logD

(
Q

2
+ 1

)
+ amax

√
2

(
Q

2

) 1
2

≲ 1

where we used Γ(x + 1
2) =

∫∞
t=0 e

−ttx+
1
2dt ≤

(∫∞
t=0 e

−ttxdt
) 1

2
(∫∞

t=0 e
−ttx−1dt

) 1
2 ≤ (Γ(x +

1))
1
2 (Γ(x))

1
2 = x

1
2Γ(x) (by Hölder’s inequality; this argument is borrowed from [Qi10]) and

amaxQ
1
2
√
logD ≤ 1. Therefore, we have successfully obtained (C.4) and the assertion follows.

■

Proof. [Proof of Theorem 9(b)] Consider learning the following model

x ∼ N (0, Id), y = f∗(x) =
1√
M

M∑
m=1

1√
p!
Hep(v

⊤
mx),

where {v1 · · · , vM} is a randomly sampled subset (without duplication) of the set S used in the proof
of Lemma 43. Recall that Lemma 40 guarantees that when M = õ(d

p
4 ) we have |E[y2]− 1| = o(1).

According to Theorem 43, for any learner using Q noisy correlational queries with parameters
(ς, τ), to learn a univariate polynomial 1√

p!M
Hep(v

⊤x), the tolerance must satisfy

τ ≲
Q

1
2 (log dQ)

p
4
+1

M
1
2d

p
4

,

otherwise, the learning will fail with probability more than 1−O(d−C).
If an algorithm learns F ⊂ Fp,q

d,M,ς with Q noisy correlation queries and returns a function
with L2-error smaller than 1, we know that the algorithm need to identify at least Ω(1)-fraction of
directions {v1, · · · , vM}. If so, we can use such a learner to solve the single-index polynomials, by
adding M − 1 random functions 1√

p!
Hep(v

⊤
mx) to the given single-index polynomial and then apply

the algorithm. The lower bound therefore follows from the single-index CSQ lower bound stated in
Theorem Theorem 43. ■

Appendix D. Proof of SQ Lower Bound

This section considers the SQ lower bound for Fp,q
d,M,ς . The statistical query oracle is formally defined

as follows, which covers the previous CSQ as a special case.
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Definition 45 For a function g : X × Y → R and a tolerance τ > 0, statistical query oracle
SQ(g, τ) returns any value in

[Ex,y[g(x, y)]− τ,Ex,y[g(x, y)] + τ ].

In the following, we assume bounded queries SQ: Rd × R→ [−1, 1].
As mentioned in the main text, one motivation of our consideration of SQ learner is the exis-

tence of efficient SQ algorithms that can solve multi-index regression beyond the CSQ complexity.
Specifically, the algorithm proposed in [CM20] learns single-index polynomials (i.e., the case of
K = 1) with sample complexity Õ(d) for any constants p, q = Od(1); this result can also include
the multi-index model up to K = O(1), under a certain non-degeneracy condition. In the first stage
of their algorithm, the labels y are transformed so that the information exponent is reduced to 2,
which enables a warm start; after that, projected gradient descent exponentially converges to the
relevant directions. Although [CM20] only considered the noiseless case (i.e., ς = 0), it is easy to
extend their strategy to the noisy setting. Specifically, the warm-start algorithm can handle label
noise with standard concentration arguments, and for the second stage, Õ(d) sample complexity is
also obtained despite the loss of exponential convergence.

However, Theorem 11 suggests that such linear-in-d complexity is no longer feasible for SQ
learners to learn our additive model class. Specifically, our lower bound implies that for M ≍ dγ

with γ > 0, the exponent in the dimension dependence can be made arbitrarily large by varying
p, q = Od(1). This highlights the fundamental computational hardness of the larger M setting.

D.1. Superorthogonal Polynomials

Theorem 11 relies on the existence of superorthogonal polynomials defined in Lemma 13. Recall
that superorthogonality means that a polynomial and its 2-, · · · ,K-th exponentiations are orthogonal,
in a sense of inner product with respect to the standard Gaussian, to any polynomials up to degree
L whose expectation is 0. For K = 1, f(x) = HeL+1(x) satisfies the condition. However, for
K ≥ 2, it is far from trivial that such a function exists. We defer the proof of Proposition 13 to
Appendices D.2 and D.3, and proceed to explain how Proposition 13 is used in the SQ lower bound.

We utilize the following fact that the expectation E[q(x, y)] can be Taylor expanded with respect
to a small perturbation of y, due to the Gaussian noise added to y.

Lemma 46 Suppose that |g(x, y)| ≤ 1 for any (x, y) ∈ Rd × R. Then, for δ ≪ 1, we have

Eε∼N (0,ς2)[g(x, z + δ + ε)] =

K∑
k=0

ak(x, z)δ
k +O(δK+1),

where ak(x, z) =
1
k!

∫
g(x,w)

(
dk

dzk
e−(w−z)2/2ς2

)
dw = O(1).

Proof. The proof follows from the change-of-variables in integration. Specifically, by letting
w = z + δ + ε,

Eε∼N (0,ς2)[g(x, z + δ + ε)]

=

∫
g(x, z + δ + ε)e−ε2/2ς2dε
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=

∫
g(x,w)e−(w−z−δ)2/2ς2dw

=
K∑
k=0

1

k!

dk

dzk

∫
g(x,w)e−(w−z)2/2ς2dw︸ ︷︷ ︸

=:ak(x,z)

·δi

+
1

(K + 1)!

dK+1

dzK+1

∫
g(x,w)e−(w−z)2/2ς2dw

∣∣∣∣
z=z′
· δK+1 (for some z′)

=
K∑
k=0

∫
g(x,w)ak(x, z)δ

k +O(δK+1).

Note that each ai(x, z) is O(1) because |g(x,w)| ≤ 1. ■

Proof of Theorem 11. Suppose for sake of contradiction τ ≳ dρ. Let us take A = e
√
d in

Lemma 40. Then, we have a set of unit vectors S ⊆ Sd−1 such that two distinct vectors have an
inner product at most O(d−

1
4 ). To construct the target function, we randomly draw {vm}Mm=1 from

S and let fm = f for m = 1, · · · ,M , where f is a superorthogonal polynomial from Proposition 13
with K ≥ 2ρ

γ + 2 and L ≥ 4(γ + ρ) − 1. In addition, we construct a different target function
1√
M

∑M
i=1 f(v

′
m

⊤x) with {v′m}Mm=1 in the same fashion.

For each m, we prove that the following holds for at least 1 − Õ(e−
√
d(M2d2ρ)) fraction of

random choices of vm, v′m:

E

[
g

(
x,

1√
M

m−1∑
m′=1

f(v⊤m′x) +
1√
M

M∑
m′=m

f(v′m′
⊤
x) + ε

)]

=E

[
g

(
x,

1√
M

m∑
m′=1

f(v⊤m′x) +
1√
M

M∑
m′=m+1

f(v′m′
⊤
x) + ε

)]
+ o(M−1d−ρ). (D.1)

This is to say, when M is large, swapping one single-index task results in small change in the query
value. To see this, from Lemma 46, we have

Eε

[
q

(
x,

1√
M

m−1∑
m′=1

f(v′m′
⊤
x) +

1√
M

M∑
m′=m

f(v⊤m′x) + ε

)]

= Eε

[
q

(
x,

1√
M

m−1∑
m′=1

f(v′m′
⊤
x) +

1√
M

M∑
m′=m+1

f(v⊤m′x) + ε

)]

+

K∑
k=1

ak

(
x,

1√
M

m−1∑
m′=1

f(v′m′
⊤
x) +

1√
M

M∑
m′=m+1

f(v⊤m′x)

)
fk(v⊤mx)

M
i
2

+ o(M−K
2 ). (D.2)

Note that |
∫
f(v⊤i x)f(v

⊤
j x)e

−∥x∥2/2dx| ≲ d−(L+1)/4 ≲ M−1d−ρ if vi ̸= vj . Now from Lemma 41,
for each k, the number of vm that satisfy∣∣∣∣∣E

[
ak

(
x,

1√
M

m−1∑
m′=1

f(v′m′
⊤
x) +

1√
M

M∑
m′=m+1

f(v⊤m′x)

)
fk(v⊤mx)

M
i
2

]∣∣∣∣∣ ≥ 2M−1d−ρ,
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is at most O(M2d2ρ). Thus, except for O(KM2d2ρ) choices of vm, taking expectation of (D.2)
yields

(D.2) = Eε

[
g

(
x,

1√
M

m−1∑
m′=1

f(v′m′
⊤
x) +

1√
M

M∑
m′=m+1

f(v⊤m′x) + ε

)]

+

K∑
k=1

E

[
ak

(
x,

1√
M

m−1∑
m′=1

f(v′m′
⊤
x) +

1√
M

M∑
m′=m+1

f(v⊤m′x)

)]
E
[
fk(v⊤mx)

]
M

i
2

+ o(M−K
2 ).

(D.3)

Thus in similar fashion,

(D.3) = E

[
g

(
x,

1√
M

m∑
m′=1

f(v⊤m′x) +
1√
M

M∑
m′=m+1

f(v′m′
⊤
x) + ε

)]
+ o(M−1d−ρ),

which yields (D.1). By recursively applying (D.1), we have

E

[
q

(
x,

1√
M

M∑
m=1

f(v⊤mx) + ε

)]
= E

[
q

(
x,

1√
M

M∑
m=1

f(v′m
⊤
x) + ε

)]
+ o(d−ρ)

for (e
√
d − Õ(M2d2ρ))M ≥ e

√
dM (1− e−Ω(

√
d)) choices of v1, · · · , vM .

Therefore, we may return the value of E
[
g(x, 1√

M

∑M
m=1 f(v̄

⊤
mx) + ε)

]
for a specific choice of

{v̄m}Mm=1 fixed a priori, so that each query only removes at most e−Ω(
√
d) fraction of the possible

choices of v1, · · · , vM , but gives no information about the remaining directions. Thus, with probabil-
ity at least 1−Qe−Ω(

√
d), e

√
dM (1−Qe−Ω(

√
d)) possible choices of v1, · · · , vM are equally likely.

On the other hand, for each choice of 1√
M

∑M
m=1 f(v

⊤
mx), there are at most e

√
dM/2 possible choices

of f(v′1
⊤), · · · , f(v′M

⊤) if the L2-error between 1√
M

∑M
m=1 f(v

⊤
mx) and 1√

M

∑M
m=1 f(v

′
m

⊤x) is
less than 1; so in order to output a function with small O(1) error, we need to isolate one of the
O(e

√
dM ) possible hypotheses. This completes the proof of Theorem 11. ■

D.2. Reparameterization of Polynomials

The proof of Proposition 13 requires several new techniques. We begin by introducing an auxil-
iary class of polynomials {ha(x)} parameterized by a = (ak,l) ∈ [−1, 1]L×K that satisfies the
three properties below. This is to avoid adjusting coefficients of f(x) directly, because solving∫
(f(x))kHel(x)e

−x2/2dx = 0 (1 ≤ k ≤ K, 1 ≤ l ≤ L) as simultaneous high-order equations of
the coefficients would be difficult.

(P1) ha(x) ̸≡ 0.

(P2) For every 1 ≤ k ≤ K, 1 ≤ l ≤ L,
∫
(ha(x))

kHel(x)e
−x2/2dx is continuous with respect to a.

(P3)
∫
(ha(x))

kHel(x)e
−x2/2dx > 0 holds if ak,l = 1, and

∫
(ha(x))

kHel(x)e
−x2/2dx < 0 holds

if ak,l = −1.
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Figure 2: Illustration of the proof for I = 3. For each i = 1, 2, 3, a 2-dimensional curved surface πi on
which Ai(a) = 0 divides the hypercube. First, we take λ1 = π1. Then, we take the intersection
between λ1 and π2, which is a curved line and connects one of its boundary on S+

3 and the other
in S−

3 . Finally, we consider the intersection of λ2 and π3. Because λ2 connects the points in S+
3

and S−
3 while π3 divides the hypercube into the part containing S+

3 and the one containing S−
3 ,

λ3 = λ2 ∩ π3 is not an empty set and A1(a) = A2(a) = A3(a) = 0 holds on λ3.

The following lemma shows that these three properties entails the existence of a desired superorthog-
onal polynomial.

Lemma 47 If {ha(x)} satisfies (P1)-(P3), there exists some coefficient a such that
∫
(ha(x))

kHel(x)e
−x2/2dx =

0 holds for every 1 ≤ k ≤ K and 1 ≤ l ≤ L but
∫
(ha(x))

2e−x2/2dx > 0.

Proof. As handling two subscripts k, l can be notation-heavy, we prove the following restated claim.
For I ∈ N, we consider a vector a ∈ [−1, 1]I and functions Ai : RI → R, satisfying

(P2)’ For every i, Ai(a) is continuous with respect to a, and

(P3)’ Ai(a) > 0 holds if ai = 1, and Ai(a) < 0 holds if ai = −1,

and prove that there exists some a ∈ [−1, 1]I such that Ai(a) = 0 for all i. Regarding as (k, l) and
Ai as

∫
(ha(x))

kHel(x)e
−x2/2dx, this is equivalent to the assertion in the above lemma.

We name each surface of the hypercube [−1, 1]I as follows: the surface with ai = 1 is denoted
as S+

i and the surface with ai = −1 as S−
i . Because of (P2)’ and (P3)’, the hypercube [−1, 1]I

is divided into two parts by the curved surface πi ⊆ [−1, 1]I , on which Ai(a) = 0 holds, and the
surface is homeomorphic to [−1, 1]I−1. Clearly, one part contains S+

i and the other contains S−
i .

Now, we inductively see that there exists λi ⊂ [−1, 1]I homeomorphic to [−1, 1]I−i on which
Aj(a) = 0 holds. This is true for i = 1, by taking λ1 = π1. When this is true for i, and the
boundary of λi is on all surfaces of the hypercube except for S+

1 , · · · , S
+
i and S−

1 , · · · , S
−
i , we

can take λi+1 ⊆ λi ∩ πi+1, on which Aj(a) = 0 holds for j = 1, · · · , i + 1, which is homeomor-
phic to [−1, 1]I−(i+1), and the boundary of which is on all surfaces of the hypercube except for
S+
1 , · · · , S

+
i+1 and S−

1 , · · · , S
−
i+1. Therefore by induction, we obtain λI ⊆ λI−1∩πI , which contains

at least one point and on which Aj(a) = 0 holds for j = 1, · · · , I . See Figure 2 for illustration of
the case where I = 3. ■
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Our next goal is to construct {ha(x)} that satisfy the above properties. (P1) and (P2) are easily
checked in the following construction. To meet (P3), we introduce an auxiliary class of functions
{h∗a(x)} and will later approximate it using polynomials in Section D.3.

We first provide a high-level sketch on the construction of the auxiliary class {h∗a(x)} using
Figure 3. In particular, we need to adjust the following value to satisfy (P3)∫

(f(x))kHel(x)e
−x2/2dx. (D.4)

First, we fix the exponent k and consider to make the value (D.4) all 0 for l = 1, 2, · · · , L.
Directly adjusting coefficients of f(x) by regarding (D.4) as simultaneous high-order polynomials of
the coefficients of f(x) would be difficult. Instead, we re-parameterize the problem as an almost
linear simultaneous equation with respect to the new parameters.

Specifically, we consider a piecewise linear function defined as follows. First, we focus on (D.4)
for a specific k by considering a {0, 1}-valued function (See Figure 3(a)). We divide (an interval
of) the real line into equal intervals, which are indexed by i1 and i2, with width ε, and for each
interval, we assign a value of 1 to the left half and assign the remaining portion a value of 0. Then, we
consider the value of (D.4), which is the expectation of a multiplication of this function and a Hermite
polynomial Hel(x). If the interval gets small, this is approximately equal to taking expectations of a
multiplication between a constant function and the Hermite polynomial. In other words, the value of
(D.4) gets closer to 0 as the interval gets small smaller.

To modify the integral value for a specific l, we move the right end of each interval beginning
from xi, proportionally to the value of Hel(xi). If we move each right ends O(alεHel(xi)) (al is a
scalar), then (D.4) for the specific l changes almost linearly with respect to al, while (D.4) for the
other l remains (approximately) the same. In this way, we fine-tune the value of (D.4) for each l
separately by changing the parameter al.

Next, we consider how to simultaneously address different exponentiations k = 1, . . . ,K. We
divide each interval of width ε into K different sub-intervals indexed by 1, . . . ,K (see Figure 3(b)).
For the j-th sub-interval, we let the height of the indicator function to be j

K . If we change the length
of the j-th sub-interval proportionally to εαi1,i2,j (j = 1, 2, · · · ,K), this is approximately equivalent
to setting the value of each (f(x))k around xi1,i2 proportionally toV ·


αi1,i2,1

αi1,i2,2
...

αi1,i2,K



k

, (D.5)

where V ∈ RK×K is a variant of the Vandermonde matrix defined as follows:

V :=


1
K

2
K · · · 1

( 1
K )2 ( 2

K )2 · · · 1
...

...
...

( 1
K )K ( 2

K )K · · · 1

.

The following lemma implies that we can change each coordinate of V ·(αi1,i2,1, αi1,i2,2,
..., αi1,i2,K)⊤

in (D.5) arbitrarily by adjusting the values of αi1,i2,1, · · · , αi1,i2,K . In this way, we can control the
contribution of (f(x))k to the integral values separately for different k at each interval.
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(a) Approximating an integral value with 
indicator functions (b) Addressing different exponentiations

Figure 3: Approximation via piecewise constant function. Figure 3(a): shifting the right end of each
indicator function proportionally to f(xi) is approximately equivalent to subtracting O(f(x)) from
(h∗

a(x))
k in the sense of integral value. Figure 3(b): By considering the staircase function, we can

simultaneously modify the contribution of the different exponents of h∗
a(x) to the integral.

Putting it all together, we can adjust the integral values of (D.4) separately for each k and l
to satisfy (P3). After obtaining a function class {h∗a(x)} sketched above, approximating indicator
functions by polynomials yields the desired class {ha(x)} that satisfies (P1)-(P3) in Section D.3.

Lemma 48 The matrix V is invertible.

Proof. Let

Ṽx :=


1 1 · · · 1
x1 x2 · · · xK+1

(x1)
2 (x2)

2 · · · (xK+1)
2

...
...

...
(x1)

K (x2)
K · · · (xK+1)

K

. (D.6)

Because of the formula for the determinant of the block matrix, we have

det(Ṽx) = (−1)n · det




1 1 · · · 1
x1 x2 · · · xK

(x1)
2 (x2)

2 · · · (xK)2

...
...

...
(x1)

K (x2)
K · · · (xK)K

− 1 ·

xK+1
...

xKK+1

(1, · · · , 1)

.

It is a well-known fact on the Vandermonde matrix that det(Ṽx) ̸= 0 when xi ̸= xj for all i ̸= j. Let
x1 =

1
K , x2 =

2
K , · · · , xK = 1, xK+1 = 0. Then, the LHS of (D.6) is det(Ṽx) ̸= 0 and the RHS of

(D.6) is equal to (−1)ndet(V ). Therefore, we have obtained that det(V ) ̸= 0. ■

Now we formalize the above proof sketch. We let

M1 = max
a∈[−1,1]K

∥∥V −1a
∥∥
∞

and define the function class {h∗a(x)}.
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Definition 49 (An auxiliary class {h∗a(x)}) Let 1s,t(x) (s < t) be an indicator function satisfying
1s,t(x) = 1 for s ≤ x ≤ t and = 0 otherwise. Fix K,L,A1, and A2, and let ε := 1

A2
. We define a

class of functions {h†α(x)}, parameterized by α = (αi1,i2,j) ∈ [−1, 1]2A1×A2×K ,

h†α(x) :=

A1−1∑
i1=−A1

A2−1∑
i2=0

K∑
j=1

j

K
· 1

i1+i2ε+
4(j−1)

4K
ε,i1+i2ε+

4(j−1)+2+αi1,i2,j
4K

ε
(x). (D.7)

Then, we construct a map from a ∈ RK×L to α as follows. For each i1, i2, we define (α(a)i1,i2,j)
K
j=1

as 
α(a)i1,i2,1
α(a)i1,i2,2

...
α(a)i1,i2,K

 :=
1

M1M2
V −1


∑L

l=1 a1,lHel(i1 + i2ε)∑L
l=1 a2,lHel(i1 + i2ε)

...∑L
l=1 aK,lHel(i1 + i2ε)

,

where M2 := max1≤l≤Lmax−A1≤x≤A1 |Hel(x)|. Based on this, we define h∗a(x) by

h∗a(x) := h†α(a)(x)

From the definitions of M1, M2, we have ∥α(a)∥∞ ≤ 1. Thus in (D.7), each interval of the indicator
function does not overlap with the others and the right end is contained in [i1 + i2ε+

4(j−1)
4K ε, i1 +

i2ε+
4(j−1)+2

4K ε].

Lemma 50 There exist constants A1 and A2 such that h∗(a) defined in Theorem 49 satisfy the
property (P3). Specifically, when ai,j = 1, we have∫

(h∗a(x))
iHej(x)e

−x2/2dx > 0,

and when ai,j = −1, we have ∫
(h∗a(x))

iHej(x)e
−x2/2dx < 0,

for all 1 ≤ i ≤ L and 1 ≤ j ≤ K.

Proof. First, we decompose the integral as follows:

∫
(h∗a(x))

kHele
−x2/2dx =

A1−1∑
i1=−A1

A2−1∑
i2=0

K∑
j=1

(
j

K

)k ∫ i1+i2ε+
(4(j−1)+2+αi1,i2,j

)ε

4K

i1+i2ε+
4(j−1)ε

4K

Hel(x)e
−x2/2dx

=

A1−1∑
i1=−A1

A2−1∑
i2=0

K∑
j=1

(
j

K

)k ∫ i1+i2ε+
(4(j−1)+2)ε

4K

i1+i2ε+
4(j−1)ε

4K

Hel(x)e
−x2/2dx (D.8)

+

A1−1∑
i1=−A1

A2−1∑
i2=0

K∑
j=1

(
j

K

)k ∫ i1+i2ε+
(4(j−1)+2+αi1,i2,j

)ε

4K

i1+i2ε+
4(j−1)+2ε

4K

Hel(x)e
−x2/2dx

(D.9)
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For the first term, we have

(D.8) =
K∑
j=1

2

4K

(
j

K

)k A1−1∑
i1=−A1

A2−1∑
i2=0

∫ i1+(i2+1)ε

i1+i2ε
Hel(x)e

−x2/2dx+O(A−1
2 )

=

K∑
j=1

2

4K

(
j

K

)k ∫ A1

−A1

Hel(x)e
−x2/2dx+O(A−1

2 )

= O(A−1
2 ;A1)O(e−A2

1/2) +O(A−1
2 ), (D.10)

where O(A−1
2 ;A1) is the big-O notation that treats A1 as a constant. Moreover, by the definition of

α(a),

(D.9) =
A1−1∑

i1=−A1

A2−1∑
i2=0

∫ i1+(i2+1)ε

i1+i2ε

K∑
j=1

(
j

K

)kαi1,i2,j

4K
Hel(x)e

−x2/2dx+O(A−1
2 ;A1)

=

A1−1∑
i1=−A1

A2−1∑
i2=0

1

M1M2

∫ i1+(i2+1)ε

i1+i2ε

L∑
j=1

ak,jHej(i1 + i2ε)Hel(x)e
−x2/2dx+O(A−1

2 ;A1)

=

A1−1∑
i1=−A1

A2−1∑
i2=0

1

M1M2

∫ i1+(i2+1)ε

i1+i2ε

L∑
j=1

ak,jHej(x)Hel(x)e
−x2/2dx+O(A−1

2 ;A1)

=
ak,l

M1M2

∫ A1

−A1

He2l (x)e
−x2/2dx+O(A−1

2 ;A1)

=
ak,l

M1M2

∫
He2l (x)e

−x2/2dx+O(A−1
2 ;A1) +O(e−A2

1/2) (D.11)

Now, (D.10) and (D.11) yield∫
(h∗a(x))

kHele
−x2/2dx =

ak,l
M1M2

∫
He2l (x)e

−x2/2dx+O(A−1
2 ;A1) +O(e−A2

1/2).

Since 1
M1M2

∫
He2l (x)e

−x2/2dx > 0, by taking A1 sufficiently large and then taking A2 sufficiently
large, we obtain the assertion. ■

D.3. Polynomial Approximation of h∗a
Finally, we consider the polynomial approximation of h∗a, which can be reduced to polynomial
approximation of each of the indicator functions. Approximation of the step/sign/indicator functions
has been studied since the nineteenth century [Zol77; Akh90; EY07]. Among them, [EY07] consid-
ered the polynomial approximation of sgn(x) and proved the following result: the approximation
error Lm(δ) with degree-m polynomials, in the interval of [−1,−δ] ∪ [δ, 1], satisfies

lim
m→∞

√
m

(
1 + δ

1− δ

)m

Lm(δ) =
1− δ√
πδ

.

This entails that, until m becomes larger than δ−1, the error drops proportionally to O(m−1/2δ−1/2).
After that, the error exponentially decreases, proportionally to e−δm. However,this result is not

72



GRADIENT-BASED TRAINING AND COMPUTATIONAL HARDNESS FOR ADDITIVE MODELS

directly applicable to our Gaussian setting, since the error bound is for a fixed interval. Also, the
coefficients of the polynomial are not characterized (hence higher-order polynomials could become
larger outside of the interval). Consequently, increasing the order of polynomials may not give
smaller approximation error in expectation.

Therefore, we instead make use of the following fact of Hermite expansion.

Proposition 51 (Theorems 3 and 6 of [Muc70]) Let U(x) = e−x2/2(1+|x|)b and V (x) = e−x2/2(1+
|x|)B , where b < 0, B ≥ −2/3, and b ≤ B − 1/3. sn(x; f) denotes the n-th partial sum of a
Hermite series for the target function f . If∫ ∞

−∞
|f(x)|V (x)(1 + log+ |x|+ log+ |f(x)|) <∞,

then we have that

lim
n→∞

∫ ∞

−∞
|sn(x; f)− f(x)|pU(x)pdx = 0.

We can therefore approximate 10,∞ with an arbitrary accuracy with respect to the integral values.

Lemma 52 There exists a sequence of polynomials {pn} such that

lim
n→∞

∫ ∞

−∞
|pn(x)− 10,∞(x)|kHel(x)e−x2/2dx = 0

holds for all 1 ≤ k ≤ K and 1 ≤ l ≤ L.

Proof. Let us take b = −1 and B = 0 in Proposition 51. Because 10,∞(x) is bounded, it is easy to
see that

∫∞
−∞ 10,∞(x)V (x)(1 + log+ |x|+ log+ |10,∞(x)|) <∞ holds. We have that

0 = lim
n→∞

∫ ∞

−∞
|sn(x;10,∞)− 10,∞(x)|KU(x)Kdx

≥ lim
n→∞

∫ ∞

−∞
|sn(x/(K + 1);10,∞)− 10,∞(x)|KHel(x)e

−x2/2dx.

Therefore, we arrive at a sequence of polynomials gn(x) := sn(x/(K +1);10,∞(· × (K +1)) such
that

lim
n→∞

∫ ∞

−∞
|sn(x/(K + 1);10,∞)− 10,∞(x)|kHel(x)e−x2/2dx = 0

holds for all 1 ≤ k ≤ K and 1 ≤ l ≤ L. ■
Now we have obtained some pn with which we can approximate each of the indicator functions that
consists of h∗a up to arbitrary accuracy. Each function h∗a is not identically zero, and the integral
value of ha is continuous with respect to x. Therefore, there exists a class of polynomials {ha(x)}
that satisfies (P1)-(P3).
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