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Abstract
We study depth separation in infinite-width neural networks, where complexity is controlled by the
overall squared ℓ2-norm of the weights (sum of squares of all weights in the network). Whereas
previous depth separation results focused on separation in terms of width, such results do not give
insight into whether depth determines if it is possible to learn a network that generalizes well even
when the network width is unbounded. Here, we study separation in terms of the sample complexity
required for learnability. Specifically, we show that there are functions that are learnable with sample
complexity polynomial in the input dimension by norm-controlled depth-3 ReLU networks, yet are
not learnable with sub-exponential sample complexity by norm-controlled depth-2 ReLU networks
(with any value for the norm). We also show that a similar statement in the reverse direction is
not possible: any function learnable with polynomial sample complexity by a norm-controlled
depth-2 ReLU network with infinite width is also learnable with polynomial sample complexity by a
norm-controlled depth-3 ReLU network.
Keywords: depth separation, neural networks, sample complexity, generalization bounds, represen-
tation cost

1. Introduction

It has long been postulated that in training neural networks, “the size of the weights is more important
than the size of the network” (Bartlett, 1996). That is, the inductive bias and generalization properties
of learning neural networks come from seeking networks with small weights (in terms of magnitude
or some norm of the weights), rather than constraining the number of weights. Small weight norm
is sufficient to ensure generalization (e.g. Bartlett and Mendelson, 2002; Neyshabur et al., 2015;
Golowich et al., 2018; Du and Lee, 2018; Daniely and Granot, 2019), and may be induced either
through explicit regularization (e.g., via weight decay Hanson and Pratt, 1988) or implicitly through
the optimization algorithm (e.g. Neyshabur et al., 2014, 2017; Chizat and Bach, 2020; Vardi, 2023).
The reliance on weight-norm-based complexity control is particularly relevant with modern, heavily
overparameterized networks, which have more weights than training examples. These networks
can shatter the training set, and hence the size of the network alone does not lead to meaningful
generalization guarantees (Zhang et al., 2021; Neyshabur et al., 2014). Indeed, over the years there
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has been increasing interest in the theoretical study of learning with infinite width networks, where
the number of units per layer is unbounded or even infinite, while controlling the norm of the weights
(Cho and Saul, 2009; Neyshabur et al., 2015; Bach, 2017; Bengio et al., 2005; Mei et al., 2019;
Chizat and Bach, 2018; Jacot et al., 2018; Savarese et al., 2019; Ongie et al., 2019; Chizat and Bach,
2020; Pilanci and Ergen, 2020; Parhi and Nowak, 2021; Unser, 2023).

Considering infinite-width neural networks, and relying only on the norm of the weights for
inductive bias and generalization, also requires a fresh look at the role of depth. The traditional
study of the role of depth focused on how deeper networks can represent functions using fewer
units. (e.g. Pinkus, 1999; Telgarsky, 2016; Eldan and Shamir, 2016; Liang and Srikant, 2016; Lu
et al., 2017; Daniely, 2017; Safran and Shamir, 2017; Yarotsky, 2017, 2018; Rolnick and Tegmark,
2018; Arora et al., 2018; Safran et al., 2019; Vardi and Shamir, 2020; Chatziafratis et al., 2020;
Vardi et al., 2021; Venturi et al., 2022). Focusing on depth-2 (one hidden layer) versus depth-3 (two
hidden layers) feedforward neural networks with ReLU activations (see Section 2 for precise details),
traditional depth separation results tell us that there are functions that can be well-approximated using
depth-3, low-width networks (number of neurons polynomial in the input dimension), but cannot be
approximated using depth-2 networks unless the width/number of neurons is exponentially high in
the input dimension. However, this separation is not relevant when studying infinite-width networks.

Instead of studying depth separation in terms of the number of weights (i.e., width), one can
study depth separation in terms of the size of the weights, i.e., the norm required to approximate the
target function with a specific depth. This is captured by the representation cost RL(f), which is the
minimal weight norm (sum of squares of all weights in the network) required to represent f using
an unbounded-width depth-L network. One can ask whether there are functions that can be well
approximated with a low R3 representation cost, but which require a high R2 representation cost
to approximate, even if we allow unbounded or infinite width. One contribution of our paper is to
show that the answer is “yes”: the same function families that show depth separations in terms of
width also demonstrate depth separations in terms of norm or representation cost. Specifically, with
depth-3 networks, one can approximate functions in these families with norm polynomial in the input
dimension, but with depth-2 networks, even with infinite width, an exponential norm is required to
approximate functions in these families even within constant approximation error. At a technical
level, this argument follows from explicitly accounting for the norm in the depth-3 representation,
and by showing through a Barron-like unit-sampling argument that if such “hard” functions were
approximable with a low norm in depth 2, they would also be approximable with a small width in
depth 2, which we know from the width-based depth separation results is not true.

What does such separation between R3 and R2 representation cost tell us? Without further
analysis of the effect of this separation on learning capabilities, it is unclear. One cannot directly
compare the values of R2 and R3 since their comparison depends on the precise way we aggregate
the norms across layers; see, e.g., Neyshabur et al. (2015) for a careful discussion. While width-
separation results can be thought of as a separation in terms of the required memory costs, when
discussing infinite networks we are already abstracting away the computational implementation, and
working with exponentially large weights is not an inherent computational barrier as the number of
bits is still polynomial.

Thus, instead of studying depth separation in terms of approximation, we directly study the
separation in terms of learning, as captured by its effect on sample complexity. We ask the following
question: If Alice is learning using norm-based inductive bias (i.e., regularization) with unbounded-
width depth-2 networks, and Bob is learning using norm-based inductive bias with unbounded-width
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depth-3 networks, are there functions Bob can learn with a small number of samples, but which Alice
would require a huge number of samples to learn? On the other hand, are there perhaps functions
for which depth-2 would be better, i.e., which Alice can learn with a small number of samples
with depth-2, but for which Bob would require a huge number of samples to learn by seeking a
low-norm depth-3 network? As formalized in Section 4, we think of Alice and Bob as using a
standard Regularized Empirical Risk Minimization or Structural Risk Minimizing (SRM) approach,
where they learn by minimizing some combination of the empirical loss LS (f) and weight norm, or
equivalently representation cost RL(f), for depth L = 2 or depth L = 3.

Our main results are as follows (where we focus on learning functions with samples from a
particular distribution chosen for technical convenience):

Theorem 1 (Depth Separation, Informal) There is a family of functions fd : R2d → R that requires
exponential (in d) sample complexity to learn to within constant error by regularizing the norm in
an unbounded width depth-2 ReLU network, but which can be learned with poly(d, 1/ε) samples to
within any error ε by regularizing the norm in a depth-3 ReLU network.

The next result ensures that the reverse of Theorem 1 does not occur.

Theorem 2 (No Reverse Depth Separation, Informal) Any function learnable with poly(d, 1/ε)
samples by regularizing the norm in an unbounded width depth-2 ReLU network, can also be learned
with poly(d, 1/ε) samples by regularizing the norm in a depth-3 ReLU network.

From these results, we conclude that functions that are “easy” to learn with depth-2 ReLU networks
form a strict subset of the functions that are “easy” to learn with depth-3 ReLU networks.

At a high level, the proof of Theorem 1 relies on choosing a target function that is not ap-
proximable by a small norm depth-2 network. We then construct a depth-2 interpolant whose
representation cost depends only mildly on the number of samples. Using the Alice-and-Bob termi-
nology from earlier, since Alice (who utilizes depth-2 networks) tries to find a function that fits the
data well and has a small representation cost, the representation cost of her function will be at least
as small as that of the interpolant. Hence, unless she has access to an enormous number of samples,
her function will not be able to approximate the target and will not generalize. However, the target
function is approximable by a depth-3 network with a small representation cost, so the Rademacher
complexity results of Neyshabur et al. (2015) lead to sample complexity bounds that allow us to
bound Bob’s generalization error with many fewer samples. To prove Theorem 2, we show using a
similar argument that Alice can only learn if the R2 cost of approximating the target is small. We
show that functions with small R2 cost also have small R3 cost, and so Bob must also be able to
learn these target functions.

We see our contributions here on two levels:

1. Providing a detailed study of depth separation in neural networks in terms of the size of the
weights rather than the number of the weights.

2. Establishing a framework and template for studying depth separation, or model separation
more broadly, directly in terms of learning, with the separation being between low and
high sample complexity. This is in contrast to a study solely in terms of the “complexity”
needed to approximate target functions, which does not directly provide insights into sample
complexities.
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1.1. Outline

We define the representation cost and describe its connection to ℓ2 regularization in Section 2. In
Section 3 we consider depth separation in the norm to approximate certain families. We more
carefully describe what we mean by learning rules using a norm-based inductive bias in Section 4.
The formal statements of Theorems 1 and 2 are in Section 5, and their proof sketches are in Sections 6
and 7, respectively. We conclude in Section 8 with a discussion of the implications and limitations of
these results. All technical lemmas and their proofs are reserved for Appendix A.

1.2. Notation

The set of depth-L width-ω ReLU neural networks is denoted as NL,ω, and the set of depth-L
unbounded-width networks is denoted as NL :=

⋃
ω∈NNL,ω. We use Sd−1 for the hypersphere in

Rd, and Xd := Sd−1 × Sd−1 ⊆ R2d to denote the Cartesian product of two hyperspheres. Given
x ∈ Xd, we write x(1) and x(2) for the first and last d entries in x, respectively. Throughout
the remainder of the paper, we assume that the dimension parameter d is at least two. We use
∥ · ∥L2 for the L2 norm over Xd; that is, ∥f∥2L2 = Ex∼Uniform(Xd)[f(x)

2]. Similarly, we use ∥ · ∥L∞

for the L∞ norm over Xd. We write Dd for a distribution on Xd × [−1, 1]. We use the squared
error loss and write LDd

(f) = E(x,y)∼Dd
[(f(x) − y)2] for the generalization error of a model f .

Given a sample S = {(xi, yi)}mi=1 of size m drawn i.i.d. from Dd, we denote the sample loss as
LS (f) := 1

m

∑m
i=1(f(xi)− yi)

2.

2. Norm-Based Control in Infinite-Width Networks

In this work, we focus on the class of fully connected depth-L neural networks with ReLU activations,
2d-dimensional inputs, and scalar output (or a depth-L network, for short). A depth-L network
realizes a function fϕ : R2d → R of the form:

fϕ(x) = w⊤
L [WL−1[· · · [W2[W1x+ b1]+ + b2]+ · · · ]+ + bL−1]+ + bL

where ϕ := (W1, b1, . . . ,WL−1, bL−1,wL, bL) denotes the collection of all weight matrices Wℓ ∈
Rωℓ×ωℓ−1 , bias vectors bℓ ∈ Rωℓ , plus outer layer weights wL ∈ RωL−1 and bias bL ∈ R, and
[·]+ denotes the ReLU activation applied entrywise. Here, we allow the hidden-layer widths ωℓ for
ℓ = 1, ..., L− 1 to be arbitrarily large.

Let ΦL denote the collection of all parameter vectors ϕ associated with a depth-L network, and
define NL = {fϕ : ϕ ∈ ΦL} to be the space of all functions realized by a depth-L network of
unbounded width. Given a function f ∈ NL, we define its depth-L representation cost RL(f) by

RL(f) = inf
ϕ∈ΦL:f=fϕ

∥ϕ∥2

L
. (1)

where ∥ϕ∥2 denotes the sum of squares of all weights/biases in the network fϕ, and f = fϕ indicates
equality over the domain Xd. More generally, following Savarese et al. (2019); Ongie et al. (2019),
one can extend the definition of RL to a broader class of functions f ∈ C(Xd) by

RL(f) = lim
ϵ→0

inf

{
∥ϕ∥2

L
: ∥f − fϕ∥L∞ ≤ ϵ,ϕ ∈ ΦL

}
(2)
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whereRL(f) = +∞ if the limit above does not exist. Any function withRL(f) < +∞ and f /∈ NL

can be considered an “infinite-width” neural network, i.e., the uniform limit of a sequence depth L
networks with unbounded width whose representation cost remains bounded. Since we focus on the
representation cost needed to approximate functions, it suffices to consider networks whose width is
unbounded but finite. In this case, the definition in (1) suffices.

The representation cost arises naturally when considering empirical risk minimization (ERM)
with ℓ2 regularization, also referred to as weight decay:

min
ϕ∈ΦL

LS (fϕ) +
λ

L
∥ϕ∥2, (3)

where λ > 0 is a tunable regularization parameter. By fixing a function f ∈ NL and optimizing
over its parametrizations f = fϕ as an L-layer network, we see that the above parameter space
minimization problem is equivalent to the function space minimization problem

min
f∈NL

LS (f) + λRL(f). (4)

In other words, the representation cost is the function space regularization penalty induced by
imposing ℓ2 regularization in parameter space.

Remark 3 In Remark 13, we consider generalizations of our results to bounded-width networks.
In that case, it is useful to consider the bounded-width version of the representation cost, which is
the natural analog of the ℓ2 penalty in the function space NL,ω of functions realized by an L-layer
network with the hidden-layer widths bounded by ω. In this case we write the representation cost as
RL(f ;ω), and we formally define

RL(f ;ω) := inf
ϕ∈ΦL:f=fϕ
ω1,...,ωL−1≤ω

∥ϕ∥2

L
. (5)

To better understand the inductive bias of learning with ℓ2 regularization, several recent works
have sought to give explicit function space characterizations of the representation cost RL(f). First,
Savarese et al. (2019) showed that, for univariate functions, and assuming unregularized bias terms,
R2(f) coincides with the L1-norm of the second derivative of the function. This was generalized to
multidimensional inputs (d > 1) by Ongie et al. (2019), where it is shown that R2(f) is equal to the
L1-norm of the Radon transform of a (d + 1)-order derivative operator applied f . Related works
have studied the impact of other activation functions (Parhi and Nowak, 2020), multi-dimensional
outputs (Shenouda et al., 2023) and regularizing bias terms (Boursier and Flammarion, 2023). An
ongoing effort is to characterize RL(f) with depth L > 2. For networks with multi-dimensional
outputs, the limit as depth L → ∞ is studied in (Jacot, 2022), where it is conjectured that the
limiting representation cost coincides with the so-called “bottleneck rank” of a function, defined
as the minimum r such that f = g ◦ h with h : Rdin → Rr and g : Rr → Rdout . Finite depth
modifications to this characterization are also studied by Jacot (2023).

3. Norm-Based Depth Separation in Approximation

Most previous depth separation results focus on separation in terms of the size of the network (i.e.,
the number of neurons) needed to represent or well-approximate a given target function. Specifically,
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Eldan and Shamir (2016); Daniely (2017); Safran and Shamir (2017) showed there are families of
target functions parameterized by input dimension d that are well-approximated by a depth-3 network
whose number of neurons is polynomial in d, but require width exponential in d to approximate
within constant accuracy using a depth-2 network. For concreteness, we highlight the result from
Daniely (2017):

Lemma 4 (Daniely (2017)) There exists a family of functions {fd}∞d=1 ⊂ L2(Xd) such that any
depth-two ReLU network fϕ ∈ N2 with ∥ϕ∥∞ ≤ 2d satisfying ∥fd − fϕ∥L2 < 10−4 must have
width ω = 2Ω(d log(d)). Conversely, for any ϵ > 0, there exist a depth-three ReLU network f̃ϕ ∈ N3

with O(poly(d)/ϵ) neurons and ∥ϕ∥∞ = O(poly(d)), such that ∥fd − f̃ϕ∥L∞ < ϵ.

However, a width-based depth separation like the one above is not meaningful in the infinite-
width setting. Instead, we consider whether a similar depth separation occurs in terms of the norm of
the network (i.e., its representation cost). As a first result in this direction, Ongie et al. (2019) showed
that there are functions in any input dimension d with finite R3 representation cost but infinite R2

representation cost, in the sense that any sequence of depth-2 networks converging pointwise to the
target function on all of Rd must have unbounded representation cost. Yet, this left open whether
there is still a depth separation in the representation costs required to approximate the target to a
given accuracy on a bounded domain, and if so, its dependence on input dimension d. Here, we
settle the question. In particular, we show the same function families that show depth separations in
terms of width to approximate also demonstrate depth separations in terms of representation cost to
approximate.

A key tool in moving from separation in terms of width to separation in terms of representation
cost is the following lemma, which says that depth-2 neural networks of any width can be well
approximated by narrow networks having essentially the same representation cost (i.e., up to a small
constant factor). The proof follows essentially the same sampling argument as in Barron’s universal
approximation theorem for depth-2 networks (Barron, 1993); the details are given in Appendix A.2.

Lemma 5 For any f ∈ N2, ε > 0, and width ω > 3R2(f)2

ε2
, there exists fϕ ∈ N2 having width ω

and ∥ϕ∥2∞ ≤ ∥ϕ∥22 ≤ 4R2(f) such that ∥f − fϕ∥L2 ≤ ε.

Consider function families that we know require large widths to approximate with depth-2
networks, but can be well approximated with small width depth-3 networks with bounded weights.
Functions in this family must have large R2 cost; otherwise, Lemma 5 would imply they can be
approximated with a small width. On the other hand, small width depth-3 networks with bounded
weights must have low R3 cost. In particular, a family of depth-3 networks whose width is poly(d)
and weight magnitudes are poly(d) must haveR3 cost at most poly(d). Therefore, a depth separation
in width to approximate should also imply a depth separation in representation cost to approximate.

Applying the above argument to the family of functions identified Lemma 4, we arrive at the
following result, which is proved in Appendix A.2:

Corollary 6 There exists a family of functions {fd}∞d=1 ⊂ L2(Xd) such that each fd can be ε-
approximated in L∞-norm by a depth-three network f̃d ∈ N3 with R3(f̃d) = O(poly(d)/ε), yet
to approximate fd by a depth-two network f̂d ∈ N2 to constant accuracy in L2-norm requires
R2(f̂d) = 2Ω(d log(d)).

While mathematically interesting, this type of norm-based depth separation in approximation does
not immediately imply anything about learning with norm-controlled networks, e.g., whether there is
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also a depth separation in the sample complexity needed for good generalization. In the remainder
of this paper, we close this gap and show that a norm-based depth separation in approximation also
implies a depth separation in sample complexity for norm-based learning rules.

4. Infinite-Width Norm-Based Learning Rules

We consider learning using the representational costRL(f) as an inductive bias (i.e., complexity mea-
sure). Following the Structural Risk Minimization principle, we consider learning rules minimizing
some combination of the empirical risk LS (f) and the representational cost RL(f):

min
f∈NL

(LS (f) , RL(f)) . (6)

More specifically, we consider any learning rule returning a Pareto optimal point for the bi-criteria
problem (6). This includes any minimizer of the regularized risk

min
f∈NL

LS (f) + λRL(f) (7)

for any λ > 0, where recall that (7) is equivalent to seeking an unbounded width network and
regularizing the norm of the weights, as in (3). We denote the set of all Pareto optimal points of (6)
(i.e. the “Pareto frontier” or “regularization path”, and including all minimizers of (7)—see Figure 1
for a visualization of the Pareto frontier and the learning rules considered) by PL(S). Similarly, we
use PL,ω(S) to denote the Pareto frontier of the bounded-width version of this problem:

min
f∈NL,ω

(LS (f) , RL(f ;ω)) . (8)

Our goal is to separate between learning rules returning depth-2 Pareto optimal points in P2(S)
and those returning depth-3 Pareto optional points in P3(S). To make such a rule concrete, one still
needs to choose which Pareto optimal point to return, e.g. choosing a value of λ in (7). In order to
show separation, we compare the best possible depth-2 rule with a concrete depth-3 rule, showing
that a concrete depth-3 rule “succeeds”, but even the best possible depth-2 rule, and hence any rule
returning a depth-2 Pareto optimal point, will “fail”.

To obtain upper bounds (i.e., show learning is easy) we consider the following concrete rule,
where the point on the frontier is specified by a threshold θ, as well as its finite-precision relaxations:

Definition 7 Given θ ≥ 0, define Aθ
L to be a learning rule which, given training samples S, selects

an L-layer network such that LS

(
Aθ

L(S)
)
≤ θ and

RL(Aθ
L(S)) = inf

f∈NL
LS(f)≤θ

RL(f). (9)

Given α ≥ 1, define Aθ,α
L to be a learning rule which selects an L-layer network such that

LS

(
Aθ,α

L (S)
)
≤ αθ and

RL(Aθ,α
L (S)) ≤ α inf

f∈NL
LS(f)≤θ

RL(f). (10)
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Similarly, define a bounded width version Aθ,α
L,ω, to be a learning rule that selects an L-layer network

of hidden width at most ω such that LS

(
Aθ,α

L,ω(S)
)
≤ αθ and

RL(Aθ,α
L,ω(S);ω) ≤ α inf

f∈NL,ω

LS(f)≤θ

RL(f ;ω). (11)

The output of Aθ,α
L is α-close to Aθ

L, which lies on the Pareto frontier. However, we do not
require exact Pareto optimality for Aθ,α

L . See Figure 1 for a visualization of possible outputs of Aθ
L

and Aθ,α
L in relation to the Pareto frontier.

On the other hand, to prove lower bounds (i.e., argue learning is hard) we consider the following
“ideal” rule, which “cheats” and chooses the Pareto optimal point minimizing the population error,
and is thus better than any other rule returning Pareto optimal points:

Definition 8 We define A∗
L to be the learning rule which, given training samples S, selects the

L-layer network that minimizes the population loss LDd
over the set PL(S) of all Pareto optimal

functions for the bicriterion minimization problem in Equation (6). That is, given training samples S,

A∗
L(S) ∈ argmin

f∈PL(S)
LDd

(f). (12)

Similarly, we define A∗
L,ω to be the bounded-width version of this idealized rule;

A∗
L,ω(S) ∈ argmin

f∈PL,ω(S)
LDd

(f). (13)

Strictly speaking, A∗
L is not a learning rule because it depends on knowledge of the true target

distribution instead of just samples from that distribution. It instead can be thought of as an oracle
learning rule, based on side knowledge, and thus a lower bound on any learning rule returning Pareto
optimal points in PL(S).

Remark 9 For L = 2, Parhi and Nowak (2021); Unser (2023) show the infimum in Equation (9)
is attained. For L > 2, it is an open question whether this infimum is attained. If it is not, one can
choose a value of α arbitrarily close to 1 and consider Aθ,α

L instead of Aθ
L, for which our results still

hold. For Aθ,α
L,ω(S) to exist, we also need ω to be sufficiently large. For example, it suffices that ω is

large enough for interpolation of the samples to be possible (see, e.g., Yun et al. (2019)). It is also
possible that the argmins in Definition 8 are not attained. While we state the definition in terms of
minimizing the population loss, our results hold even if A∗

L is replaced by any rule that outputs a
function on the Pareto frontier.

In our main results, we equip Alice with A∗
2 to give her the best possible choice of learning with

a depth-2 network. However, we allow Bob to use the weaker learning rule Aθ
3 or even Aθ,α

3 .

5. Main Results: Norm-Based Depth Separation in Learning

We now state our two main theorems. Theorem 10 says that there is a family of functions that Aθ
3 (i.e.,

Bob) can learn with sample complexity that is polynomial in d but A∗
2 (i.e., Alice) needs the number

of samples to grow exponentially with d in order to learn. Theorem 11 ensures that the reverse does
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RL(f)

LS (f)
θαθ

inf
LS(f)≤θ

RL(f)

α inf
LS(f)≤θ

RL(f)

A∗
L

Aθ,α
L

Aθ
L

[
1
λ

]

Figure 1: Visualization of Aθ
L(S), A

θ,α
L (S), and A∗

L(S). The red shaded area represents the set
of possible values of (LS (f) , RL(f)) where f is represented by an L-layer network.
The red curves form the Pareto frontier PL(S). Minimizing the population loss LDd

over the Pareto frontier yields A∗
L(S), represented by the star. In green is the vector

[1, λ]⊤ and lines normal to it. These normal lines form level sets of LS (f) + λRL(f).
Notice the black dot on the Pareto frontier, which represents Aθ

L(S). The output of Aθ
L(S)

corresponds to minf∈NL
LS (f) + λRL(f). The purple shaded region shows the possible

outputs of Aθ,α
L (S), which are all α-close to Aθ

L(S).

not occur; families of distributions that A∗
2 can learn with polynomial sample complexity can also be

learned with polynomial sample complexity using Aθ
3. Both results still hold even when we relax

Bob’s depth-3 learning rule from Aθ
3 to Aθ,α

3 . For ease of presentation, we consider α to be a small
constant, e.g., α = 2.

Theorem 10 (Depth Separation in Learning) There is a family of distributions (Dd)
∞
d=2 on Xd ×

[−1, 1] defined as x ∼ Uniform(Xd) and y|x = fd(x) for some function fd : Xd → [−1, 1] such
that the following holds.

1. There are real numbers d0 > 0 and C1 > 0, such that if d > d0 and |S| < 2C1d, then
ES [LDd

(A∗
2(S))] ≥ 0.0001.

2. For all ε, δ > 0, if θ = ε
4 and |S| > O

(
d15 log(1/δ)

ε2

)
, then LDd

(Aθ
3(S)) ≤ ε with probability

at least 1− δ. Furthermore, with a fixed constant α ≥ 1, LDd
(Aθ,α

3 (S)) ≤ ε with probability
at least 1− δ where now the big-O suppresses a constant that depends on α.

Theorem 11 (No Reverse Depth Separation in Learning) Consider a distribution Dd on Xd ×
[−1, 1] defined as x ∼ Uniform(Xd) and y|x = fd(x) for some function fd : Xd → [−1, 1]. Assume
that there is some sample complexity function m2(ε) such that ES [LDd

(A∗
2(S))] ≤ ε whenever

|S| ≥ m2(ε).

9
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For all ε, δ > 0, if θ = ε
4 and |S| ≥ m3(ε, δ), then LDd

(Aθ
3(S)) ≤ ε with probability at least

1− δ, where the sample complexity m3 is

m3(ε, δ) = O

(
ε−2

(
d+m2

( ε
64

) d+3
d−1

)6

log 1/δ

)
. (14)

Furthermore, with a fixed constant α ≥ 1, LDd
(Aθ,α

3 (S)) ≤ ε with probability at least 1− δ where
now the big-O suppresses a constant that depends on α.

In particular, if we have a family of such distributions (Dd)
∞
d=2 and m2 grows polynomially with

d, then m3 also grows polynomially with d.

Remark 12 Theorems 10 and 11 are based on loose bounds. We conjecture that smaller sample
complexities for depth-3 learning are possible in both results. Additionally, larger lower bounds on
generalization for depth-2 learning are possible in Theorem 10.

Remark 13 We can generalize these results to networks of bounded widths. In Theorem 10, Part 1
holds for A∗

2,ω as long as the width is at least three times the sample size, i.e., ω > 3|S|. Thus, if the
sample size is polynomial in d, then in sufficiently high dimensions, A∗

2,ω cannot generalize without

width that is super-polynomial in d. Part 2 holds for Aθ,α
3,ω as long as ω ≥ O

(
ε−1/2d7/2

)
. That is,

for depth-3 learning, we only require a width that is polynomial in dimension.
To generalize Theorem 11 to bounded-width networks, we can modify the premise to the as-

sumption that there is some minimal width function ω0(ε) such that ES [LDd
(A∗

2,ω(S))] ≤ ε

whenever |S| ≥ m2(ε) and ω ≥ ω0(ε). The width ω required for Aθ,α
3,ω to learn is then ω ≥

O

(
ε−1m2

(
ε
64

) 2(d+3)
d−1 + d

)
. If m2 grows polynomially with d, then the width required for depth-3

learning is only polynomial in d.

Remark 14 The relatively restrictive assumptions on the distribution of x in Theorem 11 can be
relaxed. We use these assumptions to bound the R2 cost of interpolating samples. Our particular
construction would be straightforward to generalize to other smooth distributions on Xd or Sd−1.
Other constructions could yield bounds on the R2 cost of interpolating samples from other smooth
distributions, which would allow for generalizations of this result.

6. Proof of Depth Separation in Learning

For the proof of Theorem 10, we use a slight modification of the construction from Daniely (2017).
We choose fd(x) := ψ3d

(√
d⟨x(1),x(2)⟩

)
where ψn : R → [−1, 1] denotes the sawtooth function

that has n cycles in [−1, 1] and is equal to zero outside [−1, 1]. See Figure 2 for a depiction of
ψn. This target function is convenient for studying depth separation in norm because the sawtooth
function can be represented exactly with one hidden ReLU layer, while the inner product can be
approximated with another hidden ReLU layer. Thus, fd lends itself well to explicit bounds on the
R3 representation cost needed to approximate it. Since fd is a composition with an inner product,
the framework in Daniely (2017) allows us to get a bound on the R2 representation cost needed to
approximate it as well. See Lemmas 19 and 26.

10
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As with other depth-separation constructions, the Lipschitz constant of fd is unbounded as d goes
to infinity. Obtaining depth separation as d goes to infinity but with a bounded Lipschitz constant is a
yet unsolved challenge; see Safran et al. (2019) for a discussion and evidence that current techniques
cannot be used to show depth separation with a bounded Lipschitz constant.

In the following two subsections, we sketch the proofs of Parts 1 and 2 of Theorem 10.

6.1. Proof of Theorem 10, Part 1

Proof Using Corollary 6, the construction of Daniely (2017) requires the R2 cost to grow exponen-
tially in d to approximate the target in the L2 norm. We adapt this construction to fd in Lemma 19 to
get more explicit bounds, from which we conclude that there exist real numbers d0, C > 0 such that
d > d0 and R2(f) < 2Cd implies that LDd

(f) ≥ 1
50e2π2 .

If d ≥ 3 then by Lemma 30, with probability at least 1
2 there exists an interpolant f̂ ∈ N2 of

the samples S with representation cost bounded as R2(f̂) ≤ 32
√
2|S|

d+3
d−1 . The proof of Lemma 30

relies on the fact that with high probability the samples are sufficiently separated, and separated
samples on Xd can be interpolated by a depth-2 neural network with small norm parameters. Similar
ways to construct interpolants exist in other settings; see for example Section 5.2 in Ongie et al.
(2019). Since A∗

2(S) ∈ P2(S) is Pareto optimal, we must have thatR2(A∗
2(S)) ≤ R2(f̂).Otherwise,

A∗
2(S) would fail to be Pareto optimal because f̂ would have a smaller sample loss and a smaller

representation cost. It follows that R2(A∗
2(S)) ≤ 32

√
2|S|

d+3
d−1 with probability at least 1

2 .
Choose C1 = C/4. Assume d > max(d0, 3,

11
2C1

) and |S| < 2C1d. With probability at least 1
2 ,

we must have
R2(A∗

2(S)) ≤ 32
√
2|S|

d+3
d−1 < 2C1d2

C1d(d+3)
d−1 ≤ 2Cd. (15)

Thus, LDd
(A∗

2(S)) ≥ 1
50e2π2 with probability at least 1

2 . Therefore, by Markov’s inequality,
ES [LDd

(A∗
2(S))] ≥ 1

50e2π2 · 1
2 ≥ 10−4

6.2. Proof of Theorem 10, Part 2

We prove a slightly more general version of Part 2 in Theorem 10. Instead of just proving the result
for Aθ

3 or Aθ,α
3 , we prove the result for the relaxed, bounded width learning rule Aθ,α

3,ω for any α ≥ 1.
This illuminates how the sample complexity and width we require to guarantee learning depends on
α and ω.
Proof Fix ε, δ > 0 and α ≥ 1, and let θ = ε

2α . In Lemma 26 we show that for all K ∈ N
there is a depth-3 neural network fd,K of width ωd,K := max(6d + 2, 2Kd) such that ∥fd −
fd,K∥L∞ = O

(
d5/2

K

)
and R3(fd,K ;ωd,K) = O(d5/2). Hence LS (fd,K) = O

(
d5

K2

)
. We choose

K ≥ O
(
d5/2√

θ

)
so that LS (fd,K) ≤ θ. Now suppose that ω ≥ ωd,K . Then

R3(Aθ,α
3,ω(S)) ≤ R3(Aθ,α

3,ω(S);ω) ≤ α inf
g∈N3,ω

LS(g)≤θ

R3(g;ω) (16)

≤ αR3(fd,K ;ω) = O(αd5/2). (17)

In Lemma 34 we use the Rademacher complexity bounds from Neyshabur et al. (2015) to get the
following estimation error bound on f ∈ N3 with respect to the target distribution Dd; ifR3(f) ≤M ,

11
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then |LDd
(f)− LS (f) | ≤ O

(
M3
√

log 1/δ
|S|

)
with probability at least 1− δ. Applying this, we get

LDd
(Aθ,α

3,ω(S)) ≤ LS

(
Aθ,α

3,ω(S)
)
+ |LDd

(Aθ,α
3,ω(S))− LS

(
Aθ,α

3,ω(S)
)
| (18)

≤ αθ +O

(√
α6d15 log 1/δ

|S|

)
(19)

with probability at least 1− δ. Therefore, with

|S| > O

(
α6d15 log 1/δ

ε2

)
and ω ≥ ωd,K = O

(√
αd7

ε

)
, (20)

we get LDd
(Aθ,α

3,ω(S)) ≤ αθ + ε
2 = ε with probability at least 1− δ.

7. Proof of No Reverse Depth Separation in Learning

To prove Theorem 11, we need the following lemma. Roughly speaking, this lemma says that if
A∗

2(S) can learn with m2 samples, then there is a good approximation of the target distribution that
can be expressed as a depth-2 network with parameters whose norm is at most polynomial in m2.
The proof is a straightforward probabilistic argument, shown in Section A.7.1.

Lemma 15 Consider a distribution Dd on Xd × [−1, 1] defined as x ∼ Uniform(Xd) and y|x =
fd(x) for some function fd : Xd → [−1, 1]. Assume that there is some sample complexity function
m2(ε) such that ES [LDd

(A∗
2(S))] ≤ ε whenever |S| ≥ m2(ε). Then for any ε > 0, there is a

function fε ∈ N2 such that R2(fε) ≤ 100
√
2m2

(
ε
2

) d+3
d−1 and LDd

(fε) ≤ ε.

Using the previous lemma and Lemma 5, the rest of the proof of Theorem 11 follows from the
estimation error bound in Lemma 34 derived from Rademacher complexity bounds and the fact that
any function with small R2-cost also has small R3-cost. This fact is shown in Lemma 17 by adding
an identity layer. As in Section 6.2, we prove Theorem 11 for the relaxed, bounded width learning
rule Aθ,α

3,ω for any α ≥ 1 to showcase the role of α and ω, but this proof also applies to Aθ,α
3 and Aθ

3.
Full details are in Section A.7.2.

8. Conclusion

This paper demonstrates that there are functions that can be learned with depth-3 networks when
the number of samples is polynomial in the input dimension d, but which cannot be learned with
depth-2 networks unless the number of samples is exponential in d. Furthermore, we establish that in
our setting, there are no functions that can easily be learned with depth-2 networks but which are
difficult to learn with depth-3 networks. These results constitute the first depth separation result in
terms of learnability, as opposed to network width.

In addition, the analysis framework we develop in this paper establishes a connection between
width-based depth separation and learnability-based depth separation. As a result, our approach may
be applied to other works on width-based depth separation to establish new learnability-based depth
separation results.

12
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We note that while the bounds developed in this paper are sufficient to establish our main results
on depth separation, they may not be tight. For instance, the sample complexity bounds for depth-3
networks grow polynomially in d, but the polynomial order is quite large. Alternative constructions
might lead to tighter bounds. Furthermore, the family of functions we use to establish our depth
separation results does not have bounded Lipschitz constants; as d grows, our functions become
highly oscillatory. Since highly oscillatory functions may not be representative of many practical
predictors, it would be interesting to see whether there are families of functions with bounded
Lipschitz constants leading to depth separation in terms of sample complexity (we note that (Safran
and Shamir, 2017) studied this question but in the different context of width). A final potential
limitation of our work is that it focuses on the output of learning rules seeking (approximately) Pareto
optimal solutions, but neglects optimization dynamics. A major open question is how optimization
dynamics affect depth separation.
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Appendix A. Technical Lemmas & Proofs

Here, we present the technical details of the results in the main text. In the appendix, Γ denotes the
gamma function.

A.1. Characterizing and bounding the representation cost

In this section, characterizations of and bounds on the representation cost that we use elsewhere in
the appendix. To ease notation in this section, we re-label parameters defining a depth-2 network fϕ
as ϕ = (W , b,a, c) so that fϕ(x) =

∑ω1
k=1 ak[w

⊤
k x + bk]+ + c, where w⊤

k is the kth row of W
and ω1 is the width of the hidden layer in the parameterization.

The first result shows that the depth-2 representation cost reduces to the ℓ1-norm of the outer-
layer weights (plus half the squared outer-layer bias) assuming the first-layer weights/biases are
normalized:

Lemma 16 Let f ∈ N2. Then

R2(f) = inf
ϕ∈Φ2:f=fϕ

ω1∑
k=1

|ak|+
c2

2
s.t. ∥wk∥2 + |bk|2 = 1 ∀k ∈ [ω1] (21)

= inf
ϕ∈Φ2:f=fϕ

ω1∑
k=1

|ak|
√
∥wk∥2 + |bk|2 +

c2

2
. (22)

Similarly, given f ∈ N2,ω, we have a bounded width version of this:

R2(f ;ω) = inf
ϕ∈Φ2:f=fϕ

ω1≤ω

ω1∑
k=1

|ak|+
c2

2
s.t. ∥wk∥2 + |bk|2 = 1 ∀k ∈ [ω1] (23)

= inf
ϕ∈Φ2:f=fϕ

ω1≤ω

ω1∑
k=1

|ak|
√
∥wk∥2 + |bk|2 +

c2

2
. (24)

We omit a full proof for brevity, but the result is a trivial modification of Lemma 1 in Appendix A of
Savarese et al. (2019), extended to the case of regularized bias terms considered in this work. See
also Boursier and Flammarion (2023).

The next result says that functions that have small representation costs with depth-2 networks
also have small representation costs with depth-3 networks. The proof adds an identity layer to a
depth-2 network to turn it into a depth-3 network.

Lemma 17 Given f ∈ N2,ω, we have f ∈ N3,max(ω,4d) and

R3(f ; max(ω, 4d)) ≤ 4d

3
+

4

3
R2(f ;ω). (25)

Proof Assume that f ∈ N2,ω. Fix a particular parameterization ϕ = (W , b,a, c) of f of width ω.
Since [x]+ − [−x]+ = x, we can rewrite f as a depth-3 neural network with an identity layer:

f(x) = fϕ(x) = a⊤ [Wx+ b]+ + c (26)

= a⊤

[[
W −W

] [[ I2d
−I2d

]
x

]
+

+ b

]
+

+ c (27)

= fϕ′(x), (28)
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where ϕ′ is this new parameterization:

ϕ′ =

([
I2d
−I2d

]
,0,
[
W −W

]
, b,a, c

)
. (29)

Notice that ϕ′ has one hidden layer of width 4d and one hidden layer of width ω, so f ∈ N3,max(ω,4d).
Further,

∥ϕ′∥2 =
∥∥∥∥[ I2d

−I2d

]∥∥∥∥2
F

+
∥∥[W −W

]∥∥2
F
+ ∥b∥22 + ∥a∥22 + |c|2 (30)

= 4d+ 2 ∥W ∥2F + ∥b∥22 + ∥a∥22 + |c|2 (31)

≤ 4d+ 2∥ϕ∥2. (32)

Therefore,

R3(f ; max(ω, 4d)) = inf
ϕ∈Φ3:f=fϕ

∥ϕ∥2

3
(33)

≤ inf
ϕ∈Φ2:f=fϕ

4d+ 2∥ϕ∥2

3
(34)

=
4d

3
+

4

3
R2(f ;ω). (35)

A.2. Approximating wide depth-2 networks by narrow networks with the same representation
cost

A.2.1. PROOF OF LEMMA 5

Before proving Lemma 5 we give an auxiliary result needed for the proof. The following is a
simplified version of Lemma 1 from Barron (1993), originally credited to Maurey:

Lemma 18 (Maurey’s Lemma) Let H be a Hilbert space with norm ∥ · ∥H . Assume G ⊂ H is
such that ∥g∥H ≤ B for all g ∈ G. Suppose f is a non-zero function belonging to the closed convex
hull of G. Then for any m ∈ N and there exists elements g1, ..., gm ∈ G such that∥∥∥∥∥f − 1

m

m∑
k=1

gk

∥∥∥∥∥
H

≤ B√
m
.

We specialize this result to the Hilbert space H = L2(Xd), and the subset G ⊂ L2(Xd) of all
functions consisting of a single normalized ReLU unit. In particular, for any w ∈ R2d and b ∈ R,
define uw,b(x) = [w⊤x+ b]+ and let G ⊂ L2(Xd) be the set of functions

G = {±uw,b : w ∈ R2d, b ∈ R, ∥w∥2 + |b|2 = 1}.
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Let µd denote the uniform probability measure on Xd = Sd−1 × Sd−1. Note that for any g =
±uw,b ∈ G we have

∥g∥2L2 =

∫
Xd

[w⊤x+ b]2+dµd(x) (36)

≤
∫
Xd

|w⊤x+ b|2dµd(x) (37)

=

∫
Xd

∣∣∣∣∣
[
w
b

]⊤ [
x
1

]∣∣∣∣∣
2

dµd(x) (38)

≤
∫
Xd

(∥w∥2 + |b|2)(1 + ∥x∥2)dµd(x) (39)

= 3

∫
Xd

dµd(x) = 3, (40)

where we used the fact that ∥x∥2 = 2 for all x ∈ Xd. Therefore, for B =
√
3 we have ∥g∥L2 ≤ B

for all g ∈ G.
Now we give the proof of Lemma 5:

Proof Let f ∈ N2 and ϵ > 0 be given, and suppose ω ∈ N is such that ω > 3R2(f)
2/ϵ2.

Choose δ with 0 < δ ≤ 1 to be any constant satisfying ω ≥ (1 + δ)23R2(f)
2/ϵ2, and let f(x) =∑K

k=1 ak[w
⊤
k x+ bk]+ + c with ∥wk∥2 + |bk|2 = 1 for all k ∈ [K] be any realization of f whose

parameter cost is within a factor of (1 + δ) of the infimum in Lemma 16, i.e., (1 + δ)R2(f) ≥∑K
k=1 |ak| +

c2

2 . Let A =
∑K

k=1 |ak|, and define f0 = (f − c)/A. Then we can write f0(x) =∑
k γksk[w

⊤
k x + bk]+ where sk = sign(ak) and γk = |ak|/A for all k. This shows f0 is in the

convex hull of G, since f0 =
∑

k γkgk with gk = sk uwk,bk ∈ G and γk ≥ 0,
∑

k γk = 1.
Therefore, by Lemma 18, there exists a function f̃0 of the form f̃0(x) =

1
ω

∑ω
k=1 s̃k[w̃

⊤
k x+ b̃k]+

where ∥w̃k∥2 + |b̃k|2 = 1 and s̃k ∈ {−1, 1}, such that

∥f0 − f̃0∥L2 ≤
√
3√
ω

≤ ϵ

(1 + δ)R2(f)
.

Multiplying both sides above by A gives

∥(f − c)−Af̃0∥L2 ≤ Aϵ

(1 + δ)R2(f)
≤ Aϵ

A+ c2

2

≤ ϵ.

Defining f̃ = Af̃0 + c, we have
∥f − f̃∥L2 ≤ ϵ,

where f̃(x) = 1
ω

∑ω
k=1 skA[w̃

⊤
k x + b̃k]+ + c is realizable as a depth-two ReLU network with

width at most ω. In particular, with the choice of weights ϕ = (Ŵ , b̂, â, c) with ŵk :=
√
A/ω w̃k,

b̂k := bk
√
A/ω, âk := sk

√
A/ω, for all k ∈ [ω], we have f̃ = fϕ with ∥ϕ∥22

2 = A + c2

2 ≤
(1 + δ)R2(f) ≤ 2R2(f), and so ∥ϕ∥22 ≤ 4R2(f). Finally, the inequality ∥ϕ∥2∞ ≤ ∥ϕ∥22 holds for
any vector ϕ, which proves the claim.
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A.2.2. PROOF OF COROLLARY 6

Proof Let fd be the family of functions described in Lemma 4. First, to prove the depth-three
result, set f̃d to be equal to the approximating function f̃ϕ ∈ N3 described in Lemma 4. By a
simple parameter count and the bounds on the magnitudes of weights, we are guaranteed that
R3(f̃ϕ) ≤ ∥ϕ∥2

3 = O(poly(d)/ε).
Now, we prove the depth-two result. Set ε = 10−4. By way of contradiction, assume fd can

be ε/2-approximated in L2-norm by a depth-two network f̂d such that R2(f̂d) is subexponential
in d. Then Lemma 5 implies f̂d can be ε/2-approximated by a depth-two network f̃d ∈ N2 with
R2(f̃d) subexponential in d, width ω subexponential in d, and weights uniformly bounded by 2d for
sufficiently large d. Hence, by the triangle inequality, fd can be ε-approximated in L2-norm by the
depth-two network f̃d for all d. But by the width-based depth separation result Lemma 4, we know
this is impossible since f̃d has width subexponential in d. Therefore, contrary to our assumption, it
must be the case that R2(f̂d) is exponential in d.

A.3. Approximating fd in the L2-norm requires exponential R2 cost

In this section we adapt the construction of Daniely (2017) to the target function

fd(x) = ψ3d

(√
d⟨x(1),x(2)⟩

)
(41)

to prove that approximating fd in the L2-norm to even constant error requires R2 cost that is
exponential in dimension:

Lemma 19 There exist real numbers d0, C > 0 such that d > d0 and R2(f) < 2Cd implies that
∥f − fd∥2L2 ≥ 1

50e2π2 .

After outlining the proof of this result, the remainder of this section establishes several auxiliary
lemmas used in the proof.
Proof Similar to Daniely (2017), we let µd denote the probability distribution obtained by pushing
forward the uniform measure on Sd−1 via the mapping x 7→ x1, and we use Nd,n for the dimension
of the set of spherical harmonics of order n in d dimensions. Lemma 20 adapts Theorem 4 in Daniely
(2017) to show that for any n ∈ N and any f ∈ N2,

4
√
3R2(f) + 2∥f∥L2 ≥

√
Nd,n

(
Ad,n(ψ3d(

√
d·))−

∥f − fd∥2L2

Ad,n(ψ3d(
√
d·))

)
(42)

where Ad,n(ψ3d(
√
d·)) is the distance in the L2(µd)-norm of the function t 7→ ψ3d(

√
dt) to the

closest polynomial of degree less than n.
We choose n = 2d. In Lemma 21, we show that if d is sufficiently large, then Ad,2d(ψ3d(

√
d·) ≥

1
5eπ ; that is, the sawtooth function is bounded away from being a polynomial of degree 2d− 1. If
∥f − fd∥2L2 <

1
50e2π2 , then by the reverse triangle inequality

∥f∥L2 < ∥fd∥L2 + ∥f − fd∥L2 ≤ 1 +
1

5
√
2eπ

. (43)
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Plugging this all into Equation (42), we get

4
√
3R2(f) + 2 +

2

5
√
2eπ

≥
√
Nd,2d

10eπ
(44)

whenever ∥f − fd∥2L2 <
1

50e2π2 . As shown in Lemma 22, Nd,2d > 2d for sufficiently large d. We
conclude that there exist real numbers d0, C > 0 such that d > d0 and R2(f) < 2Cd implies that
∥f − fd∥2L2 ≥ 1

50e2π2 .

Lemma 20 Consider a distribution Dd on Xd × [−1, 1] defined as

x ∼ Uniform(Xd) (45)

y|x = fd(x) (46)

for some function inner-product fd : Xd → [−1, 1] defined as fd(x) = gd
(
⟨x(1),x(2)⟩

)
. Then for

all f ∈ N2 and n ∈ N,

∥f − fd∥2L2 ≥ Ad,n(gd)

(
Ad,n(gd)−

4
√
3R2(f) + 2∥f∥L2√

Nd,n

)
. (47)

whereAd,n(gd) is the distance in theL2(µd)-norm of the function t 7→ gd(t) to the closest polynomial
of degree less than n.

Proof Let ϕ = (W , b,a, c) be an arbitrary parameterization of f with ∥wk∥22 + |bk|2 = 1 for each
unit k. That is, f(x) =

∑
k ak

[
w⊤

k x+ bk
]
+
+ c. We now upper bound the L2-norm of each ReLU

unit in ϕ. By Cauchy-Schwarz, for all x ∈ Xd we have

|w⊤
k x+ bk| ≤

√
∥wk∥22 + |bk|2

√
∥x∥22 + 1 =

√
3. (48)

Thus ∥∥∥∥ak [w⊤
k ·+bk

]
+

∥∥∥∥
L2

=

√
Ex∼Uniform(Xd)

[
a2k
[
w⊤

k x+ bk
]2
+

]
≤

√
3|ak|. (49)

Additionally,

∥c∥L2 =

∥∥∥∥∥f −
∑
k

ak

[
w⊤

k ·+bk
]
+

∥∥∥∥∥
L2

(50)

≤ ∥f∥L2 +
∑
k

∥∥∥∥ak [w⊤
k ·+bk

]
+

∥∥∥∥
L2

(51)

≤ ∥f∥L2 +
√
3
∑
k

|ak|. (52)

By Theorem 4 in Daniely (2017),

∥f − fd∥2L2 ≥ Ad,n(gd)

Ad,n(gd)−
2
∑

k

∥∥∥ak [w⊤
k ·+bk

]
+

∥∥∥
L2

+ 2∥c∥L2√
Nd,n

 (53)

≥ Ad,n(gd)

(
Ad,n(gd)−

2 ∥f∥L2 + 4
√
3
∑

k |ak|√
Nd,n

)
(54)
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We now take the supremum of the right-hand side of (54) over all such parameterizations ϕ. By
Lemma 16, this gives the desired result.

The next lemma is analogous to (Daniely, 2017, Lemma 5) but for the sawtooth function instead of a
sinusoid.

Lemma 21 If d is sufficiently large, then Ad,2d(ψ3d(
√
d·) ≥ 1

5eπ .

Proof By definition,

Ad,2d(ψ3d(
√
d·) := min

p∈R[x;2d−1]
∥ψ3d(

√
d ·)− p∥L2(µd) (55)

where R[x; 2d−1] denotes the set of polynomials of degree less than 2d and dµd(t) :=
Γ( d

2
)

√
πΓ( d−1

2
)
(1−

t2)
d−3
2 . As shown in the proof of (Daniely, 2017, Lemma 5), for |t| ≤ 1√

d
and d sufficiently large,

we have dµd(t) ≥
√
d

2eπ , and for all p ∈ R[x; 2d− 1] and n ≥ 2d− 1,

∥ψn(
√
d ·)− p∥2L2(µd)

=

∫ 1

−1
(ψn(

√
dt)− p(t))2dµd(t) (56)

≥
√
d

2eπ

∫ d−1/2

−d−1/2

(ψn(
√
dt)− p(t))2dt (57)

=
1

2eπ

∫ 1

−1
(ψn(t)− p(t/

√
d))2dt. (58)

Consider the intervals Ii = (−1+ 2i−2
n ,−1+ 2i

n ), i = 1, . . . n, of width 2/n. Each interval contains
a full cycle of the sawtooth function. Observe that p(t/

√
d) is a polynomial of degree at most 2d− 1,

and so it has at most 2d− 1 roots in [−1, 1]. On at least n− 2d+1 of the intervals Ii, the polynomial
p(t/

√
d) does not change signs. On each interval Ii where p(t/

√
d) does not change signs, ψn is

positive on half of Ii and negative on the other half of Ii. Thus, on at least one subinterval of Ii of
width 1/n, ψn(t) has the same sign as p(t/

√
d). It follows that∫ 1

−1
(ψn(t)− p(t/

√
d))2dt ≥ (n− 2d+ 1)

∫ 1/n

0
ψ2
n(t)dt (59)

= 2(n− 2d+ 1)

∫ 1/2n

0
(−2nt)2dt (60)

= 2(n− 2d+ 1)(2n)2
1

3(2n)3
(61)

=
n− 2d+ 1

3n
(62)

where the first equality comes from the symmetry in ψn. Thus ∥ψn(
√
d ·)− p∥2L2(µd)

≥ n−2d+1
6neπ . In

particular, choosing n = 3d gives

Ad,2d(ψ3d(
√
d·)2 ≥ d+ 1

18deπ
≥ 1

18eπ
≥ 1

25e2π2
. (63)
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Lemma 22 Nd,2d > 2d for sufficiently large d.

Proof The quantity Nd,n is defined to be the dimension of the set of spherical harmonics of order n
in d dimensions:

Nd,n :=
(2n+ d− 2)(n+ d− 3)!

n!(d− 2)!
. (64)

Using Stirling’s approximation,

lim
d→∞

log2(Nd,2d)

d
= lim

d→∞

log2(4d+ d− 2) + log2(2d+ d− 3)!− log2(2d)!− log2(d− 2)!

d

= lim
d→∞

(3d− 3) log2(3d− 3)− (2d) log2(2d)− (d− 2) log2(d− 2)

d

> lim
d→∞

(3d− 3) log2(2d)− (2d) log2(2d)− (d− 2) log2(d)

d

= lim
d→∞

d log2(2d)− d log2(d)

d
= 1.

Therefore there exists a d0 such that d ≥ d0 implies log2(Nd,2d)
d > 1.

A.4. Approximating fd in the L∞-norm with polynomial R3 Cost

In this section, we show that there is a depth-3 network fd,K that well approximates fd(x) =

ψ3d

(√
d⟨x(1),x(2)⟩

)
and bound its R3 cost. The sawtooth function ψn can be expressed as a

depth-2 network of width 2n+ 2 as follows:

ψn(t) = −2n[t+1]++2n[t−1]++4n
n∑

j=1

(−1)j+n+1

[
t− 2j − 1

2n

]
+

+(−1)j+n

[
t+

2j − 1

2n

]
+

.

(65)

Lemma 23 For all scalars β > 0 and n ∈ N, there are vectors a,u, q ∈ R2n+2 such that
ψn(βt) = a⊤[ut+ q]+, u⊤q = 0, ∥u∥ = 1, and ∥a∥2 + ∥q∥2 = O(n4β2 + β−2).

Proof Denote the vector of all ones by 1. Using Equation (65), define vectors a0,u0, q0 ∈ R2n+2

so that ψn(βt) = a⊤
0 [u0t+ q0]+ where u0 = β1,

q0 =
[
1, −1, − 1

2n ,
1
2n , − 3

2n ,
3
2n , · · · , −2n−1

2n , 2n−1
2n

]⊤
, (66)

and
a0 =

[
−2n, 2n, ±4n, ±4n, · · · , ±4n, ±4n

]⊤
. (67)

Observe that

∥u0∥2 = (2n+ 2)β2 (68)

∥q0∥2 ≤ (2n+ 2) (69)

∥a0∥2 ≤ (2n+ 2)16n2. (70)
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Figure 2: The sawtooth function ψn : R → [−1, 1] with n = 4. The function ψn has n cycles in
[−1, 1] and is equal to zero outside [−1, 1].

Let u = u0
∥u0∥ , q = q0

∥u0∥ , and a = ∥u0∥a0. Then ψn(βt) = a⊤[ut+ q]+ by the homogeneity of
ReLU. We also observe that ∥u∥ = 1 and u⊤q = 0. Finally,

∥a∥2 + ∥q∥2 ≤ (2n+ 2)216n2β2 + β−2 = O(n4β2 + β−2). (71)

The next two lemmas allow us to get an approximation of the inner product by approximating the
square function.

Lemma 24 For all s > 0 and K ∈ N, the function fs,Ksquare(t) :=
2s
K

∑K
k=1[t−

sk
K ]+ + [−t− sk

K ]+
with 2K ReLU units satisfies

sup
t∈[−s,s]

|fs,Ksquare(t)− t2| ≤ s2
(

1

K
+

1

K2

)
.

Proof Observe that fs,Ksquare(−t) = fs,Ksquare(t), so it suffices to consider t ∈ [0, s]. Given t ∈ [0, s],
all of the [−t− sk

K ]+ terms in fs,Ksquare are equal to zero, and the [t− sk
K ]+ terms are nonzero if and

only if k < Kt
s . That is,

fs,Ksquare(t) =
2s

K

⌊Kt
s
⌋∑

k=1

(
t− sk

K

)
.

We use the summation formula
∑n

j=1 j =
n(n+1)

2 and the notation {x} := x− ⌊x⌋ ∈ [0, 1) to show
that this quantity is approximately t2; it is straightforward to verify that

f s,Ksquare(t) = t2 − st

K
− s2

K2

{
Kt

s

}({
Kt

s

}
− 1

)
.
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Thus,

sup
t∈[−s,s]

|fs,Ksquare(t)− t2| = sup
t∈[0,s]

∣∣∣∣ stK +
s2

K2

{
Kt

s

}({
Kt

s

}
− 1

)∣∣∣∣ ≤ s2

K
+

s2

K2
. (72)

Lemma 25 The function

fKinner(x) :=
d∑

i=1

f
√
2,K

square

(
1√
2

[
ei
ei

]⊤
x

)
− 1 (73)

satisfies

sup
x∈Xd

|fKinner(x)− ⟨x(1),x(2)⟩| ≤ 2d

(
1

K
+

1

K2

)
. (74)

Further, for any scalar β > 0, the function β−1fKinner(x) is in N2,2Kd and

R2(β
−1fKinner(x); 2Kd) = O(dβ−1 + β−2). (75)

Proof Fix x ∈ Xd. Similarly to Corollary 7 in Daniely (2017), observe that

⟨x(1),x(2)⟩ =
d∑

i=1

(
1√
2

[
ei
ei

]⊤
x

)2

− 1.

Additionally, ∣∣∣∣∣ 1√
2

[
ei
ei

]⊤
x

∣∣∣∣∣ ≤ ∥x∥2 =
√
2.

Then

sup
x∈Xd

|fKinner(x)− ⟨x(1),x(2)⟩| ≤ sup
x∈Xd

d∑
i=1

∣∣∣∣∣∣f
√
2,K

square

(
1√
2

[
ei
ei

]⊤
x

)
−

(
1√
2

[
ei
ei

]⊤
x

)2
∣∣∣∣∣∣

≤ d sup
|t|≤

√
2

∣∣∣f√2,K
square(t)− t2

∣∣∣
≤ 2d

(
1

K
+

1

K2

)
.

Now fix β > 0. Since

1

β
fKinner(x) =

1

β

d∑
i=1

f
√
2,K

square

(
1√
2

[
ei
ei

]⊤
x

)
− 1

β
(76)

=
2
√
2

βK

d∑
i=1

K∑
k=1

[
1√
2

[
ei
ei

]⊤
x−

√
2k

K

]
+

+

[
− 1√

2

[
ei
ei

]⊤
x−

√
2k

K

]
+

− 1

β
(77)
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we see that β−1fKinner(x) ∈ N2,2Kd. Finally, we apply Lemma 16 to get

R2(β
−1fKinner(x); 2Kd) ≤

d∑
i=1

K∑
k=1

4
√
2

βK

√
1 +

2k2

K2
+

1

2β2
(78)

≤ 4
√
3d

β
+

1

2β2
. (79)

Finally, we use fKinner to construct fd,K and bound its R3 cost.

Lemma 26 Let fd(x) = ψ3d

(√
d⟨x(1),x(2)⟩

)
. For all K ∈ N, there is a depth-3 neural net-

work fd,K of width ωd,K := max(6d + 2, 2Kd) such that ∥fd − fd,K∥L∞ = O
(
d5/2

K

)
and

R3(fd,K ;ωd,K) = O(d5/2).

Proof Choose fd,K(x) := ψ3d(
√
dfKinner(x)), which can be expressed as a depth-3 network with

hidden widths 2Kd and 6d+ 2. For all x ∈ Xd, we use the fact that ψn is 2n-Lipschitz to see that

∥fd − fd,K∥L∞ = sup
x∈Xd

|ψ3d(
√
dfKinner(x))− ψ3d(

√
d⟨x(1),x(2)⟩)|

≤ 6d
√
d sup
x∈Xd

|fKinner(x)− ⟨x(1),x(2)⟩|

≤ 12d5/2
(

1

K
+

1

K2

)
.

We now bound R3(fd,K ;ωd,K). Notice that fd,K can be expressed as fd,K = h ◦ g where we
set h : R → R to be h(t) = ψ3d(

√
dβt) and g : Xd → R to be g(x) = β−1fKinner(x) where β > 0

is a value we will optimize over later. By Lemma 23 there are vectors a,u, q ∈ R2n+2 such that
h(t) = a⊤[ut+ q]+, u⊤q = 0, ∥u∥2 = 1, and ∥a∥22 + ∥q∥22 = O(d5β2 + β−2d−1).

Let ϕg = (W , b,v, c) be an arbitrary parameterization of g of width 2Kd, so that g(x) =
v⊤[Wx+ b]+ + c. This gives a parameterization ϕf of fd,K as

fd,K(x) = a⊤[uv⊤[Wx+ b]+ + (cu+ q)]+.

Using the properties of a,u and q, we see that

∥ϕf∥2 = ∥a∥22 + ∥u∥22∥v∥22 + ∥W ∥2F + ∥b∥22 + c2∥u∥22 + ∥q∥22 (80)

= O(d5β2 + β−2d−1) + ∥ϕg∥2. (81)

Minimizing over parameterizations and using Lemma 25, we get

R3(fd,K ;ωd,K) ≤ O(d5β2 + β−2d−1) +
2

3
R2(g; 2Kd) (82)

= O(d5β2 + β−2d−1 + dβ−1 + β−2) (83)

Choosing β = d−5/4 gives R3(fd,K ;ωd,K) = O(d5/2). None of the constants hidden in the big-O
depend on K.
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A.5. Existence of interpolants with mild R2 cost

In this section, we will prove that with high probability over the samples, an interpolant exists with
R2 cost that depends only mildly on the number of samples (Lemma 30). To do this, we show
that with high probability the samples are sufficiently separated (Lemma 28), and then show that
separated samples on Xd can each be assigned a hyperplane that is sufficiently far away from any
other sample (Lemma 29). We start with the following simple bound on the Beta function.

Lemma 27 For all d ≥ 3, we have the following lower bound on the Beta function:

B

(
d− 1

2
,
1

2

)
≥ 2

√
π

d− 1
. (84)

Proof Using the identity zΓ(z) = Γ(z + 1) and the fact that Γ(z) is an increasing function on the
domain z ≥ 3

2 , we see that

(d− 1)B

(
d− 1

2
,
1

2

)
= 2

d−1
2 Γ(d−1

2 )Γ(12)

Γ(d2)
= 2

Γ(d+1
2 )

√
π

Γ(d2)
≥ 2

√
π. (85)

Lemma 28 Let x1, . . . ,xm be i.i.d. samples from Uniform(Xd). Then for η < 1,

P(min
i ̸=j

∥xi − xj∥2 ≤ η) < m2ηd−1

Proof We first consider the distance between x1 and x2. Since ∥x(1)
1 − x

(1)
2 ∥2 ≤ ∥x1 − x2∥2 it

follows that
P(∥x1 − x2∥2 ≤ η) ≤ P(∥x(1)

1 − x
(1)
2 ∥2 ≤ η). (86)

As shown in Sidiropoulos (2014)), the probability density function of ∥x(1)
1 − x

(1)
2 ∥2 is

P(∥x(1)
1 − x

(1)
2 ∥2 = η) =

η
(
η2 − η4

4

) d−3
2

B
(
d−1
2 , 12

) . (87)

Integrating and using the bound on the Beta function from Lemma 27, we get

P(∥x(1)
1 − x

(1)
2 ∥2 ≤ η) =

1

B
(
d−1
2 , 12

) ∫ η

0
t

(
t2 − t4

4

) d−3
2

dt (88)

≤ d− 1

2
√
π

∫ η

0
t
(
t2
) d−3

2 dt (89)

=
d− 1

2
√
π

∫ η

0
td−2dt (90)

< ηd−1. (91)

Finally, there are
(
m
2

)
pairwise distances between the samples, so we can use the union bound to get

P(min
i ̸=j

∥xi − xj∥2 ≤ η) <

(
m

2

)
P(∥x1 − x2∥2 ≤ η) < m2ηd−1. (92)
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Lemma 29 For any finite set of points {xj}mj=1 ⊆ Xd that are η-separated, there exists a unit
vector vj ∈ R2d for all j ∈ [m] such that xj is contained in the hyperplane {x ∈ R2d : v⊤

j x =
√
2}

and xj is the only point contained in the set Tj := {x ∈ R2d : |v⊤
j x−

√
2| < η2

2
√
2
}.

Proof Assume {xj}mj=1 ⊆ Xd and mini ̸=j ∥xi−xj∥2 ≥ η. Choose vj = 1√
2
xj . Clearly ∥vj∥2 = 1,

and
v⊤
j xj =

1√
2
∥xj∥2 =

√
2. (93)

If i ̸= j, then observe that

η2 ≤ ∥xi − xj∥22 = ∥xi∥2 + ∥xj∥2 − 2x⊤
i xj = 4− 2x⊤

i xj . (94)

Hence,

|v⊤
j xi −

√
2| =

∣∣∣∣ 1√
2
x⊤
j xi −

√
2

∣∣∣∣ ≥ η2

2
√
2
. (95)

We now have the pieces we need for the proof of Lemma 30.

Lemma 30 Consider a distribution Dd on Xd × [−1, 1] defined as

x ∼ Uniform(Xd) (96)

y|x = fd(x) (97)

for some function fd : Xd → [−1, 1]. Given a sample S = {(xi, yi)}mi=1 of size m drawn i.i.d.
from Dd, with probability at least 1 − δ there exists an interpolant f̂ of S such that R2(f̂) ≤
16

√
2|S|

d+3
d−1 δ−

2
d−1 .

Proof By Lemma 28, the data is δ
1

d−1 |S|
−2
d−1 separated with probability at least 1−δ. For convenience,

let η = δ
1

d−1 |S|
−2
d−1 and η0 = η2

2
√
2
. Note that η, η0 ∈ (0, 1).

Consider the function zη0 : R → R defined by zη0(t) = η−1
0 ([t−η0]+−2[t]++[t+η0]+), which

vanishes for |t| > η0, and is such that zη0(0) = 1. By Lemma 29, for all j ∈ [n] there exists a unit
vector vj ∈ R2d for all j ∈ [n] such that xj is contained in the hyperplane {x ∈ R2d : v⊤

j x =
√
2}

and xj is the only training point contained in the set Tj := {x ∈ R2d : |v⊤
j x−

√
2| < η0}. Define

the ridge function rj : R2d → R by the depth-2 network of width 3 as follows:

rj(x) = zη0(v
⊤
j x−

√
2) = η−1

0 ([v⊤
j x−

√
2−η0]+−2[v⊤

j x−
√
2]++[v⊤

j x−
√
2+η0]+). (98)

Since the support of rj coincides with Tj , and v⊤
j xj −

√
2 = 0, we see that rj(xi) = δij . Therefore,

the width 3|S|, depth-2 network f̂(x) =
∑|S|

j=1 yjrj(x) interpolates the samples.
Using Lemma 16,

R2

(
f̂ ; 3|S|

)
≤

|S|∑
j=1

|yj |η−1
0

(√
1 + (

√
2 + η0)2 + 2

√
3 +

√
1 + (−

√
2 + η0)2

)
(99)

≤ 8|S|η−1
0 (100)

= 16
√
2|S|

d+3
d−1 δ−

2
d−1 . (101)
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A.6. Estimation error bound for depth-3 networks

In this section, we present an estimation error bound (Lemma 34) derived from the Rademacher
complexity bounds in Neyshabur et al. (2015). We begin with several auxiliary lemmas. Given
a depth-3 network fϕ ∈ N3, this first lemma rewrites fϕ so that it will be compatible with the
framework in Neyshabur et al. (2015).

Lemma 31 If ϕ = (W1, b1,W2, b2,w3, b3) and 1
3∥ϕ∥

2 ≤M , then

fϕ(x) =
[
w⊤

3 b3
] [[W⊤

2 b2
0 1

] [[
W⊤

1 b1
0 1

] [
x
1

]]
+

]
+

(102)

with ∥∥[w⊤
3 b3

]∥∥
2

∥∥∥∥[W⊤
2 b2
0 1

]∥∥∥∥
F

∥∥∥∥[W⊤
1 b1
0 1

]∥∥∥∥
F

≤
(
M +

2

3

)3/2

.

Proof It is straightforward to verify Equation (102). Observe that

M ≥ 1

3
∥ϕ∥2 = 1

3

(∥∥[w⊤
3 b3

]∥∥2
2
+

∥∥∥∥[W⊤
2 b2
0 1

]∥∥∥∥2
F

+

∥∥∥∥[W⊤
1 b1
0 1

]∥∥∥∥2
F

− 2

)

≥ −2

3
+

(∥∥[w⊤
3 b3

]∥∥
2

∥∥∥∥[W⊤
2 b2
0 1

]∥∥∥∥
F

∥∥∥∥[W⊤
1 b1
0 1

]∥∥∥∥
F

)2/3

.

where the second inequality comes from the AM-GM inequality.

We now apply Theorem 1 in Neyshabur et al. (2015) to get a bound on the Rademacher complexity
of the set of depth-3 networks with representation cost bounded by M with respect to Uniform(Xd).
We use NM

3 to denote this set:

NM
3 := {f ∈ N3 : R3(f) ≤M}. (103)

Given a function class H, we write Rm(H; (xi)
m
i=1) for the empirical Rademacher complexity with

respect to samples (xi)
m
i=1. That is,

Rm(H; (xi)
m
i=1) := Eξ∼{±1}m

[
sup
h∈H

1

m

∣∣∣∣∣
m∑
i=1

ξih(xi)

∣∣∣∣∣
]

(104)

where ξ ∼ {±1}m denotes that each entry in ξ is an iid draw from Uniform{±1}. We write
RXm

d
(H) for the Rademacher complexity of H with respect to m i.i.d. samples from Uniform(Xd):

RXm
d
(H) := E

(xi)mi=1
iid∼Uniform(Xd)

[Rm(H; (xi)
m
i=1]. (105)

Lemma 32 (Rademacher Complexity Bound) RXm
d
(NM

3 ) = O
(
M3/2

m1/2

)
.
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Proof Theorem 1 in Neyshabur et al. (2015) bounds the empirical Rademacher complexity of

N 3,dim=D
γ22≤γ := {f : RD → R|f(x) = w⊤

3

[
W2 [W1x]+

]
+
, ∥w3∥2∥W2∥F ∥W1∥F ≤ γ} (106)

as

Rm(N 3,dim=D
γ22≤γ ; (xi)

m
i=1) ≤

4
√
2γmaxi ∥xi∥2√

m
. (107)

By Lemma 31, NM
3 ⊆ N 3,dim=D

γ22≤γ with D = 2d+ 1 and γ =
(
M + 2

3

)3/2. Therefore,

Rm(NM
3 ; (xi)

m
i=1) ≤

4
√
2
(
M + 2

3

)3/2
maxi

√
1 + ∥xi∥22√

m
.

where we have replaced ∥xi∥2 with
√
1 + ∥xi∥22 because NM

3 is embedded in N 3,dim=D
γ22≤γ by extend-

ing in the input x ∈ R2d to
[
x⊤ 1

]⊤ ∈ R2d+1. Since all samples xi ∼ Uniform(Xd) have norm√
2, we get

RXm
d
(NM

3 ) ≤
4
√
2
(
M + 2

3

)3/2√
3

√
m

= O

(
M3/2

m1/2

)
.

The other piece we need for an estimation error bound is to uniformly bound ∥fd − h∥L∞ over NM
3 .

Lemma 33 If fd : Xd → [−1, 1], then suph∈NM
3

∥fd − h∥L∞ = O(M3/2).

Proof If h ∈ NM
3 , then by Lemma 31,

h(x) =
[
w⊤

3 b3
] [[W⊤

2 b2
0 1

] [[
W⊤

1 b1
0 1

] [
x
1

]]
+

]
+

for some parameterization ϕ = (W1, b1,W2, b2,w3, b3) with

∥∥[w⊤
3 b3

]∥∥
2

∥∥∥∥[W⊤
2 b2
0 1

]∥∥∥∥
F

∥∥∥∥[W⊤
1 b1
0 1

]∥∥∥∥
F

≤
(
M +

2

3

)3/2

.

Because ∥AB∥F ≤ ∥A∥F ∥B∥F and ∥[A]+∥F ≤ ∥A∥F , we see that for x ∈ Xd,

|h(x)| ≤
∥∥[w⊤

3 b3
]∥∥

2

∥∥∥∥[W⊤
2 b2
0 1

]∥∥∥∥
F

∥∥∥∥[W⊤
1 b1
0 1

]∥∥∥∥
F

∥∥∥∥[x1
]∥∥∥∥

2

≤
√
3

(
M +

2

3

)3/2

.

This shows that

sup
h∈NM

3

∥fd − h∥L∞ ≤ ∥fd∥L∞ + sup
h∈NM

3

∥h∥L∞ ≤ 1 +
√
3

(
M +

2

3

)3/2

= O(M3/2).

Using Lemmas 32 and 33, standard Rademacher complexity arguments yield an estimation error
bound over NM

3 , as shown in the following lemma.
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Lemma 34 Consider a distribution Dd on Xd × [−1, 1] defined as

x ∼ Uniform(Xd) (108)

y|x = fd(x) (109)

for some function fd : Xd → [−1, 1] . If f ∈ N3 with R3(f) ≤M , then

|LDd
(f)− LS (f) | ≤ O

(
M3

√
log 1/δ

|S|

)
(110)

with probability at least 1− δ over samples S drawn i.i.d. from Dd.

Proof We apply the properties of Rademacher complexity (see for example Theorem 12 in Bartlett
and Mendelson (2001) and Theorem 4.10 in Wainwright (2019)) to give an estimation error bound
over NM

3 as follows. Define the loss class LNM
3 ,fd

:= {(h− fd)
2 : h ∈ NM

3 }. With probability at
least 1− δ,

suph∈NM
3
|LDd

(h)− LS (h) | (111)

≤ O

(
RXm

d
(LNM

3 ,fd
) +

√
log(1/δ)

m
sup

h∈NM
3

∥fd − h∥2L∞

)
(112)

≤ O

(
sup

h∈NM
3

(∥fd − h∥L∞)
(
RXm

d
(NM

3 ) + 1/
√
m
)
+

√
log(1/δ)

m
sup

h∈NM
3

∥fd − h∥2L∞

)
.

(113)

Plugging in the bounds from Lemmas 32 and 33, this becomes

sup
h∈NM

3

|LDd
(h)− LS (h) | = O

(
M3

√
log 1/δ

m

)
. (114)

A.7. Full Proof of No Reverse Depth Separation

A.7.1. PROOF OF LEMMA 15

Proof Fix ε > 0. Let S be a sample from Dd of size m2

(
ε
2

)
. As in the proof of Theorem 10 Part 1,

we rely on the existence of an interpolant. By Lemma 30, with probability at least 0.6 there is an

interpolant f̂S ∈ N2 of the samples S withR2

(
f̂S

)
≤ 100

√
2m2

(
ε
2

) d+3
d−1 . Because A∗

2(S) ∈ P2(S)

is Pareto optimal, it follows that R2(A∗
2(S)) ≤ R2(f̂S). We conclude that

P
(
R2(A∗

2(S)) > 100
√
2m2

(ε
2

) d+3
d−1

)
≤ 0.4.

On the other hand, since ES [LDd
(A∗

2(S))] ≤ ε
2 whenever |S| ≥ m2

(
ε
2

)
, it follows from

Markov’s inequality that
P (LDd

(A∗
2(S)) > ε) ≤ 0.5. (115)
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Therefore,

P
(

LDd
(A∗

2(S)) > ε or R2(A∗
2(S)) > 100

√
2m2

(ε
2

) d+3
d−1

)
≤ 0.9 < 1. (116)

We conclude that there is some sample Sε from Dd of size m2

(
ε
2

)
such that

LDd
(A∗

2(Sε)) ≤ ε and R2(A∗
2(Sε)) ≤ 100

√
2m2

(ε
2

) d+3
d−1

. (117)

We choose fε = A∗
2(Sε).

A.7.2. PROOF OF THEOREM 11 (NO REVERSE DEPTH SEPARATION)

Proof Fix ε, δ > 0 and α ≥ 1. Let θ = ε
2α . Under the assumptions of the theorem, Lemma 15 tells

us there is a function fθ ∈ N2 such that LDd
(fθ) ≤ θ/8 and R2(fθ) ≤ O

(
m2

(
ε

32α

) d+3
d−1

)
. Let

ω2 =
24R2(fθ)

2

θ
= O

m2

(
ε

32α

) 2(d+3)
d−1 α

ε

 . (118)

Lemma 5 allows us to approximate fθ — and thus Dd — with width ω2; there is some f̃θ ∈ N2,ω2

such that R2(f̃θ;ω2) ≤ 2R2(fθ) and ∥fθ − f̃θ∥L2 <
√
θ/8. Thus,

LDd
(f̃θ) ≤ 2

(
LDd

(fθ) + ∥fθ − f̃θ∥2L2

)
≤ θ/2. (119)

If ω ≥ max(ω2, 4d), then Lemma 17 tells us that f̃θ ∈ N3,ω and

R3(f̃θ;ω) ≤
4d

3
+

4

3
R2(f̃θ;ω2) (120)

≤ 4d

3
+

8

3
R2(fθ) (121)

= O

(
d+m2

( ε

32α

) d+3
d−1

)
. (122)

By the estimation error bound in Lemma 34 and the union bound, with probability at least 1− δ
we have that

∣∣∣LS

(
Aθ,α

3,ω(S)
)
− LDd

(Aθ,α
3,ω(S))

∣∣∣ = O

√R3(Aθ,α
3,ω(S);ω)

6 log(1/δ)

|S|

 (123)

and ∣∣∣LS

(
f̃θ

)
− LDd

(f̃θ)
∣∣∣ = O

√R3(f̃θ;ω)6 log(1/δ)

|S|

 . (124)
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If |S| ≥ m3(ε, δ, α), where

m3(ε, δ, α) = O


α6

(
d+m2

(
ε
64

) d+3
d−1

)6

log 1/δ

ε2

 , (125)

then Equations (122) and (124) imply that
∣∣∣LS

(
f̃θ

)
− LDd

(f̃θ)
∣∣∣ ≤ θ/2, and so LS

(
f̃θ

)
≤ θ.

Hence

R3(Aθ,α
3,ω(S);ω) ≤ α inf

f∈N3,ω

LS(f)≤θ

R3(f ;ω) (126)

≤ αR3(f̃θ;ω) (127)

= O

(
α

(
d+m2

( ε

32α

) d+3
d−1

))
. (128)

By Equations (123) and (128), if |S| ≥ m3(ε, δ, α) then
∣∣∣LS

(
Aθ,α

3,ω(S)
)
− LDd

(Aθ,α
3,ω(S))

∣∣∣ ≤ ε
2 .

Therefore LDd
(Aθ,α

3,ω(S)) ≤ αθ + ε
2 = ε.
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