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Abstract
Multi-distribution learning generalizes the classic PAC learning to handle data coming from multi-
ple distributions. Given a set of k data distributions and a hypothesis class of VC dimension d, the
goal is to learn a hypothesis that minimizes the maximum population loss over k distributions, up
to ϵ additive error. In this paper, we settle the sample complexity of multi-distribution learning by
giving an algorithm of sample complexity Õ((d+k)ϵ−2) ·(k/ϵ)o(1). This matches the lower bound
up to sub-polynomial factor and resolves the COLT 2023 open problem of Awasthi, Haghtalab and
Zhao (Awasthi et al., 2023).
Keywords: Learning theory, PAC learning, sample complexity, multi-distribution learning

1. Introduction

Multi-distribution learning is a natural generalization of the classic PAC learning (Valiant, 1984) to
multiple distributions setting. Given a hypothesis class H and a set of k distributions D1, . . . ,Dk

over the data universe X ×{0, 1}, multi-distribution learning seeks for a hypothesis f that achieves
near optimal worst case guarantee over all distributions

max
i∈[k]

ℓDi(f) ≤ argmin
h∗∈H

max
i∈[k]

ℓDi(h
∗) + ϵ where ℓD(h) := Pr

(x,y)∼D
[h(x) ̸= y].

The formulation of multi-distribution learning captures many important applications: For fairness
consideration, the distributions represent heterogeneous populations of protected attributes and
multi-distribution learning yields the minimax group fairness (Mohri et al., 2019; Shekhar et al.,
2021; Rothblum and Yona, 2021; Diana et al., 2021; Tosh and Hsu, 2022); In the context of multi-
task or federated learning, multi-distribution learning captures the notion of robustness and yields
worst case guarantees (Sener and Koltun, 2018); For group distributional robustness optimiza-
tion, multi-distribution learning obtains uniform guarantee to all pre-defined groups of distributions
(Rahimian and Mehrotra, 2019; Sagawa et al., 2019, 2020; Duchi and Namkoong, 2021).

Similar to the study of PAC learning (Blumer et al., 1989; Auer and Ortner, 2004; Hanneke,
2016; Larsen, 2023; Aden-Ali et al., 2023), one important research question is to characterize the
sample complexity of multi-distribution learning. It is not hard to see that the learnability is still
captured by the VC dimension (Vapnik and Chervonenkis, 1971), and Θ̃(kd/ϵ2) samples are both
necessary and sufficient to guarantee uniform convergence (Blum et al., 2017). There is a long line
of work (Blum et al., 2017; Nguyen and Zakynthinou, 2018; Chen et al., 2018; Haghtalab et al.,
2022; Awasthi et al., 2023) that try to pin down the optimal sample complexity. In the realizable
setting, where the optimal hypothesis h∗ ∈ H has zero error, Blum et al. (2017); Nguyen and
Zakynthinou (2018); Chen et al. (2018) give algorithms of sample complexity Õ((d + k)/ϵ) using
the idea of multiplicative weight update. The sample complexity for the general agnostic learning
setting is more challenging. A recent breakthrough of Haghtalab, Jordan and Zhao (Haghtalab et al.,
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2022) gives an algorithm of sample complexity Õ((k+ log(|H|))/ϵ2), this is optimal assuming the
hypothesis classH is finite. For infinite hypothesis class, Awasthi et al. (2023) gives two algorithms:
One bases on the multiplicative weight update and has sample complexity Õ((d + k)/ϵ4); The
other bases on the finite hypothesis algorithm (Haghtalab et al., 2022) and has sample complexity
Õ((d + k)/ϵ2 + kd/ϵ). Nevertheless, there is still a significant gap between the upper and lower
bound (Õ(min{(d+k)/ϵ4, (d+k)/ϵ2+kd/ϵ}) vs. Ω̃((d+k)/ϵ2)), and as elaborated in the COLT
2023 open problem publication (Awasthi et al., 2023), fundamental barriers exist for all current
approaches. They pose the open question of obtaining the optimal sample complexity for multi-
distribution learning.

In this paper, we address the open question of (Awasthi et al., 2023) and give an algorithm of
optimal sample complexity (up to sub-polynomial factor). Our result is formally stated as below.

Theorem 1 (Multi-distribution learning) Let k be the number of distributions, d be the VC di-
mension of the hypothesis class. For any ϵ > 0, there is an algorithm that outputs an ϵ-optimal
classifier with probability 1− δ, and has sample complexity

(d+ k) log(d/δ)

ϵ2
· (k/ϵ)o(1).

An immediate implication of Theorem 1 is that multi-distribution learning is no harder than (single-
distribution) PAC learning for sample complexity consideration.

1.1. Technical overview: Achieving optimal sample complexity via recursive width reduction

We give an overview of our algorithm for Theorem 1, the key ingredient is a recursive width reduc-
tion procedure.

The MWU framework The major technique used by all previous works (Blum et al., 2017;
Nguyen and Zakynthinou, 2018; Chen et al., 2018; Haghtalab et al., 2022; Awasthi et al., 2023)
is the multiplicative weight update (MWU) framework (Arora et al., 2012). We first review this
framework. The algorithm views the k distributions D1, . . . ,Dk as k experts and runs MWU for
T rounds. At each round t ∈ [T ], the algorithm performs empirical risk minimization (ERM)
and obtains an ϵ-optimal hypothesis ft ∈ H over the mixed distribution D(t) =

∑
i∈[k] pt(i)Di.

Here pt is the strategy of MWU, and it is updated by the loss of ft over distributions (Di)i∈[k], i.e.
ℓt = (ℓDi(ft))i∈[k] ∈ [0, 1]k. The final output is taken to be f = 1

T

∑
t∈[T ] ft. The regret guarantee

of MWU ensures that the worst case error of f over D1, . . . ,Dk is close to the average error of
ft over D(t), which is at most ϵ. For the sample complexity, in the realizable setting, the sample
complexity per round is Õ((k + d)/ϵ) and T = Ω(log(k)) rounds are needed; under the agnostic
learning setting, the sample complexity per round is Õ((k + d)/ϵ2) and T = Ω̃(1/ϵ2) rounds are
needed. It is not hard to see that both terms are tight in the worst case and they form the major
technical obstacle for obtaining the optimal sample complexity.

Width reduction Our approach also falls into this MWU framework and the key idea for im-
provement is recursive width reduction. In the literature of online learning, width refers to the
maximum range of the loss vector, i.e., maxi∈[k] ℓt(i)−mini∈[k] ℓt(i). To get a quick sense of how
width reduction works, recall the regret guarantee of MWU equals O(

√
log(k)/TB), where B is

the width of the loss vector ℓt and it equals 1 in the above framework. In order to get ϵ-regret, one

2



THE SAMPLE COMPLEXITY OF MULTI-DISTRIBUTION LEARNING

needs to take T ≥ Ω̃(1/ϵ2). If one can reduce the width, then it immediately reduces the number of
iterations for MWU, and consequently, reduces the sample complexity.

For now, we assume the optimal error OPT := minh∗∈Hmaxi∈[k] ℓDi(h
∗) is known to the

algorithm, this assumption can be easily removed and we defer the discussion to the end. Our idea
is to reduce the width using the algorithm itself. Recall we have an algorithm of sample complexity
Õ((d + k)/ϵ4) using MWU. Now at each round t ∈ [T ], we first draw Õ(d/ϵ2) samples from
D(t). Instead of running ERM, we first obtain a subset of the hypothesis H′ ⊆ H by removing
all hypothesis h ∈ H that has error more than OPT+ϵ. We then run the MWU algorithm with
error parameter ϵ′ = ϵ1/2 over hypothesis classH′ (so the additional samples it needs is still Õ((d+
k)/(ϵ′)4) = Õ((d+k)/ϵ2)), and obtain a hypothesis ft. The hypothesis ft has additional guarantees
on the maximum loss, i.e., maxi∈[k] ℓDi(ft) ≤ OPT+ϵ1/2. This reduces the maximum loss from 1

to OPT+ϵ1/2. However, we have no guarantee on the minimum loss, and the width could still be
as large as OPT+ϵ1/2 ≈ Θ(1).

To get a lower bound on ℓt, we can truncate small entries: If an entry ℓt(i) = ℓDi(ft) ≤
OPT−ϵ1/2 is small, then we take it as ℓt(i) = OPT−ϵ1/2. In this way, the width reduces to
(OPT+ϵ1/2) − (OPT−ϵ1/2) = 2ϵ1/2. However, there is a fatal issue here: There is no reason
we can arbitrarily truncate the loss. Recall we need the average loss

∑
i∈[k] pt(i)ℓt(i) to be close

to OPT+ϵ. If we truncate the small entries, then we increase its value. As a concrete example,
if OPT = 1/2, there are 2ϵ1/2-fraction of (ℓDi(ft))i∈[k] equal 0, and the other 1 − 2ϵ1/2 fraction
equal OPT+ϵ1/2, then there is no way one can truncate the loss.

The next idea is, instead of relying on uniform convergence and selecting the hypothesis classH′

that are ϵ-optimal on D(t), we need more refined properties of H′ that make the loss (ℓDi(ft))i∈[k]
more balanced. To this end, we want the hypothesis classH′ satisfies the following two properties:

• Soundness. The optimal classifier survives, i.e., h∗ ∈ H′, where h∗ = argminh∈Hmaxi∈[k] ℓDi(h).

• Completeness. For any hypothesis h ∈ H′ that survives, it satisfies the following guarantee.
For any subset of distributions I ⊆ [k], if their weights

∑
i∈[n] pt(i) ≥ 1/2, then the loss of

h on the distribution
∑

i∈I
pt(i)∑
i∈I pt(i)

Di is at most OPT+O(ϵ).

The first property states that the optimal classifier h∗ survives, this ensures that it is safe to work
with H′ instead of H. The second property is more complicated, but from a high level, it says
that any surviving hypothesis in H′ is robust – not only their loss is small on the entire distri-
bution D(t) =

∑
i∈[k] pt(i)Di, but also small on any sub-populations {Di}i∈I of mass at least

1/2. Suppose for now, we have achieved these two properties with Õ((d + k)/ϵ2) samples. Then
we can safely truncate the loss ℓt(i) = max{ℓDi(ft),OPT−ϵ1/2} and reduce the width of ℓt ∈
[OPT−ϵ1/2,OPT+ϵ1/2]k to 2ϵ1/2. It remains to argue that the average loss satisfies

∑
i∈[k] pt(i)ℓt(i) ≤

OPT+O(ϵ).1 To this end, we sort the loss {ℓDi(ft)}i∈[k] and assume ℓD1(ft) ≥ · · · ≥ ℓDk
(ft)

w.l.o.g. Suppose k′ ∈ [k] is the smallest index such that
∑

i≤k′ pt(i) ≥ 1/2.

• Case 1. If ℓDk′ (ft) ≥ OPT−ϵ1/2 (i.e., no truncation at the larger half), then by the com-
pleteness property,2 the larger half has loss at most OPT+O(ϵ), since there is no truncation.

1. We also need to ensure ℓt(i) is an overestimate of ℓDi(ft), but this is trivial from the definition.
2. We actually need the hypothesis ft to be a weighted average of hypothesis in H′ in order to inherit the completeness

property of H′, this is naturally satisfied by algorithms in the MWU framework.
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Meanwhile, the loss of the smaller half is no more than the larger half, so the average loss is
at most OPT+O(ϵ).

• Case 2. Otherwise, if ℓDk′ (ft) < OPT−ϵ1/2, then performing truncation is still fine, because
more than 1/2-fraction of distributions have loss smaller than OPT−ϵ1/2, while the rest of
them (at most 1/2-fraction) have loss at most OPT+ϵ1/2.

Now we elaborate a bit on how we achieve both soundness and completeness. It proceeds in
two steps. First, we draw Õ(d/ϵ) samples S(t)

1 from D(t) and look at the projection of H on S
(t)
1 .

We construct an ϵ-cover CH of H by including an arbitrary hypothesis for each projection. This is
a fairly standard trick (e.g. see Alon et al. (2019)). Next, we draw another Õ((d + k)/ϵ2) samples
S
(t)
2 fromD(t) and run the following test on S

(t)
2 . For each hypothesis h ∈ CH in the ϵ-cover, if there

exists a subset I ⊆ [k] of distributions such that (1)
∑

i∈I pt(i) ≥ 1/2 and (2) the empirical loss
of h on

∑
i∈I

pt(i)∑
i∈I pt(i)

Di is larger that OPT+O(ϵ), then we remove h, as well as all hypothesis

that have the same projection as h on S
(t)
1 , from H′. In the proof, we show that this test guarantees

soundness and completeness with high probability.

Recursive width reduction The width reduction procedure described above reduces the width
from 1 to 2ϵ1/2. The regret now becomes Õ(ϵ1/2/

√
T ), and it suffices to take T = Õ(1/ϵ). The

sample complexity per round remains Õ((d + k)/ϵ2) and there are T = Õ(1/ϵ) rounds, so we
improve the sample complexity from Õ((d+k)/ϵ4) to Õ((d+k)/ϵ3). We can continue this process,
and use this new algorithm for width reduction. In particular, at each round, we can take the error
parameter ϵ′ = ϵ2/3 and use Õ((d+ k)/(ϵ′)3) = Õ((d+ k)/(ϵ)2) samples to reduce the maximum
loss to OPT+ϵ′ = OPT+ϵ2/3 (instead of OPT+ϵ1/2). The regret now becomes Õ(ϵ2/3/

√
T )

and we can further reduce the number of rounds to T = Õ(ϵ−2/3) and the sample complexity
to Õ((d + k)/ϵ8/3). We repeat the above process and obtain an algorithm of sample complexity
O((d+ k)/ϵ2) · (k/ϵ)o(1).

Remove prior knowledge on OPT The above algorithm requires prior knowledge on the optimal
value (for both the testing step and the truncation step), we next remove this assumption. It is not
hard to see that the above algorithm succeeds with an ϵ-approximate OPT′ ∈ [OPT−ϵ,OPT+ϵ]
(i.e., no need for the exact value of OPT). Hence, we can run 1/ϵ threads of the algorithm with
OPT′ = ϵ, 2ϵ, . . . , 1 and take the best one. This has sample complexity (k + d)/ϵ2 · (1/ϵ) =
(k + d)/ϵ3 (we omit the o(1) term for simplicity) and does not require any knowledge of OPT.
Next, we take ϵ′ = ϵ2/3 and runs the algorithm with (k + d)/(ϵ′)3 = (k + d)/ϵ2 samples . The
output hypothesis has error at most OPT+O(ϵ′) = OPT+O(ϵ2/3). Now, we can reduce the size
of the grid search and only search for ϵ2/3/ϵ = ϵ−1/3 possible value of OPT′ (instead of 1/ϵ), this
reduces the sample complexity from (k + d)/ϵ3 to (k + d)/ϵ7/3. Again, we repeat this process and
get an algorithm of sample complexity O((d+ k)/ϵ2) · (k/ϵ)o(1) without any knowledge of OPT.

1.2. Related work

The sample complexity of multi-distribution learning has been extensively studied in the past decade
(Blum et al., 2017; Nguyen and Zakynthinou, 2018; Qiao, 2018; Chen et al., 2018; Tao et al., 2019;
Blum et al., 2021; Haghtalab et al., 2022; Awasthi et al., 2023). The optimal sample complexity
has been derived in the realizable setting (Blum et al., 2017; Nguyen and Zakynthinou, 2018; Chen
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et al., 2018). For the more general agnostic learning setting, the optimal sample complexity has
been obtained for finite hypothesis class (Haghtalab et al., 2022) but the question is widely open for
VC classes, we refer interesting readers for the open problem publication of (Awasthi et al., 2023)
for an excellent coverage on the literature.

The multi-distribution learning has applications to fairness (Hébert-Johnson et al., 2018; Mohri
et al., 2019; Shekhar et al., 2021; Rothblum and Yona, 2021; Tosh and Hsu, 2022) and group dis-
tributional robust optimization (Ben-Tal et al., 2009; Rahimian and Mehrotra, 2019; Sagawa et al.,
2019, 2020; Duchi and Namkoong, 2021). It is also closely related to multi-task learning (Caruana,
1997), distributed learning (Balcan et al., 2012), federated learning (McMahan et al., 2017), meta
learning (Finn et al., 2017) and continual learning (Chen et al., 2022).

Our approach can be seen as a boosting framework for (agnostic) multi-distribution learning. It
converts a weak multi-distribution learner into one with better sample complexity guarantee. There
is a vast literature on boosting (Schapire, 1990; Freund and Schapire, 1997; Freund et al., 1999; Ben-
David et al., 2001; Mansour and McAllester, 2002; Kalai and Servedio, 2003; Kalai et al., 2008;
Balcan et al., 2012; Schapire, 2013; Beygelzimer et al., 2015; Brukhim et al., 2020; Alon et al.,
2021; Brukhim et al., 2021, 2023), but to the best of our knowledge, it is the first time that width
reduction has been used – we hope it could find broad applications for boosting. The idea of width
reduction traces back to the seminal work of positive LP solver (Garg and Könemann, 2007) and
approximate max flow (Christiano et al., 2011), which use separate subroutines for width reduction.
The idea of recursive width reduction (recursively applying the algorithm itself to reduce the width)
has been introduced recently by Peng and Zhang (2023) and it is crucial for the recent development
of low memory online learning algorithm (Peng and Zhang, 2023; Peng and Rubinstein, 2023).
These previous work are very inspiring, but our way of width reduction, which forms the major
challenging part of the proof, is unique and different.

Concurrent and independent work We were recently made aware of the concurrent and inde-
pendent work of Zhang, Zhan, Chen, Du and Lee (Zhang et al., 2023), which obtains the similar
result as Theorem 1. Moreover, their result has the optimal sample complexity up to polylogarithmic
factor, and their algorithm is oracle efficient. Their result is derived via a different set of technique,
which relies on sample reuse.

2. Preliminary

Let X be the data universe and Y = {0, 1} be binary labels. Let H be a hypothesis class of
VC dimension d, a hypothesis h ∈ H maps the data universe X to the binary label Y . For any
hypothesis f : X → Y and any distribution D over X × Y , the population loss of f over D equals
ℓD(f) := Pr(x,y)∼D[f(x) ̸= y].

Definition 2 (Multi-distribution learning) Let ϵ > 0 be the error parameter. In the task of multi-
distribution learning, there are k distributions D1, . . . ,Dk over X × Y . The goal is to learn a
hypothesis f that minimizes the maximum loss, i.e.,

max
i∈[k]

ℓDi(f) ≤ min
h∗∈H

max
i∈[k]

ℓDi(h
∗) + ϵ. (1)

We say an algorithm is an (ϵ, δ)-multi-distribution learner if its output satisfies Eq. (1) with proba-
bility at least 1− δ. In the rest of this paper, we write h∗ ∈ H to be the hypothesis that obtains the
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minimum loss and OPT be the minimum loss, i.e.,

h∗ = argmin
h∈H

max
i∈[k]

ℓDi(h) and OPT = max
i∈[k]

ℓDi(h
∗).

For any set S = {x1, . . . , xn} ∈ X d, let H(S) := {(h(x1), . . . , h(xn)) : h ∈ H} ⊆ {0, 1}n be
the projection ofH onto S. The Sauer–Shelah Lemma gives an upper bound on the size |H(S)|.

Lemma 3 (Sauer–Shelah Lemma (Sauer, 1972; Shelah, 1972)) LetH be a hypothesis class with
VC dimension d, then for any S ⊆ X with |S| = n, |H(S)| ≤

∑d
i=0

(
n
i

)
. In particular, |H(S)| ≤

(en/d)d if n ≥ d.

The multiplicative weight updating (Littlestone and Warmuth, 1994) is a classic algorithm for
online learning. An online learning task can be seen as a repeated game between an algorithm
and the nature for a sequence of T rounds. Let [n] = {1, 2, . . . , n} and let ∆n be all probability
distributions over [n]. The MWU algorithm commits a distribution pt ∈ ∆n over a set of n experts
at each round t ∈ [T ], and then the nature reveals the loss ℓt ∈ Rn for experts [n]. The goal is to
minimize the regret

∑
t∈[T ]⟨pt, ℓt⟩ −mini∗∈[n]

∑
t∈[T ] ℓt(i

∗)

Algorithm 1 Multiplicative weight update
1: for t = 1, 2, . . . , T do
2: Compute pt ∈ ∆n over experts such that pt(i) ∝ exp(−η

∑t−1
τ=1 ℓτ (i)) for i ∈ [n]

3: Observe the loss vector ℓt and receives loss ⟨pt, ℓt⟩
4: end for

Lemma 4 (Regret guarantee of MWU (Arora et al., 2012)) Let n be the number of experts, T
be the number of days, B be the width of the loss sequence, i.e., the loss vector ℓt ∈ [ρt, ρt+B]n at
each day t ∈ [T ]. Let η =

√
log(n)/T/B be the learning rate, then the MWU algorithm guarantees∑

t∈[T ]

⟨pt, ℓt⟩ − min
i∗∈[n]

∑
t∈[T ]

ℓt(i
∗) ≤ log n

η
+ ηTB2 = 2

√
log(n)TB.

3. The boosting framework

We provide a general boosting framework that takes an arbitrary multi-distribution learning algo-
rithm, reduces its error while incurring a mild overhead on the sample complexity. The boosting
framework is formally described in Algorithm 2. It contains several subroutines, whose pseu-
docodes are presented in Algorithm 3-5. The input of BOOSTLEARNER (Algorithm 2) consists
of the hypothesis class H, k distributions D1, . . . ,Dk, the multi-distribution learning algorithm
MULTILEARNERORACLE, as well as an estimate OPT′ on the optimal loss.

BOOSTLEARNER views D1, . . . ,Dk as k experts, and runs MWU over them for T rounds. At
each round t ∈ [T ], BOOSTLEARNER maintains a strategy pt ∈ ∆k over k data distributions, and
let D(t) =

∑
i∈[k] pt(i)Di be the mixed distribution of D1, . . . ,Dk. BOOSTLEARNER proceeds in a

few steps.

Construct ϵ-cover of H The first step is to construct an ϵ-cover of the hypothesis H on the dis-
tribution D(t) (Line 3 of Algorithm 2). CONSTRUCTCOVER (Algorithm 3) samples m1 = Õ(d/ϵ)
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data points S
(t)
1 from D(t), the cover CH ⊆ H is constructed by including an arbitrary hypothesis

h ∈ H for each projection ofH(S(t)
1 ).

FilterH Given the ϵ-cover CH, the next step is to filterH and only keep a subset of good hypothesis
H′ ⊆ H (Line 4 of Algorithm 2). The FILTER procedure (Algorithm 4) draws m2 = Õ(d+k

ϵ2
)

samples S(t)
2 fromD(t) as a test set. For each hypothesis h in the cover CH, it goes through all subsets

I of [k] . If the probability mass
∑

i∈I pt(i) is large enough (i.e., greater than 1/2) and the empirical
loss of h on the mixture distribution

∑
i∈I

pt(i)∑
i∈I pt(i)

Di is large (i.e., great than OPT′+8ϵ), then it

removes h, as well as any hypothesis h′ ∈ H that has the same projection as h on S
(t)
1 , fromH′.

Evoke the oracle After obtaining the new hypothesis class H′ ⊆ H, BOOSTLEARNER evokes
the oracle MULTILEARNERORACLE with hypothesisH′ and distributions D1, . . . ,Dk, and obtains
a hypothesis ft.

Construct the loss vector Given the hypothesis ft, BOOSTLEARNER constructs the loss vector ℓt
and feeds it to MWU (Line 6-7 of Algorithm 2). ESTIMATE (Algorithm 5) draws Õ(1/ϵ2) samples
from each distributionDi and compute the empirical loss ℓ̂Di(ft) of ft onDi. Instead directly using
this empirical loss, ESTIMATE further truncates loss entries that are below OPT′−α (Line 4 of
Algorithm 5), here α is the error of MULTILEARNERORACLE.

Final output The final output is taken to be the average of {ft}t∈[T ]. In particular, the output
f = 1

T

∑
t∈[T ] ft is defined as

Pr[f(x) = 1] =
1

T

∑
t∈[T ]

Pr[ft(x) = 1] ∀x ∈ X .

Algorithm 2 BOOSTLEARNER(H,D1,D2, . . . ,Dk, MULTILEARNERORACLE,OPT′)

1: for t = 1, 2, . . . , T do
2: D(t) ←

∑
i∈[k] pt(i)Di ▷ pt ∈ ∆k is the strategy of MWU

3: CH ← CONSTRUCTCOVER(H,D(t))
4: H′ ← FILTER(H,D(t), CH,OPT′)
5: ft ← MULTILEARNERORACLE(H′,D1, . . . ,Dk,OPT′)
6: ℓt ← ESTIMATE(ft)
7: Update the strategy of MWU with loss vector −ℓt
8: end for
9: return f = 1

T

∑
t∈[T ] ft

3.1. Analysis

Given an (infinite) hypothesis classH, let ∆(H) be all distributions overH with finite support. Our
goal is to prove

Lemma 5 (Boosting framework) Suppose OPT′ ∈ [OPT−ϵ,OPT+ϵ] and MULTILEARNERORACLE

is an (α, δ/16T )-multi-distribution learner whose output ft ∈ ∆(H). Let T = log(k)(α/ϵ)2, then
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Algorithm 3 CONSTRUCTCOVER(H,D(t))

1: Sample m1 = O(d log(kd/ϵδ)ϵ ) data points S(t)
1 = {(xj , yj)}j∈[m1] from D(t)

2: CH ← ∅
3: for (z1, . . . , zm1) ∈ H(S

(t)
1 ) do ▷H(S(t)

1 ) is the projection ofH onto S
(t)
1

4: Let h ∈ H be an arbitrary hypothesis that satisfies h(xj) = zj for all j ∈ [m1]
5: CH ← CH ∪ {h}
6: end for
7: return CH

Algorithm 4 FILTER(H,D(t), CH,OPT′)

1: Sample m2 = O( (k+d) log(kd/ϵδ)
ϵ2

) data points S(t)
2 = {(xj , yj)}j∈[m2] from D(t)

2: H′ ← H
3: for h ∈ CH do
4: for I ⊆ [k] do
5: if

∑
i∈I pt(i) ≥ 1/2 and

∑
j∈[m2]

1{xj∈DI∧h(xj )̸=yj}∑
j∈[m2]

1{xj∈DI} ≥ OPT′+8ϵ then ▷

DI := ∪i∈IDi

6: H′ ← H′\{h′ ∈ H : h(x) = h′(x) ∀x ∈ S
(t)
1 }

7: end if
8: end for
9: end for

10: returnH′

Algorithm 5 ESTIMATE(ft)

1: for i = 1, 2, . . . , k do
2: Sample m3 = O(log(kd/ϵδ)/ϵ2) data points S(t)

3,i from Di

3: ℓ̂Di(ft)← Pr
(x,y)∼S

(t)
3,i

[ft(x) ̸= y]

4: ℓt(i)← max{ℓ̂Di(ft),OPT′−α} ▷ α is the error of MULTILEARNERORACLE

5: end for
6: return ℓt
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with probability at least 1− δ, BOOSTLEARNER guarantees

max
i∈[k]

ℓDi(f) ≤ OPT+32ϵ.

We devote to prove Lemma 5 in the rest of this section, and we always make the assump-
tions that OPT′ ∈ [OPT−ϵ,OPT+ϵ] and MULTILEARNERORACLE is an (α, δ/32T )-multi-
distribution learner whose output ft ∈ ∆(H). We further assume ϵ ≤ α/32, otherwise we do
not need BOOSTLEARNER.

We first state the guarantee of CONSTRUCTCOVER.

Lemma 6 (Guarantee of CONSTRUCTCOVER, adapted from Lemma 3.3 of Alon et al. (2019))
For any t ∈ [T ], with probability at least 1 − δ/32T , CH is an ϵ-cover of H. Moreover, for any

hypothesis h ∈ H, let h′ ∈ CH be the hypothesis with the same projection over S(t)
1 , we have

Pr
x∼D(t)

[h(x) ̸= h′(x)] ≤ ϵ.

We next provide the guarantee of FILTER, the proof can be found at Appendix.

Lemma 7 (Guarantee of FILTER, Part 1) For each t ∈ [T ], with probability at least 1− δ/16T ,
we have h∗ ∈ H′.

Lemma 8 (Guarantee of FILTER, Part 2) For each t ∈ [T ], with probability at least 1− δ/16T ,
it holds that for every hypothesis h ∈ H′ and every set I ⊆ [k], if

∑
i∈I pt(i) ≥ 1/2, then∑

i∈I pt(i)ℓDi(h)∑
i∈I pt(i)

≤ OPT+16ϵ.

Next we make some observations on the output ft of MULTILEARNERORACLE.

Lemma 9 For each t ∈ [T ], with probability at least 1− δ/4T , we have

• maxi∈[k] ℓDi(ft) ≤ OPT+α

• For any set I ⊆ [k] with
∑

i∈I pt(i) ≥ 1/2,
∑

i∈I pt(i)ℓDi
(ft)∑

i∈I pt(i)
≤ OPT+16ϵ.

Proof We condition on the high probability event of Lemma 7 and Lemma 8. The first claim
follows from

max
i∈[k]

ℓDi(ft) ≤ argmin
h∈H′

max
i∈[k]

ℓDi(h) + α = OPT+α

The first step follows from the guarantee of MULTILEARNERORACLE, the second step holds since
h∗ ∈ H′.

For the second claim, since ft ∈ ∆(H′), we can write ft =
∑

j qjhj for some hj ∈ H′ and∑
j qj = 1. Then for any set I ⊆ [k] with

∑
i∈I pt(i) ≥ 1/2, we have∑

i∈I pt(i)ℓDi(ft)∑
i∈I pt(i)

=

∑
j qj

∑
i∈I pt(i)ℓDi(hj)∑
i∈I pt(i)

≤
∑
j

qj(OPT+16ϵ) = OPT+16ϵ.
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Here the first step holds since

ℓDi(ft) = Pr
(x,y)∼Di

[ft(x) ̸= y] =
∑
j

qj Pr
(x,y)∼Di

[hj(x) ̸= y] =
∑
j

qjℓDi(hj).

and the second step holds due to Lemma 8.

Finally, we make some observations on the loss vector ℓt constructed by ESTIMATE.

Lemma 10 (Guarantee of ESTIMATE) For any t ∈ [T ], with probability at least 1− δ
2T , we have

• ℓt(i) ≥ ℓDi(ft)− ϵ

• ℓt(i) ∈ [OPT−2α,OPT+2α]

•
∑

i∈[k] pt(i)ℓt(i) ≤ OPT+20ϵ

Proof For each t ∈ [T ], we condition on the high probability event of Lemma 9. For each i ∈ [k],
since m3 ≥ Ω(log(kd/ϵδ)/ϵ2), by Chernoff bound, with probability at least 1− δ

32kT , the empirical
loss ℓ̂Di(ft) is ϵ-close to the population loss ℓDi(ft). Taking a union bound, we have

ℓ̂Di(ft) ∈ [ℓDi(ft)− ϵ, ℓDi(ft) + ϵ] ∀i ∈ [k] (2)

holds with probability at least 1− δ
32T .

For the first claim, we have

ℓt(i) = max{ℓ̂Di(ft),OPT′−α} ≥ ℓ̂Di(f) ≥ ℓDi(ft)− ϵ.

For the second claim, we have

ℓt(i) = max{ℓ̂Di(ft),OPT′−α} ≥ OPT′−α ≥ OPT−2α

and
ℓt(i) = max{ℓ̂Di(ft),OPT′−α} ≤ max{ℓDi(ft),OPT−α}+ ϵ ≤ OPT+2α,

where the second step follows from Eq. (2) and OPT′ ≤ OPT+ϵ, the third step holds since
ℓDi(ft) ≤ OPT+α (Lemma 9).

For the last claim, w.l.o.g., we can assume ℓD1(ft) ≥ · · · ≥ ℓDk
(ft). Let k′ ∈ [k] be the smallest

index such that
∑

i≤k′ pt(i) ≥ 1/2. We divide into two cases based on the value of ℓDk′ (ft).
If ℓDk′ (ft) ≥ OPT−α, then we have∑

i∈[k]

pt(i)ℓt(i) =
∑
i≤k′

pt(i)ℓt(i) +
∑

i≥k′+1

pt(i)ℓt(i)

=
∑
i≤k′

pt(i) ·max{ℓ̂Di(ft),OPT′−α}+
∑

i≥k′+1

pt(i) ·max{ℓ̂Di(ft),OPT′−α}

(3)

10
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For the first term, we have∑
i≤k′

pt(i) ·max{ℓ̂Di(ft),OPT′−α} ≤
∑
i≤k′

pt(i) · (max{ℓDi(ft),OPT−α}+ ϵ)

=
∑
i≤k′

pt(i) · (ℓDi(ft) + ϵ)

≤
∑
i≤k′

pt(i) · (OPT+17ϵ). (4)

The first step follows from OPT′ ≤ OPT+ϵ and Eq. (2), the second step follows from the assump-
tion that ℓDk′ (ft) ≥ OPT−α, the third step holds due to Lemma 9.

For the second term, we have∑
i≥k′+1

pt(i) ·max{ℓ̂Di(ft),OPT′−α} ≤
∑

i≥k′+1

pt(i)(max{ℓDi(ft),OPT−α}+ ϵ)

≤
∑

i≥k′+1

pt(i)(max{ℓDk′ (ft),OPT−α}+ ϵ)

=
∑

i≥k′+1

pt(i)(ℓDk′ (ft) + ϵ)

≤
∑

i≥k′+1

pt(i)(OPT+17ϵ) (5)

The first step follows from OPT′ ≤ OPT+ϵ and Eq. (2), the third step follows from the assumption
that ℓDk′ (ft) ≥ OPT−α, the last step follows from ℓDk′ (ft) ≤ ℓDi(ft) (i ≤ k′) and Lemma 9.

Combining Eq. (3)(4)(5), we have proved
∑

i∈[k] pt(i)ℓt(i) ≤ OPT+17ϵ.

If ℓDk′ (ft) < OPT−α, then we have

∑
i∈[k]

pt(i)ℓt(i) =
∑

i≤k′−1

pt(i)ℓt(i) +
∑
i≥k′

pt(i)ℓt(i)

=
∑

i≤k′−1

pt(i) ·max{ℓ̂Di(ft),OPT′−α}+
∑
i≥k′

pt(i) ·max{ℓ̂Di(ft),OPT′−α}

≤
∑

i≤k′−1

pt(i) · (OPT+α+ ϵ) +
∑
i≥k′

pt(i) · (OPT−α+ ϵ)

≤ OPT+ϵ.

Here the third step holds since (1) ℓ̂Di(ft) ≤ ℓDi(ft) + ϵ ≤ OPT+α + ϵ for any i ∈ [k′ − 1]
(Lemma 9), and (2) ℓ̂Di(ft) ≤ ℓDi(ft)+ ϵ ≤ ℓDk′ (ft)+ ϵ ≤ OPT−α+ ϵ for any i ≥ k′ due to the
assumption ℓDk′ (ft) < OPT−α. The last step holds since

∑
i≤k′−1 pt(i) < 1/2. This completes

the proof for all three claims.

Finally, we can prove our main Lemma 5.
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Proof [Proof of Lemma 5] We condition on the high probability events of Lemma 6 – 10. For any
i ∈ [k], due to the regret guarantee of MWU, we have

(OPT+20ϵ)T ≥
∑
t∈[T ]

⟨pt, ℓt⟩ ≥
∑
t∈[T ]

ℓt(i)− 2
√
log(k)T · 4α

≥
∑
t∈[T ]

ℓDi(ft)− ϵT − 8
√

log(k)Tα.

The first step follows from the third claim of Lemma 10, the second step follows from the regret
guarantee of MWU (Lemma 4) and the width is at most 4α (the second claim of Lemma 10). The
third step follows from the first claim of Lemma 10.

Hence, we have

ℓDi(f) =
1

T

∑
t∈[T ]

ℓDi(ft) ≤ OPT+21ϵ+ 8
√
log(k)/Tα ≤ OPT+32ϵ.

Here the first step holds since

ℓDi(f) = Pr
(x,y)∼Di

[f(x) ̸= y] =
1

T

∑
t∈[T ]

Pr
(x,y)∼Di

[ft(x) ̸= y] =
1

T

∑
t∈[T ]

ℓDi(ft).

and the last step holds due to the choice of T = log(k)(α/ϵ)2. We complete the proof here.

4. Final algorithm

BOOSTLEARNER gives a way of converting a weak multi-distribution learner into a strong one.
Recursively evoking itself, we have

Lemma 11 (Recursive application of BOOSTLEARNER) Let H be a hypothesis class of VC di-
mension at most d and D1, . . . ,Dk be k distributions. Given OPT′ ∈ [OPT−ϵ,OPT+ϵ], for any
integer r ≥ 1, there is an algorithm with sample complexity

O

(
(k + d)(log(k))2r log(kd/ϵδ)

ϵ2(1+1/r)

)
and with probability at least 1− δ, returns a hypothesis f ∈ ∆(H) such that

max
i∈[k]

ℓDi(f) ≤ OPT+32ϵ.

Proof We prove by induction. For r = 1, we run BOOSTLEARNER with MULTILEARNERORACLE

selecting an arbitrary hypothesis in H′. In this way, MULTILEARNERORACLE takes 0 additional
samples and α = 1. By Lemma 5, the output f ∈ ∆(H) satisfies

max
i∈[k]

ℓDi(f) ≤ OPT+32ϵ.

The total number of sample it takes equals

T ·(m1+m2+km3) = O(log(k)ϵ−2 ·(k+d)ϵ−2 log(kd/ϵδ)) = O((k+d)ϵ−4 log(k) log(kd/ϵδ)).
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Suppose the claim continues to hold up to r, then for r + 1, we run BOOSTLEARNER and
set MULTILEARNERORACLE to be the level r algorithm, with error parameter ϵ′ = ϵ

r
r+1 and

confidence parameter δ′ = δ/16T . At each round t ∈ [T ], the VC dimension of H′ is at most
d, and with high probability, h∗ ∈ H′ (Lemma 7). Therefore, MULTILEARNERORACLE draws

m = O

(
(k + d)(log(k))2r log(kd/ϵ′δ′)

(ϵ′)2(1+1/r)

)
= O

(
(k + d)(log(k))2r log(kd/ϵδ)

ϵ2

)
samples, and with probability at least 1 − δ/16T , the hypothesis ft ∈ ∆(H) it returns has error at
most

α = 32ϵ′ = 32ϵ
r

r+1 .

Therefore, by Lemma 5, we obtain an (32ϵ, δ)-multi-distribution learner and its sample complexity
equals

T (m1 +m2 + km3 +m) = O

(
log(k)α2ϵ−2 · (k + d)(log(k))2r log(kd/ϵδ)

ϵ2

)
= O

(
(k + d)(log(k))2r+2 log(kd/ϵδ)

ϵ2(1+
1

r+1
)

)
.

This completes the proof.

The algorithm described in Lemma 11 still requires the prior knowledge of OPT. Next, we give
a way of removing this prior knowledge.

Lemma 12 (Remove prior knowledge of OPT) For any κ ≥ 2, suppose there exists an algo-
rithm that receives OPT′ ∈ [OPT−ϵ,OPT+ϵ], returns a hypothesis of error at most 32ϵ and has
sample complexity g(k, d, δ)ϵ−κ. Then there is an algorithm of sample complexity g(k, d, ϵ2δ/80) ·
ϵ−κ log(1/ϵ) and returns a hypothesis of error at most 33ϵ. Here g(k, d, δ) is a function of k, d, δ.

Proof We prove the following claim by induction: For any r ≥ 1, let δr = ϵδ/2r80, there is an
algorithm that draws O

(
g(k, d, δr) · 40r · ϵ−κ− 1

κr−1

)
samples and obtains a hypothesis f such that

maxi∈[k] ℓDi(f) ≤ OPT+33ϵ, without knowing OPT.
Let ALG be the input algorithm that requires prior knowledge of OPT. For the base case

r = 1, we instantiate B = 1/ϵ threads of ALG, with OPT′ = b · ϵ (b ∈ [B]), and obtain {fb}b∈[B].
We select the best hypothesis among {fb}b∈[B], by drawing O(log(k/ϵδ)/ϵ2) samples from each
distribution and estimating the empirical loss of {fb}b∈[B]. The output hypothesis f satisfies

max
i∈[k]

ℓDi(f) ≤ min
b∈[B]

max
i∈[k]

ℓDi(fb) + ϵ ≤ OPT+33ϵ.

since one of the guess OPT′ has error at most ϵ. The sample complexity equals g(k, d, ϵδ/2)ϵ−κ−1+
O(k log(k/ϵδ)/ϵ2) ≤ g(k, d, δ1)ϵ

−κ−1.
Suppose the claim continues to hold for r, then for r + 1, the algorithm first runs the level r

algorithm with error parameter ϵ′ = ϵ(κ+
1
κr

)/(κ+ 1
κr−1 ). In particular, it draws

n1 = g(k, d, δr/2) · 40r · (ϵ′)−κ− 1
κr−1 = g(k, d, δr+1) · 40r · ϵ−κ− 1

κr

13
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samples and obtains a hypothesis f ′ of error at most 33ϵ′. It then draws n2 = O(log(k/ϵδ)/ϵ2)
samples from each distribution and estimates the empirical loss ℓ̂Di(f

′) of f ′ on each distribution
Di (i ∈ [n]). Next, it instantiates B = 33ϵ′/ϵ threads of ALG, with OPT′ = maxi∈[k] ℓ̂Di(f

′)− bϵ
(b ∈ [B]), and obtains {fb}b∈[B]. The number of samples taken in this step equals

n3 = 33(ϵ′/ϵ) · g(k, d, ϵδ/80) · ϵ−κ = 33g(k, d, δ1) · ϵ−κ−1+(κ+ 1
κr

)/(κ+ 1
κr−1 )

≤ 33g(k, d, δr+1) · ϵ−κ− 1
κr .

The final output f is the best hypothesis among f ′ and {fb}b∈[B], measured with their empirical
loss. The sample complexity of the algorithm equals

n1 + kn2 + n3 ≤ g(k, d, δr+1) · 40(r + 1) · ϵ−κ− 1
κr . (6)

For the output hypothesis f , if maxi∈[k] ℓDi(f
′) ≤ OPT+30ϵ, then we have

max
i∈[k]

ℓDi(f) ≤ max
i∈[k]

ℓDi(f
′) + ϵ ≤ OPT+31ϵ. (7)

Otherwise, if maxi∈[k] ℓDi(f
′) ≥ OPT+30ϵ, the one of the guess {maxi∈[k] ℓ̂Di(f

′)− bϵ}b∈[B] of
OPT′ is ϵ-close to OPT, and therefore, we have

max
i∈[k]

ℓDi(f) ≤ min
b∈[B]

max
i∈[k]

ℓDi(fb) + ϵ ≤ OPT+33ϵ (8)

where the last step follows from the guarantee of ALG. Combining Eq. (6)(7)(8), we complete the
induction. Taking r = log(1/ϵ), we finish the proof.

Combining Lemma 11, Lemma 12, and taking r = ω(1), we complete the proof of Theorem 1.
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Appendix A. Missing proof

We first provide the proof of Lemma 7.
Proof [Proof of Lemma 7] For each t ∈ [T ], we condition on the high probability event of Lemma
6. Suppose h∗C ∈ CH has the same projection as h∗ on S

(t)
1 , it suffices to prove h∗C ∈ H′. By Lemma

6, we have

Pr
x∼D(t)

[h∗(x) ̸= h∗C(x)] ≤ ϵ. (9)

For any set I ⊆ [k] with
∑

i∈I pt(i) ≥ 1/2, we have∑
i∈I pt(i)ℓDi(h

∗
C)∑

i∈I pt(i)
≤

∑
i∈I pt(i)ℓDi(h

∗) + ϵ∑
i∈I pt(i)

≤ OPT+2ϵ (10)

Here the first step follows from Eq. (9), the second step holds since ℓDi(h
∗) ≤ OPT (∀i ∈ [k]) and∑

i∈I pt(i) ≥ 1/2.
Next, we have

Pr

[∑
j∈[m2]

1{xj ∈ DI ∧ h∗C(xj) ̸= yj}∑
j∈[m2]

1{xj ∈ DI}
≥ OPT′+8ϵ

]

≤ Pr

[∑
j∈[m2]

1{xj ∈ DI ∧ h∗C(xj) ̸= yj}∑
j∈[m2]

1{xj ∈ DI}
≥ OPT+7ϵ

]

≤ Pr

 ∑
j∈[m2]

1{xj ∈ DI} ≤
1

4
m2


+ Pr

∑
j∈[m2]

1{xj ∈ DI ∧ h∗C(xj) ̸= yj}∑
j∈[m2]

1{xj ∈ DI}
≥ OPT+7ϵ |

∑
j∈[m2]

1{xj ∈ DI} ≥
1

4
m2


≤ exp(−m2/8) + exp(−2 · (m2/4) · (5ϵ)2)

≤ 2−k · δ

32T
.

The first step follows from OPT ≤ OPT′+ϵ, the third step follows from Chernoff bound,
∑

i∈I pt(i) ≥
1/2 and Eq. (10). The last step follows from the choice of m2 ≥ Ω(k log(kd/ϵδ)/ϵ2).

Taking a union bound over all subsets I ⊆ [k], we have

Pr[h∗ ∈ H′] = Pr[h∗C ∈ H′] ≥ 1− 2k · 2−k · δ

32T
≥ 1− δ

32T
.

This finishes the proof.

We then provide the proof of Lemma 8.
Proof [Proof of Lemma 8] For each t ∈ [T ], we condition on the high probability event of Lemma
6. For each h ∈ CH, if there exists h′ ∈ H that has the same projection as h on S

(t)
1 , and there exists

a subset I ⊆ [k] with
∑

i∈I pt(i) ≥ 1/2, such that∑
i∈I pt(i)ℓDi(h

′)∑
i∈I pt(i)

≥ OPT+16ϵ (11)
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then we prove h would be removed fromH′ with high probability.
On the same subset I, we have∑

i∈I pt(i)ℓDi(h)∑
i∈I pt(i)

≥
∑

i∈I pt(i)ℓDi(h
′)− ϵ∑

i∈I pt(i)
≥ OPT+14ϵ ≥ OPT′+13ϵ (12)

where the first step holds from Lemma 6, the second step holds since
∑

i∈I pt(i) ≥ 1/2, the third
step follows from Eq. (11), and the last step follows from OPT′ ≤ OPT+ϵ.

Now, we have

Pr

[∑
j∈[m2]

1{xj ∈ DI ∧ h(xj) ̸= yj}∑
j∈[m2]

1{xj ∈ DI}
< OPT′+8ϵ

]

≤ Pr

 ∑
j∈[m2]

1{xj ∈ DI} <
1

4
m2


+ Pr

∑
j∈[m2]

1{xj ∈ DI ∧ h(xj) ̸= yj}∑
j∈[m2]

1{xj ∈ DI}
< OPT′+8ϵ |

∑
j∈[n]

1{xj ∈ DI} ≥
1

4
m2


≤ exp(−m2/8) + exp(−2 · (m2/4) · (5ϵ)2)

≤ (kd/ϵ2δ)−d · δ

32T
.

The second step follows from Chernoff bound,
∑

i∈I pt(i) ≥ 1/2 and Eq. (12). The third step holds
from the choice m2 ≥ Ω(d log(kd/ϵδ)/ϵ2).

Take a union bound over CH and note that |CH| ≤ (kd/ϵ2δ)d by Sauer–Shelah Lemma (see
Lemma 3), we complete the proof.
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