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Hypothesis testing is a fundamental problem in statistical inference that seeks the most likely
hypothesis corresponding to a given set of observations. The simplest formulation of hypothesis
testing, which is also the focus of this paper, is simple binary hypothesis testing. Here, the two hy-
potheses correspond to distributions p and q over a domain X , and the set of observations comprises
n i.i.d. samples X1, . . . , Xn from θ ∈ {p, q}. The goal is to identify which distribution generated
the samples; i.e., to produce θ̂ := θ̂(X1, . . . , Xn) so that θ̂ = θ with high probability.

Simple binary hypothesis testing is a crucial building block in statistical inference procedures.
Consequently, much research has analyzed the best algorithms and their performance (Lehmann
et al., 1986). The famous Neyman–Pearson lemma (Neyman and Pearson, 1933) provides the op-
timal procedure for θ̂, and subsequent works have completely characterized its error probability in
two regimes: the single-sample setting (n = 1) and the infinite-sample setting (n → ∞). While the
single-sample regime is relatively straightforward, much historical work in statistics and informa-
tion theory has focused on the infinite-sample (or asymptotic) regime, where the asymptotic error
admits particularly neat expressions in terms of information-theoretic divergences between p and q
(see the textbooks Cover and Thomas (2006); Polyanskiy and Wu (2023).

Although asymptotic results provide crucial insight into the problem structure, they offer no
concrete guarantees for finite samples. In particular, asymptotic bounds cannot satisfactorily an-
swer the question of how many samples are needed (i.e., what is the sample complexity) to solve
hypothesis testing with a desired level of accuracy. This limits their applicability in practice, as well
as in learning theory research, where sample complexity bounds are paramount.

In the context of simple binary hypothesis testing, an algorithm can make two types of errors:
(i) P(θ̂ = q|θ = p), termed type-I error, and (ii) P(θ̂ = p|θ = q), termed type-II error. These
two types of errors may have different operational consequences in different situations, e.g., false
positives vs. false negatives of a lethal illness, where the cost incurred by the former is significantly
smaller than that of the latter. A natural way to combine these metrics is by considering a weighted
sum of the errors, which is equivalent to the well-studied Bayesian formulation. We also consider a
prior-free version, where these two errors are analyzed separately.

While some prior work has established non-asymptotic bounds on the error probability in simple
binary hypothesis testing, we observe that the sample complexity perspective has remained largely
unaddressed (cf. Strassen (1962); Polyanskiy et al. (2010); Bar-Yossef (2002)). Our main con-
tribution is to fill this gap by developing tight results for the sample complexity of simple binary
hypothesis testing for both the Bayesian formulation and the prior-free formulation.1

1. Extended abstract. Full version appears as [arXiv:2403.16981,v2].
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