Proceedings of Machine Learning Research vol 196:1-33, 2024 37th Annual Conference on Learning Theory

Smooth Lower Bounds for Differentially Private Algorithms
via Padding-and-Permuting Fingerprinting Codes

Naty Peter NATY.PETER @ UTORONTO.CA
Department of Computer Schience, University of Toronto

Eliad Tsfadia ELIADTSFADIA @ GMAIL.COM
Department of Computer Schience, Georgetown University

Jonathan Ullman JULLMAN @ CCS.NEU.EDU
Khoury College of Computer Sciences, Northeastern University

Editors: Shipra Agrawal and Aaron Roth

Abstract

Fingerprinting arguments, first introduced by Bun et al. (2014), are the most widely used method for
establishing lower bounds on the sample complexity or error of approximately differentially private (DP)
algorithms. Still, there are many problems in differential privacy for which we don’t know suitable lower
bounds, and even for problems that we do, the lower bounds are not smooth, and become vacuous when the
error is larger than some threshold.

In this work, we present a new framework and tools to generate smooth lower bounds that establish strong
lower bounds on the sample complexity of differentially private algorithms satisfying very weak accuracy.
We illustrate the applicability of our method by providing new lower bounds in various settings: (1) A tight
lower bound for DP averaging in the low-accuracy regime, which in particular implies a lower bound for
the private 1-cluster problem introduced by Nissim et al. (2016). (2) A lower bound on the additive error
of DP algorithms for approximate k-means clustering and general (k, z)-clustering, as a function of the
multiplicative error, which is tight for a constant multiplication error. (3) A lower bound for estimating the
top singular vector of a matrix under DP in low-accuracy regimes, which is a special case of the DP subspace
estimation problem studied by Singhal and Steinke (2021a).

Our new tools are based on applying a padding-and-permuting transformation to a fingerprinting code.
However, rather than proving our results using a black-box access to an existing fingerprinting code (e.g.,
Tardos’ code Tardos (2008)), we develop a new fingerprinting lemma that is stronger than those of Dwork
et al. (2015) and Bun et al. (2017), and prove our lower bounds directly from the lemma. Our lemma, in
particular, gives a simpler fingerprinting code construction with optimal rate (up to polylogarithmic factors)
that is of independent interest.

Keywords: Differential Privacy, Lower Bounds, Fingerprinting Codes.

1. Introduction

Differentially private (DP) Dwork et al. (2006b) algorithms provide a strong guarantee of privacy to the
individuals who contribute their data. Informally, a DP algorithm takes data from many individuals and
guarantees that no attacker, regardless of their knowledge or capabilities, can learn much more about any one
individual than they would have if that individual’s data had never been collected. There is a large body of
literature on DP algorithms, and DP algorithms have now been deployed by large technology companies and
government organizations.

* Work conducted while at Georgetown University.

© 2024 N. Peter, E. Tsfadia & J. Ullman.

PETER TSFADIA ULLMAN

DP Averaging. As a running example, suppose our input dataset is 1, ..., x, € R? and our goal is to
estimate their average % >, ;. Since DP requires us to hide the influence of one data point on the average,
we intuitively need to assume some kind of bounds on the data. A common way to bound the data is to
assume that it lies in some ball of radius r, so there exists a center ¢ € R? such that ||z; — ¢||o < . Our goal
is then to output a DP average & such that, with high probability,

.1

x——gxi
n =
(2

If we assume that the location of the center of the ball is known, then the natural DP algorithm is to clip
the data to lie in this known ball, and perturb the true average with noise from a Laplacian or Gaussian
distribution of suitable variance. One can show that the average will satisfy the error guarantee above if the
dataset has at least n. > /d /A samples.

However, in many applications of DP involving real data, we do not want to assume that the center of the
ball is known. For example, algorithms like clustering, covariance estimation, and PCA are often applied
to datasets as a preprocessing step to understand the general properties, and we cannot assume the user
already knows the location of the data. Thus, we want to assume that the data lies in a ball whose center is
unknown. For this problem, the FriendlyCore algorithm of Tsfadia et al. (2022) is able to achieve the same
error guarantee even when the location of the data is a priori unknown, provided n > v/d /A

2

Lower Bounds for DP Averaging. The work of Bun et al. (2014) proved that Q(v/d/)) samples are
required for DP averaging, when A < 1. Their work introduced the method of fingerprinting codes to
differential privacy, and this technique has become the standard approach for proving lower bounds for
differentially private algorithms, either by reduction to the averaging problem or by non-black-box use of the
fingerprinting technique (see Related Work).

The lower bound of Bun et al. (2014) has a significant drawback that it only applies when A < 1, and the
lower bound on the sample complexity is vacuous for A > 1. This limitation is inherent to the way these
lower bounds work, since they construct a hard distribution over the hypercube {—1,1}%, which lies in a
known ball of radius = v/d. So the DP algorithm that outputs & = O satisfies

j?—%z:cl <Vd=r.

2
Thus there is no need for any samples when the error parameter is A > 1, so the lower bound fully captures
the hardness of DP averaging when the location of the data is known.

However, when the location of the ball is unknown, even finding a low-accuracy DP average with A > 1
is non-trivial. In this work, we develop general tools for generating hard-instances for such types of problems.
In particular, for DP-averaging, our results implies that n = Q(\/g /A) samples are required for all A, yielding
that the above algorithms are essentially optimal.

While this low-accuracy regime may seem like an intellectual curiosity, it turns out that low-accuracy
approximations of this sort are quite useful for a variety of DP approximation algorithms, and we show
that our technique implies new lower bounds for other widely studied problems—computing a DP k-means
clustering with a constant multiplicative approximation, and finding a DP top singular vector—that crucially
rely on the fact that our lower bound applies to the low-accuracy regime.

1.1. Our Results
1.1.1. MAIN HARDNESS RESULTS

Our core new technique is a variation of Bun et al. (2014)’s method for creating strong error robust fingerprint-
ing codes. That is, a padding-and-permuting transformation applied to a (weak error robust) fingerprinting

codes. In this work, we use padding size that varies as a function of the accuracy guarantee, in contrast
to Bun et al. (2014) that use fixed-size padding (which suffices for robustness). Using such instances with
large padding allows us to smoothly shrink the radius of the points in the hard instances while preserving the
hardness. This technique allows us to give the following general construction of a hard problem in DP. Our
results will follow from applying this hardness in a black-box way.

Definition 1 (b-Marked Column) Given a matrix X = (2)ic(n) jeia € {—1,1}"*% and b € {—1,1}, we
say that a column j € [d] is b-marked if] = a:% = ... =), = b. Wedenote by J% C [d] the set of
b-marked columns of X.

Definition 2 (Strongly Agrees) We say that a vector q = (q',. .., qd) strongly-agrees with a matrix X €

{_17 1}n><d’ if
vhe{~1,1}: [jedb: ¢ = b}(> 0.9)@’;‘.
(i.e., for both b € {—1,1}, q agrees with at least 90% of the b-marked columns of X).

Definition 3 ((«, 3)-Weakly-Accurate Mechanism) Let o, € (0,1]. We say that a mechanism
M: {—1,1}"*? — [=1,1]% is («, B)-weakly-accurate if for every input X = (x1,...,2,) € {—1,1}7%¢
with ‘\7)1{‘, ‘\7)}1‘ > %(1 — «a)d, the probability that M(X) strongly-agrees with X is at least 3.

Namely, for a small «, the only requirement from an («, 3)-weakly-accurate mechanism is to agree (w.p.
B) with most of the 1-marked and (—1)-marked columns, but only when almost half of the input columns are
1-marked, and almost all the other half of the columns are (—1)-marked (otherwise, there is no restriction on
the output).

The following theorem captures our general tool for lower bounding DP algorithms.

Theoremd4 If M: ({—1,1}H)" — [-1,1]¢ is an («, 3)-weakly-accurate (1, %)-DP mechanism, then
n > Q(vVad/log'®(ad/B)).

So in order to prove a lower bound for a specific task, it suffices to prove that the assumed utility guarantee
implies Definition 3.

Theorem 4 can be proven by combining our padding-and-permuting technique with an optimal finger-
printing code—such as Tardos’ code (Tardos (2008))—in a black-box way. Moreover, in contrast with most
recent constructions of DP lower bounds that use only a so-called fingerprinting lemma, our techniques
seem to require the using of a fingerprinting code. Specifically, although fingerprinting lemmas are simpler
and more flexible, they require a stronger notion of accuracy that does not fit our padding-and-permuting
construction, whereas fingerprinting codes require only an extremely weak notion of accuracy to obtain
hardness. In an effort to unify and simplify the techniques used to prove DP lower bounds, we give an
alternative proof that makes use of a new fingerprinting lemma that only requires very weak accuracy to
obtain hardness (see section 2 for more details).

We also consider an extension of Definition 3 to cases where the mechanism receive a dataset which
consists of k clusters and is required to output a point that strongly-agrees with one of the clusters.

Definition 5 ((k, v, 3)-Weakly-Accurate Mechanism) Let o, 8 € (0,1] and n,k,d € N such that n is
a multiple of k. We say that a mechanism M: {—1,1}"*4 — [—1,1]? is (k, a, B)-weakly-accurate if the
following holds: Let X = (x1,...,x,) € {—1,1}Y"%% be an input such that for every t € [k] and every
b€ {—1,1} it holds that | T%,| > 5(1 — a)d for X¢ = (T(—1ynjks1s - - Tenyk) € {—=1,1}9)"%. Then

Pr[3t € [k] s.t. M(X) strongly-agrees with X;| > f3.

PETER TSFADIA ULLMAN

Note that (k = 1, a,)-weakly-accurate is equivalent to («a, 3)-weakly-accurate.
Using k independent padding-and-permuting fingerprinting code instances, we prove the following
theorem.

Theorem 6 (Extension of theorem 4) Ler o, € (0,1] and n,k,d € N such that n is a multiple of
k. IfM: ({=1,1}N" — [~1,1]% is an (k,«, B)-weakly-accurate (1, %) -DP mechanism, then n >
Q(kvad/log5(ad/B)).

We prove Theorems 4 and 6 using a more general framework that we developed in this work that might
be useful for other types of problems with more complicated output spaces (e.g., subspace or covariance
estimation). We refer to section 2.3 for more details.

1.1.2. APPLICATION: AVERAGING AND 1-CLUSTER

We first formally state our tight lower bound for DP averaging in the low-accuracy regimes. We start by
defining a (A, 3)-estimator for averaging.

Definition 7 (), 3)-Estimator for Averaging) A mechanism M: Rt x (RY)" — R< is (A, 3)-estimator
for averaging if given v > 0 and x1, ..., 1, € {—1,1}% with max; je(n)|Ti — 2y < 7, it holds that

Pr

1 n
My, 1, ..., @) — Ez:vl
i=1

SM] > B.
2

It is well-known how to construct DP (), 8 = 0.99)-estimators using O(+v/d/)\) points (Karwa and
Vadhan (2018); Tsfadia et al. (2022); Ashtiani and Liaw (2022); Narayanan et al. (2022)).

Fact 8 (Known upper bounds) For n = O(\/d/\), there exists an (1, #)-DP (A, B = 0.99)-estimator for
averaging.

Using Theorem 4, we prove a matching lower bound (up to low-order terms).

Theorem 9 (Our averaging lower bound) IfM: RT x (RY)™ — RY is an (), 3)-estimator for averaging

for X\ > 1 and M(~,-) is (1, %)-DPforeveryy >0, thenn > () _Yd/x
n log1'5(/3%\)

Immediate Application: The 1-Cluster Problem. An interesting application of Theorem 9 is a simple
lower bound for the 1-cluster problem that is widely used in DP clustering algorithms.

In the 1-cluster problem, we are given n points from a finite domain X¢ for X C R, and a parameter
t < n. The goal is to identify a d-dimensional ball that contains almost ¢ point, such that the size of the ball
is not too far from the optimum. Formally,

Definition 10 ((\, 3, tjou, s)-Estimator for 1-Cluster, Nissim et al. (2016)) A mechanism M: (X%)" x
[n] — R x R is an (A, B, tiow, s)-estimator for 1-cluster if given S € (X" and t € [tiow,n| as inputs, it
outputs > 0 and ¢ € R? such that the following holds with probability at least j3:

1. The ball of radius r around c contains at least t — s points from S, and

2. Let ropt be the radius of the smallest ball in X 4 containing at least t input points. Thenr < \ - Topt-

It is well-known how to privately solve this problem with a constant A, whenever ¢;,,, > (:)(\/g)

Fact 11 (Upper bounds Nissim et al. (201§); Nissim arld Stemmer (2018), simplified) There exists an
(1, n—lg)—DP, (A= 0(1), 8 =0.99, tin, = O(Vd), s = O(1))-estimator for 1-cluster.

Therefore, we conclude by Theorem 9 the following tight lower bound (up to low order terms) which is
essentially an immediate corollary of our averaging lower bound.

Corollary 12 (Our 1-cluster lower bound) If M is <1, %) -DP and (X, B, tiow, s = n — 1)-Estimator for

1-Cluster for X > 1, then t;,,, > L/Ad .
logl"’(B—/\)

We remark that for these specific tasks of DP-averaging/1-cluster, a recent work of Narayanan et al.
(2022), which provides a lower bound for user-level DP averaging, can also be used to prove a similar
statement to Theorem 9 (up to poly-logarithmic terms). Their technique is very different from ours, and in
particular, do not extend to proving Theorems 4 and 6 which serve as simple tools for proving lower bounds
for the other problems. We refer to section 2.4 for a more detailed comparison.

1.1.3. APPLICATION: CLUSTERING

In k-means clustering, we are given a database S of n points in R?, and the goal is to output k centers
C = (c1,...,c) € (R that minimize

COST(C;S) := Zmin”x —cill3.
xesie[k]

Similarly to prior works, we focus, without loss of generality, on input and output points in the d-
dimensional unit ball B, := {z € R?: ||z, < 1}. The approximation quality of a DP algorithm is measured
in the literature by two parameters: a multiplicative error A, and an additive error £, defined below:

Definition 13 (()\, ¢, 3)-Approximation Algorithm for k-Means) M: (By)" — (Bq)* is an ()€, B)-
approximation algorithm for k-means, if for every S € (By)™ it holds that

Proom(s)[COST(C;S) < A- OPTL(S) +¢] > 4,
where OPTy(S) := ming¢ g, » COST(C; S).

While non-private algorithms usually do not have an additive error, under DP an additive error is necessary.
As far as we are aware, the only known lower bound on the additive error is the one of Gupta et al. (2010)
(stated for k-medians), which has been extended later by Nguyen et al. (2021) (Theorem 1.2). This lower
bound essentially says that the additive error £ of any (1, n—lg)—DP algorithm for k-means (regardless of its
multiplicative error) must be at least Q(k). However, as far as we are aware, all known DP upper bounds
have an additive error of at least Q(k\/g) In particular, this is also the situation in the state-of-the-art upper
bounds that have constant multiplicative error (Kaplan and Stemmer (2018); Ghazi et al. (2020); Nguyen
et al. (2021)).

Fact 14 (General upper bounds, simplified) There exists an (1, #)-DP (0(1), O(kv/d))-approximation
algorithm for k-means.

Furthermore, an additive error of (:)(k\/g) also appears in algorithms that provide utility only for datasets
that are well-separated into k-clusters: For a small parameter ¢ € [0, 1], a dataset S € (B9)" is called
¢-separated for k-means if OPT(S) < ¢? - OPT}_1(S) (Ostrovsky et al. (2012)).

PETER TSFADIA ULLMAN

Fact 15 (Upper bounds for well-separate~d instances Shechner et al. (2020); Cohen et al. (2021), simplified)
There exists an (1, #)-DP (1 4+ O(¢?), ©(kV/d))-approximation algorithm for k-means of ¢-separated
instances.

Using Theorem 6 we provide the first tight lower bound on the additive error for algorithms with constant
multiplication error. Furthermore, since Theorem 6 is proven using k independent padding-and-permuting
FPC instances which induce k obvious clusters that are far from each other, our lower bound also matches
the upper bounds for well-separated instances.

Theorem 16 (Our k-means lower bound) Let n,k,d € N, A > 1, § € (0,1] and & > 0 such that
n > k4 80& IFM: (By)" — (By)" is an (17 4ZL,J-DP (N, &, B)-approximation algorithm for k-means, then

_ kn/d/2
either k > QQ(d//\)B)\/d or £ >0 <1Og1,5<kd>>'

B

Note that Theorem 16 even suggests how we might expect the additive error to decrease if we increase
the multiplicative error (for such cases, however, there are no matching upper bounds).

We remark that our proof is not tailored to k-means clustering. In appendix E.2 we state and prove an
extension of Theorem 16 to (k, z)-clustering in which the cost is measured by the sum of the z*" powers of
the distances (k-means clustering is the special case of z = 2).

1.1.4. APPLICATION: TOP SINGULAR VECTOR

In this problem, we are given n points 1, ..., 7, € Sy := {v € R?: |jv||, = 1} of unit norm as input, and
the goal is to estimate the top (right) singular vector of the n x d matrix X = (x{)ie[n] jeld)» Which is the
unit vector v € Sy that maximizes [|.X - v||,.

The singular value decomposition of X is defined by X = UX V7T, where U € R™" and V' € R**? are
unitary matrices. The matrix > € R™*4 is a diagonal matrix with non-negative entries o1 > o9 > ... >
Omin{n,dy = 0 along the diagonal, called the singular values of X. The first column of V' is the top right
singular vector.

Dwork et al. (2014) proved a general lower bound of n = Q(\/ﬁ) for any algorithm that identifies a
useful approximation to the top singular vector. Yet, Singhal and Steinke (2021b) bypassed this lower bound
under a distributional assumption which implies that the points are close to lying in a 1-dimensional subspace,
defined by having a small ratio o3 /1. They showed that when the points are Gaussian, and the above ratio is
small, the sample complexity can be made independent of d. They also consider the more general problem of
estimating the span of the top k singular vectors, which we do not consider in this work.

Definition 17 ((\, 5)-Estimator of Top Singular Vector) We say that M: [0,1]x (S4)" — Sqisan (A, 5)-
estimator of top singular vector, if given an n x d matrix X = (x1,...,x,) € (Sq)" and an upper bound
v € 10,1] on o9 /01 as inputs, outputs a column vector y € Sy such that

2 2
Prymiy, 0 [I1X - 93 2 1X - vll3 = Am] = 8,
where v denotes the top singular vector of X.

Our next result is a lower bound on the sample complexity of singular vector estimation that is smooth
with respect to the spectral gap parameter .

Theorem 18 (Our lower bound) IfM: [0, 1] x (S4)"™ — S is an (), 5)-estimator of top singular vector
Vd/A

for X > 1 and M(~,-) is (1, g)-DPfor every vy € [0, 1], then n > Q
n log1'5(ﬁ%)

For comparison, Dwork et al. (2014) proved a lower bound of Q(\/E) on the sample complexity but it
only applies when + is larger than some specific constant, whereas our lower bound holds for the entire range
of ~.

1.2. Related Work

The connection between fingerprinting codes and differential privacy was first introduced by Bun et al. (2014).
Subsequent work significantly simplified and generalized the method in a number of ways Steinke and
Ullman (2016); Dwork et al. (2015); Bun et al. (2017); Steinke and Ullman (2017); Kamath et al. (2019);
Cai et al. (2021); Kamath et al. (2022); Cai et al. (2021); Narayanan et al. (2022), including the removal
of fingerprinting codes and distilling the main technical component into a fingerprinting lemma. The price
of this simplicity and generality is that the lower bounds rely on having a stronger accuracy requirement
that constrains both marked and unmarked columns, whereas the hard instances constructed directly from
fingerprinting codes require only a very weak accuracy requirement that constrains only marked columns.
Fingerprinting lower bounds have applied in many settings, including mean estimation Bun et al. (2014);
Dwork et al. (2015); Kamath et al. (2019); Narayanan et al. (2022), adaptive data analysis Hardt and Ullman
(2014); Steinke and Ullman (2015), empirical risk minimization Bassily et al. (2014), spectral estimation
Dwork et al. (2014), combining public and private data Bassily et al. (2020), regression Cai et al. (2021, 2023),
sampling Raskhodnikova et al. (2021), Gaussian covariance estimation Kamath et al. (2022); Narayanan
(2024), continual observation Jain et al. (2023), and unbiased private estimation Kamath et al. (2023). Of
these works, all of them except for Raskhodnikova et al. (2021) use fingerprinting lemmas, rather than the
stronger construction of fingerprinting codes. Except Narayanan et al. (2022) (discussed in section 2.4), all
these lower bounds are based on the same type of hard instances that lead to the data being contained in
a known ball of a given radius, and thus none of them have the smoothness property we desire. Thus, we
believe that our method could find other applications beyond the ones that are described in this paper.

1.3. Paper Organization

In section 2 we present a proof overview of Theorem 4 for the case 5 ~ 1 that uses an optimal fingerprinting
code as black-box, explain how we give a direct proof using a strong fingerprinting lemma that we developed
in this work, and describe additional properties of our results. We prove our strong fingerprinting lemma in
section 3.

Notations, definitions and general statements used throughout the paper are given in appendix A. A robust
version of our fingerprinting lemma is stated and proved in appendix B. In appendix C we present our general
framework for proving DP lower bounds that is based on our fingerprinting lemma. In appendix D we present
our padding-and-permuting transformation, and prove theorems 4 and 6 using our framework. In appendix E
we prove theorems 9, 16 and 18, which give our main applications. In appendix F we show how to construct
a simple fingerprinting code using our strong fingerprinting lemma.

2. Our Technique

In this section, we present a proof overview of Theorem 4 for 5 ~ 1. In section 2.1 we present a simple
variant of the proof that uses an optimal fingerprinting code as black-box (e.g., Tardos (2008)). In section 2.2
we explain how we actually avoid the use of Tardos’ fingerprinting code by developing a strong fingerprinting
lemma. In section 2.3 we describe our more general framework, and in section 2.4 we make a detailed
comparison with Narayanan et al. (2022).

PETER TSFADIA ULLMAN

2.1. Proof via an Optimal Fingerprinting Code

Fingerprinting Code (FPC). An FPC consists of two algorithms: Gen and Trace. Algorithm Gen on
input 7 outputs a codebook (matrix) (27)icp)jejg € {—1, 1}"*4 for d = d(n), and a secret state st.
An adversary who controls a coalition S C [n] only gets the rows (x;);cs and is required to output
q=(q%...,q% € {—1,1}" that agrees with the “marked” columns, i.e., columns j € [d] where z] = b
(for the same b € {—1,1}) for every i € S. On “unmarked” columns j € [d], there is no restriction and the
adversary is allowed to choose ¢/ arbitrarily. Algorithm Trace, given such legal ¢ (and the secret state st),
guarantees to output ¢ € S with high probability (i.e., to reveal at least one of the coalition members).

Fingerprinting codes were originally introduced by Boneh and Shaw (1998). Tardos (2008) constructed
an optimal FPC of length dy = (:)(nz), and Bun et al. (2014) proved that Tardos’ code is actually robust,
i.e., it enables tracing even when the adversary is allowed to be inconsistent with a small fraction of marked
columns (say, 20%).!

Padding-and-Permuting FPC. Given a robust FPC (Gen, Trace) of length dy = dy(n), consider the
padding-and-permuting (PAP) variant of it as the following pair of algorithms (Gen’, Trace’):

Algorithm Gen’:

* Input parameters: Number of users n € N and accuracy parameter « € [0, 1]. Let dy = do(n) be the
codewords’ length of Gen(n) and let d = dy + 2/ for £ = H—ﬂ

* Operation:

1. Sample a codebook X € {—1,1}"*% along with a secret state st according to Gen(n).
2. Append ¢ 1-marked and ¢ (—1)-marked columns to the matrix X.
3. Permute the columns of X according to a random permutation 7 over [d).

4. Output the resulting matrix X’ € {—1,1}"*% along with the new state st’ = (, st).
Algorithm Trace’:

» Input parameters: A weakly-accurate result ¢ = (q',...,q%) € {—1,1}? and a secret state st' =
(m,st).

* Operation:
— Output Trace(q, st) for § = ("), ..., ¢"(@)) € {—1,1}%,

Note that we set the padding length as a function of the accuracy parameter « such that a weaker accuracy
(i.e., smaller o) results with a larger padding. This is crucial for creating hard instances in the regime where
an a-weakly-accurate mechanism must be accurate.

Proving Theorem 4 Let (Gen, Trace) be a robust FPC with codewords’ length dy = ©(n?) (e.g., Tardos

(2008)). Suppose that we sample X’ = (21, ..., 2,) € {—1,1}"*? according to Gen’(n,). By construction,

’rn
X' contains at least (1 — «)d b-marked columns, for both b € {—1, 1}. Therefore, if M: {—1,1}"*¢ —
{—1,1}% is a-weakly-accurate, then the output ¢ € {—1,1}% of M(X’) must agree with 90% of the marked
columns of X’. But because the columns are randomly permuted, M cannot distinguish between marked

columns from the padding and marked columns from the original codebook X. This means that it must

1. Bun et al. (2014) did not try to optimize the constant in the fraction of errors, and only proved it for 4%. For the purpose of
this proof sketch, we assume that the code is robust for 20% errors. A formal proof that relies on their result must change the
constant 0.9 in Definition 2 to a constant larger than 0.96.

agree with a similar fraction of marked columns of the codebook X, which enables tracing since the code is
robust. Therefore, we conclude that such a weakly-accurate mechanism cannot be DP unless n > Q(Vdo),
ie.,n>Q(Vad).

We remark that handling smaller values of 3 (the success probability of M) creates more technical
challenges that we ignore for the purpose of this overview.

2.2. Proof via a Strong Fingerprinting Lemma

The disadvantage of using FPC as black-box for DP lower bounds is the fact that Tardos (2008)’s analysis is
quite involved, so it is hard to gain an end-to-end understanding of the process, and in particular, to generate
hard instances in more complicated settings (e.g., exponential families Kamath et al. (2022)). Therefore,
later results simplified the construction and especially the analysis, at the cost of considering more restricted
adversaries that must estimate the average of most coordinates, and not just the “marked” ones (which usually
suffices for the aggregation tasks we are interested in). This led to the development of the Fingerprinting
Lemma (described below) which serves as the most common tool for proving lower bounds for approximate
DP algorithms.

Lemma 19 (Original Fingerprinting Lemma Bun et al. (2017); Dwork et al. (2015)) Let
f+{-1,1}" — [-1,1] be a function such that for every x = (x1,...,x,) € {—1,1}", satisfies
|f(3:) —1 Yoy $1| < 1/3. Then,

n

n

Epe=1,1), 21~ [f(x) Y (@i —p)

=1

> Q(1),

where p < [—1, 1] denotes that p is sampled uniformly over [—1,1|, and x1_, ~ p denotes that each
x; € {—1, 1} is sampled independently with E[z;] = p.

Roughly, Lemma 19 says that if f(z) ~ & S°7 | z;, then f(z) has ©(1/n) correlation (on average) with
each z;. In order to increase the correlation, we increase the dimension of the x;’s by using d = @(n2)
independent copies for each coordinate (column). This guarantees that the average correlation that a single
word z; € {—1, 1} has with an accurate output ¢ € [—1, 1]% is ©(d/n), which is sufficiently larger than the
O(\/Zi) correlation that an independent row (which was not part of the input) has with q.

However, in our case, since Lemma 19 is only restricted to adversaries that must be accurate for all types
of columns, and not just marked ones, we could not use it for our padding-and-permuting (PAP) technique,

and therefore we developed the following stronger Fingerprinting Lemma.

Lemma 20 (Our Strong Fingerprinting Lemma) Ler f: {—1,1}" — [—1,1] with f(1,...,1) = 1 and

f(=1,...,—1) = —1, and let p be the distribution that outputs p = zi_ﬁ fort < [—In(5n),In(5n)]. Then,

n

Epp, @1 nmp [f(x) : Z(xz —p)

=1

> Q(1/logn).

Note that up to the log n factor, Lemma 20 is much stronger than the original fingerprinting lemma that
is used in the literature (Lemma 19), since it only requires f to be fixed on the two points, (1,...,1) and
(—1,...,—1), and nothing else (i.e., f can be completely arbitrary on any other input).

Now the same approach of Bun et al. (2017); Dwork et al. (2015) yields that we can increase the
correlation by taking d = (:)(nQ) independent columns,” which leads to a tracing algorithm. But unlike Bun

2. An additional factor of log® n is hidden inside the © due to the log n factor that we lose in our new fingerprinting lemma.
However, we ignore it for the sake of this presentation as it is only a low-order term.

PETER TSFADIA ULLMAN

et al. (2017); Dwork et al. (2015), we obtain a much stronger “FPC-style” tracing algorithm, which enables
to apply a similar PAP approach as described in section 2.1. As a corollary that is of independent interest, the
above approach results in a new fingerprinting code that has a simpler analysis than the one of Tardos (2008),
described in appendix F.

An additional advantage of Lemma 20 is that it also extends to randomized functions f with
Pr(f(1,...,1) =1],Pr[f(-1,...,—1) = —1] > 0.9. This yields an FPC against mechanisms M that
given a codebook X, the output M(X) is strongly-correlated with X:

Definition 21 (Strongly Correlated) We say that a random variable Q = (Q',...,Q%) € {—1,1}% is
strongly-correlated with a matrix X € {—1,1}"%%, if

Ve {-1,1},Vie Jy: Pr[Q’ =1b] >0.9.

Note that strongly-correlated (Definition 21) is similar to strongly-agrees (Definition 2) but not exactly
the same (in particular, the former is a property of a random variable while the latter is a property of a fixed
vector). In our analysis, we use the strongly-correlated definition which makes the statements and proofs
much more clean. To see this, recall that in the proof sketch in section 2.1, we claimed that an algorithm that
agrees with 90% of the marked columns of X’, also agrees with a “similar” fraction of marked columns of
the original codebook X . But this is not exactly the same agreement fraction, and it creates some additional
restrictions on the parameters, and in particular, one has to go into the specific FPC construction to argue that
w.h.p., there are many marked columns (as done by Bun et al. (2014) w.r.t. Tardos’ code). But in this work
we observed that padding-and-permuting simply transforms an 0.9-agreement on X' (i.e., strong-agreement)
into 0.9-correlation on X (i.e., strong-correlation) without any special requirements on the parameters (this
is the content of Lemma 43), so we were able use our FPC directly.

2.3. More General Framework

While our tools (Theorems 4 and 6) capture various fundamental problems, they may not serve as the right
abstraction for handling more complicated output spaces (e.g., matrices) that are used for other problems
(e.g., subspace or covariance estimation). We therefore provide a more general framework that we hope can
be applied to other types of algorithms without the need to develop similar tools from scratch.

Consider a mechanism M: X™ — WV that satisfies some weak accuracy guarantee. In order to prove a
lower bound on n using our approach, we need somehow to transform an FPC codebook X € {—1,1}70*do
into hard instances Y € X" for M, and then extract from the output w € W of M(Y') a vector ¢ € {—1,1}%
that is strongly-correlated with X (ng and dy are some functions of n and d and the weak accuracy guarantee
of M). Denote by G: {—1,1}"0xd x) — X" the algorithm that generates the hard instances using a
uniformly random secret v <— V (i.e., v could be a random permutation, a sequence of random permutations,
etc). Denote by F: V x W — {—1,1}9 the algorithm that extracts a good g using the secret v and the output
w. Denote by AMF-G(X) the process that samples v + V, and outputs ¢ ~ F(v, M(G(X,v))).

, 45 - -DP and there exists such G, F where:

Our framework (Lemma 40) roughly states that if M is (1

(1) The output of AMvFvG(X) is strongly-correlated with X w.p. at least $ over the random coins of
M, F, G, and (2) G is neighboring-preserving (i.e., maps neighboring datasets to neighboring datasets), then
Vdo
no > Q logl's(c(ljo/ﬁ) .
We prove Theorem 4 by applying the framework with ng = n and dy = ad, and we prove Theorem 6 by

applying it with ng = n/k and dy = ad.

2.4. Comparison with Narayanan et al. (2022)

Narayanan et al. (2022) developed very different hard-instances for lower bounding user-level DP averaging
that can be used to prove a similar statement to Theorem 9 (our DP averaging lower bound). In their setting, a

10

distribution vector p = (p1,...,pq) € [0.5/d,1.5/d]?, Zle p; = 1, is sampled, and the goal is to estimate
it. For each user (out of m), they sample m = A\?d one-hot vectors according to p, and provide the average of
the vectors as the user’s input point. Since each p; ~ 1/d, it can be shown that w.h.p., the resulting points
have (5 diameter v ~ 1/1/m = 1/\\/d (and also close to p up to such an additive error). So their Lemma 23
essentially states that estimating p up-to additive £y error of 1/v/d = X - v, requires Q(+/d/\) users (which
matches our Theorem 9 up to the low-order terms).

While both works yield similar smooth lower bound for DP averaging, the focus of the works is different:
Narayanan et al. (2022) focus on user-level DP averaging, while our focus is on general bounds for various
(item-level) DP problems. As part of that, we have several advantages in the item-level DP case:

1. Applicability: Our padding-and-permuting FPC hard-instances enable to prove more general tools
(Theorems 4 and 6) which provide clean abstraction for lower bounding other fundamental problems
under DP, like clustering and estimating the top-singular vector.

2. Simplicity: Our proof is conceptually cleaner and simpler, and in particular, can be explained using a
simple black-box construction from an optimal fingerprinting-code (section 2.1).

3. Tighter Bounds: Narayanan et al. (2022) have an 1/log”(d/)\) dependency in their DP-averaging
lower bound (see their Theorem 10), while we only have an 1/log!®(d/\) dependency.

4. Boolean instances: We create boolean hard-instances, while Narayanan et al. (2022) instances are not.

3. Strong Fingerprinting Lemma

In this section, we prove Lemma 20. We make use of the following lemma.

Lemma 22 (Dwork et al. (2015), Lemma 5) Ler f: {—1,1}" — R. Define g: [—1,1] — R by

9(p) == Eay_,~plf(2)].

Then

Eay ep [f(2)) (mi—p)| =4 (p)- (1-p?).

i€[n]

Note that when f(z) ~ 1 3" | ;, then g(p) ~ p. Therefore, if we choose p uniformly over [—1, 1], then
Lemma 22 implies that we get Q(1)-advantage, which results in the original fingerprinting lemma (Lemma
19). However, in Lemma 20, we are interested in a much weaker f that only satisfies f(1,...,1) = 1 and
f(=1,...,—1) = —1, and might be arbitrary in all other inputs in {—1, 1}". So the only thing that we know
about such f is that it induces a function g: [—1,1] — [—1,1] such that g(—1) = —1 and ¢g(1) = 1, and
actually we can also show that g(—1 +¢) ~ —1 and g(1 —¢) ~ 1 fore = O(1/n). We show that these
limited properties suffice for a fingerprint lemma, by choosing p from a distribution p that has probability
density function oc 1/(1 — p?).

Proof [Proof of Lemma 20] Recall that p is the distribution that outputs p = %=1 for ¢ < [—In(5n), In(5n)].

et+1
Let p denote a random variable that is distributed according to p. Let’s first compute its cumulative distribution

11

PETER TSFADIA ULLMAN

function (CDF):

et—1<
et—&—l*p

1+
= Prt(—[— In(5n),In(5n)] |:t < 1Il< p>:|

I-p
B ln(%) + In(5n)

Prlp <p| = Pl"t<—[— In(5n),In(5n)] [

»
21n(5n)

1 1
= n(on) (In(1+p) (1l —p)) + 3

Hence, the probability density function (PDF) of p is

_ dPr[p < p]

p(p) : i

1 Lo,
~ 2In(5n) \1+p 1-p

In the following, let g(p) := E;, ,~p[f(x)]. Note that ¢t = In(bn) = p =1 — %ﬂ and
t = —-In(bn) = p= -1+ 5n2+1. In addition, note that if z; ~ p, then Pr[z; = 1] = 32 and
Pr[z; = —1] = I_Tp. By the assumption on f, for every p it holds that

2

. : L+p\"
g(p) >Pry, plViiax; =1 —Pry ~pFiiz=-1=2-(——) —1

2
and
1—p\"
g(p) < _Prfrl.”nNP[Vi I = _1] + Prfﬂl.”nNPBi T = 1] =2 <2> 1
Hence,
2 r\" _lin Y
gl1-— >2.11-— —1>2.¢ a4l —12>2-¢ —1>0.5
Sn+1 om—+1
and

1+ 2 < =2 1 1 n—l—l< 0.5
g n+1) = 5n+ 1 =0

where we used the inequality e~ 1Y < 1 — g for every y € [0,1/6].

12

Hence, we conclude that

Epep, 21 prp | F(T) - Z(mz —p)| = Ep~p [gl(p) (1 _pQ)]

i€[n]

SRS TEsT
1 B <l
= / (p)dp
n(5n) Joiq 2.
1 2
= ~ —g(- I
In(5n) (g< 5n+1> g(5 +1>) M
S 1
~ In(5n)

Acknowledgments

Eliad Tsfadia would like to thank Edith Cohen, Haim Kaplan, Yishay Mansour and Uri Stemmer for
encouraging him to tackle the problem of lower bounding DP averaging and for useful discussions.

Naty Peter was supported in part by the Massive Data Institute at Georgetown University. Eliad Tsfadia
was supported in part by the Fulbright Program and a gift to Georgetown University. Jonathan Ullman is
supported by NSF awards CNS-2120603, CNS-2232692, and CNS-2247484.

References

Hassan Ashtiani and Christopher Liaw. Private and polynomial time algorithms for learning gaussians and
beyond. In Conference on Learning Theory, volume 178 of Proceedings of Machine Learning Research,
pages 1075-1076. PMLR, 2022.

Raef Bassily, Adam Smith, and Abhradeep Thakurta. Private empirical risk minimization: Efficient algorithms
and tight error bounds. In FOCS, pages 464-473. IEEE, 2014.

Raef Bassily, Albert Cheu, Shay Moran, Aleksandar Nikolov, Jonathan Ullman, and Zhiwei Steven Wu.
Private query release assisted by public data. In International Conference on Machine Learning (ICML),
2020.

Dan Boneh and James Shaw. Collusion-secure fingerprinting for digital data. IEEE Transactions on
Information Theory, 44(5):1897-1905, 1998.

Mark Bun, Jonathan Ullman, and Salil P. Vadhan. Fingerprinting codes and the price of approximate
differential privacy. In Symposium on Theory of Computing, STOC 2014, pages 1-10, 2014.

Mark Bun, Thomas Steinke, and Jonathan R. Ullman. Make up your mind: The price of online queries in
differential privacy. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2017, pages 1306-1325, 2017.

T. Tony Cai, Yichen Wang, and Linjun Zhang. The cost of privacy: Optimal rates of convergence for
parameter estimation with differential privacy. The Annals of Statistics, 49(5):2825-2850, 2021.

13

PETER TSFADIA ULLMAN

T. Tony Cai, Yichen Wang, and Linjun Zhang. Score attack: A lower bound technique for optimal differentially
private learning. arXiv preprint arXiv:2303.07152, 2023.

Edith Cohen, Haim Kaplan, Yishay Mansour, Uri Stemmer, and Eliad Tsfadia. Differentially-private
clustering of easy instances. In Proceedings of the 38th International Conference on Machine Learning,
ICML 2021, volume 139, pages 2049-2059, 2021. URL https://arxiv.org/abs/2112.14445.

Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni Naor. Our data, ourselves:
Privacy via distributed noise generation. In EUROCRYPT, volume 4004, pages 486-503, 2006a.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity in private
data analysis. In TCC, volume 3876, pages 265-284, 2006b.

Cynthia Dwork, Kunal Talwar, Abhradeep Thakurta, and Li Zhang. Analyze gauss: Optimal bounds for
privacy-preserving principal component analysis. In Proceedings of the 46th Annual ACM Symposium on
Theory of Computing, STOC ’14, pages 11-20. ACM, 2014.

Cynthia Dwork, Adam D. Smith, Thomas Steinke, Jonathan R. Ullman, and Salil P. Vadhan. Robust
traceability from trace amounts. In IEEE 56th Annual Symposium on Foundations of Computer Science,
FOCS 2015, pages 650-669, 2015.

Badih Ghazi, Ravi Kumar, and Pasin Manurangsi. Differentially private clustering: Tight approximation ratios.
In Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, 2020.

Anupam Gupta, Katrina Ligett, Frank McSherry, Aaron Roth, and Kunal Talwar. Differentially private
combinatorial optimization. In Proceedings of the Twenty-first Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’10, pages 1106-1125, 2010.

Moritz Hardt and Jonathan Ullman. Preventing false discovery in interactive data analysis is hard. In FOCS,
pages 454-463, 2014.

Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the American
Statistical Association, 58(301):13-30, 1963.

Palak Jain, Sofya Raskhodnikova, Satchit Sivakumar, and Adam Smith. The price of differential privacy
under continual observation. In International Conference on Machine Learning, pages 14654—14678.
PMLR, 2023.

Gautam Kamath, Jerry Li, Vikrant Singhal, and Jonathan Ullman. Privately learning high-dimensional
distributions. In Conference on Learning Theory, COLT 2019, volume 99, pages 1853-1902. PMLR, 2019.

Gautam Kamath, Argyris Mouzakis, and Vikrant Singhal. New lower bounds for private estimation and a
generalized fingerprinting lemma. Advances in Neural Information Processing Systems, 35:24405-24418,
2022.

Gautam Kamath, Argyris Mouzakis, Matthew Regehr, Vikrant Singhal, Thomas Steinke, and Jonathan
Ullman. A bias-variance-privacy trilemma for statistical estimation. arXiv preprint arXiv:2301.13334,
2023.

Haim Kaplan and Uri Stemmer. Differentially private k-means with constant multiplicative error. In Advances
in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing
Systems 2018, NeurlPS 2018, pages 5436-5446, 2018.

14

https://arxiv.org/abs/2112.14445

Vishesh Karwa and Salil Vadhan. Finite sample differentially private confidence intervals. In 9¢h Innovations
in Theoretical Computer Science Conference (ITCS 2018), 2018.

Shyam Narayanan. Better and simpler lower bounds for differentially private statistical estimation, 2024.

Shyam Narayanan, Vahab S. Mirrokni, and Hossein Esfandiari. Tight and robust private mean estimation with
few users. In International Conference on Machine Learning, ICML 2022, volume 162 of Proceedings of
Machine Learning Research, pages 16383-16412. PMLR, 2022.

Huy L. Nguyen, Anamay Chaturvedi, and Eric Z. Xu. Differentially private k-means via exponential
mechanism and max cover. In Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-
Third Conference on Innovative Applications of Artificial Intelligence, IAAI 2021, The Eleventh Symposium
on Educational Advances in Artificial Intelligence, EAAI 2021, pages 9101-9108, 2021.

Kobbi Nissim and Uri Stemmer. Clustering algorithms for the centralized and local models. In Proceedings of
Algorithmic Learning Theory, volume 83 of Proceedings of Machine Learning Research, pages 619-653,
2018.

Kobbi Nissim, Uri Stemmer, and Salil P. Vadhan. Locating a small cluster privately. In Proceedings of the
35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2016, pages
413-427, 2016.

Rafail Ostrovsky, Yuval Rabani, Leonard J. Schulman, and Chaitanya Swamy. The effectiveness of lloyd-type
methods for the k-means problem. J. ACM, 59(6):28:1-28:22, 2012.

Sofya Raskhodnikova, Satchit Sivakumar, Adam Smith, and Marika Swanberg. Differentially private sampling
from distributions. Advances in Neural Information Processing Systems, 34:28983-28994, 2021.

Moshe Shechner, Or Sheffet, and Uri Stemmer. Private k-means clustering with stability assumptions. In
The 23rd International Conference on Artificial Intelligence and Statistics, AISTATS 2020, volume 108 of
Proceedings of Machine Learning Research, pages 2518-2528, 2020.

Vikrant Singhal and Thomas Steinke. Privately learning subspaces. Advances in Neural Information
Processing Systems, 34, 2021a.

Vikrant Singhal and Thomas Steinke. Privately learning subspaces. In Advances in Neural Information
Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS
2021, pages 1312-1324, 2021b.

Thomas Steinke and Jonathan Ullman. Interactive fingerprinting codes and the hardness of preventing false
discovery. In COLT, pages 1588-1628, 2015.

Thomas Steinke and Jonathan Ullman. Tight lower bounds for differentially private selection. In /IEEE
Symposium on Foundations of Computer Science, FOCS 17, 2017.

Thomas Steinke and Jonathan R. Ullman. Between pure and approximate differential privacy. J. Priv.
Confidentiality, 7(2), 2016.

Gébor Tardos. Optimal probabilistic fingerprint codes. J. ACM, 55(2), 2008.

Eliad Tsfadia, Edith Cohen, Haim Kaplan, Yishay Mansour, and Uri Stemmer. Friendlycore: Practical
differentially private aggregation. In International Conference on Machine Learning, ICML 2022, volume
162 of Proceedings of Machine Learning Research, pages 21828-21863. PMLR, 2022.

15

PETER TSFADIA ULLMAN

Appendix A. Preliminaries

A.1. Notations

We use calligraphic letters to denote sets and distributions, uppercase for matrices and datasets, boldface
for random variables, and lowercase for vectors, values and functions. For n € N, let [n] = {1,2,...,n}.
Throughout this paper, we use i € [n] as a row index, and j € [d] as a column index (unless otherwise
mentioned).

For a matrix X = (xi)ie[n),jc[d)» We denote by z; the i*" row of X and by 27 the j*" column of X.
A column vector z € R™ is written as (z1,...,2,) or = x1_,, and a row vector y € R? is written as
(y',...,y%) or y'<. In this work we consider mechanisms who receive an n x d matrix X as input, which is
treated as the dataset X = (z1,...,z,) where the rows of X are the elements (and therefore, we sometimes
write X € (R?)" instead of X € R"*? to emphasize it). For d € N we denote by P the set of all d x d
permutation matrices.

For a vector x € R? we define ||z|, = Y., |z;| (the ¢; norm of z), and ||z||, = />, 7 (the ¢5

norm of x), and for a subset S C [d] we define x5 = (z;);cs, and in case x is a row vector we write 5.

Given two vectors © = (21,...,%n),y = (Y1, ..., Yn), we define (z,y) = > | z;y; (the inner-product of
 and y). For a matrix X = (27);cpn) jeqq) € {—1,1}"*% and b € {—1,1}, we define the b-marked columns
of X as the subset 7% C [d] defined by J% = {j € [d]: 2] = bforalli € [n]}.

1 z2>0

For z € R, we define sign(z) := and for v = (v!,...,v?) € R? we define sign(v) :=

-1 z2<0
(sign(v'),..., sign(v?)) € {-1,1}%

A.2. Distributions and Random Variables

Given a distribution D, we write x ~ D to denote that x is sampled according to D. For a set S, we write
x <— S to denote that « is sampled from the uniform distribution over S.

Fact 23 (Hoeffding’s inequality Hoeffding (1963)) Let x1, ..., X, be independent random variables tak-
ing integer values in the range [a,b]. Also, letx =)" | x; denote the sum of the variables and ;i = E[x]
denote its expectation. Then, for any t > 0,

242

Prix<pu—t] <e nt-a)?, (2)
22

Prix > p+t] <e nt-o?, 3)

Definition 24 (Behave the same) We say that two random variables x and x' over X behave the same
w.p. B3, if there exists a random variable y over Y (jointly distributed with x,x’), and event E C Y with
Prly € E] > B such that X|ycp = X|ycE-

Fact 25 Ifx and x' behave the same w.p. 3, then for any event F,
Prjx € F] > Pr[x € F] — (1-f).

16

Proof Lety, F as in theorem 24. Compute

Prix € F] > Prly € E]-Prjx € F | y € E]
=Prly € E]-Pr[x' € F |y € E|
Pr[x’ € F| — Prly ¢ E]
Prly € E]
=Pr[x' € F] - Prly ¢ E] > Pr[x' € F| — (1 - 5).

> Prly € E] -

A.3. Algorithms

Let M be a randomized algorithm that uses m random coins. For r € {0,1}" we denote by M, the
(deterministic) algorithm M after fixing its random coins to 7. We use the same notation for more specific
cases, e.g., if the random choices of M consist of sampling s < [k] and P < Py, then for s € [k] and
P ¢ P4 we denote by M, p the algorithm M after fixing this random choices to s and P (respectively).

A.4. Differential Privacy

Definition 26 (Differential Privacy (Dwork et al., 2006b,a)) A randomized mechanism M: X" —) is
(¢, 0)-differentially private (in short, (€,0)-DP) if for every neighboring databases X = (z1,...,2y), X' =
(@),...,2)) € X" (i.e., differ by exactly one entry), and every set of outputs T C), it holds that

rrn

PrM(X) e T] <e-Pr[M(X') € T] +6

A.4.1. KNOWN FACTS

Fact 27 (Post-Processing) IfM: X™ — Y is (¢, 0)-DP then for every randomized F:) — Z, the mecha-
nismFoM: X" — Zis (g,0)-DP.

Post-processing holds when applying the function on the output of the DP mechanism. In this work we
sometimes need to apply the mechanism on the output of a function. While this process does not preserve DP
in general, it does so assuming the function is neighboring-preserving.

Definition 28 (Neighboring-Preserving Algorithm) We say that a randomized algorithm G: X" — Y™
is neighboring-preserving if for every neighboring X, X' € X", the outputs G(X),G(X') € Y™ are
neighboring w.p. 1.

Fact29 IfG: X" — Y™ is neighboring-preserving and M: Y™ — Z is (¢,0)-DP, then Mo G: X" — Z
is (€,0)-DP.

We also use the following fact which states that the output of a DP mechanism cannot be too correlated
with one of the input points.

Fact30 Let M: X" — Y be an (¢,0)-DP mechanism, let i € [n], let X1,...,Xp,X, be i.i.d. random
variables over X, let X = (x1,...,Xy), and let P: X x Y — {0, 1} be a (possibly randomized) predicate.
Then,

Pr[P(x;, M(X)) = 1] < €° - Pr[P(x}, M(X)) = 1] + 4.

17

PETER TSFADIA ULLMAN

Proof We assume without loss of generality that P is deterministic since the proof for a randomized P
follows by fixing the random coins of P. In the following, for z; € X let T, = {y € V: P(z;,y) = 1}.
Compute

where the second equality holds since x; = x|, and the inequality holds since M is (&, §)-DP and since
X |x,==; and X are neighboring. [|

Appendix B. Robust Fingerprinting Lemma

In this section we extend Lemma 20 to a robust version that allows a small error probability (Lemma 31). In
appendix B.1 we increase the dimension and prove the resulting correlation in Lemma 34.

Lemma 31 (Robust version of Lemma 20) Let F': {—1,1}" — [—1, 1] be a randomized function such

that Pr(F'(1,...,1) = 1] > 0.9 and Pr[F(—1,...,—1) = —1] > 0.9. Then,
0.4
~p, T ~ : v Z

i€[n]

for p as in Lemma 20, where the expectation is also over the randomness of F.

Proof Assume that F'(z) is defined by f(z;r) for a random r « {0,1}"". Let ¢ = 0.9 and R =

{r e {o,1}™: f(1,...,5;7) = 1A f(—1,...,—1;r) = —1}. By assumption and the union bound,
IR| <2(1—¢q)-2m=(2-2q) 2,50 |R|=2™—|R| > (2¢ — 1) - 2™,
By Lemma 20,
1

VreR: Epepar n~p | flasr)- Z(»Tz -p)| >

el In(5n)

By eq. (1) and since for every r, the function f(-,) induces a function g with range [—1, 1], it holds that

Vr ¢ R: Epoparmp |F(237) - Y (@i —p)| = 1n(15n) ' <9<1 - 5n2+ 1) _g<_1 * 5n2+ 1))

i€[n]

Therefore, we conclude that

EPNval...an F($) ’ Z(xl - p) = Er(—{O,l}m,pr,a:L“an f(xv 7") : Z ('rl _p)

i€[n] i€[n]
2
R A Yo Rl Gl A vy o
_6g—5
~ In(5n)
04
~ In(5n)’

B.1. Increasing the Dimension

In this section, we increase the correlation achieved by our fingerprinting lemma by increasing the number of
columns (the dimension of the input points).

We start by defining a strongly-accurate mechanism, which is a natural extension of the one-dimension
case.

Definition 32 (Strongly-Accurate Mechanism) We say that a mechanism M: {—1,1}"*% — [—1,1]9 is
strongly-accurate if for every X € {—1,1}"*4 M(X) is strongly-correlated with X (Definition 21).

That is, for every b-marked column j € [d], a strongly-accurate mechanism returns b as the j** element of its
output with high probability.
We next define our hard distribution.

Definition 33 (Distributions D’'(n, d) and D(n,d)) Let p be the distribution from Lemma 20. Define
D'(n,d) to be the distribution that outputs (1, ..., xn,2) € {—1,1YTDXd ywhere pl . pd ~ p are
sampled (independently), each xi € {—1,1} is sampled with E [mz } = pJ, and each %7 is sampled with
E [zj] = p’. Define D(n, d) as the distribution of the first n vectors in D'(n, d) (i.e., without z).

Lemma 34 Let M: {—1,1}"*¢ — [—1,1]¢ be a strongly-accurate mechanism, and let (X1, ..., Xp,2) ~
D'(n,d) (Definition 33), X = (X1, ...,Xy,) and q = M(X) be random variables. Then,

=1

E[Z<<xi,q> - <z,q>>] > s

Furthermore, for every (3 € [0,1], if d > ©(n?log?(n) log(1/)), then

Pr

S (xiva) = (z,) < h?('gjj)]

=1

Proof The first part of the lemma follows from similar arguments as in the proof of Proposition 10 in Dwork
et al. (2015). In particular, for a given j € [d], we fix all columns except for the 5 column. Since the
mechanism M only gets X as an input, and each columns j of X is sampled independently, then there is

19

PETER TSFADIA ULLMAN

some Fj: {—1,1}" — [~1,1]¢ for which ¢/ ~ F}(x/), where x/ = (x{, ..., xJ) (the 7’th column of X),
such that Lemma 31 holds for it. Then, by this and the fact that M is a strongly-accurate mechanism,

. . . ‘ - 0.4
E qJ.Z(xg—zJ) —E Fj(xﬂ).Z(xg—pj) > n(5n)’
i€[n] i€[n]
where p!,. .., p? are the expectations that were sampled in the process of sampling X, z (Definition 33).

Thus, by linearity of expectation, we conclude the first part of the lemma.
The second part is proven similarly to Lemma 11 in Dwork et al. (2015). Let us define the random
variable a; = g’ - 2 icin] (x! — z7) for every j € [d]. Then, we get that

n n

d d
> ((xiq) — (z.) = qu > (] —)) = Zaj,

i=1 =1
and from the first part we have E [Z?Zl aj} > %. In order to use Hoeffding’s inequality on the sum
Z?Zl a;, we first assume that the random variables ay, ..., a, are independent. Later, as in Dwork et al.
(2015), we show how to remove this assumption. Next, observe that —2n < |a;| < 2n for every j € [n].
Therefore, using an Hoeffding’s inequality (2), it follows that

n

d 2
0.2d 0.2d _a020/men)? (L4)
Pr ;_1(<Xi,q> —(z,q)) < ln(5n)] =Pr]E_l a; < NG <e d(an) =e \ n?m2m)/) < B,

Now, for the case that ay, . .., a4 are not independent, we use the fact that the sum Z?zl a; concentrates as
if they were independent, which follows since for every j € [d], the expected value of a; is the same even
when conditioned on the other variables of {ai,...,a4} \ a;. That is,

Ela;] = E[a; | {a1,...,aq4} \ aj].

Appendix C. Framework for Lower Bounds

Following section 2.3, in this section we present our general framework for lower bounding DP algorithms
(stated in Lemma 40) that is based on our new hard-distribution.

Definition 35 (Algorithm AMF-C) Let V, W be domains, and let ng, dy,n € N. Let (M, F, G) be a triplet
of randomized algorithms of types G: {—1,1}"0>Xd0 x VY 5 X" M: X" = W, and F: V x W — [—1,1]%,
each uses m random coins. Let AMF:C: {1 1}noxdo _ [—1 1]% be the randomized algorithm that on
input X € {—1,1}0%%_ samples v < V, Y ~ G(X,v) and w ~ M(Y'), and outputs q ~ F(v,w).

Definition 36 (5-Leaking)
Let M, F, G be randomized algorithms as in Definition 35, each uses m random coins, and let D(ny, dg)
be the distribution from Definition 33. We say that the triplet (M, F, G) is -leaking if

P10 10,1}, XD(no,do) [AM“FT”GT” (X)) is strongly-correlated with X | > 3,

(where recall that M,. denotes the algorithm M when fixing its random coins to r, and F,., G are similarly
defined).

20

In the following, fix a B-leaking triplet (M, F, G), and let A = AM-F:C and Ay = AMr.Fyr, G

Claim 37 IfMis (g,0)-DP, and G(-,v) is neighboring-preserving (Definition 28) for every v € V), then A is
(e,9)-DP.

Proof Fix v € V, and let G, = G(+,v) and F, = F(v,-). Since G, is neighboring-preserving and M is
(€,6)-DP, then M o G, is (g, 0)-DP (Fact 29). By post-processing, F,, o M o G, is also (&, §)-DP. Since the
above holds for any v € V and since A = (F, o M o G,),, we conclude that A is (¢, §)-DP. [

Claim 38 Let (X1,...,Xp,,2) ~ D(ng,do) (Definition 33) and let X = (x1,...,Xp,) € {—1,1}70%do,
Assuming do > ©(nZlog?(ng) log(1/p)), it holds that

Pr| (i, ACX)) — {2, ACX))) = h‘féiﬁ))] > 6/2.
=1

Proof Consider the algorithm A’: {—1,1}"0%d — [—1 1]% that on input X € {—1,1}"0*% samples
r,r’',r" < {0,1}™ and checks if A, s ,»(X) is strongly-correlated with X. If it does, it outputs g ~
A (X). Otherwise, it outputs ¢ = (¢*, ..., q%) such that ¢/ = b forevery b € {—1,1} and j € J%. By
definition, A’ is strongly-accurate. Therefore, by Lemma 34 we obtain that

Pr| (i, (X)) = (2, (X)) 2 lféjjg)] >1-5/2
=1

But recall that A = AMFC where (M, F, G) is B-leaking (Definition 36). Therefore, A’(X) behaves as A(X)
with probability at least 5 (Definition 24). Thus by Fact 25

Pr [fj«xi, AX)) — (2, AX)) > 2o] > (1-5/2) — (1-8) = B/2.

P In(5n0)
|
Claim 39 Ifdy > ©(nlog?(ng) log(no/B)), then A is not (1, %)—DP.
Proof Let (x1,...,Xpny,2) ~ D(ng,dp), let X = (x1,...,Xp,), and let g = A(X).
By Claim 38 and the union bound, we deduce that there exists ¢ € [ng] such that
0.2dy B
P) — > —| > —. 4
r| (i) = (za) > ln(SnO)] Z)
In the following, let p1, ..., P4, € [—1, 1] be the (random variables of the) expectations that were chosen
as part of the sampling of (x1, . ..,Xp,, z) from D(ng, do) (as defined in Definition 33), and in the rest of the

proof we fix (p1,...,Pd,) = (P1,---,Pd,) such that eq. (4) holds under this fixing.

For the above i € [ng], let x; € {—1, 1}% be an independent random variable such that each (x})J ~ p;
(independently) for every j € [do]. Note that X1, . . ., Xp,, X}, z are i.i.d. random variables. However, while
q depends on x;, it is independent of x; and z.

Assume towards a contradiction that A is (1, %) -DP. By applying Fact 30 with the random predicate
P(z;,q) =]l{<m7q>_<z7q>> 024y, We deduce from eq. (4) that

ng In(5nq)

21

PETER TSFADIA ULLMAN

Pr <X;7q> - <Z7q> > O2d0:| Z 6_1 (IB - ﬁ) > B . (5)

no In(5ng) 2ng 4ng 4enyg

In the following, we prove that since x/ is independent of q, then the above probability is much smaller,
which will lead to a contradiction.
For every j € [dy], define the random variable b; = ¢’ ((x})’ — z7). Then, we get that

do dO

(xi,q) — (z.a) =Y d((x))) —2/) =) b;

J=1 J=1

Since x}, z and q are independent, the above equality yields that E {Z =1 b;] = 0. Hence, similarly to the
proof of Lemma 34 and since —2 < |b;| < 2 for every j € [ng], we obtain by Hoeffding’s inequality (3) that

dg

0.2dy 0.2dg TG Y e— B
P / _ P 'b < 200n§ In2(5ng) < 6
r |:<xz7 q> <Z7 Cl> o hl 5n0 :| r Z no h’l 577,0) <e 0 > QOTLU (6)

20ng

where the last inequality holds since by assumption dy > QOOn% In?(20n) log<) (holds when choosing

a large enough constant in the © expression). This is in contradiction to eq. (5), so we conclude that A is not
(1 B) DP. m

) 4ng
We now ready to state and prove the guarantee of our framework.

Lemma 40 (Framework for Lower Bounds) Ler § € (0,1], ng,n,dy € N. Let M: X" — W be an
algorithm such that there exists two algorithms G: {—1,1}"0%% x VY & X" and F: V x W — [—1,1]%

such that the triplet (M, F, G) is -leaking (Definition 36). If M is <1, %) -DP, then ng > Q(%).

Proof Let ¢ > 0 be the hidden constant in the © expression of Claim 39. If dy > ¢ - n2 log?(ng) log(no/3),
then A = AMF.G is not (1 8) -DP (Claim 39), and therefore M is not (1 B)—DP (Claim 37), contradic-

’ dng 7 4ng

tion. Thus dy < ¢ - n2log?(ng) log(ng/B) which implies that ny > Q(m). [

Appendix D. Padding And Permuting (PAP) FPC

In this section, we present the PAP transformation and prove its main property (stated in Lemma 43). In
appendices D.1 and D.2 we use our framework (Lemma 40) with the PAP transformation to prove Theorems
4 and 6.

Definition 41 (PAP,, 4, /) Let{,n,dy € N, and let d = dy+2(. We define PAP,, 4, ¢: {—1, 1}yxdo x py —
{—1,1}"*? as the function that given X € {—1,1}"*% and a permutation matrix P € P as inputs, outputs
X' = X" . P (i.e., permutes the columns of X" according to P), where X" is the {—1,1}"*? matrix after
appending ¢ 1-marked and ¢ (—1)-marked columns to X.

Note that for every n,dy, ¢ € N and P € Py, the function PAP,, 4, (-, P) is neighboring-preserving
(Definition 28).

The following lemma shows how PAP can be used to transform strong-agreement into a strong-correlation
guarantee.

22

Lemma 42 Let /,n,dy € N such that d = do + 2(. Let X € {—1,1}"*%, define the random variables
P « PgandY = PAP,, 4, ¢(X,P), and let M: {—1,1}"*¢ — [—1,1]¢ be a mechanism that for every input
Y € Supp(Y), outputs q € [—1,1]% that strongly-agrees with Y (Definition 2). Then (M(Y) - PT)L-do jg
strongly-correlated with X (Definition 21).

Proof The proof follows since for every b € {—1,1} and j € J%,

Priy.py(y,p) [(M(Y) - PT) =] = Ey v jregp [PT[M(Y)j/ = b” (N
> 0.9 - Ey. y[Pr[M(Y) strongly-agrees with Y]
= 0.9,

where all the probabilities are also taken over the random coins of M. The equality holds since from the point
of view of M, which does not know the random permutation P, every b-marked column of Y has the same
probability to be the b-marked column j of X. The first inequality holds since for every Y,

Ej g [Pr [M(Y)j/ = b | M(Y) strongly-agrees with Y” >0.9.

The last inequality in eq. (7) holds since by the assumption on M, for every Y € Supp(Y), the output M(Y)
strongly-agrees with Y w.p. 1. |

We now prove the main property of our PAP technique, which transforms any probability of strong-
agreement to the same probability of strong-correlation .

Lemmad3 Let {,n,dy € N such that d = dy + 2¢. Let M: {—1,1}"*% — [~1,1]% be a mechanism
that uses m random coins, define the random variable P < Py, and for X € {—1,1}"*% define Y x =
PAP(X,P). Then for any distribution D over {—1,1}"*%

Pr._j013m, x~D (M (Yx) - HT)l"”’dO is strongly-correlated with X]

> Ex~p[Pr[M(Y x) strongly-agrees with Y x]]|.

Proof Let § = Ex.p[Pr[M(Yx) strongly-agrees with Y x|, and let PAP = PAP,, 4, .. Also, let
M’: {—1,1}"*¢ — [~1,1]¢ be the mechanism that on input Y € {—1,1}"*% samples ¢ ~ M(Y)
and checks if it strongly-agrees with Y. If it does, it outputs ¢q. Otherwise, it outputs an (arbitrary)
vector ¢ € [—1,1]¢ that strongly-agrees with Y. In the following, let r + {0,1}™, X ~ D(n,dp),
P + Pjand Y = Yx(= PAP(X,P)) be random variables, and let ¢ = M,(Y) and ' = ML(Y). Let
E={(r,X,P): M, (PAP(X, P)) = M/.(PAP(X, P))}, and note that Pr[(r, X, P) € E| = $3. In addition,
for (r,X) € Supp(r) x Supp(X), let E, x = {P: (r,X,P) € E} and let 3, x = Pr[P € E, x]. By
definition, the following holds:

1. ¥(r, X) € Supp(r) x Supp(X): q|x)=(rx) behaves as q'|(x x)=(r, x) W-P. B x (Definition 24).
2. E,qo1ym, x~plBrx] = 6.

3. ¥(r, X) € Supp(r) x Supp(X): (q[(r,x)=(r,x) - PT)b-do js strongly-correlated with X (holds by
applying Lemma 42 on the mechanism M)).

23

PETER TSFADIA ULLMAN

Thus, we conclude that
Pr. {0,13m, x~D [(MT(YX) . PT)bdo g strongly-correlated with X]

= Pr,f0,1}m, x~D [(q|(r,X):(nX) - PT)b-d0 s strongly-correlated with X}

> E.013m, x~p[l — (1 = Brx)]
— 3.

The inequality holds by items 1 and 3 and theorem 25, and the last equality holds by item 2.

D.1. Proving Theorem 4 (Basic Tool)

Theorem 44 (Restatement of Theorem 4) If M: ({—1,1})" — [-1,1]% is an («, B)-weakly-accurate
(Definition 3) (1, %)-DP mechanism, then n > Q(v/ad/ log™5 (ad/ B)).

Proof We prove the theorem by applying Lemma 40 with ng = n and dy = d — 2¢ for ¢ = %(1 — oz)dw .
Let PAP = PAP,, 4, ¢ (Definition 41), D = D(n,dy) (Definition 33), and define V = Pg, W = [—1, 1]4,
G =PAP,Y(P,w) €V x W : F(P,w) = (w- PT)\% and for r € {0,1}™ (random coins for M) define
AM~F.G a5 in Definition 35 (note that F and G are deterministic). By definition, G(-, P) is neighboring-
preserving for every P € Py (Definition 28). In the following, let P <— P4 and for X € {—1,1}"*% define
Y x = PAP(X,P)(= G(X,P)). Compute

Pr. (0,137, x~D [AM’"’F’G(X) is strongly-correlated with X}

= Pr.(01}m, x~D {(MT(YX) - PT)bdo s strongly-correlated with X]
> Ex~p[Pr[M(Y x) strongly-agrees with Y x|]
> B.

The first inequality hold by Lemma 43. The last inequality holds since M is («, §)-weakly-accurate and for
every X € {—1,1}"*% and Y € Supp(Yx) it holds that | 7}+|, | Ty | > € > 1(1 — a)d.
Thus by Lemma 40, n > Q(y/dy/ log*5(dy/3)), and the proof follows since dy = O(ad). |

D.2. Proving Theorem 6 (Extended Tool)
We prove Theorem 6 using multiple PAP-FPC copies.
Theorem 45 (Restatement of Theorem 6) Letr o, 5 € (0,1], n,k,d € N such that n is a multiple of k.

IFM: ({=1,13)" — [—1,1]% is an (k, a, B)-weakly-accurate (Definition 5) (1, %)-DP mechanism, then
n > Q(kvad/log!®(kad/p)).

Proof We prove the theorem by applying Lemma 40 with ng = n/k and dg = d — 2¢ for £ = [1(1 — a)d].
Let V = [k] x (Po)k, W = [-1,1]¢, PAP = PAP,,, 4,4> and D = D(ng,dp). Consider the follow-
ing algorithm H: {—1,1}%> x Y — {—1,1}"*? that on inputs Y € {—1,1}"*? and v = (s, P =
(P1,...,Pg)) €V, act as follows:

1. Sample A = (4, ..., A;) ~ DF.

24

Y t=s
PAP(A;, P) t#s

Denote Yy = ({;_1y,0 415 -+ Ting) € {~1, 1}roxd,

2. Fort € [k] setY}:{

3. Output X’ = (z},..., o)) € {—1,1}"*4,

Define G: {—1,1}"xd% x Y — {—1,1}"*9 as the algorithm that on inputs X € {—1,1}"0*% and
v=(s,P)€Vforsec[kland P = (Pi,...,P,) € (Pg)*: Computes Y = PAP(X, P;), and outputs
X' ~ H(Y,v). Note that for every v € V, G(+, v) is neighboring-preserving (Definition 28).

Define F: V x [~1,1]? — [~1, 1]% as the algorithm that on inputs v = (s, P) € V and w € [—1, 1],
outputs (w - PI)1+_ Note that F is deterministic, and the random choice of G is A ~ D¥ (chosen when
executing H).

Our goal is to show that

Pr.(0,1}m, A~vDF, XD [AM“F’GA (X)) is strongly-correlated with X | > §/k. ®)

Given that eq. (8) holds and since M is (1,&)—DR we deduce by Lemma 40 that ng >

Q(v/do/ log'? (kdy/3)) and the proof follows since ng = n/k and dy = ©(ad).

We now focus on proving eq. (8). Consider the mechanism M’: {—1,1}7%0%¢ — [—1,1]¢ that on input
Y € {—1,1}"0%4 samples v = (s, P) < V, computes X’ = H(Y,v) and outputs w ~ M(X").

In the following, let P <— P}, be a random variable, and for X € {—1,1}"0*% define Yx = PAP(X,P).
Compute

Ex~p[Pr[M'(Yx) strongly-agrees with Y x| |
= Ex D, v=(s,P)-V, A~DF [Pr[M(Ga(X,v)) strongly-agrees with PAP (X, Ps)]]
= Ey—(s,p)v, a~p+ [PT[M(G A (4s, v)) strongly-agrees with PAP(A;, Ps)]]

= Ey—(s,P)V, Vic[k]: Yi=(¥},)~PAP(D,P,) [Pr[M(z},...,x},) strongly-agrees with Y] |

> B/k.

The first equality holds since by the definitions of M’ and G, for every X, the pair (M'(Y x), Y x) has the
same distribution as the pair (M(Gs a(X,v)), PAP(X, Ps))v:(& P)v, a~pk- The second equality holds
since G4(+, (s, P)) does not use the value of A which is drawn as X. The third equality holds by the
definition of G. The inequality holds since M is an (k, «, §)-weakly-accurate mechanism, and it gets
X' = («,...,2)) where each Y; = (x’(tfl)noﬂ, Sty Thp,) has ‘j&t}, ‘J;tl‘ >0 > %(1 — «)d. Thus w.p.
3, M is guaranteed to output w € [—1,1]% that strongly-agrees with one of the Y7, ..., Y}. But since they
are drawn independently from the same distribution, the probability to agree with Y for a random s < [k]
decreases by a factor k, and overall is at least 3/k.
We now apply Lemma 43 to get that

!
Tlt—1)ng+17

P g Dk, = (s, P) -V [(M; a-(Yx) - PT)l""’d0 is strongly-correlated with X} > B/k.
70,1}, XD ’
Since (M, 4 ,.(Y

x)-PT), {0,1}m, A~DF, vy has the same distribution as
(M'I’(GA(X7 V)) ’ Pz

)r<—{0 1ym, anph fOTV = (s,P = (Py,...,Py)) <V, we deduce that

Pryp, r{01}m, A~DE [(I\/I,,(GA(X7 v)) - PST)I"“’d0 is strongly-correlated with X] > B/k.

25

PETER TSFADIA ULLMAN

‘We thus conclude that

Pr._(0,1ym, A~Dk, x~D [AM“F’GA (X) is strongly-correlated with X
= Pr,013m 4~k x~p[F(V,M:(GA(X,V))) is strongly-correlated with X]
=Pr,(0,1ym, a~DF, x~D {(MT(GA(X, v)) - PI)b-do s strongly-correlated with X

> B/k.

Appendix E. Applications

1 0
Throughout this section, recall for z € R we define sign(z) := { . : 0 and foru = (u',...,u?) € R?
— z <

we define sign(u) := (sign(u'), ..., sign(u?)).

E.1. Averaging
In this section, we prove Theorem 9.
Definition 46 (()\, 3)-Estimator for Averaging, Redefinition of Definition 7) A mechanism M: RT x

(RH™ — R? is (A, B)-estimator for averaging if given v > 0 and X = (z1,...,2,) € R™? with
max; je ||z — 2;lly < 7, it holds that

1 n
Pr||IM(y, X) — ;in
i=1

SM] > B.
2

Theorem 47 (Our averaging lower bound, Restatement of Theorem 9) If M: Rt x (RY)” — R? is
a (A, p)-estimator for averaging for A > 1 and M(v,-) is (1 ﬁ)-DP for every v > 0, then n >

) 4n
Vd/A
Q<1og1-5([;§))'

The proof of the theorem immediately follows by Theorem 4 and the following Claim 48 (along with
post-processing of differential privacy).

Claim48 If M: Rt x (RY)" — R? is a (), B)-estimator for averaging, then the mechanism
M: ({=1,1}H" — {—~1,1}¢ defined by |\7|(X) = sign(l\/l(’y =V 2ad, X)) for a = ﬁ%l’ is (o, B)-
weakly-accurate (Definition 3).

Proof Fix X = (z1,...,2,) € {—1,1}"*¢ with | T}|, j§1| > 2(1—a)dandlet p = (p!,..., pud) =
LS~ g Since 4, ..., xn € {—1,1}% agree on at least (1 — «)d coordinates, their diameter is bounded
n Lai=1))) g

by v = v2ad. By the utility guarantee of M it holds that

Proomey,x)llla — ully < M) > 8.)

We prove the claim by showing that for any ¢ € R? with ||¢ — ||, < A it holds that sign(q) strongly-agrees
with X (Definition 2). Fix such ¢. Note that ’{j € [d]: sign(q’) # sign(,uj)}‘ <llq-— ,u||§ < A242. Since

26

p) = bforevery b € {—1,1} and j € J%, we deduce that ‘{j € J%: sign(¢’) # b}‘ < A242. Now note
that for both b € {—1,1}:

1
My? =2aM?d < 0.1- ;(1—a)d<0.1- ‘Jf’(

)

where the first inequality holds by our choice of «. Thus sign(q) strongly-agrees with X, as required. W

E.2. Clustering

In this section, we prove an extension of Theorem 16 to (k, z)-clustering where we focus on the Euclidean
metric space (R?, d(x,y) := ||x — y|,). We start by extending the notations from section 1.1.3.

Let By := {z € R?: ||z, < 1}. For a database S € (By)", k centers C = (cy,...,cx) € (By)* and a
parameter z > 1, let

COST,(C;S) := gféﬁ”x —¢ill; and OPTy.(S) == é%i%k COST.(C; S).

Definition 49 ((\, &, 5)-Approximation Algorithm for (%, z)-Clustering, Redefinition of Definition 13)
We say that M: (Bg)" — (Bg)* is an (), €, B)-approximation algorithm for (k, z)-clustering, if for every
S € (Bg)™ it holds that

PI‘CNM(S)[COSTZ(C; S) <X OPT]“Z(S) + f] >0

Theorem 50 (Our Lower Bound, Extension of Theorem 16) Letrn,d,k € N, \,z > 1 and £ > 0 such
that k > 2 and n > k + 2 - 40726, If M: (By)™ — (By)* is an (1, &)-DP (N, &, B)-approximation

z - (Z) z
algorithm for (k, z)-clustering, then either k > oUd/ N/)ﬁ/\Q/Z/d or £>0Q 2015? V}‘ZV)/
log™ 27z
B

The following claim captures the main technical part in proving Theorem 50.

Claim 51 Letn,d,k € N, \,z > 1 and £ > 1 such that n > m form = k - L(l +4OZ/2-2§/I<:)J. If
M: (Bg)"™ —L(Bd)k“‘l is an (X, &, B)-approximation algorithm for (k + 1, z)-clustering, then the following

mechanism M: ({—=1,1}9)™ — {1, 1} is (k, a = W, kiﬂ)-weakly-accurate (Definition 5).

An (k,O(1/)), B)-weakly-accurate variant M of the (k + 1)-means (), £, 3)-approximation algorithm
M:

1. Input: z1,..., 2, € {—1,1}4 form = | (1 +40%/2 - 2¢/k)| - k.

2. Operation:

_ 1 1 _
(a) Compute (c1,...,Ck+1) = M(\/ga;l, e gm0, ,0) (where 0 = (0,...,0)).
n—m times d times

(b) Sample j < [k + 1] and output sign(c;).

We first prove Theorem 50 using Claim 51.
Proof [Proof of Theorem 50] Let M: (B4)™ — (B4)" be the mechanism from Theorem 50. By Claim 51,
the mechanism M: ({—1,1})™ — {-1,1}¢is (k — 1,a = W, %)—Weakly—accurate. Furthermore,

27

PETER TSFADIA ULLMAN

by post-processing, M is also (1, %)—DR which in particular implies that it is (1, %)-DR Hence

we deduce by Theorem 6 that m > () CRVAPE) Since m > max{k,40?/2 . 2¢}, the above
log1‘5 (ﬁ:le/z>
. . . k d/)\2/ . . . Q(d/)\Q/z) 2/z
implies that either k > (which implies that & > 2 BN*/*/d), or that £ >
logt® (5521@/2)
—0(») z
E O r/d/ N2/ . |

1.5 dk
10g (ﬁ)\Q/z)

We now prove Claim 51.

Proof [Proof of Claim 51] Fix X = (x1,...,2,) € {—1,1}"*¢ such that for every ¢t € [k] and
every b € {—1,1} it holds that |J%,| > 3(1 — a)d for X; = (T(—1)m/k+1s--- Tamyk). and let

S = (Z1,...,%m,0,...,0) for z; = ﬁmi. We first argue that OPTy1(S) is small. For ¢ € [k] de-
N——
n—m times

fine ¢ = Zy,,, /1, and cj, | = 0 (which covers all the 0’s with zero cost). By assumption, for every ¢ € [k]
and ; € S with z; € X; it holds that

* ~ 1% * ~ z/2 1 */2 K4
lei = aills = (e - @l3) " = (d Nt —smHi) < (40)*2,

where the inequality holds since the number of indices that the vectors do not agree on is at most d — ‘j)1(t ‘ —
{*7)?tl‘ < ad. Hence, we deduce that

OPT41,.(S) < COST,(c}, ..., chigs S) < (4a)**m.
Now, since

. . z/2 _m
A OPTyp1(8) +€ < A (40)*m + — s

1 z/2

m
<40(2)\)2/Z> 2-407/2
< m/40’2/2,

the utility guarantee of M implies that
Pro—(or,...cns 1) M(S) [COSTZ(C; S) < m/4()2/2] > 8.

We prove the claim by showing that for every C' = (cy, . . ., cxy1) with COST,(C; S) < m/40%/2, there
exists s € [k + 1] and ¢ € [K] such that sign(cs) strongly-agrees with X;. This will conclude the proof since
the probability that the random j chosen in Step 2b of M will hit the right s is 1/(k + 1). Indeed if this
is not the case, then for any center ¢s and any non-zero point x; € S where x; € X; we have at least one

28

b€ {—1,1} such that |{j € J%, : sign(z]) # sign(c?;)}) >0.1-]7%,| > &(1 — @)d, which yields that

|Z; — Cs”z— (II1z; — 08"2)Z/2

22
<d . ‘{J € [d]: sign(x) - sign(cg)}D

A%

/2
\wezxa@<>¢%m@ﬂ)

(o)

Thus COST.(C; S) > (5(1 — oz))z/2 -m > m,/40%/2, a contradiction to the assumption COST,(C; S) <
m/40%/2. This concludes the proof of the claim.

vV
N
QN\PH

E.3. Top Singular Vector

In this section, we prove Theorem 18. We start by recalling the setting.

For a matrix X € R"*?, the singular value decomposition of X is defined by X = ULV, where
U € R™™and V' € R are unitary matrices. The matrix ¥ € R"*? is a diagonal matrix with non-negative
entries oy > ... > Umm{n >0 along the diagonal, called the singular values of X. It is well known that

|| X ||2F = Zle[n] el d](7)2 =", 02, The top (right) singular vector of X is defined by the first column of
V (callitv; € Sg) Wthh satisfy HX v1|ly = maxyes, || X - v,

In the problem we consider, 7 rows 1, ..., 7, € Sq := {v € R?: ||v||, = 1} are given as input, and the
goal is to estimate the top (right) singular vector of the n x d matrix X = (z)ien),jeld)-

Definition 52 ((\, 3)-Estimator of Top Singular Vector, Redefinition of Definition 17) We say that
M: [0,1] x (Sq)" — Sq is an (N, B)-estimator of top singular vector, if given an n X d matrix
X = (21,...,2n) € (Sq)™ and a number vy € [0,1] such that o02(X) < v - 01(X) as inputs, outputs a
column vector y € Sy such that

2 2
Pryomr [1X - 9l > X 03 = A-n] > 8,
where v is the top (right) singular vector of X.
We now restate and prove Theorem 18.

Theorem 53 (Our lower bound, restatement of Theorem 18) If M: [0,1] x (S7)" — Sg is a (X, 5)-
estimator of top singular vector for A > 1 and M(~,-) is (1, %) DP for every v € [0,1], then n =

The proof of Theorem 53 immediately follows by Theorem 44 and the following claim.

Claim 54 [fM: [0, 1] x (S4)" — Sq is an (A, B)-estimator for top singular vector for A\ > 1, then either
the mechanism M: {—1,1}"*? — {1 1} defined by M(X) := sign(l\/l(fy =/, %X)),for o=
or the mechanism M'(X) := —M(X), are («, 3/2)-weakly-accurate (Definition 3).

1
40002’

29

PETER TSFADIA ULLMAN

Proof Fix X = (z1,...,2,) € {—1,1}"*¢ with | 7%/,

¢'| > 31 —a)d andlet X = \}X € (Sa)™.
1
/Vd f €Ty, By definition it holds
~1/Vd ow.

~ 2 ~
that HXUH2 > (2|7t +2|T5"| - d) > (1 — 2a)n. This yields that oy (X)? > (1 — 2a)n. Since

Let u = (u1,...,uq) € Sq be a column vector with u; = {

. - p) - -
o1(X)* 4+ 02(X)? < HXHF = n, we deduce that 05(X)? /01 (X)? < 2% =12,
Therefore, by the utility guarantee of M, it holds that

~ 2 - 2
P [2 o o] 25

- 2 - 2
We prove the claim by showing that for any y = (y1,...,y4) € Sg with HX . yH2 > HX . UHQ —A-yn,

either sign(y) or —sign(y) strongly-agrees with X (Definition 2).
In the following, fix such y, and let s = Zjej}(Yj — Z]-EJ;I yj. We next prove that
- 2 _ 2)
1. HX . uH — HX . yH > (1 — 2% — 4a)n, and
2 2
2. If sign(y) and —sign(y) do not strongly-agree with X, then s? < (1 — 4)d.

The proof of the claim follows by items 1 and 2 since if sign(y) and —sign(y) do not strongly-agree with X,
then by our choice of « it holds that
2a
n
1 -2«

Y

ol ozl s (L a A
. _ . > = —
5l =] > (- 10) >

which is a contradiction to the assumption about v.
We first prove item 1. Let z = (21,...,2,) = X -yand let B = [d] \ (J% U Jx'). Note that for every
i€ n:

1 &
szilz\/g;azﬁ‘y‘ Zy] ooyt aly; S\‘f + Ve,

JGJX jegg! jeB

where the last inequality holds since } ;5 xf Yy < Hx?HQ Nyslly < /1B -1 < Ved.
Using the inequality (a + b)? < 242 + 2b? we deduce that ||z[|3 = Y7, 22 < (+ 2a)n Hence

=1~ —=

~ 2 242 242
HX'UHQ— I2]13 > (1 = 2a)n — <2+2a>n: <1 - % —4a>n.

We next prove item 2. Assume sign(y) and —sign(y) do not strongly-agree with X. Then there exists
b,/ € {—1,1} such that

Ejej)b([yj #b] > 0.1 (10)
and

E.

!
jTY

ly; =b'] > 0.1. (11)

We split into two cases:

30

Case 1: eqs. (10) and (11) holds for b = b/. In this case, we assume for simplicity that b = b’ = 1 (the
b =1V = —1 case holds by symmetry). Let 7+ = {j € Jx:y; > 0}and 7~ = {j € J+: y; < 0}. Since
sign(y;) #1 = y; <0andsign(y;) =1 = y; > 0, egs. (10) and (11) yields that

|7t <09|7%| and |T7| <0.9|T%| (12)

Now recall that s = } JLYj >je g Vi Therefore,

S< > yi— Y < >yl 13)

JjeTT JE€TR! JETTUTL!

ST SNSEE Hyﬁu@;l

<\/|TtuIy!|

Hijjgl)

where the third inequality holds since ||wl||; < \/m - |[|w]|, for every w € R™, and the fourth one holds since

lvsvusar], < Iwlle = 1.
By the right inequality in (12), a similar calculation to eq. (13) yields that

s2 Y i Y o wz— >, 2= /|T U (14)

jeI~ JETX! JET-UTX!
The proof in this case now follows by eqs. (13) and (14) since

1

|j+Uj);1 j+Uj);1|Sd_0-1|~7)1(‘§d_210(1_a)d5<1_>d7

)

40

where the first inequality holds by eq. (12).

Case 2: eqs. (10) and (11) holds for b # b'. In this case, we assume for simplicity that b = 1 and o' = —1
(the b = —1 and ¥’ = 1 case holds by symmetry). Let 7! = {j € J}:y; > 0}and J! = {j €
Jx': y; > 0}. Since sign(y;) #1 = y; < 0, egs. (10) and (11) yield that

|7 <09|7%| and |77 < 09|75 (15)
The left inequality in eq. (15) implies that
S yi— Y.< Y. lyl <7 uIx! (16)
jeT? jeTxt jeTUI!

where the last inequality holds similarly to eq. (13). Similarly, the right inequality in eq. (15) implies that

s> yi— > y=— >yl =—y/]giug. (17)

jegk jeg—1 Jtug—1

The proof now follows by eqgs. (16) and (17) since ’jl Uj)zw < d- 0.1’J)1(| < (1 — 4—10)d and
[Tx U T <d=01]T | < (1= g5)d.
[|

31

PETER TSFADIA ULLMAN

Appendix F. Fingerprinting Codes

An (n, d)-fingerprinting code, where [n] is the set of users and d is the code length, is a pair (Gen, Trace).
The first element Gen is a randomized algorithm that generates and outputs a codebook X € {—1,1}"*9,
where for every i € [n], the i*" row z; € {—1,1}? of X is the code of user i. The second element Trace is a
randomized algorithm that receives as an input a codebook X € {—1,1}"*¢ and a word ¢ € {—1,1}¢ that
was (possibly) generated by a malicious subset of users S C [n] (from their codes), and outputs a user i € [n]
or L.

The security requirements of fingerprinting codes says that (1) given every code x;, one can be verify that
user ¢ holds it (that is, it is known that user ¢ is the one to receive the code z;), and that (2) given a codebook
X and a word ¢ generated by a malicious subset of users S using their codes, the algorithm Trace returns a
user i € S with high probability (so, it returns a user ¢ ¢ S or L with low probability).

The basic assumption of fingerprinting code is that for every j € [d], the 5" element of ¢ must be equal
to the j* element of z; for some i € S. In particular, if the j** element of all the codes of S is equal to some
b € {—1,1}, then the 5" element of the word ¢ must also be b. We say that such j’s are b-marked in (X, S).

First, the set of all feasible words ¢ € {—1, 1} for a codebook X € {—1,1}"*? and a malicious subset
S C [n] is denoted as

F(X,S)={qe{-1,1}1|Vjed,FieS: ¢=acl}
Now, we are ready to formally define fingerprinting codes, similarly to Bun et al. (2014).
Definition 55 (Fingerprinting Codes) Foreveryn,d € Nand (5 € [0,1], a pair of algorithms (Gen, Trace)
is an (n,d)-fingerprinting code with security 3 if Gen outputs a codebook X € {—1,13"*% and for

every subset S C [n] and every (possibly randomized) adversary A: {—1,1}S*¢ — {11} such that
q ~ A(Xs), it holds that

» Pr[q € F(X,S) A Trace(X,q) =1] < j, and
 Pr[Trace(X,q) € [n] \ S] < 5,

where the probability is over the randomness of Gen, Trace and A. Moreover, the algorithm Gen can share
an additional output z € {—1,1}* with the algorithm Trace.

Application: A Simple Fingerprinting Code. The following algorithm Gen generates a fingerprinting
code of length d as in Lemma 34 for n users.

Algorithm Gen
1. Input: Number of users n € N and a confidence parameter 5 € [0, 1].
2. Operation:

(a) Letd > O(n?log?(n)log(1/f)) be the length of the code.
(b) Sample (z1, ..., 2y, 2) ~ D'(n,d) (Definition 33).

(c) Output X = (27);c[n],je[a) and share z = (2%, ..., 2%) with Trace.

The next tracing algorithm Trace receives a codebook of n codes of length d (namely, a fingerprinting
code as generated by the algorithm Gen), a word of length d, possibly generated by a subset of malicious
users using their codes, and a shared state of length d shared by the algorithm Gen. It outputs a user from the
malicious subset (if there is such user) or report that there is no such user, with high probability.

32

Algorithm Trace
1. Input: A codebook X € {—1,1}"*4 aword ¢ € {—1,1}%, and a shared state z € {—1, 1}<.

2. Operation:

0.2d

(a) Foreveryi € [n]: If (z;,q) — (2,q) > RG]

, output .

(b) Else (no such i € [n]), output L.
Next, we prove that the pair of algorithms (Gen, Trace) is a fingerprinting code.

Claim 56 Forn € N, 8 € [0,1], and d > ©(n?log?®(n)log(1/5)), the pair (Gen, Trace) is an (n,d)-
fingerprinting code with security 8 according to Definition 55.

Proof We start by denoting X € {—1,1}"*% as the output of Gen and z € {—1, 1}% as the state shared by Gen
with Trace. We want to show that for every subset S C [n] and every adversary A: {—1,1}SIxd 5 {1 1}4
such that q ~ A(Xg) is generated by A,

Pr[q € F(X,S) A Trace(X,q) =L] < and Pr[Trace(X,q) € [n]\ S] < 5.

To prove the first item, define the random variable q’ which is equal to q if g € F(X, S) and otherwise
takes a value in (X, S) (e.g., the first lexicographic vector there). Furthermore, consider an algorithm
A {—1,1}IS1%d 5 {1 1} that given X5, samples ¢ ~ A(Xs) and checks if ¢ € F(X,S) (i.e., perfectly
agrees with all the marked columns of Xs). If it does, it outputs q. Otherwise, it outputs the first vector
in F(X,S) (which again can be done only using Xs). Observe that by definition, A’ is strongly-accurate
(Definition 32) and also g’ has the same distribution as A’(Xs). Hence

Priq € F(X,S) A Trace(X, q) =]

=Pr[q e F(X,S) ATrace(X,q) =L|q=q'] - Pr[q=q'| +0-Pr[q # d']
=Pr [Trace(X, qd)=1|q= q’] - Pr [q = q/]

< Pr[Trace(X,q') =1] = Pr[Trace(X,A'(Xs)) =L] < B,

where the last inequality holds by Lemma 34.

To prove the second item, fix i € [n] \ S. Let p!,..., p? be the expectations that were sampled in
the process of sampling X, z (Definition 33), and in the following assume they were fixed to some values
(p,... ,pd). Recall that q is a function of X s. Therefore, q is independent of x;. The same calculation done
in eq. (6) yields that

0.2d 3

Pr|(x;, q) — T < 2
r|(x;,q) <z,q>>nln(5n) =< Som

The proof of the second item is now concluded by the union bound over j € [n] \ S.
|

Remark 57 In a robust fingerprinting code, we use a relaxed assumption for the set F'(X,S), as in Bun
et al. (2014), and only require that the j** element of q is equal to the j** element of x; for some i € S with
high probability. It is possible to prove that (Gen, Trace) is also a robust fingerprinting code. We can easily
achieve robustness if we require the same fraction of mistakes in both b-marked sets [J-)b(S, but robustness can
be achieved anyway since the number of 1-marked columns and the number of (—1)-marked columns are
almost the same, and there are many such columns (a simple calculation yields that Q)(1/logn) fraction of
the columns are marked).

33

	Introduction
	Our Results
	Main Hardness Results
	Application: Averaging and 1-Cluster
	Application: Clustering
	Application: Top Singular Vector

	Related Work
	Paper Organization

	Our Technique
	Proof via an Optimal Fingerprinting Code
	Proof via a Strong Fingerprinting Lemma
	More General Framework
	Comparison with NarayananME22

	Strong Fingerprinting Lemma
	Preliminaries
	Notations
	Distributions and Random Variables
	Algorithms
	Differential Privacy
	Known Facts

	Robust Fingerprinting Lemma
	Increasing the Dimension

	Framework for Lower Bounds
	Padding And Permuting (PAP) FPC
	Proving Theorem 4 (Basic Tool)
	Proving Theorem 6 (Extended Tool)

	Applications
	Averaging
	Clustering
	Top Singular Vector

	Fingerprinting Codes

