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Abstract
Given a sample of i.i.d. high-dimensional centered random vectors, we consider a problem of
estimation of their covariance matrix Σ with an additional assumption that Σ can be represented
as a sum of a few Kronecker products of smaller matrices. Under mild conditions, we derive the
first non-asymptotic dimension-free high-probability bound on the Frobenius distance between Σ
and a widely used penalized permuted least squares estimate. Because of the hidden structure, the
established rate of convergence is faster than in the standard covariance estimation problem.
Keywords: Kronecker rank, effective rank, rearrangement operator, penalized permuted least
squares estimate.

1. Introduction

Let X,X1, . . . ,Xn P Rd be i.i.d. centered random vectors. We are interested in estimation of the
covariance matrix Σ “ EXXJ from observations X1, . . . ,Xn. This classical problem is of a great
significance and it arises in various domains such as wireless communications (Werner and Jansson,
2007), economics and finance (Bai and Shi, 2011), biology and medicine (for example, functional
MRI (Derado et al., 2010), genomics (Xie and Bentler, 2003), MEG/EEG (De Munck et al., 2004)).
A standard approach to this problem is to consider the sample covariance

pΣ “
1

n

n
ÿ

i“1

XiX
J
i .

Unfortunately, if the number of available samples n is much less than the ambient dimension d
(which is often the case in practical scenarios), the estimate pΣ suffers from the curse of dimension-
ality. To overcome this issue, researchers have explored leveraging structural properties of covari-
ance matrices to reduce their total number of degrees of freedom. This includes assumptions on the
covariance matrix like sparsity (Banerjee et al., 2008; Ravikumar et al., 2011), low-rank (Fan et al.,
2008), Toeplitz (Fuhrmann, 1991) and bandable model (Bickel and Levina, 2008a,b). A reader is
referred to the survey (Cai et al., 2016) for further examples. In situations when data can be rep-
resented as tensors, a popular modelling assumption is based on expansion of Σ into a Kronecker
product of two smaller matrices (Wang et al., 2022):

Σ “ Φ b Ψ, where Φ P Rpˆp, Ψ P Rqˆq, and pq “ d. (1)

Each of the matrices Φ,Ψ corresponds to a certain index (mode) of the multivariate array and can
be interpreted as a mode-wise covariance. For instance, when researchers deal with spatio-temporal
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data, they use Kronecker product to separate spatial and temporal dimensions. Despite its simplicity,
the Kronecker product model (1) appears to be useful in various applications (Werner and Jansson,
2007; Werner et al., 2008; Allen and Tibshirani, 2010; Guggenberger et al., 2023). In the present
paper, we are concerned with a more expressive model that approximates the covariance matrix as
a sum of Kronecker products:

Σ “ Φ1 b Ψ1 ` ¨ ¨ ¨ ` ΦK b ΨK , (2)

where Φ1,Ψ1, . . . ,ΦK ,ΨK are symmetric positive semidefinite matrices, such that Φj P Rpˆp,
Ψj P Rqˆq for all j P t1, . . . ,Ku and pq “ d. In this case, one says that Σ has a Kronecker rank
equal to K. By summing multiple Kronecker products, the model can capture complex interactions
and dependencies that may not be adequately represented by a single Kronecker product. We would
like to note that any symmetric matrix of size ppq ˆ pqq admits an expansion of the form (2) with
K “ mintp2, q2u. However, even with a small number of Kronecker product terms, the model
(2) has shown promising results in applications such as clutter covariance estimation for airborne
STAP (Sun et al., 2018), MEG/EEG (De Munck et al., 2002, 2004; Bijma et al., 2005), video
modelling (Greenewald et al., 2013), and SAR data analysis (Rucci et al., 2010). Notably, accurate
approximations with a small number of Kronecker product terms have been demonstrated for the
Matérn family of covariances (Litvinenko et al., 2019).

The rates of convergence in the covariance estimation problem with Σ of the form (1) or (2)
were studied in numerous papers (see, for example, Werner et al. (2008); Tsiligkaridis and Hero
(2013); Zhou (2014); Leng and Pan (2018); Masak et al. (2022)). However, the existing state-of-
the-art results are either dimension-dependent or based on unsuitable for high-dimensional setting
assumptions. At the same time, the recent advances in covariance estimation (Bunea and Xiao,
2015; Puchkin et al., 2023; Zhivotovskiy, 2024) allow to establish non-asymptotic high-probability
bounds on the Frobenius and operator norm of ppΣ ´ Σq in terms of the effective rank rpΣq “

TrpΣq{}Σ} under mild assumptions, completely eliminating dependence on the ambient dimension
d. For example, (Bunea and Xiao, 2015, Proposition A.3) prove that, for any δ P p0, 1q, with
probability at least 1 ´ δ, we have

›

›

›

pΣ ´ Σ
›

›

›

F
À TrpΣq

˜

c

logp2{δq

n
_

logp2{δq

n

¸

. (3)

Here and further in the paper, the sign À stands for an inequality up to an absolute multiplicative
constant. This brings us to a question, whether it is possible to obtain sharper dimension-free
bounds when Σ admits a Kronecker product expansion (2). The following motivating example
gives a positive answer in the simple case K “ 1.

Example 1.1 Let Σ have a Kronecker rank one, that is, it admits a representation (1) for some
positive semidefinite matrices Φ P Rpˆp and Ψ P Rqˆq. Let X1, . . . ,Xn P Rqˆp be the matrices
obtained by reshaping1 of the vectors X1, . . . ,Xn, respectively. Consider the estimates

pΦ “
1

n

n
ÿ

i“1

XJ
i Xi and pΨ “

1

n

n
ÿ

i“1

XiXJ
i .

1. More precisely, it holds that vecpXiq “ Xi for all i P t1, . . . , nu, where vec is the vectorization operator, stacking
the matrix columns together (see the definition in Appendix A).

2



DIMENSION-FREE STRUCTURED COVARIANCE ESTIMATION

As shown by Leng and Pan (2018), pΦ and pΨ are unbiased estimates of TrpΨqΦ and TrpΦqΨ,
respectively. If, for any vectors u P Rp, v P Rq and any i P t1, . . . , nu, it holds that

1

TrpΨq

›

›uJXJ
i Xiu

›

›

ψ1
À uJΦu and

1

TrpΦq

›

›vJXiXJ
i v

›

›

ψ1
À vJΨv,

where } ¨ }ψ1 denotes the Orlicz norm (see the notation section below), then, similarly to the proof
of Proposition A.3 from (Bunea and Xiao, 2015), we can show that

›

›

›

pΦ{TrpΨq ´ Φ
›

›

›

F
À TrpΦq

˜

c

logp2{δq

n
_

logp2{δq

n

¸

and
›

›

›

pΨ{TrpΦq ´ Ψ
›

›

›

F
À TrpΨq

˜

c

logp2{δq

n
_

logp2{δq

n

¸

simultaneously on an event with probability at least 1´ δ. The trace product TrpΦqTrpΨq “ TrpΣq

can be easily estimated by p}X1}2 ` ¨ ¨ ¨ ` }Xn}2q{n. Then the estimate

Σ̆ “
pΦ b pΨ

1
n

n
ř

i“1
}Xi}

2

, (4)

suggested by Leng and Pan (2018), satisfies the following high probability bound:

›

›

›
Σ̆ ´ Σ

›

›

›

F
À p}Ψ}TrpΦq ` }Φ}TrpΨqq

˜

c

logp2{δq

n
_

logp2{δq

n

¸

“ }Σ} prpΦq ` rpΨqq

˜

c

logp2{δq

n
_

logp2{δq

n

¸

,

where rpΦq “ TrpΦq{}Φ} and rpΨq “ TrpΨq{}Ψ}, while (3) implies that

›

›

›

pΣ ´ Σ
›

›

›

F
À TrpΣq

˜

c

logp2{δq

n
_

logp2{δq

n

¸

“ }Σ}rpΦqrpΨq

˜

c

logp2{δq

n
_

logp2{δq

n

¸

.

Hence, the Kronecker structural assumption helped us to significantly improve the upper bound (3)
by replacing the product of effective ranks with their sum.

Unfortunately, the estimate Σ̆ from Example 1.1 significantly exploits the product structure (1)
of Σ, which allows to estimate Φ and Ψ separately. This approach has no direct extension on the
case of larger Kronecker rank. For this reason, the case, when Σ has a form (2) withK ą 1, requires
much more efforts.
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Contribution. Our main contribution is a sharper upper bound on the performance of a regu-
larized permuted least squares estimate rΣ (defined in (6)), which is widely used for covariance
estimation in the presence of a Kronecker product structure. Under reasonable assumptions on the
distribution of X,X1, . . . ,Xn, we show that, if Σ has a form (2), then

›

›

›

rΣ ´ Σ
›

›

›

2

F
À K

˜

K
ÿ

j“1

}Φj}}Ψj}

¸2

¨

ˆ

1

n
max

1ďjďK
rpΦjq

2 `
1

n
max

1ďjďK
rpΨjq

2 `
logp1{δq

n

˙

with probability at least p1 ´ δq. To our knowledge, this is the first dimension-free upper bound,
capturing the Kronecker structure of the population covariance.

Notation. Throughout the paper, pΣ stands for the sample covariance. The identity matrix of size
pd ˆ dq and the zero matrix are denoted by Id and O, respectively. For any matrix A, }A}, }A}˚,
and }A}F stand for the operator, nuclear, and Frobenius norms of A, respectively. Given arbitrary
matrices A P Rpˆq and B P Rrˆs, AbB denotes their Kronecker product:

AbB “

¨

˚

˝

a11B . . . a1qB
...

. . .
...

ap1B . . . apqB

˛

‹

‚

P Rprˆqs.

For any matrix U P Rkˆℓ with columns u1, . . . ,uℓ, vecpUq “ puJ
1 , . . . ,u

J
ℓ qJ is a vector obtained

by stacking the columns of U together. We also use the standard notation rpMq “ TrpMq{}M}

for the effective rank of a symmetric positive semidefinite matrix M . Instead of minta, bu and
maxta, bu, sometimes we will use a ^ b and a _ b, respectively. The notation f À g is equivalent
to f “ Opgq. Finally, of any random variable ξ and any s ě 1, the Orlicz norm }ξ}ψs is defined as

}ξ}ψs “ inf
!

t ą 0 : Ee|ξ|s{ts ď 2
)

.

The boldface font is reserved for vectors, while matrices and scalars are displayed in a regular font.

Paper structure. The rest of the paper is organized as follows. In Section 2, we present our
main result, Theorem 2.5, discuss its novelty and compare with related work. Sections 3 and 4 are
devoted to the proof of Theorem 2.5 and its main ingredient, Lemma 3.2. We also provide some
useful information about Kronecker product and the vectorization operator vec in Appendix A. The
proofs of some technical results are also deferred to Appendix.

2. Main results

This section contains the main result of this paper, but first, we have to introduce auxiliary defini-
tions. One of the central objects when dealing with a covariance Σ of the form (2) is the rearrange-
ment operator R, defined below.

Definition 2.1 (rearrangement operator) LetM be a matrix of size pqˆpq with a block structure

M “

¨

˚

˝

Mp1, 1q . . . Mp1, pq
...

. . .
...

Mpp, 1q . . . Mpp, pq

˛

‹

‚

, where Mpi, jq P Rqˆq for all i, j P t1, . . . , pu.
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The rearrangement operator R : Rpqˆpq Ñ Rp2ˆq2 is defined by the following identity: the ppj ´

1qp` iq-th row of RpMq is vecpMpi, jqqJ.

The importance of the rearrangement operator becomes clear from the properties formulated in the
next proposition.

Proposition 2.2 The following holds.

• R is a linear operator.

• R defines an isometry between the Euclidean spaces pRpqˆpq, } ¨ }Fq and pRp2ˆq2 , } ¨ }Fq. As
a consequence, there exists an inverse map R´1.

• If M “ AbB, where A P Rpˆp and B P Rqˆq, then RpMq “ vecpAqvecpBqJ.

The first and the second properties follow immediately from the definition of R. The third one is
well-known in the literature (see, for instance, the proof of Theorem 1 in (Van Loan and Pitsianis,
1993)). The rearrangement operator reduces our problem to low-rank matrix estimation. Indeed, if
the covariance matrix Σ can be represented a sum of Kronecker products (2), then, due to Proposi-
tion 2.2,

RpΣq “

K
ÿ

j“1

RpΦj b Ψjq “

K
ÿ

j“1

vecpΦjqvecpΨjq
J.

In other words, if Σ has a Kronecker rank K, then RpΣq has the same algebraic rank. This obser-
vation allows us to construct estimates based on the singular value decomposition of RppΣq, as in
(Tsiligkaridis and Hero, 2013; Masak et al., 2022). For instance, Masak et al. (2022) considered an
estimate based on K principal components of RppΣq:

qΣ “ R´1p qRq, where qR “

K
ÿ

j“1

pσjpujpv
J
j , (5)

where the values pσ1 ě . . . ě pσK and the vectors pu1, pv1, . . . , puK , pvK are defined from the singular
value decomposition

RppΣq “

p2^q2
ÿ

j“1

pσjpujpv
J
j .

Let us note that the estimate (5) solves the optimization problem

qR P argmin
RPRp2ˆq2

›

›

›
R ´ RppΣq

›

›

›

2

F
` λ rankpRq, where pσ2K`1 ď λ ď pσ2K .

In the present paper, we study the permuted least squares estimate suggested in (Tsiligkaridis and
Hero, 2013), where the authors replaced rankpRq by nuclear norm penalization:

rΣ “ R´1p rRq, where rR P argmin
RPRp2ˆq2

"

›

›

›
R ´ RppΣq

›

›

›

2

F
` λ}R}˚

*

. (6)
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Similarly to qR, the estimate rR admits an explicit representation given by soft thresholding:

rR “

p2^q2
ÿ

j“1

`

pσj ´ λ{2
˘

`
pujpv

J
j .

Our goal is to establish a dimension-free upper bound on the Frobenuis norm of prΣ ´ Σq. Usually,
results of such kind require some additional properties of the distribution of X,X1, . . . ,Xn. We
impose the following assumption.

Assumption 2.3 There exists ω ą 0, such that the standardized random vector Σ´1{2X satisfies
the inequality

logE exp
!

pΣ´1{2XqJV pΣ´1{2Xq ´ TrpV q

)

ď ω2}V }2F (7)

for all V P Rdˆd, such that }V }F ď 1{ω.

An equivalent condition appeared in the paper (Puchkin et al., 2023), where the authors assumed
that

›

›

›
pΣ´1{2XqJV pΣ´1{2Xq ´ TrpV q

›

›

›

ψ1

À }V }F for all V P Rdˆd. (8)

The fact that (8) yields (7) follows from, for instance, (Zhivotovskiy, 2024, Lemma 2). In (Puchkin
et al., 2023), the authors argued that Assumption 2.3 holds for a large class of distributions. In
particular, they discussed that it is fulfilled for all random vectors, satisfying the Hanson-Wright
inequality. The examples include the Gaussian distribution N p0,Σq and, more generally, all dis-
tributions, such that Σ´1{2X has independent components with finite ψ2-norms. Besides, random
vectors satisfying log-Sobolev inequality or having the convex concentration property (Adamczak,
2015) also meet Assumption 2.3. Since a covariance matrix with a Kronecker product structure (2)
often appears in the context of matrix models, we would like to give relevant examples from this
field. For instance, if we have a matrix model

X “ BYAJ,

where B P Rqˆq, A P Rpˆp, and Y P Rqˆp is a random matrix with i.i.d. standard Gaussian
entries, then vecpXq „ N

`

0, pAAJq b pBBJq
˘

and, consequently, it fulfils Assumption 2.3. In
the proposition below, we provide another, more general example when the assumption is satisfied.

Proposition 2.4 Let

X “

K
ÿ

j“1

BjYjAJ
j , (9)

where Y1, . . . ,YK P Rqˆp are independent centered random matrices. Assume that there exist
positive numbers ω1, . . . , ωK , such that for any j P t1, . . . ,Ku

logE exp
␣

vecpYjqJV vecpYjq ´ TrpV q
(

ď ω2
j }V }2F (10)

for all V P Rd2ˆd2 , satisfying the inequality }V }F ď 1{ωj . Then vecpXq fulfils Assumption 2.3
with

Σ “

K
ÿ

j“1

pAjA
J
j q b pBjB

J
j q and ω ď

ˆ

2ωmax _ 16

c

2 ` 2ωmax

log 2

˙

,

where ωmax “ max
1ďjďK

ωj .
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The proof of Proposition 2.4 is quite technical. For this reason, we postpone it to Appendix B and
move to the main result.

Theorem 2.5 Assume that the centered random vector X meets Assumption (2.3) and that its
covariance Σ has a form (2). Let us fix any δ P p0, 1q, satisfying the constraint

1

2n

ˆ

max
1ďjďK

rpΦjq
2 ` max

1ďjďK
rpΨjq

2

˙

`
logp4{δq

n
ď 1,

and take any λ P R, such that

λ ě 2ω

˜

K
ÿ

j“1

}Φj}}Ψj}

¸

d

13

2n

ˆ

max
1ďjďK

rpΦjq2 ` max
1ďjďK

rpΨjq
2

˙

`
13 logp4{δq

n
.

Then, with probability at least p1´ δq, the permuted nuclear-norm penalized least squares estimate
rΣ, defined in (6), fulfils the inequality

›

›

›

rΣ ´ Σ
›

›

›

2

F
ă

3λ2K

2
.

Remark 2.6 Theorem 2.5 requires a proper choice of λ ą 0. To tune the parameter, we can fix a
finite family Λ “ tλ0 ¨ 2´m : 0 ď m ď Mu, where λ0 ą 0 and M P N are some constants, and
perform model selection, using cross-validation or the random split procedure described in (Bickel
and Levina, 2008b, Section 3). If the chosen λ meets the inequality

λ ď Cω

˜

K
ÿ

j“1

}Φj}}Ψj}

¸

d

13

2n

ˆ

max
1ďjďK

rpΦjq2 ` max
1ďjďK

rpΨjq
2

˙

`
13 logp4{δq

n

with an absolute constant C ą 2, then, under the conditions of Theorem 2.5, it holds that

›

›

›

rΣ ´ Σ
›

›

›

2

F
À ω2K

˜

K
ÿ

j“1

}Φj}}Ψj}

¸2
ˆ

1

n
max

1ďjďK
rpΦjq

2 `
1

n
max

1ďjďK
rpΨjq

2 `
logp1{δq

n

˙

with probability at least p1 ´ δq.

To our knowledge, Theorem 2.5 provides the first dimension-free high-probability upper bound
on the accuracy of covariance estimation with a Kronecker product structure. The most relevant
papers to ours are (Masak et al., 2022) and (Tsiligkaridis and Hero, 2013), where the authors con-
sidered the estimates qΣ and rΣ (see (5), (6)), based on the hard and soft thresholding, respectively.
In (Masak et al., 2022), the authors assumed only the existence of the fourth moment of }X} and
proper decay of the singular values of RpΣq. Under these mild conditions, they proved the con-
sistency of qΣ. Unfortunately, the established rate of convergence includes the Frobenius norm of
ppΣ ´ Σq, which is of order rpΣq{

?
n in the worst-case scenario and, in contrast to Theorem 2.5,

shows no improvements compared to the unstructured case. In (Tsiligkaridis and Hero, 2013), the
authors derived a non-asymptotic bound on the performance of the permuted least-squares estimate
rΣ. Assuming the observations X1, . . . ,Xn to have a Gaussian distribution N p0,Σq, they showed
that

›

›

›

rΣ ´ Σ
›

›

›

2

F
À
Kpp2 ` q2 ` logMq

n
_
Kpp2 ` q2 ` logMq2

n2

7
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with probability at least 1 ´ M´c, where c ą 0 is an absolute constant. In our paper, we derive
a sharper dimension-free bound for a broader class of distributions, which remains valid in the
extremely high-dimensional setup.

Let us elaborate on implications of Theorem 2.5 in the simpler case K “ 1, which also got a
considerable attention in the literature. In (Werner et al., 2008), the authors focused on the Gaussian
case and showed the consistency of the maximum likelihood estimate and of non-iterative flip-
flop algorithm. Later, Zhou (2014) suggested the Gemini method and obtained high-probability
dimension-dependent bounds on the accuracy of covariance estimation, improving over the results
of Werner, Jansson, and Stoica (2008). The Gemini estimator also exploits the fact that X1, . . . ,Xn

have the Gaussian distribution. In contrast, Leng and Pan (2018) considered a much broader class
of distributions with finite 48-th moment. Under some technical assumptions, they derived a high-
probability upper bound on the accuracy of covariance estimation in terms of both operator and
Frobenius norms. Unfortunately, the analysis of Zhou (2014) and Leng and Pan (2018) imposes
a severe restriction that the lowest eigenvalues of Φ and Ψ from the decomposition (1) should be
bounded away from zero. This makes their theoretical guarantees vacuous in the high-dimensional
setting. On the other hand, if the Kronecker rank of Σ is equal to one, then Theorem 2.5 yields that

›

›

›

rΣ ´ Σ
›

›

›

2

F
À ω2}Σ}2 ¨

rpΦq2 ` rpΨq2 ` logp1{δq

n

with probability at least p1 ´ δq. Note that this bound has a slightly better dependence on logp1{δq,
than the rate of convergence from Example 1.1.

3. Proof of Theorem 2.5

The first step in the proof of the rate of convergence of the permuted least squares estimate rΣ is
identical to the one of Tsiligkaridis and Hero (2013). With a proper choice of λ, we have the
following oracle inequality.

Theorem 3.1 (Tsiligkaridis and Hero (2013), Theorem 2) If λ ě 2}RppΣ ´ Σq}, then

›

›

›

rR ´ RpΣq

›

›

›

2

F
ď inf

R

"

}R ´ RpΣq}
2
F `

p1 `
?
2q2

4
λ2rankpRq

*

. (11)

Obviously, since Σ admits a representation (2), the rank of the matrix

RpΣq “ R

˜

K
ÿ

j“1

Φj b Ψj

¸

“

K
ÿ

j“1

R pΦj b Ψjq “

K
ÿ

j“1

vecpΦjqvecpΨjq
J (12)

is equal to K. In view of (12), the oracle inequality (11) can be rewritten in the form

›

›

›

rR ´ RpΣq

›

›

›

2

F
ď

p1 `
?
2q2λ2K

4
, provided that λ ě 2}RppΣ ´ Σq}.

Our main technical result, leading to superior guarantees on the performance of rΣ is the following
dimension-free bound on the operator norm of RppΣ ´ Σq.

8
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Lemma 3.2 Let Assumption 2.3 hold and let us fix any δ P p0, 1q, satisfying the inequality

1

2n

ˆ

max
1ďjďK

rpΦjq
2 ` max

1ďjďK
rpΨjq

2

˙

`
logp4{δq

n
ď 1. (13)

Then, with probability at least p1 ´ δq, it holds that

›

›

›
RppΣ ´ Σq

›

›

›
ď ω

˜

K
ÿ

j“1

}Φj}}Ψj}

¸

d

13

2n

ˆ

max
1ďjďK

rpΦjq2 ` max
1ďjďK

rpΨjq
2

˙

`
13 logp4{δq

n
.

We present the proof of Lemma 3.2 in Section 4 below. With Lemma 3.2, we easily finish the proof
of Theorem 2.5. Let λ be any number, satisfying the inequality

λ ě 2ω

˜

K
ÿ

j“1

}Φj}}Ψj}

¸

d

13

2n

ˆ

max
1ďjďK

rpΦjq2 ` max
1ďjďK

rpΨjq
2

˙

`
13 logp4{δq

n
.

Then, according to Lemma 3.2, λ ě 2}RppΣ´Σq} on an event of probability at least p1´δq. Hence,
on this event, it holds that

›

›

›

rΣ ´ Σ
›

›

›

2

F
“

›

›

›

rR ´ RpΣq

›

›

›

2

F
ď

p1 `
?
2q2λ2K

4
“

p3 ` 2
?
2qλ2K

4
ă

3λ2K

2
.

4. Proof of Lemma 3.2

The present section is devoted to the proof of our main technical result. For convenience, we split it
into several steps, deferring auxiliary derivations to Appendix.

Step 1: reduction to an empirical process. We start with representing the operator norm of
RppΣ ´ Σq in an appropriate form.

Lemma 4.1 Let X,X1, . . . ,Xn be random matrices of size pq ˆ pq, such that vecpXq “ X and
vecpXiq “ Xi for all i P t1, . . . , nu. Then it holds that

›

›

›
RppΣ ´ Σq

›

›

›
“ sup

UPRpˆp,V PRqˆq

}U}F“}V }F“1

#

1

n

n
ÿ

i“1

Tr
`

XJ
i V

JXiU
˘

´ ETr
`

XJV JXU
˘

+

. (14)

The proof of Lemma 4.1 is postponed to Appendix C. Now we are in position to use powerful
tools from the empirical process theory to derive a dimension-free bound on the supremum in the
right-hand side of (14). The main ingredient of our proof is the following PAC-Bayesian variational
inequality (see, for instance, (Catoni and Giulini, 2017, Proposition 2.1)).

Lemma 4.2 Let X,X1, . . . ,Xn be i.i.d. random elements on a measurable space X . Let Θ be a
parameter space equipped with a measure µ (which is also referred to as prior). Let f : XˆΘ Ñ R.
Then, with probability at least 1 ´ δ, it holds that

Eθ„ρ
1

n

n
ÿ

i“1

fpXi,θq ď Eθ„ρ logEXe
fpX,θq `

KLpρ, µq ` logp1{δq

n

simultaneously for all ρ ! µ.

9
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Recently, Zhivotovskiy (2024) used a similar approach to prove that the operator norm of ppΣ´Σq is
of order Op

a

rpΣq{nq with high probability. Unfortunately, the rate of convergence Op
a

rpΣq{nq

is suboptimal in our case, because of the additional structure of the population covariance. In the
rest of the proof, we deduce a sharper high-probability upper bound

}RppΣ ´ Σq} À

d

1

n

ˆ

max
1ďjďK

rpΦjq2 ` max
1ďjďK

rpΨjq
2

˙

,

leading to better guarantees on the accuracy of estimation of Σ.

Step 2: a variational inequality. On this step, we specify the prior and posterior distributions in
order to apply Lemma 4.2 to our problem. In our case, both µ and ρ will be absolutely continuous
with respect to the Lebesgue measure, so we identify them with the corresponding densities. Let µ
be the density of a Gaussian measure on Rpˆp ˆ Rqˆq:

µpX,Y q “
αp

2{2βq
2{2

p2πqp
2{2`q2{2

exp

"

´
α

2
}X}2F ´

β

2
}Y }2F

*

, where X P Rpˆp, Y P Rqˆq, (15)

and
α “ max

1ďjďK
rpΦjq

2, β “ max
1ďjďK

rpΨjq
2. (16)

For any U P Rpˆp and V P Rqˆq, define a set

ΥpU, V q “

#

pX,Y q P Rpˆp ˆ Rqˆq :
›

›

›
Σ1{2

`

pX ´ Uq b pY ´ V q
˘

Σ1{2
›

›

›

2

F
ď

4TrpΣq2

αβ
,

›

›

›

›

›

›

˜

K
ÿ

j“1

}Ψj}Φj

¸1{2

pX ´ Uq

˜

K
ÿ

j“1

}Ψj}Φj

¸1{2
›

›

›

›

›

›

2

F

ď
4

α

˜

K
ÿ

j“1

}Ψj}TrpΦjq

¸2

,

(17)
›

›

›

›

›

›

˜

K
ÿ

j“1

}Φj}Ψj

¸1{2

pY ´ V q

˜

K
ÿ

j“1

}Φj}Ψj

¸1{2
›

›

›

›

›

›

2

F

ď
4

β

˜

K
ÿ

j“1

}Φj}TrpΨjq

¸2+

and a corresponding posterior density ρU,V , supported on ΥpU, V q:

ρU,V pX,Y q “

#

µpX ´ U, Y ´ V q{Z, if pX,Y q P ΥpU, V q,

0, otherwise,
(18)

where Z is a normalizing constant. It is not hard to show that Z is at least 1{4.

Lemma 4.3 With the notations introduced above, it holds that Z ě 1{4.

The proof of Lemma 4.3 is deferred to Appendix D. Let ν ą 0 be a positive constant to be defined
later. Considering a pair pU, V q P Rpˆp ˆ Rqˆq as an element of the parameter space

Θ “
␣

pU, V q P Rpˆp ˆ Rqˆq
(

,

10
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we conclude that, according to Lemma 4.2,

sup
UPRpˆp,V PRqˆq

}U}F“}V }F“1

#

ν

n

n
ÿ

i“1

Tr
`

XJ
i V

JXiU
˘

´ νEXTr
`

XJV JXU
˘

+

“ sup
UPRpˆp,V PRqˆq

}U}F“}V }F“1

#

ν

n

n
ÿ

i“1

EpP,Qq„ρU,V
Tr

`

XJ
i Q

JXiP
˘

´ νEpP,Qq„ρU,V
EXTr

`

XJQJXP
˘

+

(19)

ď sup
UPRpˆp,V PRqˆq

}U}F“}V }F“1

#

EpP,Qq„ρU,V
log

“

EX exp
␣

νTr
`

XJQJXP
˘

´ νEXTr
`

XJQJXP
˘(‰

`
KLpρU,V , µq ` logp1{δq

n

+

.

with probability at least p1 ´ δq.

Step 3: a bound on the exponential moment. Our next goal is to bound the exponential moment

EX exp
␣

νTr
`

XJQJXP
˘

´ νEXTr
`

XJQJXP
˘(

.

We begin with the following auxiliary result.

Lemma 4.4 Let us fix any U P Rpˆp and V P Rqˆq, such that }U}F “ }V }F “ 1. Then

›

›

›
Σ1{2pP bQqΣ1{2

›

›

›

2

F
ď 13

˜

K
ÿ

j“1

}Φj}}Ψj}

¸2

ρU,V -almost surely.

The proof of Lemma 4.4 is moved to Appendix E. Applying this lemma and using the fact that
X “ vecpXq satisfies Assumption 2.3, we obtain that

logEX exp
␣

νTr
`

XJQJXP
˘

´ νEXTr
`

XJQJXP
˘(

“ logEX exp
␣

νvecpXqJpP bQqvecpXq ´ νEXvecpXqJpP bQqvecpXq
(

“ logEX exp
␣

νXJpP bQqX ´ νEXXJpP bQqX
(

(20)

ď ω2ν2
›

›

›
Σ1{2pP bQqΣ1{2

›

›

›

2

F

ď 13ω2ν2

˜

K
ÿ

j“1

}Φj}}Ψj}

¸2

for all ν, such that

13ω2ν2

˜

K
ÿ

j“1

}Φj}}Ψj}

¸2

ď 1, (21)

and for all U P Rpˆp, V P Rqˆq with unit Frobenius norms.

11
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Step 4: a bound on the Kullback-Leibler divergence. We proceed with an upper bound on
KLpρU,V , µq, where the densities µ and ρU,V are defined in (15) and (18), respectively. It holds that

KLpρU,V , µq “

ż

ΥpU,V q

log
ρU,V pX,Y q

µpX,Y q
ρU,V pX,Y qdXdY.

Substituting X and Y by X ` U and Y ` V , respectively, we immediately obtain that

KLpρU,V , µq “

ż

ΥpO,Oq

log
ρU,V pX ` U, Y ` V q

µpX ` U, Y ` V q
ρU,V pX ` U, Y ` V qdXdY

“

ż

ΥpO,Oq

log
ρO,OpX,Y q

µpX ` U, Y ` V q
ρO,OpX,Y qdXdY

“ log
1

Z
`

ż

ΥpO,Oq

`

αTrpUJXq ` βTrpV JY q
˘

ρO,OpX,Y qdXdY

`
1

2

ż

ΥpO,Oq

`

α}U}2F ` β}V }2F

˘

ρO,OpX,Y qdXdY

“ log
1

Z
`
α}U}2F ` β}V }2F

2
.

Here we took into account that ΥpO,Oq and ρO,O are symmetric around zero and, hence,
ż

ΥpO,Oq

TrpUJXqρO,OpX,Y qdXdY “ 0,

ż

ΥpO,Oq

TrpV JY qρO,OpX,Y qdXdY “ 0.

Applying Lemma 4.3, we conclude that

KLpρU,V , µq ď 2 log 2 `
α ` β

2
“ 2 log 2 `

1

2

ˆ

max
1ďjďK

rpΦjq
2 ` max

1ďjďK
rpΨjq

2

˙

(22)

for all U P Rpˆp, V P Rqˆq, such that }U}F “ }V }F “ 1.

Step 4: final bound. Summing up (14), (19), (20), and (22), we obtain that

ν
›

›

›
RppΣ ´ Σq

›

›

›
ď 13ω2ν2

˜

K
ÿ

j“1

}Φj}}Ψj}

¸2

`
1

2n

ˆ

max
1ďjďK

rpΦjq
2 ` max

1ďjďK
rpΨjq

2

˙

`
logp4{δq

n

with probability at least p1 ´ δq. Let us take

ν “
1

ω
?
13

˜

K
ÿ

j“1

}Φj}}Ψj}

¸´1d

1

2n

ˆ

max
1ďjďK

rpΦjq2 ` max
1ďjďK

rpΨjq
2

˙

`
logp4{δq

n
.

12
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Note that the requirement (13) ensures that such choice of ν fulfils (21). Hence, with probability at
least p1 ´ δq, it holds that

›

›

›
RppΣ ´ Σq

›

›

›
ď ω

˜

K
ÿ

j“1

}Φj}}Ψj}

¸

d

13

2n

ˆ

max
1ďjďK

rpΦjq2 ` max
1ďjďK

rpΨjq
2

˙

`
13 logp4{δq

n
.

5. Conclusion and open problems

We showed that, if the covariance matrix Σ can be represented in the form (2), then it is possible to
obtain a non-asymptotic dimension-free upper bound on the Frobenius distance between Σ and the
penalized permuted least squares estimate rΣ under reasonable conditions. The rate of convergence
is sharper compared to the standard unstructured case. There is an open question whether simi-
lar improvements are possible if we measure the estimation performance in terms of the operator
norm. In particular, we are not aware of any (even dimension-dependent) bounds on }rΣ ´ Σ}. We
also leave open the question if the rate of convergence in Theorem 2.5 is optimal in the minimax
sense. Another interesting question is how the result of Theorem 2.5 will change if we consider a
misspecified model

Σ “ Φ1 b Ψ1 ` . . .` ΦK b ΨK ` E,

where E P Rdˆd is a (possibly unstructured) remainder. In (Greenewald and Hero, 2015), the
authors studied the case whenE is a sparse matrix and suggested a robust Kronecker PCA procedure
for estimation of Σ in this situation. Finally, one can consider more complex models with higher-
order Kronecker products (Pouryazdian et al., 2016; Hafner et al., 2020; McCormack and Hoff,
2023).
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Appendix A. Auxiliary results: Kronecker product and its properties

The goal of this section is to introduce key properties of Kronecker products that we utilize in this
paper. For more details see, for instance, (Golub and Van Loan, 2013). We start with a basic fact
also referred to as the mixed-product property:

pAbBqpC bDq “ pACq b pBDq, (23)

The equality (23) has plenty of implications. In particular, if A “ UJΛU and B “ V JMV are
eigendecompositions of symmetric matrices A P Rpˆp and B P Rqˆq, then

AbB “ pUJΛUq b pV JMV q “ pU b V qJpΛ bMqpU b V q

is the eigendecomposition of their Kronecker product. For this reason, we have

TrpAbBq “ TrpAqTrpBq, }AbB} “ }A}}B}, and }AbB}F “ }A}F}B}F. (24)

Further properties of the Kronecker product, presented in this section, are related to the vector-
ization operator vec (see our notation in Section 1). Let us recall that, for any matrix U , vecpUq is
a vector obtained by stacking the columns of U together. In our proofs, we will extensively use the
following identities, which hold whenever the matrix products in the left- and the right-hand side
are well defined:

pAbBqvecpUq “ vecpBUAJq, (25)

TrpV JBUAJq “ vecpV qJvecpBUAJq “ vecpV qJpAbBqvecpUq. (26)

Appendix B. Proof of Proposition 2.4

Let us fix any V P Rd2ˆd2 and consider the exponential moment

E exp
␣

vecpXqJV vecpXq ´ TrpV Σq
(

.
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According to (9), it holds that

E exp
␣

vecpXqJV vecpXq ´ TrpV Σq
(

“ E exp

$

&

%

K
ÿ

j,k“1

vecpYjqJpAJ
j bBJ

j qV pAk bBkqvecpYkq ´ TrpV Σq

,

.

-

“ E exp

#

K
ÿ

j“1

vecpYjqJpAJ
j bBJ

j qV pAj bBjqvecpYjq ´ TrpV Σq (27)

`
ÿ

j‰k

vecpYjqJpAJ
j bBJ

j qV pAk bBkqvecpYkq

+

.

Applying the Cauchy-Schwarz inequality, we bound the expression in the right-hand side of (27) by
a product of two terms:

E exp
␣

vecpXqJV vecpXq ´ TrpV Σq
(

ď

«

E exp

#

2
K
ÿ

j“1

vecpYjqJpAJ
j bBJ

j qV pAj bBjqvecpYjq ´ 2TrpV Σq

+ff1{2

(28)

¨

»

–E exp

$

&

%

2
ÿ

j‰k

vecpYjqJpAJ
j bBJ

j qV pAk bBkqvecpYkq

,

.

-

fi

fl

1{2

.

In the rest of the proof, we provide upper bounds on the exponential moments in the right-hand side
of (28). For convenience, we split the proof into several steps.

Step 1: an upper bound on the first term in (28). An upper bound on the first term in the
right-hand side of (28) simply follows from the conditions of the proposition. Since Y1, . . . ,YK
are independent, we have

E exp

#

2
K
ÿ

j“1

vecpYjqJpAJ
j bBJ

j qV pAj bBjqvecpYjq ´ 2TrpV Σq

+

“

K
ź

j“1

E exp
␣

2vecpYjqJpAJ
j bBJ

j qV pAj bBjqvecpYjq ´ 2Tr
`

pAJ
j bBJ

j qV pAj bBjq
˘(

.

Then (10) yields that

E exp

#

2
K
ÿ

j“1

vecpYjqJpAJ
j bBJ

j qV pAj bBjqvecpYjq ´ 2TrpV Σq

+

ď

K
ź

j“1

E exp

"

4ω2
j

›

›

›
pAjA

J
j bBjB

J
j q1{2V pAjA

J
j bBjB

J
j q1{2

›

›

›

2

F

*

(29)

ď exp

#

4ω2
max

K
ÿ

j“1

›

›

›
pAjA

J
j bBjB

J
j q1{2V pAjA

J
j bBjB

J
j q1{2

›

›

›

2

F

+
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for any V , such that
›

›

›
pAjA

J
j bBjB

J
j q1{2V pAjA

J
j bBjB

J
j q1{2

›

›

›

F
ď

1

2ωmax
, where ωmax “ max

1ďjďr
ωj .

Step 2: decoupling. We move to the analysis of the second term in the right-hand side of (28).
The proof of an upper bound on

E exp

$

&

%

2
ÿ

j‰k

vecpYjqJpAJ
j bBJ

j qV pAk bBkqvecpYkq

,

.

-

extends the idea of decoupling (see (Vershynin, 2018, Theorem 6.1.1)) to the multivariate case. We
proceed with the next auxiliary result.

Lemma B.1 Let ζ1, . . . , ζK be i.i.d. centered random vectors in Rd and let tMjk : 1 ď j ď

K, 1 ď k ď Ku be a collection of deterministic matrices of size pd ˆ dq. Then, for any convex
function G : R Ñ R with the finite expectation

EG

¨

˝

ÿ

j‰k

ζJ
j Mjkζk

˛

‚,

we have

EG

¨

˝

ÿ

j‰k

ζJ
j Mjkζk

˛

‚ď EG

¨

˝4
ÿ

j‰k

ζJ
j Mjkζ

1
k

˛

‚,

where ζ1
1, . . . , ζ

1
K are independent copies of ζ1, . . . , ζK .

The proof of Lemma B.1 is postponed to Appendix F. Applying this lemma to

E exp

$

&

%

2
ÿ

j‰k

vecpYjqJpAJ
j bBJ

j qV pAk bBkqvecpYkq

,

.

-

,

we obtain that

E exp

$

&

%

2
ÿ

j‰k

vecpYjqJpAJ
j bBJ

j qV pAk bBkqvecpYkq

,

.

-

ď E exp

$

&

%

8
ÿ

j‰k

vecpYjqJpAJ
j bBJ

j qV pAk bBkqvecpY1
kq

,

.

-

, (30)

where Y1
1, . . . ,Y1

K are independent copies of Y1, . . . ,YK .

Step 3: reduction to the Gaussian case. Let γ1, . . . ,γK „ N p0, Id2q be i.i.d Gaussian random
vectors, which are independent of Y1, . . . ,YK . We are going to show that the right-hand side of
(30) does not exceed

E
K
ź

j“1

exp

$

&

%

128p1 ` ωmaxq

log 2

›

›

›

›

›

›

ÿ

k‰j

pAJ
j bBJ

j qV pAk bBkqγk

›

›

›

›

›

›

2,
.

-

.
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In other words, it is enough to consider the Gaussian case. To do so, we first make a small detour
and consider the ψ2-norm of random variables of a form uJvecpYjq, where u P Rd2 and j P

t1, . . . ,Ku.

Lemma B.2 Assume that Yj satisfies (10), j P t1, . . . ,Ku. Then, for any u P Rd2 , it holds that

›

›uJvecpYjq
›

›

2

ψ2
ď

p1 ` ωjq}u}2

log 2
.

The proof of Lemma B.2 is deferred to Appendix G. If a centered random variable has a finite
ψ2-norm, we can bound its exponential moments, using the following lemma.

Lemma B.3 Let η be a centered random variable with a finite Orlicz norm }η}ψ2 ď σ ă `8.
Then, for any λ P R, it holds that

Eeλη ď eλ
2σ2
.

It is well-known that random variables with a finite ψ2-norm exhibit a sub-Gaussian behaviour (see,
for instance, (Vershynin, 2018, Section 2.6)). However, the existing bounds in the literature include
implicit absolute constants, while we are interested in tracking explicit ones. For this purpose, we
carry out the proof of Lemma B.3 in Appendix H. Using this lemma and considering the expectation

E

»

–exp

$

&

%

8
ÿ

j‰k

vecpYjqJpAJ
j bBJ

j qV pAk bBkqvecpY1
kq

,

.

-

ˇ

ˇ

ˇ

ˇ

ˇ

Y1, . . . ,YK

fi

fl

conditionally on Y1, . . . ,YK , we obtain that

E exp

$

&

%

8
ÿ

j‰k

vecpYjqJpAJ
j bBJ

j qV pAk bBkqvecpY1
kq

,

.

-

ď

K
ź

k“1

E exp

$

&

%

64p1 ` ωmaxq

log 2

›

›

›

›

›

›

ÿ

j‰k

pAJ
k bBJ

k qV JpAj bBjqvecpYjq

›

›

›

›

›

›

2,
.

-

. (31)

Now γ1, . . . ,γK come into the play. Using the fact that, for any k P t1, . . . ,Ku and any u P Rd2 ,
it holds that EeuJγk “ e}u}2{2, we represent the right-hand side of (31) in the following form:

EY

K
ź

k“1

exp

$

&

%

64p1 ` ωmaxq

log 2

›

›

›

›

›

›

ÿ

j‰k

pAJ
k bBJ

k qV JpAj bBjqvecpYjq

›

›

›

›

›

›

2,
.

-

“ EY

K
ź

k“1

Eγk
exp

$

&

%

8

c

2 ` 2ωmax

log 2
¨ γJ

k

ÿ

j‰k

pAJ
k bBJ

k qV JpAj bBjqvecpYjq

,

.

-

“ E exp

$

&

%

8

c

2 ` 2ωmax

log 2
¨
ÿ

j‰k

γJ
k pAJ

k bBJ
k qV JpAj bBjqvecpYjq

,

.

-

.
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Applying Lemma B.2 and Lemma B.3 again, we obtain that

E exp

$

&

%

8
ÿ

j‰k

vecpYjqJpAJ
j bBJ

j qV pAk bBkqvecpY1
kq

,

.

-

ď Eγ

K
ź

j“1

EYj exp

$

&

%

8

c

2 ` 2ωmax

log 2
¨
ÿ

k‰j

γJ
k pAJ

k bBJ
k qV JpAj bBjqvecpYjq

,

.

-

(32)

ď E
K
ź

j“1

exp

$

&

%

128p1 ` ωmaxq

log 2

›

›

›

›

›

›

ÿ

k‰j

pAJ
j bBJ

j qV pAk bBkqγk

›

›

›

›

›

›

2,
.

-

.

Step 4: exponential moments of a Gaussian quadratic form. Let γ “ pγJ
1 , . . . ,γ

J
KqJ P Rd2K

denote a standard Gaussian random vector, obtained by stacking γ1, . . . ,γK together and let S “

SJ P Rd2Kˆd2K be such that

128p1 ` ωmaxq

log 2

K
ÿ

j“1

›

›

›

›

›

›

ÿ

k‰j

pAJ
j bBJ

j qV pAk bBkqγk

›

›

›

›

›

›

2

“ γJSγ. (33)

Obviously, S ě O, because the corresponding quadratic form is always non-negative. Lemma B.2
from (Spokoiny, 2023) yields

logEeγ
JSγ ď TrpSq `

TrpS2q

1 ´ 2}S}
ď

ˆ

1 `
}S}

1 ´ 2}S}

˙

TrpSq ď 2TrpSq,

provided that }S} ď TrpSq ď 1{4. Note that

TrpSq “ EγJSγ

“
128p1 ` ωmaxq

log 2
E

K
ÿ

j“1

›

›

›

›

›

›

ÿ

k‰j

pAJ
j bBJ

j qV pAk bBkqγk

›

›

›

›

›

›

2

“
128p1 ` ωmaxq

log 2

K
ÿ

j“1

›

›

›

›

›

›

ÿ

k‰j

pAJ
j bBJ

j qV pAk bBkq

›

›

›

›

›

›

2

F

(34)

“
128p1 ` ωmaxq

log 2

˜

›

›

›
Σ1{2V Σ1{2

›

›

›

2

F
´

K
ÿ

j“1

›

›

›
pAjA

J
j bBjB

J
j q1{2V pAjA

J
j bBjB

J
j q1{2

›

›

›

2

F

¸

.

Thus, it holds that

E
K
ź

j“1

exp

$

&

%

128p1 ` ωmaxq

log 2

›

›

›

›

›

›

ÿ

k‰j

pAJ
j bBJ

j qV pAk bBkqγk

›

›

›

›

›

›

2,
.

-

(35)

ď
256p1 ` ωmaxq

log 2

˜

›

›

›
Σ1{2V Σ1{2

›

›

›

2

F
´

K
ÿ

j“1

›

›

›
pAjA

J
j bBjB

J
j q1{2V pAjA

J
j bBjB

J
j q1{2

›

›

›

2

F

¸
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for all V P Rd2ˆd2 , such that

128p1 ` ωmaxq

log 2

›

›

›
Σ1{2V Σ1{2

›

›

›

2

F
ď

1

4
.

Hence, due to the inequalities (30), (32), and (35), we have

E exp

$

&

%

2
ÿ

j‰k

vecpYjqJpAJ
j bBJ

j qV pAk bBkqvecpYkq

,

.

-

(36)

ď exp

#

256p1 ` ωmaxq

˜

›

›

›
Σ1{2V Σ1{2

›

›

›

2

F
´

K
ÿ

j“1

›

›

›
pAjA

J
j bBjB

J
j q1{2V pAjA

J
j bBjB

J
j q1{2

›

›

›

2

F

¸+

,

provided that
128p1 ` ωmaxq

log 2

›

›

›
Σ1{2V Σ1{2

›

›

›

2

F
ď

1

4
.

Step 5: final bound. Taking into account (29) and (36), we obtain that

E exp
␣

vecpXqJV vecpXq ´ TrpV Σq
(

ď

«

E exp

#

2
K
ÿ

j“1

vecpYjqJpAJ
j bBJ

j qV pAj bBjqvecpYjq ´ 2TrpV Σq

+ff1{2

¨

»

–E exp

$

&

%

2
ÿ

j‰k

vecpYjqJpAJ
j bBJ

j qV pAk bBkqvecpYkq

,

.

-

fi

fl

1{2

ď exp

#

2ω2
max

K
ÿ

j“1

›

›

›
pAjA

J
j bBjB

J
j q1{2V pAjA

J
j bBjB

J
j q1{2

›

›

›

2

F

+

¨ exp

#

128p1 ` ωmaxq

log 2

˜

›

›

›
Σ1{2V Σ1{2

›

›

›

2

F
´

K
ÿ

j“1

›

›

›
pAjA

J
j bBjB

J
j q1{2V pAjA

J
j bBjB

J
j q1{2

›

›

›

2

F

¸+

ď exp

"ˆ

128p1 ` ωmaxq

log 2
_ 2ω2

max

˙

›

›

›
Σ1{2V Σ1{2

›

›

›

2

F

*

,

provided that
›

›

›
pAjA

J
j bBjB

J
j q1{2V pAjA

J
j bBjB

J
j q1{2

›

›

›

F
ď

1

2ωmax
(37)

and
128p1 ` ωmaxq

log 2

›

›

›
Σ1{2V Σ1{2

›

›

›

2

F
ď

1

4
.

Note that, according to (34),

›

›

›
Σ1{2V Σ1{2

›

›

›

2

F
´

K
ÿ

j“1

›

›

›
pAjA

J
j bBjB

J
j q1{2V pAjA

J
j bBjB

J
j q1{2

›

›

›

2

F
“

TrpSq log 2

128p1 ` ωmaxq
ě 0,
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where S is a positive semidefinite matrix, defined in (33). Thus, the condition

›

›

›
Σ1{2V Σ1{2

›

›

›

F
ď

1

2ωmax

automatically yields (37). Hence, we proved that

E exp
␣

vecpXqJV vecpXq ´ TrpV Σq
(

ď exp

"ˆ

128p1 ` ωmaxq

log 2
_ 2ω2

max

˙

›

›

›
Σ1{2V Σ1{2

›

›

›

2

F

*

for all V P Rd2ˆd2 , such that
ˆ

4ω2
max _

512p1 ` ωmaxq

log 2

˙

›

›

›
Σ1{2V Σ1{2

›

›

›

2

F
ď 1.

Appendix C. Proof of Lemma 4.1

We start with representing the operator norm of RppΣ ´ Σq in the following form:
›

›

›
RppΣ ´ Σq

›

›

›
“ sup

UPRpˆp,V PRqˆq

}U}F“}V }F“1

vecpUqJRppΣ ´ ΣqvecpV q.

Due to the linearity of the rearrangement operator R, we have

›

›

›
RppΣ ´ Σq

›

›

›
“ sup

UPRpˆp,V PRqˆq

}U}F“}V }F“1

vecpUqJR

˜

1

n

n
ÿ

i“1

XiX
J
i ´ EXXJ

¸

vecpV q (38)

“ sup
UPRpˆp,V PRqˆq

}U}F“}V }F“1

#

1

n

n
ÿ

i“1

vecpUqJ
“

R
`

XiX
J
i

˘

´ ER
`

XXJ
˘‰

vecpV q

+

.

Let us show that, for any U P Rpˆp and V P Rqˆq,

vecpUqJR
`

XXJ
˘

vecpV q “ Tr
`

XJV JXU
˘

,

where X is a matrix of size pq ˆ pq, such that vecpXq “ X. It holds that

vecpUqJRpXXJqvecpV q

“

p
ÿ

i“1

p
ÿ

j“1

q
ÿ

k“1

q
ÿ

ℓ“1

vecpUqppi´1q`jRpXXJqppi´1q`j,qpk´1q`ℓvecpV qqpk´1q`ℓ.

The definition of the vectorization operator vec yields that

vecpUqppi´1q`j “ Uji and vecpV qqpk´1q`ℓ “ Vℓk.
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At the same time, according to the definition of the rearrangement operator R, we have

RpXXJqppi´1q`j,qpk´1q`ℓ “ vec
`

pXXJqppj´1q:pj,ppi´1q:pi

˘

qpk´1q`ℓ

“

´

pXXqJ
pp´1qj:pj,pp´1qi:pi

¯

ℓk

“ pXXqJ
pp´1qj`ℓ,pp´1qi`k

“ Xpp´1qj`ℓXpp´1qi`k “ XℓjXki.

Here pXXJqppj´1q:pj,ppi´1q:pi denotes a submatrix of XXJ on the intersection of the rows ppj ´

1q ` 1, . . . , pj with the columns ppi´ 1q ` 1, . . . , pi. Hence, we obtain that

vecpUqJRpXXJqvecpV q “

p
ÿ

i“1

p
ÿ

j“1

q
ÿ

k“1

q
ÿ

ℓ“1

UjiXℓjXkiVℓk “ TrpV JXUXJq. (39)

Similarly, one can prove that

vecpUqJR
`

XiX
J
i

˘

vecpV q “ Tr
`

XJ
i V

JXiU
˘

, (40)

for any U P Rpˆp, V P Rqˆq, and any i P t1, . . . , nu, where X1, . . . ,Xn are the matrices of size
pq ˆ pq, obtained by reshaping X1, . . . ,Xn, respectively:

vecpXiq “ Xi for all i P t1, . . . , nu.

Taking into account (38), (39), and (40), we deduce that

›

›

›
RppΣ ´ Σq

›

›

›
“ sup

UPRpˆp,V PRqˆq

}U}F“}V }F“1

#

1

n

n
ÿ

i“1

vecpUqJ
“

R
`

XiX
J
i

˘

´ ER
`

XXJ
˘‰

vecpV q

+

“ sup
UPRpˆp,V PRqˆq

}U}F“}V }F“1

#

1

n

n
ÿ

i“1

Tr
`

XJ
i V

JXiU
˘

´ ETr
`

XJV JXU
˘

+

.

Appendix D. Proof of Lemma 4.3

Let X P Rpˆp and Y P Rqˆq be random matrices with the joint distribution µ, defined in (15). That
is, the entries of X and Y are independent centered Gaussian random variables, such that

VarpXijq “
1

α
, VarpYkℓq “

1

β
for all i, j P t1, . . . , pu and k, ℓ P t1, . . . , qu.

We are going to show that

P
ˆ

›

›

›
Σ1{2pX b YqΣ1{2

›

›

›

2

F
ě

4TrpΣq2

αβ

˙

ď
1

4
, (41)
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P

¨

˝

›

›

›

›

›

›

˜

K
ÿ

j“1

}Ψj}Φj

¸1{2

X

˜

K
ÿ

j“1

}Ψj}Φj

¸1{2
›

›

›

›

›

›

2

F

ě
4

α

˜

K
ÿ

j“1

}Ψj}TrpΦjq

¸2
˛

‚ď
1

4
, (42)

and

P

¨

˝

›

›

›

›

›

›

˜

K
ÿ

j“1

}Φj}Ψj

¸1{2

Y

˜

K
ÿ

j“1

}Φj}Ψj

¸1{2
›

›

›

›

›

›

2

F

ď
4

β

˜

K
ÿ

j“1

}Φj}TrpΨjq

¸2
˛

‚ď
1

4
. (43)

Then the union bound implies that

Z “ P ppX,Yq P ΥpO,Oqq “ 1 ´ P ppX,Yq R ΥpO,Oqq ě 1 ´
3

4
“

1

4
.

For convenience, the rest of the proof is divided into three parts.

Step 1: proof of (41). Since the covariance matrix Σ has a Kronecker product structure

Σ “

K
ÿ

j“1

Φj b Ψj ,

it holds that
›

›

›
Σ1{2pX b YqΣ1{2

›

›

›

2

F
“ Tr

`

ΣpX b YqJΣpX b Yq
˘

“

K
ÿ

j“1

K
ÿ

k“1

Tr
`

pΦj b ΨjqpXJ b YJqpΦk b ΨkqpX b Yq
˘

“

K
ÿ

j“1

K
ÿ

k“1

Tr
`

pΦjXJΦkXq b pΨjYJΨkYq
˘

.

Using the property (24) about the trace of Kronecker product, we obtain that

›

›

›
Σ1{2pX b YqΣ1{2

›

›

›

2

F
“

K
ÿ

j“1

K
ÿ

k“1

Tr
`

pΦjXJΦkXq b pΨjYJΨkYq
˘

“

K
ÿ

j“1

K
ÿ

k“1

TrpΦjXJΦkXq TrpΨjYJΨkYq.

For any j and k from t1, . . . ,Ku, we have

ETrpΦjXJΦkXq “ EvecpXqJpΦj b ΦkqvecpXq “
1

α
TrpΦj b Φkq “

1

α
TrpΦjq TrpΦkq

and, similarly,

ETrpΨjYJΨkYq “ EvecpYqJpΨj b ΨkqvecpYq “
1

β
TrpΨj b Ψkq “

1

β
TrpΨjq TrpΨkq.
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This yields that

E
›

›

›
Σ1{2pX b YqΣ1{2

›

›

›

2

F
“

1

αβ

K
ÿ

j“1

K
ÿ

k“1

TrpΦjqTrpΦkqTrpΨjqTrpΨkq

“
1

αβ

˜

K
ÿ

j“1

TrpΦjqTrpΨjq

¸2

“
TrpΣq2

αβ
,

and, applying Markov’s inequality, we obtain (41).

Step 2: proof of (42) and (43). Similarly to the first step, the proof of (42) and (43) relies on
Markov’s inequality and computation of the expectations

E

›

›

›

›

›

›

˜

K
ÿ

j“1

}Ψj}Φj

¸1{2

X

˜

K
ÿ

j“1

}Ψj}Φj

¸1{2
›

›

›

›

›

›

2

F

and

E

›

›

›

›

›

›

˜

K
ÿ

j“1

}Φj}Ψj

¸1{2

Y

˜

K
ÿ

j“1

}Φj}Ψj

¸1{2
›

›

›

›

›

›

2

F

.

First, let us show that

E

›

›

›

›

›

›

˜

K
ÿ

j“1

}Ψj}Φj

¸1{2

X

˜

K
ÿ

j“1

}Ψj}Φj

¸1{2
›

›

›

›

›

›

2

F

“
1

α

˜

K
ÿ

j“1

}Ψj} TrpΦjq

¸2

.

Indeed, it holds that

E

›

›

›

›

›

›

˜

K
ÿ

j“1

}Ψj}Φj

¸1{2

X

˜

K
ÿ

j“1

}Ψj}Φj

¸1{2
›

›

›

›

›

›

2

F

“ ETr

«˜

K
ÿ

j“1

}Ψj}Φj

¸

XJ

˜

K
ÿ

k“1

}Ψk}Φk

¸

X

ff

“

K
ÿ

j“1

K
ÿ

k“1

}Ψj}}Ψk} ETr
`

ΦjXJΦkX
˘

.

Since for any j and k from t1, . . . ,Ku the expectation of Tr
`

ΦjXJΦkX
˘

is equal to

ETr
`

ΦjXJΦkX
˘

“ EvecpXqJpΦj b ΦkqvecpXq “
1

α
TrpΦj b Φkq “

1

α
TrpΦjq TrpΦkq,

we obtain that

E

›

›

›

›

›

›

˜

K
ÿ

j“1

}Ψj}Φj

¸1{2

X

˜

K
ÿ

j“1

}Ψj}Φj

¸1{2
›

›

›

›

›

›

2

F

“
1

α

K
ÿ

j“1

K
ÿ

k“1

}Ψj}}Ψk} TrpΦjqTrpΦkq

“
1

α

˜

K
ÿ

j“1

}Ψj} TrpΦjq

¸2

,
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and (42) follows from Markov’s inequality. The proof of (43) is absolutely similar.

Appendix E. Proof of Lemma 4.4

Note that
›

›

›
Σ1{2pP bQqΣ1{2

›

›

›

2

F
ď 4

›

›

›
Σ1{2

`

pP ´ Uq b pQ´ V q
˘

Σ1{2
›

›

›

2

F

` 4
›

›

›
Σ1{2

`

U b pQ´ V q
˘

Σ1{2
›

›

›

2

F

` 4
›

›

›
Σ1{2

`

pP ´ Uq b V
˘

Σ1{2
›

›

›

2

F

` 4
›

›

›
Σ1{2pU b V qΣ1{2

›

›

›

2

F
.

The definition of the support ΥpU, V q (see (17)) implies that

}Σ1{2
`

pP ´ Uq b pQ´ V q
˘

Σ1{2}2F ď
4TrpΣq2

αβ
ρU,V -almost surely. (44)

Moreover, on ΥpU, V q it holds that
›

›

›
Σ1{2

`

pP ´ Uq b V
˘

Σ1{2
›

›

›

2

F
“ Tr

´

Σ
`

pP ´ Uq b V
˘J

Σ
`

pP ´ Uq b V
˘

¯

“

K
ÿ

j“1

K
ÿ

k“1

Tr
´

pΦj b Ψjq
`

pP ´ Uq b V
˘J

pΦk b Ψkq
`

pP ´ Uq b V
˘

¯

“

K
ÿ

j“1

K
ÿ

k“1

Tr
`

ΦjpP ´ UqJΦkpP ´ Uq
˘

Tr
`

ΨjV
JΨkV q

˘

“

K
ÿ

j“1

K
ÿ

k“1

Tr
`

ΦjpP ´ UqJΦkpP ´ Uq
˘

›

›

›
Ψ

1{2
j VΨ

1{2
k

›

›

›

2

F
.

Since }V }F “ 1, we have
›

›

›
Ψ

1{2
j VΨ

1{2
k

›

›

›

2

F
ď

›

›

›
Ψ

1{2
j

›

›

›

2
¨
›

›V
›

›

2

F
¨

›

›

›
Ψ

1{2
k

›

›

›

2
ď }Ψj}}Ψk} for all j, k P t1, . . . ,Ku,

and thus,

›

›

›
Σ1{2

`

pP ´ Uq b V
˘

Σ1{2
›

›

›

2

F
ď

K
ÿ

j“1

K
ÿ

k“1

}Ψj}}Ψk}Tr
`

ΦjpP ´ UqJΦkpP ´ Uq
˘

“

›

›

›

›

›

›

˜

K
ÿ

j“1

}Ψj}Φj

¸1{2

pP ´ Uq

˜

K
ÿ

k“1

}Ψk}Φk

¸1{2
›

›

›

›

›

›

2

F

(45)

ď
4

α

˜

K
ÿ

j“1

}Ψj}TrpΦjq

¸2

ρU,V -almost surely,
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where the last inequality is due to (17). Similarly, one can show that

›

›

›
Σ1{2

`

U b pQ´ V q
˘

Σ1{2
›

›

›

2

F
ď

4

β

˜

K
ÿ

j“1

}Φj}TrpΨjq

¸2

ρU,V -almost surely. (46)

Finally,
›

›

›
Σ1{2pU b V qΣ1{2

›

›

›

2

F
ď

›

›

›
Σ1{2

›

›

›

2
¨ }U b V }

2
F ¨

›

›

›
Σ1{2

›

›

›

2
“ }Σ}

2 .

This inequality and the bounds (44), (45), (46) yield that

›

›

›
Σ1{2pP bQqΣ1{2

›

›

›

2

F
ď }Σ}

2
`

4

α

˜

K
ÿ

j“1

}Ψj}TrpΦjq

¸2

`
4

β

˜

K
ÿ

j“1

}Φj}TrpΨjq

¸2

`
4TrpΣq2

αβ
ρU,V -almost surely.

It only remains to recall the definition of α and β (see (16)) to conclude the proof:
›

›

›
Σ1{2pP bQqΣ1{2

›

›

›

2

F

ď

›

›

›

›

›

K
ÿ

j“1

Φj b Ψj

›

›

›

›

›

2

`
4

max
1ďjďK

rpΦjq2

˜

K
ÿ

j“1

}Ψj}TrpΦjq

¸2

`
4

max
1ďjďK

rpΨjq
2

˜

K
ÿ

j“1

}Φj}TrpΨjq

¸2

`
4

max
1ďjďK

rpΦjq2rpΨjq
2

˜

K
ÿ

j“1

TrpΦjqTrpΨjq

¸2

ď

K
ÿ

j“1

}Φj b Ψj}
2

` 12

˜

K
ÿ

j“1

}Φj}}Ψj}

¸2

“ 13

˜

K
ÿ

j“1

}Φj}}Ψj}

¸2

ρU,V -almost surely.

Appendix F. Proof of Lemma B.1

Let ε1, . . . , εK „ Bep1{2q be i.i.d. Bernoulli random variables. Then
ÿ

j‰k

ζJ
j Mjkζk “ 4Eε

ÿ

j‰k

εjp1 ´ εkqζJ
j Mjkζk almost surely,

where Eε stands for the expectation with respect to ε1, . . . , εK conditionally on ζ1, . . . , ζK . Let us
define a random set I Ď t1, . . . ,Ku as follows:

I “ tj P t1, . . . ,Ku : εj “ 1u .
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Then we can rewrite the sum
ÿ

j‰k

εjp1 ´ εkqζJ
j Mjkζk

in the form
ÿ

j‰k

εjp1 ´ εkqζJ
j Mjkζk “

ÿ

jPI

ÿ

kPIc

ζJ
j Mjkζk,

where Ic “ t1, . . . ,KuzI denotes the complement of I. With the notation introduced above, we
obtain that

EG

¨

˝

ÿ

j‰k

ζJ
j Mjkζk

˛

‚“ EζG

˜

4Eε
ÿ

jPI

ÿ

kPIc

ζJ
j Mjkζk

¸

.

Here Eζ stands for the expectation with respect to ζ1, . . . , ζK . Applying Jensen’s inequality and
taking into account that, for any realization of ε1, . . . , εK , the collection tζj : j P Iu is independent
of tζk : k P Iu, we deduce that

EG

¨

˝

ÿ

j‰k

ζJ
j Mjkζk

˛

‚ď EεEζG

˜

4
ÿ

jPI

ÿ

kPIc

ζJ
j Mjkζk

¸

ď EεEζ,ζ1G

˜

4
ÿ

jPI

ÿ

kPIc

ζJ
j Mjkζ

1
k

¸

.

Note that, for any realization of ε1, . . . , εr, the sum
ÿ

jPIc

ÿ

kPI
ζJ
j Mjkζ

1
k is independent of

ÿ

jPI

ÿ

kPIc

ζJ
j Mjkζ

1
k

and
E

ÿ

jPIc

ÿ

kPI
ζJ
j Mjkζ

1
k “ 0.

Then Lemma 6.1.2 from the book (Vershynin, 2018) implies that

Eζ,ζ1G

˜

4
ÿ

jPI

ÿ

kPIc

ζJ
j Mjkζ

1
k

¸

ď Eζ,ζ1G

˜

4
ÿ

jPI

ÿ

kPIc

ζJ
j Mjkζ

1
k ` 4

ÿ

jPIc

ÿ

kPI
ζJ
j Mjkζ

1
k

¸

“ Eζ,ζ1G

¨

˝4
ÿ

j‰k

ζJ
j Mjkζ

1
k

˛

‚.

Hence, we obtain that

EG

¨

˝

ÿ

j‰k

ζJ
j Mjkζk

˛

‚ď EεEζ,ζ1G

˜

4
ÿ

jPI

ÿ

kPIc

ζJ
j Mjkζ

1
k

¸

ď EεEζ,ζ1G

¨

˝4
ÿ

j‰k

ζJ
j Mjkζ

1
k

˛

‚

“ Eζ,ζ1G

¨

˝4
ÿ

j‰k

ζJ
j Mjkζ

1
k

˛

‚.
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Appendix G. Proof of Lemma B.2

Let us denote

t “ }u}

c

1 ` ωj
log 2

ě }u}
?
ωj

and show that

E exp

#

`

uJvecpYjq
˘2

t2

+

ď 2.

Since vecpYjq satisfies (10), we have

logE exp

#

`

uJvecpYjq
˘2

t2

+

ď
TrpuuJq

t2
`
ω2
j

›

›uuJ
›

›

2

F

t4

“
}u}2

t2
`
ω2
j }u}4

t4
“

}u}2

t2

ˆ

1 ` ωj ¨
ωj}u}2

t2

˙

(47)

ď
p1 ` ωjq}u}2

t2
ď log 2.

Here we took into account that ωj}u}2 ă t2. The inequality (47) yields that

›

›uJvecpYjq
›

›

2

ψ2
ď

p1 ` ωjq}u}2

log 2
.

Appendix H. Proof of Lemma B.3

Step 1: a bound on Eη2k. The goal of this step is to prove that

Eη2k ď 2 ¨ k! ¨ σ2k.

Note that Markov’s inequality and the definition of the Orlicz norm yield that

P p|η| ě tq ď e´t2{σ2
Eeη

2{σ2
ď 2e´t2{σ2

for all t ą 0.

Then it holds that

Eη2k “

`8
ż

0

P
´

η2k ě t
¯

dt “

`8
ż

0

P
´

|η| ě t1{p2kq
¯

dt ď 2

`8
ż

0

exp

#

´
t1{k

σ2

+

dt.

Substituting t with σ2kuk, we obtain that

Eη2k ď 2k σ2k
`8
ż

0

uk´1e´udu “ 2k σ2k Γpkq “ 2 ¨ k! ¨ σ2k. (48)
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Step 2: a bound on Eη2. For the second moment, it is possible to prove a bit better bound, than
(48). It holds that

Eη2 “

`8
ż

0

P
`

η2 ě t
˘

dt ď

σ2 log 2
ż

0

dt`

σ2 log 2
ż

0

P
`

η2 ě t
˘

dt ď σ2 log 2 ` 2

`8
ż

σ2 log 2

e´t{σ2
dt.

Let us replace t with σ2pu` log 2q, where u P p0,`8q. Then

Eη2 ď σ2 log 2 ` σ2
`8
ż

0

e´udu “ σ2p1 ` log 2q. (49)

Step 3: a bound on exponential moments. Let us fix any λ ą 0 and consider Eeλη. Using
Taylor’s expansion and taking into account that Eη “ 0, we obtain that

Eeλη “ 1 `

8
ÿ

k“2

λkEηk

k!
“ 1 `

8
ÿ

k“1

λ2kEη2k

p2kq!
`

8
ÿ

k“1

λ2k`1Eη2k`1

p2k ` 1q!
.

According to the Cauchy-Schwarz inequality, we have

λ2k`1Eη2k`1 ď
λ2kEη2k

2
`
λ2k`2Eη2k`2

2
,

and thus,

Eeλη “ 1 `

8
ÿ

k“1

λ2kEη2k

p2kq!
`

8
ÿ

k“1

λ2k`1Eη2k`1

p2k ` 1q!

ď 1 `
7λ2Eη2

12
`

8
ÿ

k“2

ˆ

1

p2kq!
`

1

2p2k ´ 1q!
`

1

2p2k ` 1q!

˙

λ2k Eη2k.

Due to (48), it holds that

Eeλη ď 1 `
7λ2Eη2

12
`

8
ÿ

k“2

ˆ

1

p2kq!
`

1

2p2k ´ 1q!
`

1

2p2k ` 1q!

˙

λ2k ¨

´

2 ¨ k! ¨ σ2k
¯

ď 1 `
7λ2Eη2

12
`

8
ÿ

k“2

2pk!q2

p2kq!

ˆ

1 ` k `
1

2p2k ` 1q

˙

¨
λ2kσ2k

k!
.

Note that, for any integer k ě 2, we have

2pk!q2

p2kq!

ˆ

1 ` k `
1

2p2k ` 1q

˙

“

ˆ

2 ` 2k `
1

2k ` 1

˙ k
ź

j“1

j ¨ j

p2j ´ 1q ¨ 2j

“
1

2k

ˆ

2 ` 2k `
1

2k ` 1

˙ k
ź

j“1

j

p2j ´ 1q

ď
2k ` 3

2k

k
ź

j“1

j

p2j ´ 1q
ď

2k ` 3

2k
¨
1

3
ă 1.
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Hence, it holds that

Eeλη ď 1 `
7λ2Eη2

12
`

8
ÿ

k“2

ˆ

1

p2kq!
`

1

2p2k ´ 1q!
`

1

2p2k ` 1q!

˙

λ2k ¨

´

2 ¨ k! ¨ σ2k
¯

ď 1 `
7λ2Eη2

12
`

8
ÿ

k“2

λ2kσ2k

k!
.

The sharper bound (49) on Eη2 implies that

7λ2Eη2

12
ď

7λ2σ2p1 ` log 2q

12
ď λ2σ2.

Thus, we finally obtain that

Eeλη ď 1 ` λ2σ2 `

8
ÿ

k“2

λ2kσ2k

k!
ď eλ

2σ2
for any λ ě 0.

The proof for negative λ is absolutely similar.
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