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Abstract

This paper studies online structured prediction with full-information feedback. For online multi-
class classification, Van der Hoeven (2020) established finite surrogate regret bounds, which are
independent of the time horizon, by introducing an elegant exploit-the-surrogate-gap framework.
However, this framework has been limited to multiclass classification primarily because it relies
on a classification-specific procedure for converting estimated scores to outputs. We extend the
exploit-the-surrogate-gap framework to online structured prediction with Fenchel-Young losses, a
large family of surrogate losses that includes the logistic loss for multiclass classification as a special
case, obtaining finite surrogate regret bounds in various structured prediction problems. To this end,
we propose and analyze randomized decoding, which converts estimated scores to general structured
outputs. Moreover, by applying our decoding to online multiclass classification with the logistic
loss, we obtain a surrogate regret bound of O(||U||%), where U is the best offline linear estimator
and ||-||r denotes the Frobenius norm. This bound is tight up to logarithmic factors and improves the
previous bound of O(d||U||%) due to Van der Hoeven (2020) by a factor of d, the number of classes.

Keywords: online learning, structured prediction, online multiclass classification

1. Introduction

Many machine learning problems involve predicting outputs in a finite set ) from input vectors in a
vector space X. A typical example is multiclass classification, and other tasks require predicting more
complex structured objects, e.g., matchings and trees. Such problems, known as structured prediction,
are ubiquitous in many applications, including natural language processing and bioinformatics (BaklIr
et al., 2007). Since working directly on discrete output spaces is often intractable, it is usual to adopt
the surrogate loss framework (e.g., Bartlett et al. (2006)). Common examples are the logistic and
hinge losses for classification. Blondel et al. (2020) have studied a family of Fenchel-Young losses,
which subsumes many practical surrogate losses for structured prediction; see Section 2.2 for details.

Structured prediction can be naturally extended to the online learning setting: fort =1,...,T,
an adversary picks (xs, y;) € X x ) and a learner plays y; € ) given an input x; € X. The learner
aims to minimize the cumulative target loss Zthl L(Ys;ye), where L : Y x Y — R is a target loss
function, such as the 0-1 and Hamming losses. This paper focuses on the full-information setting,
where the true output y; € ) is available as feedback, while another common setting is the bandit
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setting, where only L(yy; y¢) is given. A well-studied special case is online multiclass classification
(Fink et al., 2006; Kakade et al., 2008). Let ) be a set representing d classes, L(yy; y;) the standard
0-11oss, U : X — R< the best offline linear estimator, and S : R? x ) — R>0 a surrogate loss (e.g.,
logistic or hinge) that measures the discrepancy between an estimated score vector in R? and y; € V.
In this setting, a reasonable performance metric is the surrogate regret R given by

T T
> LGiy) =Y SUmi;y) + Re!
t=1 t=1

The tenet behind this metric is that while we want to minimize the cumulative target loss, the best we
can do in hindsight with the surrogate loss framework is to minimize the cumulative surrogate loss,
and the surrogate regret accounts for the extra target loss incurred by actual plays, 1, . .., yr.

For online multiclass classification with the logistic, hinge, and smooth hinge surrogate losses,
Van der Hoeven (2020) obtained an O(d||U ||%) surrogate regret bound, where |-||r denotes the
Frobenius norm. Notably, the bound is independent of T', or finite. The core idea is to exploit the
gap between the 0-1 and surrogate losses, which draws inspiration from online classification with
abstention (Neu and Zhivotovskiy, 2020). The author also gave an O(dB+/T)) surrogate regret bound
for the bandit setting, where B is the ¢5-diameter of the domain containing U. Later, Van der Hoeven
et al. (2021) extended the idea to a more general feedback setting and also obtained lower bounds
for the case of the smooth hinge surrogate loss. In the full-information setting, their lower bound
is 2(dB?), implying that the O(d||U||%) bound for the smooth-hinge case is tight if |U||r = ©(B).

However, the finite surrogate regret bound provided by Van der Hoeven (2020) has been limited
to online multiclass classification so far. Although the notion of surrogate regret naturally applies to
more general structured prediction problems with the surrogate loss framework, the original exploit-
the-surrogate-gap technique relies on a classification-specific decoding procedure for converting
estimated scores in RY to the outputs in {1, ..., d}, preventing the extension to structured prediction.
Since how to convert scores to structured outputs is non-trivial, it has been unclear when and how we
can exploit the surrogate gap to obtain finite surrogate regret bounds in online structured prediction.”

We extend the exploit-the-surrogate-gap framework to online structured prediction. Regarding
surrogate losses, we consider a class of Fenchel-Young losses generated by Legendre-type functions,
due to its generality and useful properties (see Section 2.2). The main challenge lies in converting
scores to the outputs in structured space ), for which we propose a randomized decoding procedure
(Section 3), together with its efficient implementation based on a fast Frank—Wolfe-type algorithm
(Section 3.1). Our analysis of randomized decoding (Lemma 4) reveals conditions of the structured
output space, target loss, and surrogate loss under which we can obtain finite surrogate regret bounds
by offsetting the regret in terms of surrogate losses with the surrogate gap. Consequently, we establish
finite surrogate regret bounds that hold in expectation and with high probability (Theorems 7 and 8).
Additionally, Theorem 11 shows that our randomized decoding enables online-to-batch conversion
of surrogate regret bounds to offline guarantees on the target risk.

Although bounding the surrogate regret may seem to become easier by scaling up the surrogate
loss relative to the target loss, our analysis of the surrogate regret is indeed sharp regardless of the scale
of the surrogate loss. To demonstrate the sharpness, Section 5 addresses online multiclass classifica-
tion with the logistic loss, the same setting as that of Van der Hoeven (2020). We obtain an O(||U||%)

1. In statistical learning, the term “surrogate regret” sometimes refers to the excess risk of surrogate losses, but we here
use the term in the above sense following Van der Hoeven et al. (2021).
2. Applying Van der Hoeven (2020) naively to |)|-class classification results in exponentially worse bounds in general.
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surrogate regret bound (Theorem 12), which improves the previous bound of O(d||U ||%) by a factor
of d, the number of classes. We also provide an Q(B?/In? d) lower bound (Theorem 13), implying
that our bound is tight up to In d factors under ||U || = ©(B). These results shed light on an inter-
esting O(d) difference depending on surrogate losses: O(d||U ||%) is tight for the smooth hinge loss
(Van der Hoeven, 2020; Van der Hoeven et al., 2021), while O(||U ||2) is almost tight for the logistic
loss. Our work, grounded in sharp analysis, pushes the boundaries of the exploit-the-surrogate-gap
framework and serves as a foundation for obtaining strong guarantees in online structured prediction.

1.1. Additional Related Work

Structured prediction. We here present particularly relevant studies and defer a literature review
to Appendix A. Prior to the development of the Fenchel-Young loss framework, Niculae et al. (2018)
studied SparseMAP inference, which trades off the MAP and marginal inference so that the estimator
captures the uncertainty, provides a unique solution, and is tractable. SparseMAP regularizes the
output by its squared ¢2-norm and solves the resulting problem with optimization algorithms, such
as Frank—Wolfe-type algorithms. The fundamental idea of the Fenchel—Young losses is inherited
from SparseMAP. To study the relationship between surrogate and target losses, or the Fisher
consistency, Ciliberto et al. (2016, 2020) introduced target losses of the form L(y';y) = (¢, Vy)
for some V' € R4*? 3 termed as the Structure Encoding Loss Function (SELF) by subsequent studies.
They analyzed the regularized least-square decoder and obtained a comparison inequality, a bound
on the target excess risk in terms of the surrogate excess risk, for the squared loss. Since SELF
encompasses many common target losses,* the framework has been oftentimes leveraged by follow-up
studies. For example, Blondel (2019) studied the Fisher consistency of Fenchel-Young losses based
on projection for a generalized variant of SELF, which includes the 0-1, Hamming, and NDCG losses.

Online multiclass classification. For online binary classification on linearly separable data, the
classical Perceptron (Rosenblatt, 1958) achieves a finite surrogate regret bound. Van der Hoeven
et al. (2021) extended this to multiclass classification, obtaining an O(B?) surrogate regret bound
under the separability assumption, which matches the lower bound of Beygelzimer et al. (2019).
By contrast, our O(||U||%) surrogate regret bound applies to online multiclass classification with
general non-separable data. Another line of work has explored online logistic regression, where the
performance is measured by the standard regret of the logistic loss.> In this context, Online Newton
Step (Hazan et al., 2007) is known as an O(e®/2 In T')-regret algorithm (omitting dimension factors),
and obtaining an O(poly(B)InT') regret bound had been a major open problem (McMahan and
Streeter, 2012a). Despite a negative answer to the original question by Hazan et al. (2014), a seminal
work by Foster et al. (2018) achieved an O(In(BT')) regret bound (a doubly exponential improvement
in B) via improper learning, where a learner can use an estimator that is non-linear in ;. While their
original algorithm is inefficient, recent studies provide more efficient O(B In T')-regret improper
algorithms (Jézéquel et al., 2021; Agarwal et al., 2022). In contrast to this stream of research, we
focus on obtaining finite surrogate regret bounds via proper learning. For a more extensive literature
review, we refer the reader to Van der Hoeven (2020).

3. Although we focus on the Euclidean case, Ciliberto et al. (2016, 2020) consider a more general form on Hilbert spaces.

4. Indeed, any target loss on a finite set ) is written as a SELF with V' € R guch that Vy .y = L(y'; y), though
this representation ignores structural information of ) and typically causes inefficiency in learning.

5. A bound on the regret also upper bounds the surrogate regret in expectation since 1 — x < — log, = for x € (0, 1].
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2. Preliminaries

Let R>( be the set of non-negative reals. Let [n] = {1,...,n} for any positive integer n. Let 1 4 be
the 0-1 loss that takes one if A is true and zero otherwise. Let ||-|| be any norm (typically, ¢; or ¢2) that
satisfies ||y > |ly||2 for some x > 0 for any y € R?. For a matrix W, let | W ||p = /tr(W TW)
be the Frobenius norm. Let 1 be the all-ones vector and e; the ith standard basis vector, i.e., all zeros
except for the ith entry being one. For C C R, conv(C) denotes its convex hull, int(C) its interior,
and Ic : R? — {0, +oo} its indicator function, which takes zero if y € C and +oc otherwise. For
Q:RY > RU{+oc}, dom(Q) := {y € R?: Q(y) < 00 } denotes its effective domain and
Q*(0) == sup{ (0, y) — Qy) : y € R } its convex conjugate. Let A := {y e RL, : [|y|1 =1}
be the probability simplex and H®(y) = — Zle y; Iny; the Shannon entropy of y € A%

Let U : R — RU{+o0} be astrictly convex function differentiable throughout int (dom W) # §).
We say W is of Legendre-type if lim; . || V¥ (x;)||2 = +00 whenever @1, o, . . . is a sequence in
int(dom(W¥)) converging to a boundary point of int(dom(¥)) (see, Rockafellar (1970, Section 26)).6
Also, given a convex set C C dom(¥), we say W is A-strongly convex with respect to ||-|| over C if
U(y) > V(y)+ (VU(Y),y — ') + 5lly — ¥/||* holds for any y € C and g’ € int(dom(¥)) NC.

2.1. Problem Setting

Let X be an input vector space. For consistency with Blondel et al. (2020), we let ) be the set of out-
puts embedded into R< in the standard manner. For example, we let ) = {ey, ..., es} in multiclass
classification with d classes. We focus on the case where observable feedback comes from ).

As with online multiclass classification, we consider learning a linear estimator W that maps
an input vector € X to a score vector Wz € R?. The learning proceeds fort = 1,...,7. In
each tth round, an adversary picks an input vector ; € X and the true output y; € ). The learner
receives ; and computes a score vector 8; = Wy, with a current estimator W;. The learner then
chooses y; € ) based on 6y, plays it, and incurs a target loss of L(y; y:). The learner receives y; as
feedback and updates W, to Wy, 1. The goal of the learner is to minimize the cumulative target loss
Zthl L(yy; yt). We assume the following conditions on the output space and the target loss.

Assumption 1 (1) There exists v > 0 such that ||y — y'|| > v holds for any y,y' € Y withy # y/,
(Il) for each y € Y, the target loss L(-; y) is defined on conv()), non-negative, and affine in the first
argument,” and (I) L(y';y) < 7|y’ — y|| holds for some v > 0, for any y' € conv()) andy € Y.

These conditions are not restrictive; see Section 2.3 for examples satisfying them. Regarding (1), v
lower bounded in many cases. For instance, if ||-|| is an £,-norm and Y C Z<, v > 1 holds. In addition,
if 5 "1 is constant for all y € ), distinct y,y’ € Y have at least two entries that differ by at least 1
in magnitude, hence v > 21/P. As for (II), SELFs L(y';y) = (y/, V'y) are defined on conv())
and affine in y’. Moreover, Blondel (2019, Appendix A) provides many target losses expressed as
L(y';y) = (¢, Vy +b) + c(y) fory,y’ € conv(Y) with some V' € R b € R? and c(y) € R,
which are also defined on conv()) and affine in y'. Condition (III) is typically satisfied by moderate y
values (see Section 2.3). Note that the non-negativity and (IIl) imply L(y’;y) = 0if ¢y’ = y.

6. Strictly speaking, this property is essential smoothness, which, combined with strict convexity, implies Legendre-type.
7. Condition (IT) is assumed for technical convenience, although target losses are inherently defined on ). This specifically
ensures E[L(y; y)] = L(E[y]; y) for y drawn randomly from ), which we will use in the proof of Lemma 4.



ONLINE STRUCTURED PREDICTION WITH FENCHEL-YOUNG LOSSES

2.2. Fenchel-Young Loss

We adopt the surrogate loss framework considered in Blondel et al. (2020). We define an intermediate
score space R? between X and ) and measure the discrepancy between a score vector € R¢ and
the ground truth y € ) with a surrogate loss S : R? x J) — Rx0; here, we suppose 6 to be given
by Wz, as in Section 2.1. Blondel et al. (2020) provides a general recipe for designing various
surrogate losses, called Fenchel-Young losses, for structured prediction from regularization functions.

Definition 2 Let 2 : RY — R U {400} be a regularization function such that Y C dom(S2). The
Fenchel-Young loss Sq : dom(2*) x dom(Q2) — R>( generated by € is defined as

Sa(6;y) == Q7°(6) + Qy) — (6,y).

By definition, S (0;y) is convex in 8 for any y € dom(f2). Furthermore, Sq(6;y) > 0 follows
from the Fenchel-Young inequality, and S (€;y) = 0 holds if and only if y € 9Q*(8).

We focus on special Fenchel-Young losses studied in Blondel et al. (2020, Section 3.2), which
are generated by (2 of the form W + /.o, (y) (i-€., € is the restriction of ¥ to conv()))), where W is
differentiable, of Legendre-type, and A-strongly convex w.r.t. ||-||, and satisfies conv()) C dom(¥)
and dom(¥*) = R?. Such Fenchel-Young losses subsume various useful surrogate losses, including
the logistic, CRF, and SparseMAP losses, and enjoy the following helpful properties. See Blondel
et al. (2020, Propositions 2 and 3) for more details, and also Appendix B for a note on the CRF loss.

Proposition 3 Let Sq be a Fenchel-Young loss generated by Q2 = WV + I, (3, where U : R? —
R U {400} satisfies the above properties. For 6 € R%, define the regularized prediction function as

Yo (0) == argmax{ (0,y) — Qy) : y € Rd} = argmax{ (0,y) — ¥(y) : y € conv(Y) },

where the maximizer is unique. Then, for any y € ), Sq(0;vy) is differentiable in 0 and the gradient
is the residual, i.e., VSq(0;y) = yo(0) —y. Furthermore, Sq(0;y) > 2|y — ya(0)|? holds.®

The last inequality will turn out useful in analyzing our randomized decoding (see Lemma 4). Propo-
sition 3 also implies || V.Sq(0; y)||> < 3S5q(8; y), which we will use in the proof of Theorem 7. This
type of inequality plays a crucial role in exploiting the surrogate gap, as highlighted in Proposition 6.

2.3. Examples

Below are three typical structured prediction problems and Fenchel-Young losses satisfying the above
conditions, and Appendix C gives two more examples; all the five are considered in Blondel (2019,
Section 4). More examples of structured outputs are provided in Blondel et al. (2020, Section 7.3).

Multiclass classification. Let) = {e,...,e4} and ||-|| be the £;-norm. Since |le; — e;||; > 2
holds for any distinct i, j € [d], we have v = 2. For any e; € Y, the 0-1 loss, L(y; €;) = 1y e,
can be extended on conv(Y) as L(y';e;) = (y', 1 — e;), which is affine in y' and equals 3, y; =
1
2
the logistic loss can be written as a Fenchel—Young loss generated by an entropic regularizer ).

(1 — Y+ yz) = L|le; — y/[1 due to }_7" | y} = 1, hence v = 3. As detailed in Section 5,

8. Blondel et al. (2020, Proposition 3) shows So(0;y) > Bw(y || ga(0)), where By is the Bregman divergence induced
by ¥, and By (y || 50(0)) > 2 ||y —ga(0)]||? follows from the A-strong convexity of ¥ with respect to |-||. The same
inequality is also used in Blondel (2019, Lemma 3). This is the only part where we need W to be of Legendre-type.

9. The multiclass hinge loss (Crammer and Singer, 2001) is also written as a cost-sensitive Fenchel-Young loss (Blondel
et al., 2020, Section 3.4). However, this requires the ground truth y when computing a counterpart of g (6), which we
need before y; is revealed (see Algorithm 2). Thus, it seems difficult to apply our approach to the (smooth) hinge loss.
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Algorithm 1 Randomized decoding g

Input: 6 € R?
1: Yyo(0) < argmax{ (0,y) — ¥(y) : y € conv(Y) }
2: y* + argmin{ ||y — ya(0)| : y € Y} (breaking ties arbitrarily)
30 A* + ||ly* — ya(0)| and p < min{1,2A* /v}
4: Z < 0 with probability 1 — p; Z < 1 with probability p
~ y* ifZ=0
YS9~ . ~ . ~ N
y if Z =1, where y is randomly drawn from ) so that E[y | Z = 1] = yq(0)

~

6: return Y (0) =y

Multilabel classification. We consider multilabel classification with ) = {0, 1}%. If ||-|| is the £-
norm, we have v = 1. A common target loss is the Hamming loss L(y'; y) = é Z?Zl L2y, where
the division by d scales the loss to [0, 1]. For any y € ), it is represented on conv(Y) as L(y'; y) =
é((y’, 1) + (y,1) — 2(y’, y)), which is affine in ¢’ and satisfies L(y’; y) = é”y’—y”l < ﬁ“y’—
yll2, hence v = == If we let Q@ = 1|3 + Teonv(y)> We have A = 1 (i.e., 1-strongly convex), and
the resulting Fenchel-Young loss is the SparseMAP loss: So(6;y) = %y — 0|13 — 1||7a(6) — 6]|3.

Vd

Ranking. We consider predicting the ranking of n items. Let d = n? and Y C {0, 1}¢ be the set
of all n x n permutation matrices, vectorized into {0, 1}¢. Then, conv()) is the Birkhoff polytope.
For y € conv()), y;; refers to the (4, j) entry of the corresponding matrix. If ||-|| is the ¢;-norm,
ly—v'||1 > 4 holds for distinct y,y’ € Y, hence v = 4. We use a target loss that counts mismatches.
Specifically, let L(y';y) = % > ﬂy;’ji A1, fory,y’ € Y, where j; € [n] is a unique index such
that y;;, = 1 foreachi € [n] and the division by n scales the loss to [0, 1]. For any y € ), this loss can

be represented on conv()) as L(y';y) = %(y’ , 1 — y), which is affine in ¢’. Furthermore, it equals

5 i (Y=Y, 20, Vi) = 5|1y’ —y||1 since > Yi; = Lholds foreachi € [n], hencey = =
Drawing inspiration from celebrated entropic optimal transport (Cuturi, 2013), we consider a Fenchel—-
1

Young loss generated by {2 = —;HS + Leonv(y)» Where p1 > 0 controls the regularization strength.'®

Since —iHS is #—strongly convex w.r.t. ||-||1 over conv()’) (Blondel, 2019, Proposition 2), we have
A= # The resulting Sq(0;y) is written as (0, yq(0) — y) + iHs(ﬁg(O)), where the first term
measures the affinity between 0 and y € )/, and the second term penalizes the uncertainty of yo(8).

3. Randomized Decoding

We present our key technical tool, randomized decoding, for converting a score vector 8 € R% to
an output ¥ € ). Our randomized decoding (Algorithm 1) returns either y* € ) closest to Yo (0) €
conv()) or random y € Y such that E[y | Z = 1] = yq (@), where  is a regularization function
generating the Fenchel-Young loss Sq and Z is the Bernoulli random variable with parameter p, as
in Step 4. Intuitively, the closer the regularized prediction yo(0) is to y* (i.e., A* is smaller), the
more confident @ is about y*, and hence the decoding procedure returns y* with a higher probability;
otherwise, 0 is not sufficiently confident about any y € ), and hence the decoding procedure more

10. With this choice of €2, we can efficiently compute the regularized prediction g (@) with the Sinkhorn algorithm.
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likely returns a random y. The confidence is quantified by 2A* /v (smaller values indicate higher

confidence), where v is the minimum distance between distinct elements in )/, as in Assumption 1.1
The following Lemma 4 is our main technical result regarding the randomized decoding. Despite

the simplicity of the proof, it plays a crucial role in the subsequent analysis of the surrogate regret.

Lemma 4 Forany (0,y) € RY x Y, the randomized decoding 1), (Algorithm 1) satisfies

E[L(va(0):9)] < . 50(6;y).

Proof Let A = ||y — ya(0)||. Note that A > A* = ||y* — yq(80)|| holds by definition of y*. Since
L(+;y) is affine as in Assumption 1, we have E[L(y;y) | Z = 1] = L(yq(0); y). Thus, it holds that

E[L(¥a(0);y)] = (1 — p)L(y*;y) + pL(¥a(0);y)
_ {pL@Q«»;y) if A" > v/20ry" =y,
(1-p)L(y*;y) +pL(ya(0);y) if A* <v/2andy* #y.

Below, we will prove E[L(1q(0);y)] < 2vA2/v; then, the desired bound follows from AA? /2 <
Sq(6;y) given in Proposition 3. In the first case, from p < 2A* /v < 2A /v and L(ya(0);y) < vA
(due to Assumption 1), we obtain pL (7 (0); y) < 2yA?/v. Inthe second case, by using p = 2A* /v,
L(y';y) <]y’ — yl| forany y’ € conv(Y) (Assumption 1), and the triangle inequality, we obtain

(1 =2A%/v)yly* =yl + (24" /v)v[ya(8) — v
(1 =220 /v)v(ly* — ya(0)| + [lya(0) — yl|) + A% /v)v||ga(0) — y||
(1 = 2A% /v)yA* + yA.

E[L(40(0);y)] <
<

Hence, it suffices to prove (1 — 2A* /v)yA* + yA < 2yA? /v; by dividing both sides by yv and
letting u = A* /v and v = A /v, this can be simplified as 2u? + 2v? — u — v > 0. From the triangle
inequality and y* # y, we have A* + A > ||ly* —y|| > v, ie., u+v > 1. Also, A* < v/2 implies
u < 1/2. Combining them yields 0 < u < 1/2 < v. These imply the desired inequality as follows:

202 + 202 —u—v=(u+v—1)2u+2v—1)+ (20— 1)(1 — 2u) > 0.
Therefore, we have E[L(1o(0);y)] < 2yA?/v in any case, completing the proof. [ |

As we will see in Proposition 6, given a possibly randomized decoding function ) : R¢ — ), a
sufficient condition for achieving finite surrogate regret bounds is the existence of a € (0, 1) such
that E[L(+(0);y)] < (1 — a)Sa(0;y) holds for any (8,y) € R? x ), which leads to a surrogate
regret bound proportional to 1/a. We call the quantity a.Sq(0;y) the surrogate gap.'> Lemma 4 will
ensure that our randomized decoding offers meaningful surrogate gaps.

11. This confidence measure is based on a rationale that 2A* /v < 1 ensures that y* is the closest point to Yo (0) among
all y € Y. Specifically, if A* = |ly* — ga(0)|| < v/2 holds, for any y € Y \ {y*}, the triangle inequality implies
ly —ga@)| > lly—vy"ll — ly* —ga(@)|] >v—v/2 > |ly* — ya(0)]||. Note that the opposite is not always true.

12. The original definition of the surrogate gap (Van der Hoeven, 2020) slightly differs, but represents a similar quantity.
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Necessity of mixing y* and y. Our randomized decoding is a mixture of two strategies: returning
y* or random 9.3 We explain that either strategy alone does not yield the desired surrogate gap. Let
us discuss the deterministic decoding that always returns y*. Consider binary classification with )) =
{e1,es}. Let y = e; be the ground truth and @ = (A1,65) = (1,1 + In(2!*¢ — 1)) for some small
¢ > 0, which slightly favors es by mistake. Then, the logistic loss is logy (1 +exp(f2 —01)) = 1+,
and the 0-1 loss is 1 since the deterministic decoding converts @ to eo. Thus, only a surrogate gap
with a < ﬁs is left, leading to an arbitrarily large 2(1/¢) surrogate regret bound. By contrast, our
randomized decoding applied to this setting yields a surrogate gap witha =1 —1n2 € (0,1) (see
Theorem 12). Further investigation of this example also suggests that the multiplicative constant of 4
in Lemma 4 cannot be smaller than 2/1n 2 ~ 2.89 (see Appendix D). Next, we discuss the strategy
that always returns random y. If we do so (i.e., fix p to 1 in the proof of Lemma 4), we only have
E[L(v0(0);y)] = L(7a(0);y) < vA by Assumption 1 and AA2/2 < Sq(0;y) by Proposition 3.
These do not imply the desired relation, E[L(1q(0);y)] < (1 — a)Sa(0;y), when A < 1. (While
we have E[L(1q(0);y)] < /Sa(0;vy), this does not enable us to exploit the surrogate gap; see the
proof of Proposition 6.) By adjusting the bias toward y*, we can avoid this issue when Y (0) is very
close to some y* while moderating the penalty of mistake, y* # y.

3.1. Implementation of Randomized Decoding

Algorithm 1 involves computing yq(6) and y*, and sampling y. We can obtain yq (@) by solving
the convex optimization in Step 1, and efficient methods for this problem are extensively discussed in
Blondel et al. (2020, Section 8.3); also, we can use a fast Frank—Wolfe-type algorithm of Garber and
Wolf (2021) to obtain y (@), as described shortly. Below, we focus on how to obtain y* and y first.
In Step 2, we need to find a nearest extreme point y* € ) to y(6) with respect to the distance
induced by ||-||. In the case of multiclass classification, we can easily do this by choosing i € [d] cor-
responding to the largest entry in Yo (@) and setting y* = e;. More generally, Proposition 5 ensures
that if Y C {0, 1}¢, which is a common scenario where conv()) constitutes a 0-1 polytope, and ||-||
is an £,-norm, we can find such a nearest extreme point by solving a linear optimization problem.

Proposition 5 Ler Y C {0,1} and p € [1,400). Foranyy' € conv(Y), we can find a nearest ex-
treme point y* € Y to y' with respect to ||-||,, i.e., y* € argmin{ |y — Y|, : y € V }, via a single
call to a linear optimization oracle that, for any ¢ € RY, returns a point in argmin{ (c,y) : y € Y }.

Proof We can find a nearest point by minimizing ||y —y/||h = 22'121 lyi —yi|P over y € V. Since we
have y; € {0, 1}, we can rewrite each term as |1 —y}[Py; + |y} [P (1 —y;) = (|1 =y P — |y} 1P)yi + |y. [P
Therefore, the problem is equivalent to min{ Z?Zl(ﬂ —ylP =P yicy ey }, which we can
solve with the linear optimization oracle. |

Proposition 5 enables efficient computation of y* for various structures of conv()): the 0-1 hyper-
cube (multilabel classification), the Birkhoff polytope (ranking), and a general matroid polytope. Gar-
ber and Wolf (2021, Section 1.2) shows more examples where we can compute nearest extreme points.
The 0-1 polytope case is given there only for the />-norm, and Proposition 5 extends it to £,-norms.

We turn to how to sample y € ) such that E[y | Z = 1] = yq(0) in Step 5. This is also easy in
multiclass classification: we sample i € [d] with probability proportional to the ith entry of Yo (0)

13. While Van der Hoeven (2020) uses a similar mixing strategy, a difference lies in the definition of g, which is crucial
for shaving the O(d) factor in the case of online multiclass classification. See Section 5 for a detailed discussion.
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Algorithm 2 Learning procedure for online structured prediction

Input: Alg with domain WV and decoding function ¢ q (Algorithm 1)
1: Set W to the all-zero matrix
2. fort=1,...,T do
3:  Receive x; and compute 68; = Wix;

Play y; = 1¥q(6;) and observe y;

Send S; (or (x4, y;)) to Alg and get Wy 1 in return

AN

and set y = e;. In general, if we have a convex combination of extreme points of conv())) that
equals Yo (@), we can sample y by choosing an extreme point with a probability of the corresponding
combination coefficient. Such a convex combination can be obtained by applying a Frank—Wolfe-type
algorithm to min{ ||y — ga(0)||3 : y € conv(Y) }, as considered in Combettes and Pokutta (2023)
(or, we may directly compute yq (6) with a Frank—Wolfe-type algorithm). In particular, given that we
can efficiently compute nearest extreme points as discussed above, we can use the linearly convergent
Frank—Wolfe algorithm of Garber and Wolf (2021, Theorem 5), which returns an e-approximation of
7a(0) as a convex combination of only O(M In(d/<)) extreme points (typically, M = O(d?)).

4. Surrogate Regret Bounds for Online Structured Prediction

We analyze the surrogate regret for online structured prediction. To simplify the notation, let
Li(y) = L(y; y:) and Sy (W) = Sq(W x; y;) be the target and surrogate losses in the ¢th round,
respectively. We also use [E; to represent the expectation taken only with respect to the randomness
of the randomized decoding to produce ¥; in the tth round, i.e., [E; is conditioned on ¥y, ..., Y;_1.
The learning procedure is summarized in Algorithm 2. In each ¢th round, the learner receives x,
computes 8; = Wy xy, plays y; obtained by decoding 6;, and observe y;. The learner updates W;
using an online convex optimization algorithm, denoted by Alg, with domain »V and loss function S;.
Below, we assume that V contains the all-zero matrix and set W7 to it for convenience.

As with Van der Hoeven (2020), we here use the online gradient descent (OGD) with a constant
learning rate 7 > 0 as Alg; we discuss using other online learning methods in Appendix E. This
OGD achieves the following regret bound for any U € W (Orabona, 2023, Theorem 2.13):

- U, 7y )
> (Si(Wy) = S(U)) < 5n T35 > IVS(Wh)|z- (D
i 2
t=1 t=1
The next proposition highlights how to obtain a template of finite surrogate regret bounds by learning
W, with this OGD and exploiting the surrogate gap.

Proposition 6 Assume that there exist constants a € (0,1) and b > 0 satisfying the following
conditions fort = 1,...,T: (i) E[Li(t)] < (1 — a)S:(Wy) and (ii) || V.S (Wh) |3 < bS (W), 14
Let Alg be OGD with learning rate n = % min{ %, a}. Then, it holds that

T T
-~ (1 - a)b||U|f
E¢|Le(ye)| < S (U - - .
; ) ; )+ 4(1—m1n{%,a}) mln{%,a}
A)

14. Surrogate losses satistying this inequality are said to be regular in Van der Hoeven et al. (2021).
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2
Proof By substituting (ii) into (1), we have Zthl(St(Wt) - S5:(U)) < % + %b ST S{(W).
Noting %b < 1, we rearrange the terms to obtain a so-called L* bound (Orabona, 2023, Section 4.2.3),
whose right-hand side depends on Zthl S¢(U) as follows:

T _1 9 T
So(siwi) - suo) < (1- ) (”U”F oy &(U)).

t=1 27’ t=1

Combining this with (i) implies that the surrogate regret, Z?Zl E¢[Li(ye)] — Zthl S¢(U), is at most

T
(1-a) ) (Se(W) - S _aZSt
t=1
-1 -1 T
b\ " Ul nb\ " nb
<(1- 1— = — = —(1— 1— = — .
<a-a(i-F) G- (e-u-a(1-3) §)Tsw)
Since ”—b < aimpliesa — (1 —a ( %) >, ignoring the second term does not decrease

\ N

the right-hand side. Substituting 7 = 7 m { 55 a} into the first term yields the desired bound. W

The last part in the proof highlights the fundamental idea for achieving a finite surrogate regret bound:
offsetting the increase in the regret of OGD, which originates from 3 23:1 VS (W)||% in (1),
with the cumulative surrogate gap, a Zthl S¢(U), by setting 7 to a sufficiently small value. This is
based on the original idea of exploiting the surrogate gap by Van der Hoeven (2020). The crux of
this fundamental idea lies in conditions (i) and (ii) in Proposition 6, which we will verify by using
Lemma 4 and the properties of the Fenchel-Young loss in Proposition 3, respectively. Consequently,
we obtain the following finite surrogate regret bound in expectation for online structured prediction
with Fenchel-Young losses, which is the main result of this paper.

Theorem 7 Let 1q be the randomized decoding given in Algorithm 1 and C' > 0 a constant with
maxe(r)l|zel2 < C.IFA > 477 holds and Alg is OGD with learning rate n = ﬁ min{ L1- —}
forany U € W, it holds that

T T

~ om 212U |12
S EL(@)] <) SuU) + 4 [Tl
t=1

-1 A2y (1—111111{1 1—7}) min{%,l—%}.

Proof Since Lemma 4 implies E;[L;(y;)] < /\V 1 S(W4), condition (i) in Proposition 6 holds with
a=1- % € (0,1). Furthermore, Proposition 3 implies V.S;(W;) = (ya(6;) — y;)x,; and

19a(6:) — yil|*> < 3Si(W;); combining them with |lyz ||} = tr(z @y y) = |/3]yl3.
|z¢[]2 < C, and ||-||]2 < ]| yields
2 ~ 2. .2 2 02 2
IVSUW)IIE = 170(6:) — yell3]|@:]3 < C*K2||ga(8:) — yell” < St(Wr).

Thus, condition (ii) with b = % holds. Therefore, Proposition 6 provides the desired bound. W

10
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It is also worth mentioning that the above OGD is parameter-free in the sense that the learning rate n
is tuned without any knowledge of U or the size of domain WV (cf. McMahan and Streeter (2012b),
Orabona (2013), and Cutkosky and Orabona (2018)).!15 However, the constant learning rate may
result in poor empirical performance, particularly whena = 1 — j\l—z is very small. Appendix E.2
shows that we can alternatively use a parameter-free algorithm of Cutkosky and Orabona (2018) to
achieve a finite surrogate regret bound.

High-probability bound. Similar to Van der Hoeven et al. (2021), we can obtain a finite surrogate
regret bound that holds with high probability. Define random variables Z; := L;(y;) — E¢[Li(y:)]
fort =1,...,T, where the randomness comes from the randomized decoding. A crucial step is to

ensure that the cumulative deviation 3"/, Z; grows only at the rate of 1/, S;(U), in which
Lemma 4 again turns out to be helpful. Once it is shown, we can obtain a high-probability bound by
offsetting the regret of OGD, plus Zthl Zy, with a Zthl S¢(U). See Appendix F for the proof.

Theorem 8 Assume the same condition as Theorem 7 except for the learning rate of OGD, which
we here set as 1) = §. Let D be the diameter of conv()) in terms of ||| and 6 € (0, 1). Then, with
probability at least 1 — 6, for any U € W, it holds that

T

T -1 2.2 2
- 4 8vC2k2|U 1
S L@) <Y S(U) + <1 AZ) <7)\21|/|HF+7D1n5).
t=1

Remark 9 (The case of adaptive adversary) Theorem 7 remains true even against an adaptive
adversary since Lemma 4 ensures that condition (i) in Proposition 6 holds for any adaptive sequence
(x1,Y1),...,(xr,yr) and the regret bound of OGD in (1) applies to the adaptive case as well. The
high-probability bound in Theorem 8 also remains valid in the adaptive case since an additional
concentration argument used in the proof is irrelevant to the adversary’s type.

Remark 10 (Asymptotic behavior when a — 1) The surrogate regret bound (A) in Proposition 6
simplifies to % ifa < 1/2andto (1—a)b|U||% ifa > 1/2, where the latter expression is smaller
when a > 1/2. Notably, the bound vanishes when a — 1. This property has not been observed in
previous studies (Van der Hoeven, 2020; Van der Hoeven et al., 2021), and we have obtained this by
taking advantage of the L* bound. Note that (i) in Proposition 6 implies that E;[L.(y;)]/ S:(Wy) goes
to zero when a — 1. Therefore, this asymptotic behavior reflects a rationale that the surrogate regret
bound should vanish when the target loss scales down relative to the surrogate loss. As in the proof of
Theorem 7, 1 — a and b are proportional to 1/ )\, and hence the surrogate regret bound in Theorem 7
vanishes at the rate of 1/\2. The high-probability surrogate regret bound in Theorem 8 also decreases
at the rate of 1/ )2, while the yD In % term persists as it comes from the randomness of the decoding.
Here, we can increase or decrease \ by scaling up or down the regularization function §) generating
the Fenchel-Young loss (see also Section 4.1), although increasing \ generally leads to larger Sy(U).

4.1. Application to Specific Problems

Theorems 7 and 8 provide finite surrogate regret bounds for various online structured prediction

problems that satisfy Assumption 1 if A > 477 (ora =1-— % > 0) holds, which requires €2

15. The line of work on parameter-free learning achieves regret bounds that depend almost linearly on the comparator’s
norm via non-trivial techniques. Compared to this, achieving the surrogate regret bound depending on ||U||% is easier.

11
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generating the Fenchel-Young loss to be sufficiently strongly convex. Notably, this requirement is
automatically satisfied in the case of multiclass classification with the logistic loss (see Section 5). In
the multilabel classification example in Section 2.3, we have v = 1, v = ﬁ, and \ = 1; therefore,
A> 477 holds if d > 16.'¢ In general, we can take advantage of the Fenchel-Young loss framework
to satisfy A > 477: since we may use any function € = U + I, (y) to generate a Fenchel-Young
loss, we can scale up V¥ to satisfy A > 477 if necessary. In the ranking example in Section 2.3, we
have v =4, v = %, and A = #, where 11 > 0 controls the scale of ¥ = —%HS. Thus, A > 477
holds if 1 < 2. Note that the dependence of A on v is inevitable because the surrogate loss encodes
no information about the target loss per se. Nonetheless, we can scale A to satisfy A > 477 as v is

often lower bounded: v > 1 holds if ) C Z< and ||-|| is an £,-norm, and v > ol/p if y 1 is constant.

4.2. Online-to-Batch Conversion

We discuss converting surrogate regret bounds to guarantees for offline structured prediction. In
general, surrogate regret bounds may not admit online-to-batch conversion because we cannot apply
Jensen’s inequality to non-convex target loss. In our case, Lemma 4, which bounds target loss by
convex surrogate loss, enables us to sidestep this issue, leading to the following result.

Theorem 11 Assume the same condition as Theorem 7. If (x1,Y1), - .., (T, yr) are drawn i.i.d.
from an underlying joint distribution on X and Y, for any U € W, it holds that

A7 1 INC2:2(|U |12
E[L(vo(Wa);y)] < E[So(Um;y)] + = - gl 4H IR —
>\2y<1 - min{%, 1- T3}) min{%, 1 Tz}

where W = % Zthl W, is the average of outputs of Alg.

The above bound differs from common excess risk bounds studied in statistical learning, and hence
comparing them directly is difficult. However, since (super) fast convergence for structured prediction
has been already established by Cabannes et al. (2021), we do not think the bound in Theorem 11
itself is of particular significance. Nonetheless, Theorem 11 offers a better understanding of the
relationship between online learning guarantees based on the surrogate regret and statistical learning
theory with margin conditions. We present the proof of Theorem 11 in Appendix G.1 and discuss a
connection to excess risk bounds in Appendix G.2.

5. Improved Surrogate Regret for Online Multiclass Classification with Logistic Loss

We present an O(||U||%) surrogate regret bound for online multiclass classification with the logistic
loss by using our general result for structured prediction, thereby improving the O(d||U||%) bound
of Van der Hoeven (2020). In this section, we let Y = {ey,...,eq} and ||-|| = |||l We have k = 1
since ||-||1 > ||-||2. The target loss is the 0-1 loss, L(y’; €;) = 1,.¢,. Note that we have v = 2 and
~v = 1/2, as explained in Section 2.3. We use the same logistic loss as that used by Van der Hoeven
(2020). Specifically, for any 8 € R? and e; € ), we define the logistic loss as

Slogistic (07 ei) = —logy Ui(0)7

16. Note that the target loss is scaled to [0, 1]. If not scaled, we need to scale up W to satisfy A > 4v/d.

12
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exp(6;)
351 exp(6))
Young loss up to a constant factor. For any y € A?, let {2 be an entropic regularizer given by

Uy) = —H(y) + Lpa(y). (2)

The Fenchel-Young loss generated by this €2 is Sq(6;e;) = —Ino;(0) (see Blondel et al. (2020)),

hence Siogistic(0; €i) = 1n259(9 e;). Moreover, 7o (0) equals (o1(6), ...,04(0))", which we can

efficiently compute in the randomized decoding (Algorithm 1) without iterative optimization methods.
By applying Algorithm 2 to the above setting, we obtain the following surrogate regret bound.

where 0,(0) = is the softmax function. This logistic loss is expressed as a Fenchel—

Theorem 12 Let 1)q be the randomized decoding given in Algorithm I with the entropic regularizer

Qin (2) and C > 0 a constant such that maxcr)||zt|2 < C. If we apply OGD withn = (1712,%
to loss functions Si(W') = Siogistic (W yi) (t = 1,...,T), forany U € W, Algorithm 2 achieves

T
C?|U|[%
ZEt gitu] < Z 2(1—In2)In2’

Proof The proof resembles that of Theorem 7. From Pinsker’s inequality, —H® is 1-strongly convex
wirt. |1 over A7 (ie., A = 1). Thus, E[L(Ya(8):y)] < §1Sa(8:y) = “T5* 2 Siogiseic(6; )
holds due to Lemma 4, leaving a surrogate gap witha =1 —1In2 € (0,1/ 2) n Proposmon 6 We

also have HVSt(Wt) 12 < 2C° §,(W;) due to Van der Hoeven (2020, Lemma 2), i.c., b = ln2 By

n2 5
(1-In2)In2 bIIU I C?|U|I

setting n = ? = “—2 ., Proposition 6 implies the desired bound of — " = 512 In2" |

Difference from Van der Hoeven (2020) and Van der Hoeven et al. (2021). The main technical
difference from the previous studies lies in how to decode 8 € R? to y € ). Specifically, when 8
is not confident about any of d classes, their methods increase the likelihood of choosing a class
uniformly at random (i.e., uniform exploration with probability %1), which yields a surrogate gap with
a= % in Proposition 6 (see Van der Hoeven et al. (2021, Lemma 1)), resulting in the extra d factor.
Our randomized decoding instead returns random y € Y with E[y | Z = 1] = yq(0), which exploits
6 more aggressively and yields a surrogate gap with ¢ = 1 — In 2, thus achieving the improved
bound of O(||U|2).!” Apart from this, the two decoding procedures have distinct pros and cons:
uniform exploration is often extensive for structured spaces,'® while our randomized decoding enjoys
efficient implementations given linear optimization oracles on ), as discussed in Section 3.1. On the
other hand, uniform exploration is applicable to the bandit setting and works with the (smooth) hinge
loss. Investigating how to apply our randomized decoding to the bandit setting and how the resulting
bound compares with the state-of-the-art (Van der Hoeven, 2020; Agarwal et al., 2022) will be an
interesting future direction, whereas applying the randomized decoding to the (smooth) hinge loss
seems difficult, as discussed in Footnote 9.

Finally, we give a lower bound showing that Theorem 12 is asymptotically tight up to In d factors
if |[U||r = O(B) holds for the ¢2-diameter B of the domain V. The proof, deferred to Appendix H,
is inspired by that of Van der Hoeven et al. (2021) for obtaining an ©(dB?) lower bound for the
smooth hinge loss, which we modify to deal with the logistic loss.

17. The dependence on C'is identical in our bound and that of Van der Hoeven (2020).

18. For example, if ) consists of perfect matchings of a (possibly incomplete) bipartite graph with n vertices, the current
fastest fully polynomial almost uniform sampler takes O(n” Inn) time (Jerrum et al., 2004; Bezdkovi et al., 2008),
which is known to be impractical (Newman and Vardi, 2020).

13
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Theorem 13 Let d > 2. For B = Q(In(dT")), there exists a sequence (x1,Y1), - .., (®T,yr) such
that |z¢||s = 1 fort = 1,...,T and any possibly randomized algorithm incurs an Q(B?/1n? d)
surrogate regret with respect to the logistic surrogate loss.

Logistic vs. smooth hinge. As mentioned in Section 1, larger surrogate loss makes it easier to bound
the surrogate regret. Thus, considering the (nearly) tight bounds of O(|U||%) and O(d||U ||%) for the
logistic and smooth hinge losses, respectively, one may think that the logistic loss is always larger than
the smooth hinge loss. However, this is not the case. For example, consider a binary classification
setting with ) = {ey, e}, where e; is the ground truth. If an estimator U yields (0y,6,)" = Uz,
with 0; — 02 = 0.3, the logistic and smooth hinge losses take logy(1 + exp(f2 — 1)) ~ 0.8 and
max{1 — (6; — 62)2,0} =~ 0.9, respectively, implying that the logistic loss is not always larger than
the smooth hinge loss.
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Appendix A. Literature Review of Structured Prediction

In this literature review, the term “(surrogate) regret” refers to the (surrogate) excess risk.

Earlier studies investigated statistical inference on conditional random fields (Lafferty et al., 2001),
max-margin models (Bartlett et al., 2004), and spanning trees (Koo et al., 2007). Tsochantaridis
et al. (2005) is a seminal work to provide a general framework based on loss functions for structured
prediction problems by extending support vector machines. Independent of the development of
SparseMAP (Niculae et al., 2018), Pillutla et al. (2018) proposed a tractable algorithm to optimize
the structured hinge loss by introducing a smoothed decoder.

With the SELF framework (Ciliberto et al., 2016, 2020), regret bounds depend on the spectral
norm of V', which may be exponential in the natural dimension of the output space. To address this
issue, Osokin et al. (2017, Appendix E) improved the surrogate regret bound of the quadratic loss
for specific target losses such as the block 0-1 and Hamming losses, showing that the dependency
of the surrogate regret on the matrix norm can be lifted. Nowak-Vila et al. (2019, Theorem 3.1)
systematically extended this result to many multilabel and ranking target losses by obtaining low-rank
decomposition of V' in SELF for those losses. Moreover, Nowak-Vila et al. (2020) established the
surrogate regret bounds beyond the quadratic loss, for max-margin surrogate losses generated by the
Fenchel-Young losses; Nowak-Vila et al. (2022) studied necessary conditions of a structured target
loss for max-margin losses to be Fisher consistent. Cabannes et al. (2020) elucidated that partial
label learning, a type of learning problem with ambiguous structured inputs, can be cast into the
framework of the regularized least-square decoder and established the surrogate regret bound for the
target loss called the infimum loss, encompassed into SELF. Recently, Cabannes et al. (2021) showed
fast convergence rates for the excess risk of SELF under a generalized Tsybakov margin condition;
in particular, their result implies exponential convergence in the number of samples under the hard
margin condition. Li and Liu (2021) studied generalization bounds for surrogate losses, which imply
a fast convergence rate when surrogate losses are smooth.

Apart from the aforementioned studies, another stream of research has studied the consistency of
structured prediction problems via polyhedral losses. Finocchiaro et al. (2019) and Thilagar et al.
(2022) studied the consistency of classification with abstention, top-k prediction, and Lovasz hinge
loss; Wang and Scott (2020) studied the consistent target loss of the Weston—Watkins hinge loss.

The literature is scarce when it comes to the online setting (except for online multiclass classifica-
tion discussed in Section 1.1). Martins et al. (2011) studied an online learning approach to structured
prediction with multiple kernels based on standard regret bounds for convex surrogate losses.

Appendix B. Note on CRF Loss

We confirm that the Conditional Random Field (CRF) loss (Lafferty et al., 2001) satisfies Proposi-
tion 3. Consequently, we can treat it as a specific Fenchel-Young loss to obtain the results presented
in the main text, similar to the logistic and SparseMAP losses. Although the following discussion is
elementary, we include it for completeness.

Below, ) is equipped with some total order and the components of any |)/|-dimensional vector are
arranged in the same order. As detailed in Blondel et al. (2020, Section 7.1), the CRF loss is a Fenchel—
Young loss generated by Q(y) = min{ —H*(p) : p € AVl Ey,[Y] =y }. For any § € R?
and y € Y, the resulting CRF loss is expressed as Sq(0;y) = —In(exp((0,y))/Z(0)), where
Z(8) = >_,cyexp((0,y)) denotes the partition function. The regularized prediction is uniquely
determined by the marginal inference: yo(0) = 3, <y, (exp((0,y))/Z(6))y. Thus, the gradient,
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VSa(0;y) = ya(0) — vy, is also unique. In what follows, we prove Sq(6;y) > %H@g(@) —y|?
for A := 1/ max{ ||ly||? : y € Y } to establish Proposition 3. If ¥ C {0, 1}%, this A is at least 1/d>.

First, let us observe that for any 8 € R9, the CRF loss can be seen as a logistic loss defined
on RYI by associating each y € ) with a score (0, y) € R. Specifically, let s(8) € RMI denote a
vector whose component corresponding to y € ), denoted by s,,(80), equals (8, y). Then, we have
Sa(0;y) = —In(exp(sy(0))/ >, cy exp(sy (0))). By regarding this as the logistic loss of s(6),
the Pinsker’s inequality (or Blondel (2019, Proposition 2)) implies

1
Sa(6:y) > 5llo(s(0)) — ey i, 3)

where o : Rl — APl is the softmax function, i.e., oy (5(8)) = exp(sy(0))/ > yrey €xXp(sy (9)),
and ey € Rl is the standard basis vector that has a single one at the component corresponding to .

Next, we show ||o(s(0)) — ey |7 > A||ga(0) — y||3, which combined with (3) yields the desired
inequality. To see this, let A be the d x || matrix with column vectors y € ) aligned horizontally
in the same total order. We have yn(6) = Ao (s(0)) and y = Ae,, and hence

190(0) =yl = [[A(a(s(8)) —ey)[l1 < [|A]l1]lo(s(8)) — eyl

Here, ||A||; is the operator norm of A between the ¢;-normed spaces, i.e., the maximum ¢;-norm of
the columns of A. Thus, we have || A||; = 1/v/, and hence [|o(s(8)) — ey |7 > \|Fa(0) — y|3.

We remark that the marginal inference for computing ¢y (€) is sometimes intractable, which has
motivated the development of SparseMAP (Niculae et al., 2018). We refer the reader to Blondel et al.
(2020, Section 7.3) for a discussion on the computational complexity.

Appendix C. Additional Applications

We discuss additional applications considered in Blondel (2019). For simplicity, we below let ||-|
be the ¢3-norm and Sy, the SparseMAP loss generated by Q(y) = %HyH% + Leonv(y) (), as in the
multilabel classification example in Section 2.3; hence, we have A = 1. We will confirm the condition
of A > 47”’ in Theorem 7 and discuss the implementation of randomized decoding (Algorithm 1).

C.1. Ranking with Permutahedron

We consider another ranking scenario with different ). Let ) C Z4 be the set of all points obtained
by permuting (d,d —1,...,1)T € Z%. Then, conv()) is the so-called permutahedron. Since y' 1
is constant for all y € ) and ||-|| is the £3-norm, we have v = /2. We consider measuring how
predicted y’ € conv()) is aligned with the true y € Y by (y,y — '), which takes 0 if y’ = y and
M = @ for the least aligned y’. Based on this idea, we use a target loss defined by L(y'; y) =
ﬁ(y, y—1v') € [0, 1], which is affine in ¢y’ and satisfies L(y'; y) < ﬁ lyll2lly =4 |2 = Ylly— ']
for v = d—% %. Therefore, \ > 477 holds for d > 3.

We provide an efficient implementation of randomized decoding (Algorithm 1) for this setting. To
this end, we show that a similar claim to Proposition 5 holds, though conv()) is not a 0-1 polytope.

Proposition 14 Let y' € conv(Y) and 7 be a permutation on [d] such that y;(l) <... < y;(d). It
holds that y* := (m~1(1),...,771(d))" € argmin{ |y — ¥'||, : y € Y }, where p € [1,+00).
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Proof Let p < oo; the case of p = oo follows by taking the limit p — oo in what follows. Suppose
that there exists a nearest point y € Y to y’ such that y; > v} and y; < y; for some 7, j € [d], which
implies y; — y; < y; — y;. Since y; — y; and y; — y; are contained in [y; — y;,y; — y], we have
lyi — yil? + ly; — y5|P > yi — ¥ P + |y; — y;|? by the convexity of x + |x|P. Thus, letting § € Y
be a point obtained from y by swapping the ¢th and jth components, we obtain

ly =115 = lyi — GilP + lys — w517+ > lve — wilP
y
> G — il + 15— P+ D 1k — il = g — |15,
y

meaning that ¢ is also a nearest point to y'. Therefore, there must exist a nearest point such that its
components have the same order as those of 4/, and any such points have the same distance to y'.
Consequently, y* is a nearest point to y’ with respect to ||-||, among all y € ). [ |

Proposition 14 means that we can compute a nearest extreme point y* € ) to any giveny’ € conv()))
by sorting the components of y’ in O(d In d) time. Armed with this, we can use the fast Frank—Wolfe
algorithm of Garber and Wolf (2021) to compute ¢y (€) and a convex combination of extreme points
for sampling y with E[y | Z = 1] = yq(8), as described in Section 3.1.

C.2. Ordinal Regression

We consider ordinal regression with binary outputs satisfying y; > - -- > y4. The output space is
Y ={0,ej,e; +ey,...,e1+ -+ ez} Since ||y — y'||]2 > 1 for any distinct y,y’ € YV, v =1
holds. The target loss considered in Blondel (2019) is the absolute loss ||y’ — y||1. Scaling it to [0, 1],
we can express it on conv()) for any y € ) in the same way as the Hamming loss in Section 2.3:
Ly y) = é((y’, 1) + (y,1) — 2(y’, y)), which is affine in y’ and upper bounded by ﬁ”y’—yng,

hence v = ﬁ. Thus, A > 477 holds for d > 16, as with the case of multilabel classification.

Since ) C {0, 1}d holds in this case, an efficient implementation of randomized decoding is
available, as discussed in Section 3.1.

Other potential applications. Due to the generality of our randomized decoding, we expect that
our method is potentially useful for learning tasks involving general linear optimization problems
(Elmachtoub and Grigas, 2022; Hu et al., 2022). Application of Fenchel-Young losses to similar
tasks is studied in Berthet et al. (2020). We leave the investigation of this direction as future work.

Appendix D. Lower Bound on Constant Factor in Lemma 4

Lemma 4 ensures that for any (0,y) € R% x Y, the randomized decoding ¥q (Algorithm 1) achieves
E[L(va(0);y)] < ¢- 1L, Sa(0;y) for c = 4. We show that the multiplicative constant ¢ cannot be
smaller than 2/1n 2 ~ 2.89 in general, suggesting Lemma 4 is nearly tight. To see this, we again
use the binary classification example in Section 3. Let ) = {e1, ez}, y = e; be the ground truth,
and @ = (61,02) = (1,1 + In(2'+¢ — 1)) for sufficiently small € > 0, which slightly favors e, by
mistake. As explained in Section 2.3, if ||-|| is the ¢;-norm, we have v = 1/2 and v = 2. Also, as
detailed in Section 5, if {2 is the entropic regularizer given in (2), we have A = 1, and the regularized
prediction is given by the softmax function, i.e., Yo (@) = (1,exp(62 —01))/(1+exp(62 —01)). The
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resulting Fenchel-Young loss is the base-e logistic loss, hence Sq(0;e1) = In(1 + exp(f2 — 61)).
Substituting the above 0 into Yo (@) and S (0; e1), we obtain

~ 1 1
ya(0) = (W’ 1-— 21%) and Sq(0;e1) =(1+¢)ln2.

We then calculate the expected 0-1 loss. Since the closest point to Yo (0) in ) is y* = eo, it holds
that A* = |lea — ya(0)||1 = 1/2°, and hence p = min{1,2A* /v} = 1/2° for ¢ > 0. Recall that
the randomized decoding returns y* = e with probability 1 — p, or a random ¥y with probability p.
Since ¥ is drawn from ) to satisfy E[g | Z = 1] = y(8), we have g = e; with probability 1/21+¢
and e, with probability 1 — 1/2'+¢. Therefore, the expected 0-1 loss is

E[L(¥a(0);y)] = (1 —p)L(ez;e1) + pE[L(y;e1) | Z = 1]

1 1 1 1 1

To ensure that Lemma 4 holds in the above setting, we need

v E[L(a(0)iy)] _, 11— g

~ v Sa(6y) 0 (14+e)n2’

The right-hand side converges to 2/In 2 as e — +0, implying ¢ > 2/1In 2 ~ 2.89.

Appendix E. Bounding Surrogate Regret with Other OCO Algorithms

While we have obtained finite surrogate regret bounds using OGD with the constant learning rate, it
may not perform well in practice since it does not utilize information from past rounds. Below, we
demonstrate that we can achieve finite surrogate regret bounds with more practical OCO algorithms.
Specifically, Appendices E.1 and E.2 discuss using OGD with an adaptive learning rate and a
parameter-free OCO algorithm, respectively. In terms of theoretical guarantees, however, the results
presented below are weaker than those obtained in the main text by using OGD with the constant
learning rate: the result in Appendix E.1 is not parameter-free, and the surrogate regret bound in
Appendix E.2 is asymptotically larger by a logarithmic factor and does not vanish when a — 1.

E.1. OGD with Adaptive Learning Rate

Leta=1-— 47 and b = QC/\” as in the proof of Theorem 7. Assume that a domain WV with an
£o-diameter of B > (0 is given. We consider using the online gradient descent on WV with an adaptive
learning rate as Alg, where the learning rate in the ¢th round is set to B/ \/ 23T IVSi(W, ol

(McMahan and Streeter, 2010; Duchi et al., 2011). Due to ||[VS;(W;)||% < bSi(W3), this OGD
achieves the following L* bound for any U € W (Orabona, 2023, Theorem 4.25):

(S¢(W;) — Sy(U)) < 2bB* + 2B

MH

20 " S,(U). “4)

t=1

,ﬁ
Il
—

If we learn W; with this OGD, we can achieve the following expected surrogate regret bound.
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Theorem 15 Let 1 be the randomized decoding given in Algorithm I and C > 0 a constant such
that max,cr)||z¢||2 < C. If Alg satisfies (4) and X > 477 holds, for any U € W, it holds that

T T -1 2,202
e 4 16fyC B
E < E _

Proof Since we have E;[L;(y:)] < (1 — a)S:(W;) due to Lemma 4, it holds that
T T T

> Ei[Ly(F Z (1—a)> (SiWy) = SuU)) —a > _ S(U)
=1 t=1

t=1

Substituting (4) into the right-hand side implies that the surrogate regret is at most

2B R2
(U) < 2(1 - a)bB? + 2(1 —a)"bB"
a
2(1 — a)bB?
==

where the inequality comes from /c;z — cox < 4%12 (Vx > 0) for ¢q, ca > 0. The desired surrogate

regret bound follows froma = 1 — % and b = % |

Similar to the bound in Proposition 6, it vanishes when a — 1. However, as described above, tuning
the learning rate requires the knowledge of the domain size, 5B, hence no longer parameter-free.

E.2. Parameter-Free Algorithm

In the previous section, we have assumed that the /2-diameter B of the domain WV is known a priori.
In practice, however, we rarely know the precise size of VV containing the best estimator U in
hindsight. A common workaround is to set B to a sufficiently large value, but this typically results
in overly pessimistic regret bounds. Parameter-free algorithms (McMahan and Streeter, 2012b;
Orabona, 2013; Cutkosky and Orabona, 2018) are designed to avoid this issue by automatically
adapting to the norm of U. While OGD with the constant learning rate is also parameter-free in our
case, parameter-free algorithms studied in this context would be more practical.

We consider using a parameter-free algorithm of Cutkosky and Orabona (2018, Section 3) as Alg
instead of OGD. Their algorithm enjoys a regret bound depending on g;.7 = Z;‘FZI V.S (W) |3,
which is helpful in the subsequent analysis. Specifically, the bound on ZtT:l(St(Wt) —S:(U)) is

O(’UHFHI&X{\/QL (H HFng +1) In HHFng}""HUHF /ng_|_6>

where € > 0 is an initial-wealth parameter specified by the user. We let e = 1 for simplicity. Then,
omitting lower-order terms, the regret bound of Alg reduces to

O(”U”F\/QLT IH(HUH%QLTH)). 5)
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Compared with the standard regret bound of OGD, the dependence on g;.7 is worse by a factor of
v/In g1.7, which is inevitable in parameter-free learning (McMahan and Streeter, 2012b; Orabona,
2013). This makes the analysis for exploiting the surrogate gap a bit trickier. The next lemma offers
a helpful inequality for exploiting the surrogate gap with the parameter-free regret bound (5).

Lemma 16 Leta,b,c > 0. Forany x > 0, it holds that
b b
—az + \/bxrIn(cx + 1) < % In 5 5 +1)+nc+1)) +a

Proof Let f(z) = —ax + y/bx In(cx 4 1). Since f is continuous and goes to —oo as © — o0, it
suffices to show that f is bounded as in the lemma statement at any critical point 2*. The derivative of

fis fl(x) = —a+ \/EM , and hence any critical point z* satisfies \/bz* In(cx* + 1) =
zIn(cx+1)
2 (cx*—H + In(cx* + 1)) Thus, we have
b * b b
f(z*) = —ax* + o (Cxix+ T+ In(ex™ + 1)) —az” + % +5, ln(cx +1). (6)

If ¢ < 1, the right-hand side of (6) is at most —ax™* + % + % In(z* 4 1), and inspecting its derivative
with respect to 2™ readily shows that the following inequality holds for any * > 0:

b b b b
—ar* + —+ —In(z* +1) < 2max{ln<2 2) 0}+a. (N

2a  2a a

If ¢ > 1, the right-hand side of (6) is at most —az™ + 2 =t 3a o ~In(z* +1)+ b > In ¢, and the sum of the
first three terms is bounded as in (7). Thus, f(z*) < £ 1rnax{1n(2a2 ) 0} —|— 2 max{ln(c),0} +a
holds in any case. By using max{In z,0} < In(z + 1) for z > 0, we obtain the desired bound. W

Now, we are ready to obtain a finite surrogate regret bound with the parameter-free algorithm.

Theorem 17 Suppose 1Vq and C' to be given as in Theorem 7. Fix any U € W, where YV is some
domain. Let Alg be the parameter-free algorithm that achieves the regret bound given in (5) without
knowing the size of W (or ||\U ||r). If A > 477, it holds that

T T
o [UNEC?s* | (IU][EC*AA
;Et[Lt(yt)];st(UHo( Sy 1 ((A_WV)Q +1>>.

Proof Leta =1 — % € (0,1)and x = Y1, S;(W}). As in the proof of Theorem 7, we have

T
Z Et Lt yt St(Wt)) S —ax (8)
t=1
and .
202 K?
o = SIVSUWOIR < = e ©)
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Substituting (9) into the regret bound (5) and using (8), we can bound the surrogate regret as follows:

T
> ElLi(gr)] -
t=1

T T
U)= Z(Et[l/t(gt)] — S (Wh)) + Z(St(wt) - S (U))

t=1 t=1
2022 202k
< —aaz+CA|g||U||F\/ S z ln <]U||F a:+1>7

where cA|g > ( is an absolute constant hidden in the big O notation in (5). By using Lemma 16 with

a=1-— E’ b= (:A|g||UH2 20°%2 and ¢ = U 2C 5 we can upper bound the surrogate regret by

2b <ln<2b2 + 1) +In(c + 1)) +a

11
R
|

Ull202 k2 Ull2.02 k2 Ull202 k2
- = 4 2 A

7 A( - i)

Av

22,2 22,2

< of Wik [wRey )|

~ A — b 4~ 2

7 ()\ - 7)
where the asymptotic inequality is due to 1 — 52 < 1. Thus, we obtain the desired bound. |

Note that the bound in Theorem 17 depends on |U || and is free from B, in contrast to the bound in
Theorem 15. However, the bound does not vanish whena =1 — j\% approaches 1.

Appendix F. Proof of Theorem 8

We prove the high-probability surrogate regret bound. Recall that Z; fort = 1,...,T are random
variables defined by Zt = Li(y:) — Ey [Lt(gjt)]

Proof Leta =1— 3L € (0,1) and b = 20 52 >0, as in the proof of Theorem 7. We decompose
the surrogate regret, thl Li(g) — S, St( ), as follows:

T

T
> (Le(@e) — BeLe(@o)]) + D (Bl Le(Gr)] — Se(U)). (10)
t=1

t=1

Letn = %b = 5 < 1. As in the proof of Proposition 6, the second term in (10) is at most

oo 2) o uno ) %) s
L WU (e NS,

Below, we derive an upper bound on the first term in (10). Note that the first term equals Zthl Zy.
Since Assumption 1 implies 0 < L;(y) < D forany y € Y, we have | Z;| < vD, hence E;[Z?] <

1D
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< 9205, (W) =
(1 — a)yDS(W,). By applying Bernstein’s inequality (see, e.g., Cesa-Bianchi and Lugosi (2006,
Lemma A.8)) to the bounded martingale difference sequence 21, . .., Zr with bounded variance, for
any ¢ € (0, 1), with probability at least 1 — 4, it holds that

E¢[Li(9:)?] < vDE¢[L¢(y)]. Combining this with Lemma 4 yields E[Z7] <

T T T
1 V2 1 V2
E Zt < 2(1 — a)yD t:E 1 St(Wt) In g—F?’}/D In g = 1 - a gz Wt "’ Cy (12)

where we let { =vDIn % for simplicity. Also, the L* bound in the proof of Proposition 6 implies

T - T
ZSt(Wt) < <1 — 772[)) 1 <HU’% + th(U)> _ 1 / bHUHF 1 ZSt
t=1

2n = L—n' 4

Substituting this into (12) and using the subadditivity of /- imply that the first term in (10) is at most

T
\/c(l—a>,bHUll%+ 261 s o)+ 2 -

1—7 2n'

Therefore, the surrogate regret is bounded from above by the sum of (11) and (13). Since 1’ < a, the
iz — o < 40712 Vx > 0)
for c1, co > 0, we can offset the middle term in (13) with the second term in (11) as follows:

2A(1—a)
Tn, : ZSt(U) - <

t=1

C l—a 1-a
)Zst _2 a—1n  a ¢

By putting everything together, the surrogate regret is at most

2
1_77/ 477/ +7C+TCS E((l_a)bHU”F""C)a

1—a WU, [C0-) bUIR V2, 1-a, 1
1—n 2n' 3

where the inequality is for simplification; we applied AM—-GM to the second term to upper bound it

2
by % + 11__;1, . b”ﬂll’ , used 1 ; < 2 (sincen = § < %), and simplified the resulting coefficient of (.
. . 2 . .
Substitutinga = 1 — E’ b = 20 ,and ( =+yD ln% into it completes the proof. |

Appendix G. Missing Details of Online-to-Batch Conversion
We prove the offline learning guarantee via online-to-batch conversion. We also discuss its connection
to excess risk bounds.

G.1. Proof of Theorem 11

Proof Leta = 1 — 7} and b = , as in the proof of Theorem 7. For any (z,y) € X x ),
Lemma 4 ensures E[ (wQ(Wm) )] < (1 — a)Sq(Wz;y), where the expectation is about the

26



ONLINE STRUCTURED PREDICTION WITH FENCHEL-YOUNG LOSSES

randomness of 1. Let p denote the joint distribution on X’ x ). Since Sq(W x;y) is convex in W,
Jensen’s inequality implies that the expected target loss, E[L(1q(Wx); y)], is bounded as follows:

LE [E[LeWa)y) |z,y]] <(1-a) E [So(Wa;y)]

Furthermore, since W; depends only on (s, ¥s)s<¢, the law of total expectation implies E[S;(W)] =
E[Sq(Wix; y)] (see, e.g., Orabona (2023, Theorem 3.1) for a similar discussion); also, E[S;(U)] =
E[Sq(Ux;y)] holds for any fixed U € W. Therefore, it holds that

E[L(Yo(Wx);y)] — E[So(Uz; y)]

T T
<(1-a) =Y ESoW;y)] — = Y ElSoUz;y)]
1 t;l 1 . t=1
= (L=a) = > E[S(Wi)] - = Y _E[S/(U)]
1 t=1 . t=1 .
=7 E|(1—-a) Z(St(Wt) - S(U)) — azst(U)
t=1 t=1
-1 9
§;~(1—a)<1—7§)) “;?L'F

where the last inequality follows frogthhe same discussion as that in the proof of Proposition 6. By
substitutinga = 1 — i—j\ and b = 20% into the right-hand side, we obtain the desired bound. W

G.2. Connection to Excess Risk Bound

We derive fast convergence of the excess risk from the surrogate regret bound in Theorem 11 under
separability and realizability assumptions detailed below. The excess risk that we aim to bound is

E[L(Yo(Wx);y)] — E[L(yo; )],

where v is the Bayes rule. As Theorem 11 bounds the first term E[L (1o (W x); y)] by E[Sq(Uz; y)],
plus an asymptotically vanishing term of O(1/T), it is sufficient to show

1. that yo can be decoded from some linear predictor Uy and satisfies E[L(yo; y)] = 0; and
2. that E[Sq(Uw;y)] = 0 holds for some linear estimator U.
Consequently, these combined with Theorem 11 imply the excess risk bound of
E[L(¥o(Wa);y)] — E[L(yo; y)] = O(1/T).
Below, we design a Bayes rule (or, the best linear estimator and decoder) and check E[L(yo; y)] = 0,

and we confirm E[Sq(Uz; y)] = 0 by using the SparseMAP surrogate loss Sq.
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Let us introduce definitions needed in the subsequent discussion. We define the frontier (or the
decision boundary) in a similar manner to Cabannes et al. (2021) as follows:

F = {0 cRY: larg max, ¢y (0, y)| > 2 }
We also define the normal cone N (y) at y € ) and its boundary E(y) by
N(y) = {0 e R?: vy € conv(Y), 0,y —y) < 0} and

Ey)= |J {6eN@: 6.4/ -y) =0},
veN\ ()

respectively. One can readily confirm F' = J, ¢y, E(y). Let d(0, F) :== min{ |6 — 0'[2: 0" € '}
denote the distance from 6 to F' and D the ¢5-diameter of conv()’). Below is a fundamental fact.

Lemma 18 Lety € Y and @ € N(y). If d(0, F) > t holds for some t > 0, we have (0,y —y') >
tly = y'll2for any y' € Y.

Proof The case of y = 4/ is trivial. Below, we shift y to 0 and prove (0, z) < —t||z||2 for any
ze Y\ {y'} —{y};let N = N(0) and E = E(0). Since z ¢ N, there exists £ € F \ {0} such
that the sum of the angles between @ and £ and between £ and z, denoted by «, 5 > 0, respectively,
equals the angle between 6 and z and o + 8 < 7 holds. Due to £ € E C N, we have 8 > 7/2.
Furthermore, since d(8, F') > t implies d(0, E') > t, we have sin « > t/||@||2. Thus, cos(a + ) <
cos(a+ m/2) = —sina < —t/||0||2 holds, hence (0, z) = ||0]|2]|z]|2 cos(a+ ) < —t||z|]2. W

Assumptions. We assume a variant of the margin condition introduced in Cabannes et al. (2021,
Assumption 3) and a realizability condition. Specifically, we assume there exists a linear estimator
Uy : X — RY satisfying the no-density separation for some margin to > 0, i.e.,

Px(d(Uogz, F) < tg) = 0,

where Py represents the probability with respect to the marginal distribution of p on X. In binary
classification, this is sometimes called Massart’s noise condition. We also require the underlying
distribution p to satisfy a realizability condition that the above Uy satisfies

P(¢(Uoz) =y) =1,

where ¢ : RY — ) is a decoding function given by ¢(Upz) = arg max{ (Upx,y) : y € J } (ties
occur with probability zero due to the no-density separation). Then,  — ¢(Upx) € ) is the Bayes
rule that attains the zero target risk, i.e., E[L(yo; y)] = E[L(¢(Upx);y)] = 0. Therefore, the first
condition is confirmed.

Surrogate loss. To establish the second condition E[Sq(Ux;y)] = 0, we need a surrogate loss
that attains zero for well-separated data. To this end, we employ the SparseMAP loss, which is known
to have a unit structured separation margin (see Blondel et al. (2020, Section 7.4)). Specifically, for
any (0,y) € R? x ), we have S (0;y) = 0if

! 1 / !
<9,y>2ma><{ <9,y>+§Hy—yH§:y 63’}- (14)
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We show that U = %Uo satisfies E[Sq(Ux;y)] = 0. Due to the assumptions and Lemma 18 with
Uox € N(¢(Upx)), for (x,y) drawn from p and any y’ € ), with probability 1, we have

D D 1
(Uoz, ) + S ll6Uoz) —y'll2 > Uz, y') + 5 lly - Y3,

D

which implies (14) and thus E[Sq(Ux;y)] = 0 holds.

Remark 19 As mentioned in Section 4.2, Cabannes et al. (2021) has already achieved an excess risk
bound with an exponential rate under weaker assumptions, which is faster than the above O(1/T)
rate. Hence, the purpose of the above discussion is to deepen our understanding of the relationship
between the surrogate regret and excess risk bounds, rather than to present a novel result.

Appendix H. Proof of Theorem 13

Proof For simplicity, assume that M = (B? — In?(dT))/In?(2d) is a positive integer. We sample
true class i; € [d] uniformly at random for¢ = 1,..., M +1. Fort > M +1, we seti; = ipr4+1. Each
x; is a vector of length M + 1. Fort =1,..., M + 1, we let x; = ey, the tth standard basis vector in
RM+1 Fort > M+1, weletx; = ep;,. We define an offline estimator U’ & R4 (M+1) a5 follows:
the tth column of U’ is In(2d)e;, fort = 1, ..., M, and the (M + 1)th column is In(dT")eps 1. Note
that [|U’||2 = M In*(2d) + In*(dT) = B? always holds. Fix any learner’s algorithm. For the first
M rounds, the logistic loss of U” is bounded as — log, #3—1 = log2(1 + %(1 — %i)) < %(1 — é)
Since each i; € [d] is sampled uniformly at random, the expected 0-1 loss is 1 — é. Therefore, the
expected surrogate regret summed over the first M/ rounds is at least

M M

1 M 1 M 1 M B2
Y Ellgsy] - > Ne>M(1-=) -2 (1-=)="(1-2)>> =q o
- (15, £4,] t:1St(U)_ ( d) 2( d) 2( d)_4 <ln2d>’

where we used d > 2 and B = Q(In(dT')). As for the remaining 7" — M rounds, the logistic loss
value is at most % (1 — é) by a similar calculus to the above, whereas the expected 0-1 loss is at least
1-— é since 7741 1s sampled uniformly at random. Therefore, the expected surrogate regret over the
T — M rounds is non-negative. In total, the expected surrogate regret is {2 <%>. |
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