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Abstract
In this paper we consider the problem of obtaining sharp bounds for the performance of temporal
difference (TD) methods with linear function approximation for policy evaluation in discounted
Markov decision processes. We show that a simple algorithm with a universal and instance-
independent step size together with Polyak-Ruppert tail averaging is sufficient to obtain near-
optimal variance and bias terms. We also provide the respective sample complexity bounds. Our
proof technique is based on refined error bounds for linear stochastic approximation together with
the novel stability result for the product of random matrices that arise from the TD-type recurrence.
Keywords: Temporal difference learning, stochastic approximation, Polyak-Ruppert averaging

1. Introduction

This paper aims to provide sharp statistical guarantees for the temporal difference (TD) learning
algorithms that use a linear function approximation in the on-policy setting. The TD algorithm
(Sutton, 1988; Sutton and Barto, 2018) is one of the most fundamental methods for policy evalu-
ation in reinforcement learning (RL), acknowledged for its simplicity and ease of implementation.
Theoretical analysis of TD learning in general state space is usually performed in the setting of lin-
ear function approximation (Bertsekas and Tsitsiklis, 1996). The asymptotic convergence of TD in
such a setting was shown in (Tsitsiklis and Van Roy, 1997). At the same time, the current trend in
the field of stochastic approximation is to study non-asymptotic properties of the error, and provide
high probability error bounds (Mou et al., 2020; Durmus et al., 2024; Huo et al., 2023). How-
ever, many of the existing works (Bhandari et al., 2018; Dalal et al., 2018; Lakshminarayanan and
Szepesvari, 2018) characterize the convergence guarantees and sample complexity only in terms
of the mean-squared error (MSE). Other works (Korda and La, 2015; Patil et al., 2023) study ver-
sions of the TD learning algorithm with projections in order to overcome the crucial problem in the
analysis related to the stability of the random matrix products (Guo, 1994; Guo and Ljung, 1995).
The latter projections onto the feasible set are usually impractical. Other works provide the high-
probability bounds (Li et al., 2024), but with the choice of step sizes relying on the (unknown in
practice) instance-dependent quantities, related to the problem design, see Section 3 for details.
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Contributions. We enhance the existing p-moment and high probability bounds for the iterates
of the TD learning procedure. Towards this aim we follow the framework of the linear stochastic
approximation (LSA). Our main contributions are as follows:

• We propose a refined high-probability error bound for TD learning with linear function ap-
proximation and Polyak-Ruppert averaging with a universal and instance-independent step
size. We consider both the generative model assumption and trajectory-wise evaluation based
on a sequence of observations forming a Markov chain. However, we show that the vari-
ance term of the instance-independent TD learning might be suboptimal with respect to its
dependence upon the properties of the feature map.

• In order to obtain our results for the particular setting of TD learning, we provide error bounds
for the LSA algorithms by directly assuming the core exponential stability of the random ma-
trix product (see assumption A2 and related discussion). We then present a novel proof
of exponential stability specifically for the TD(0) algorithm, which quantifies the speed at
which the algorithm forgets its initial error. Our bound is tighter than the previously known
results in the literature and serves as a pivotal element in eliminating the need for an addi-
tional projection step when addressing the high-order moments of the error (Patil et al., 2023).
Conventional proofs for the exponential stability of matrix products often impose an unnec-
essary restriction on the choice of step size by adjusting it to the minimal eigenvalue of the
design matrix. This limitation explains the need for projections in (Patil et al., 2023) and
the instance-dependent step size in (Li et al., 2024). Our approach allows us to mitigate this
drawback.

Related works. The number of contributions to the analysis of TD learning is substantial, and we
can not hope to comprehensively cover them all. Significant progress has been made in evaluating
the effects of tolerance levels and various parameters on the sampling efficiency of TD learning
with linear function approximation (Lakshminarayanan and Szepesvari, 2018; Dalal et al., 2018;
Bhandari et al., 2018; Srikant and Ying, 2019). However, the minimax-optimal dependence on the
tolerance level has only been established in expectation, see (Li et al., 2023). This paper considered
the MSE guarantees. The authors in (Khamaru et al., 2021) considered complexity bounds for TD
learning for finite state space in terms of `∞-norm. A recent paper (Duan and Wainwright, 2023)
focuses on multi-step ahead TD learning. Among the closest counterparts to our paper, we must
mention the following:

• (Li et al., 2023) establishes lower bounds on the mean squared error (MSE) for policy evalu-
ation problems. They also present bounds on the MSE of the variance-reduced TD learning
algorithm, which covers both generative model and Markov sampling methods.

• (Li et al., 2024) provides high-probability bounds and sample complexity for the TD(0) learn-
ing algorithm and extends these findings to its off-policy counterpart (TDC) under the i.i.d.
sampling assumption. Despite not separating the respective error bounds into the determinis-
tic and stochastic components, the authors in (Li et al., 2024) consider the step size that scales
with the minimal eigenvalue of the feature matrix (see TD 2 for details). Such scaling is not
only a drawback for the practical implementation of the algorithm but also inevitably implies
a suboptimal rate of forgetting the initial error.

• (Patil et al., 2023) focuses on determining the bounds of the second moment for TD(0)
and high-probability bounds for projected TD(0) iterates. However, the established high-
probability bounds require a projection procedure that relies on prior knowledge of the true
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parameter norm ‖θ?‖, which is impractical. Despite this limitation, the study shows that this
problem can be resolved using the restart technique.

Non-asymptotic results for TD learning could be also derived from the analysis of the general
LSA algorithms (Mou et al., 2020; Durmus et al., 2024). However, the respective error bounds are
typically loose in terms of problem-dependent quantities, related to the feature mapping considered
in TD with linear function approximation. Detailed discussion is provided after A2.

Notations. For the sequences (an)n∈N and (bn)n∈N we write an . bn if there exist an absolute
constant c > 0, such that an ≤ cbn for any n ∈ N. We also write that an = Õ(bn), if an ≤
c(log n)κbn for some κ > 0. For the matrix A ∈ Rd×d, such that A = A> � 0, and vector
x ∈ Rd we define the corresponding A-norm of x as ‖x‖A =

√
x>Ax. In the present text, the

following abbreviations are frequently used: ”w.r.t.” stands for ”with respect to”, ”i.i.d.” stands for
”independent and identically distributed”.

2. General LSA results

We consider the LSA problem, that is, we aim to solve a linear system Āθ = b̄ with a unique
solution θ?. We do not have access to Ā and b̄ but instead we have access to a sequence of obser-
vations {(A(Zn),b(Zn))}n∈N, where (Zk)k∈N are noise variables taking values in a measurable
space (Z,Z) and A : Z → Rd×d, b : Z → Rd are measurable functions. We consider the setting
where (Zk)k∈N is a sequence of i.i.d. random variables with common distribution µ satisfying

Eµ[A(Z1)] = Ā , and Eµ[b(Z1)] = b̄ .

For a fixed step size α > 0, burn-in period n0 ∈ N, and initialization θ0 ∈ Rd, we consider the
sequences of LSA iterates {θn}n∈N and its tail-averaged counterpart {θ̄n0,n}n≥n0+1 given by

θk = θk−1 − α{A(Zk)θk−1 − b(Zk)} , k ≥ 1,

θ̄n0,n = (n− n0)−1
∑n−1

k=n0
θk , n ≥ n0 + 1 .

(1)

Unless explicitly stated, we set n0 = n/2 and write θ̄n instead of θ̄n/2,n. The sequence {θ̄n} cor-
responds to the Polyak-Ruppert averaged iterates; see (Ruppert, 1988; Polyak and Juditsky, 1992).
Using the definition (1) and elementary algebra, we obtain

θn − θ? = (I− αA(Zn))(θn−1 − θ?)− αε(Zn) , (2)

where the noise variable ε(·) is defined as

ε(z) = Ã(z)θ? − b̃(z) , Ã(z) = A(z)− Ā , b̃(z) = b(z)− b̄ .

The quantity ε(·) is crucial for our analysis, since in controls the noise level measured at the solution
θ?. Note also that ε(Zi) are centered and denote by Σε the covariance matrix of ε(Zi), that is,

Σε = E[ε(Z1)ε(Z1)>] . (3)

Running the recurrence (2), we obtain the error decomposition

θn − θ? = Γ
(α)
1:n{θ0 − θ?}︸ ︷︷ ︸

θ̃
(tr)
n

−α
∑n

j=1
Γ

(α)
j+1:nε(Zj)︸ ︷︷ ︸

θ̃
(fl)
n

. (4)
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In the above formula we introduced the product of random matrices

Γ
(α)
m:n =

∏n
i=m(I− αA(Zi)) , m, n ∈ N, m ≤ n ,

with the convention Γ
(α)
m:n = I for m > n. The error decomposition (4) is essential for the analysis

of LSA algorithms since it allows to split the LSA error into two parts; see, among many others,
(Aguech et al., 2000; Durmus et al., 2024). The first, θ̃(tr)

n , reflects the rate at which the initial error
of the procedure is forgotten, and the second, θ̃(fl)

n , is responsible for the fluctuations of the LSA
iterates around the solution θ?. The analysis of both θ̃(fl)

n and θ̃(fl)
n crucially relies on the properties

of the matrix product Γ
(α)
m:n. In what follows, we present a verifiable set of conditions for the general

tail-averaged LSA procedure. In Section 3 we then give a recipe for checking these assumptions for
the family of TD algorithms. Our first set of assumptions is classical for LSA:

A1 Random variables (Zk)k∈N are i.i.d. taking values in (Z,Z) with a distribution µ satisfying
E[A(Z1)] = Ā and E[b(Z1)] = b̄. Moreover,

‖ε‖∞ = supz∈Z ‖ε(z)‖ <∞ , CA = supz∈Z ‖A(z)‖ ∨ supz∈Z ‖Ã(z)‖ <∞ .

Assumption A1 was considered in several papers, e.g. (Srikant and Ying, 2019; Chen et al., 2020).
Almost sure bounds for ‖A(·)‖ can be replaced by weaker moment-type bounds following the
methods described in (Mou et al., 2020; Durmus et al., 2021b). However, the applications of results
with unconstrained noise, especially in the Markov noise setting of Section 5, involves additional
technical difficulties. For this reason, we refrain from relaxing the boundedness A1. Now we come
to the crucial assumption about the matrix product Γ

(α)
1:n. Namely, we define the following family of

exponential stability assumptions for some p ∈ [2,∞):

A2 (p) There exist a > 0, κp > 0, αp,∞ > 0 (depending on p), such that αp,∞p ≤ 1/2, and for
any α ∈ (0;αp,∞), u ∈ Rd, n ∈ N,

E1/p
[
‖Γ(α)

1:nu‖
p
]
≤ κp(1− αa)n‖u‖ . (5)

Verifying the exponential stability assumption A2 is crucial for studying properties of both θ̃(fl)
n

and θ̃(tr)
n , see e.g. (Guo and Ljung, 1995; Priouret and Veretenikov, 1998). For TD algorithms,

exponential stability has been verified in Patil et al. (2023) (for p = 2) and (Li et al., 2024) (for
arbitrary p > 2, but with suboptimal αp,∞, see discussion in Section 3). Note that A2 can be
verified under the classical stability conditions for linear systems. In particular, it is enough to
assume A1 and additionally assume that the system matrix −Ā is Hurwitz. The Hurwitzness of
−Ā is a necessary and sufficient condition for the exponential stability of the continuous-time ODE
system θ̇t = Āθt, see e.g. (Jacob and Zwart, 2012). Therefore, it is a standard condition for the
exponential speed of forgetting the initial error θ̃(tr)

n , see (Mou et al., 2020; Durmus et al., 2021a).
However, such an assumption allows to prove a contraction

‖I− αĀ‖2Q ≤ 1− αã (6)

only in specific matrix Q-norm, associated with the solution of the Lyapunov equation

Ā>Q + Q Ā = −P .
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Here the choice of the matrix P = P> � 0 is an additional degree of freedom, with the default
choice being P = I. In this case the factor ã in (6) might be overly small, yielding suboptimal
bias forgetting rate. Detailed discussion is provided in Appendix B.4. In this paper we suggest a
different view on the problem: we assume A2 directly and then verify it for the particular example
of TD learning with linear function approximation.

2.1. Refined LSA results with i.i.d. noise

In this section we provide general results for the tail-averaged LSA iterates, which can be viewed
as simplified versions of (Durmus et al., 2024, Theorem 2) and (Mou et al., 2020, Theorem 3) with
explicit dependence on the instance-dependent quantities, such as the contraction rate a. First, we
give an elementary statement for the mean square error.

Theorem 1 Assume A1 and A2(2). Then for any n ≥ 2, α ∈ (0;α2,∞], and θ0 ∈ Rd, it holds that

E1/2[‖Ā(θ̄n − θ?)‖2] .

√
Tr(Σε)

n1/2

(
1 +

κ2 CA
√
α√

a

)
+

κ2

√
Tr(Σε)√
αan

+ κ2(1− αa)n/2
(

1

αn
+

CA√
αan

)
‖θ0 − θ?‖ . (7)

Proof sketch. The proof relies on the summation by parts applied to the LSA error (2). This approach
was previously applied in (Mou et al., 2020; Durmus et al., 2024), and yields

Ā
(
θ̄n − θ?

)
= 2(αn)−1(θn/2 − θn)− 2n−1

∑n−1
t=n/2 e (θt, Zt+1) , (8)

where we have defined e(θ, z) = Ã(z)θ − b̃(z) = ε(z) + Ã(z)(θ − θ?). This transform justifies
why it is convenient to state the bounds in terms of ‖Ā(θ̄n − θ?)‖. The rest of the proof follows
from the martingale structure of the term

∑n−1
t=n/2 e (θt, Zt+1) w.r.t. filtration Ft = σ(Zs, s ≤ t).

We also need to show the last iterate error bound E1/2[‖θn− θ?‖2] = Õ(
√
α), a standard result that

was previously obtained in many papers on LSA, see e.g. (Dalal et al., 2018; Bhandari et al., 2018).
This explains the factor 1 +O(

√
α), which affects the leading term in (7). We provide the complete

proof in Appendix A, see Theorem 7. �
Now we provide a p-moment bound. We assume that A2(`) is satisfied for any ` ≥ 2, however,

similar results could be obtained if A2(p) holds only for a fixed parameter 2 ≤ p <∞.

Theorem 2 Suppose that assumptions A1 and A2(`) hold for any ` ≥ 2. Then, for any n ∈ N,
p ≥ 2, α ∈ [0, αp+logn,∞), θ0 ∈ Rd, we have

E1/p[‖Ā(θ̄n − θ?)‖p] .
p1/2

√
Tr(Σε)

n1/2

(
1 + R1(α)

)
+

κp+logn(1 + CA)p‖ε‖∞
n

+
pκp+logn

√
Tr(Σε)

n
√
a

(
1 +

1
√
αp

)
+ κp+logn(1− αa)n/2

(
1

αn
+

pCA√
αan

)
‖θ0 − θ?‖ ,

(9)

where the term R1(α) is given by

R1(α) =
κp+logn

√
αpCA√
a

+
κp+logn CA αp‖ε‖∞√

Tr(Σε)
.
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Table 1: Summary of error bounds for TD(0) algorithm with linear functional approximation.
Paper Algorithm

type
step size
schedule

Universal
step size

Markovian
data

High-order
bounds

Not require
projections

(Bhandari et al., 2018)(1) Polyak-Ruppert 1/
√
n 3 3 7 7

(Dalal et al., 2018)(2) Last iterate 1/kκ 3 7 3 3

(Lakshminarayanan and Szepesvari, 2018) Polyak-Ruppert constant α 3 7 7 3

(Patil et al., 2023)(3) Polyak-Ruppert constant α 3 3 3 7

(Li et al., 2024) Polyak-Ruppert constant α 7 7 3 3

This paper Polyak-Ruppert constant α 3 3 3 3

(1) (Bhandari et al., 2018) considers constant step size α = 1/
√
n with n being total number of iterations and provide suboptimal MSE

bound of order Õ(1/
√
n); (2) (Dalal et al., 2018) uses last iterate and decreasing step size schedule with αk = 1/kκ . Hence, the

corresponding bias forgetting rate is sublinear, and the n-step MSE is of order Õ(1/nκ); (3) (Patil et al., 2023) uses projections in order to
prove the concentration bounds, moreover, the definition of the projection set involves unknown parameter θ?.

Proof sketch. We use the same key decomposition (8) and utilize the martingale structure of∑n−1
t=n/2 e (θt, Zt+1) with Rosenthal’s inequality (Pinelis, 1994). This technique requires to han-

dle the (remainder w.r.t. n) term E1/p[maxt ‖Ãt+1(θt − θ?)‖p], which scales with n as n1/q for
any q ≥ p and α ∈ [0, αq,∞). This dependence is removed by setting q = p + log(n), and
α ∈ [0, αp+logn,∞). Complete proof is given in Appendix A-Theorem 9. �

The closest counterparts of Theorem 2, (Durmus et al., 2024, Theorem 2), and (Mou et al., 2020,
Theorem 3 and 4), are less explicit in terms of dependence of the error terms upon the contraction
rate a. Note that for a general SA problem the constant κp+logn above might scale polynomially
with d, see (Huang et al., 2021). Yet in particular applications κp+logn might be dimension-free
and even independent from p, as we show in Section 3. The bound given in Theorem 2 highlights a
remarkable property: the leading term of (9) contains an additional multiplicative factor of

1 + κp+logn
√
αpCA /

√
a+O(α) .

If α is chosen so that the ratio αp/a = o(1), we achieve the ’optimal’ sub-Gaussian leading term

p1/2
√

Tr(Σε)/n
1/2 . (10)

Optimality of the presented leading term is discussed in (Fort, 2015; Mou et al., 2020). This is
consistent with the findings from decreasing step size, which have ensured the attractiveness of
Polyak-Ruppert algorithms, see e.g. (Bhandari et al., 2018). On the other hand, in case of instance-
independent choice of step size α it is possible that the ratio αp/a is not small. In such a scenario the
dominant term in (9) could far exceed the optimum sub-Gaussian leading term (10). Recent studies
addressing constant step size SA schemes (Durmus et al., 2024; Mou et al., 2020) circumvent this
problem by adjusting the SA step, α, relative to the time horizon n as α = O(n−κ) for some
κ ∈ (0, 1]. However, this approach may result in a slower reduction of the initial error ‖θ0 − θ?‖
and suboptimal instance-dependent second-order terms, a phenomenon observed in Khamaru et al.
(2021) in case of TD learning.

3. TD learning under i.i.d. noise

In this section we apply results of Section 2 to the TD learning procedure. Namely, we consider
a problem of estimating a value of the policy π in a discounted MDP (Markov Decision Process)
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given by a tuple (S,A, P, r, γ). Here, S and A stand, respectively, for state and action spaces, and
γ ∈ (0, 1) is a discount factor. We assume that S is a complete metric space equipped with a metric
dS and Borel σ-algebra B(S). P stands for the transition kernel P (B|s, a), which determines the
probability of moving from state s to a Borel set B ∈ B(S) when action a is performed. For
simplicity, the reward function r : S ×A → [0, 1] is assumed to be deterministic. The policy π(·|s)
is a distribution over the action space A corresponding to the agent’s action preferences in state
s ∈ S. We aim to estimate the agent’s value function

V π(s) = E[
∑∞

k=0 γ
kr(sk, ak)|s0 = s] ,

where ak ∼ π(·|sk), and sk+1 ∼ P (·|sk, ak), for any k ∈ N. We define the transition kernel

Pπ(B|s) =
∫
A P (B|s, a)π(da|s) , (11)

which corresponds to the 1-step transition probability from state s to a set B ∈ B(S). The state
space is arbitrary: S may be finite, but with |S| � 1, or S ⊂ RD may be uncountable. In this
setting, it is a common option to consider the linear function approximation of the value function
V π(s), defined for s ∈ S, θ ∈ Rd, and feature mapping ϕ : S → Rd as

V π
θ (s) = ϕ>(s)θ .

Here d is the dimension of the feature space. We consider V π
θ (s) as an approximation to the true

value function V π(s), and our goal is to find a parameter θ? that defines the best linear approxima-
tion of V π (Tsitsiklis and Van Roy, 1997). To properly define what it means, we introduce some
notations, following (Li et al., 2024). We denote by µ the invariant distribution over the state space
S induced by the transition kernel Pπ(·|s) in (11). Then we define θ? as a solution

θ? = arg minθ∈Rd Eµ
[
(V π
θ (s)− V π(s))2] . (12)

We define the design matrix Σϕ as

Σϕ = Eµ[ϕ(s)ϕ(s)>] ∈ Rd×d .

In the following, we are interested in minimizing the following distance between θ ∈ Rd and θ?:

‖θ − θ?‖Σϕ = E1/2
µ

[
(V π
θ (s)− V π

θ?
(s))2

]
.

For the estimator θ̂ of θ?, our primary concern is to control the error ‖θ̂ − θ?‖Σϕ in two ways:
firstly, by controlling its second moment E[‖θ̂ − θ?‖2Σϕ ], and secondly, by giving high-probability
bound; available results are summarized in Table 1. We consider the following assumptions on the
generative mechanism and on the feature mapping ϕ(·):

TD 1 Tuples (s, a, s′) are generated i.i.d.with s ∼ µ, a ∼ π(·|s), s′ ∼ P (·|s, a) .

TD 2 Matrix Σϕ is non-degenerate with the minimal eigenvalue λmin ≡ λmin(Σϕ). Moreover, the
feature mapping ϕ(·) satisfies sups∈S ‖ϕ(s)‖ ≤ 1.

7
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Algorithm 1: Temporal difference learning TD(0)
Input : feature mapping ϕ(·) : S → Rd, step size α, number of iterations n, behavioral policy π;
for k = 1, . . . , n do

Receive tuple (sk, ak, s
′
k) following TD 1;

Compute update θk = θk−1 − α(Akθk−1 − bk) based on Ak, bk from (15)
end
Output: tail-averaged estimate θ̄n = (2/n)

∑n
k=n/2+1 θk;

value function estimate V π
θ̄n

(s) = ϕ>(s) θ̄n

The generative model assumption TD 1 is used in many previous works; see, e.g. (Dalal et al., 2018;
Li et al., 2024; Patil et al., 2023). In Section 5 we generalize this assumption to more realistic setting
of on-policy evaluation over a single trajectory, where the induced LSA noise is Markovian.

In the setting of linear functional approximation the problem of estimating V π(s) reduces to the
problem of estimating θ? ∈ Rd, which can be done via the LSA procedure. It is known (see e.g.
(Tsitsiklis and Van Roy, 1997)), that optimal (in a sense of (12)) parameter θ? is a solution to the
deterministic systemĀθ? = b̄, where

Ā = Es∼µ,s′∼Pπ(·|s)[φ(s){φ(s)− γφ(s′)}>] (13)

b̄ = Es∼µ,a∼π(·|s)[φ(s)r(s, a)] .

In order to write the instance of the LSA algorithm for the system (13), we introduce the k-th step
randomness Zk = (sk, ak, s

′
k). With slight abuse of notation, we write Ak instead of A(Zk), and

bk instead of b(Zk). Then the corresponding LSA update equation with step size α writes as

θk = θk−1 − α(Akθk−1 − bk) , (14)

where Ak and bk are given by

Ak = φ(sk){φ(sk)− γφ(s′k)}> ,
bk = φ(sk)r(sk, ak) .

(15)

We provide the corresponding pseudocode in Algorithm 1. Under listed assumptions, we are able
to check A1 and A2(p). We first establish that A1 holds.
Lemma 1. Let {θk}k∈N be a sequence of TD(0) updates generated by (14) under TD 1 and TD 2.
Then this update scheme satisfies assumption A1 with

CA = 2(1 + γ) , ‖ε‖∞ = 2(1 + γ)(‖θ?‖ + 1) , Tr(Σε) ≤ 2(1 + γ)2(‖θ?‖2Σϕ + 1) .

An elementary proof is given in Appendix B. Checking A2(p) is a more delicate issue. In
particular, it is crucial to determine a tight bound on the stability threshold αp,∞. (Patil et al.,
2023) contains an instance-independent bound on the maximum step size, which scales only by a
factor 1 − γ, for the case of 2-nd moment stability. Higher-order moments are analyzed using a
modification of TD, with an additional projection. The counterpart of the exponential stability A
2(p) is implicitly obtained in (Li et al., 2024), but in this work the stability bound scales with λmin,
which is unavailable in practice. To the best of our knowledge, we provide the first instance-
independent stability bound for the TD (0) algorithm beyond the 2-nd moment:
Lemma 2. Let {θk}k∈N be a sequence of TD(0) updates generated by (14) under TD 1 and TD 2.
Then this update scheme satisfies assumption A2(p) with

a = (1− γ)λmin/2 , κp = 1 , αp,∞ = (1− γ)/(128p) . (16)

8
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Proof of Lemma 2 is provided in Appendix B.2. Note that, in strong contrast with this result,
leveraging the matrix stability argument of (Huang et al., 2021) and (Durmus et al., 2021a) yield an
instance-dependent stability threshold

αp,∞ = (1− γ)λmin/(c0p) (17)

for some absolute constant c0 > 0. A detailed derivation of the bound (17) can be found in Ap-
pendix B.4. The same order of magnitude of the step size is predicted in (Li et al., 2024, Theorem
1). Thus, with the result Lemma 2, we can prove the convergence of TD(0) for larger step sizes.

Now we are ready to adapt the conclusions of Section 2.1 to TD learning. To represent the
bounds in terms of ‖ · ‖Σϕ rather than the norm associated with the system matrix Ā, we can use
the lower bound

‖Ā(θ̄n − θ?)‖2 ≥ (1− γ)2λmin‖θ̄n − θ?‖2Σϕ .

The proof of this bound is provided in Lemma 7, and closely follows the idea of (Li et al., 2024,
Lemma 5). We begin with bounding the 2-nd moment of the error, and immediately reformulate
this result as a sample complexity bound .

Theorem 3 Assume TD 1 and TD 2. Let {θk}k∈N be a sequence of TD(0) updates generated by
(14). Then for any n ≥ 2, α ∈

(
0; 1−γ

256

]
, and θ0 ∈ Rd, it holds that

E1/2[‖θ̄n − θ?‖2Σϕ ] .
‖θ?‖Σϕ + 1
√
λminn(1− γ)

(
1 +

√
α√

(1− γ)λmin

)
+

‖θ?‖Σϕ + 1
√
α(1− γ)3/2λminn

+ f1(α, λmin, n)
(
1− α(1− γ)λmin

2

)n/2‖θ0 − θ?‖ ,

where f1(α, λmin, n) is a polynomial function in 1/α, 1/λmin, n specified in Appendix B.3-(31).

Corollary 1. Under the assumptions of Theorem 3, to achieve E[‖θ̄n − θ?‖2Σϕ ] ≤ ε2 it is enough
to use

Õ
( ‖θ?‖2Σϕ + 1

(1− γ)2λminε2

(
1 +

α

λmin(1− γ)

)
+ R1(1/ε)︸ ︷︷ ︸

variance term

+
1

αλmin(1− γ)
· log

‖θ0 − θ?‖
ε︸ ︷︷ ︸

initial error

)
.

TD(0) updates, where R1(1/ε) =
‖θ?‖Σϕ+1

√
α(1−γ)3/2λminε

.

Comparison to the robust SA approach. Note that the leading term of the bound in Theorem 3
includes factors of 1/λmin. This dependence is generally unavoidable if one aims to obtain the
MSE bound for E[‖θ̄n − θ?‖2Σϕ ] that scales as 1/n. This is due to the fact that the corresponding
asymptotic covariance matrix from the central limit theorem (see e.g., (Fort, 2015)) for

√
n(θ̄n−θ?)

could scale with λ−1
min. More details on the asymptotically minimax covariance bounds are provided

in Section 4. In contrast, within the basin of robust stochastic approximation (RSA, (Nemirovski
et al., 2009)), a convergence rate for E[‖θ̄n − θ?‖2Σϕ ] of order O(1/

√
n) can be derived with the

instance-independent choice of step size. Importantly, this rate is not affected by a worst-case factor
of λ−1

min. This result was obtained for the TD algorithm in (Bhandari et al., 2018, Theorem 2).
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Discussion and comparison. Optimizing the bound of Corollary 1 with respect to the step size α
is problematic. Taking the largest possible step size α ' 1− γ from (16) yields the number of steps
to reduce deterministic error of order

Õ
( 1

(1− γ)2λmin
· log

‖θ0 − θ?‖
ε

)
,

which was previously reported by (Patil et al., 2023). However, this choice of step size results in the
overall sample complexity in Corollary 1 being at least

Õ
( 1

(1− γ)2λmin
· log

‖θ0 − θ?‖
ε

+
1 + ‖θ?‖2Σϕ

(1− γ)2λ2
minε

2

)
.

The 1/ε2 component of this bound is by a factor of λ−1
min larger than the one obtained in (Li et al.,

2024), albeit it is agrees with the bounds of (Patil et al., 2023, Theorem 1). The reason is that the
latter paper uses instance-independent step size α ' (1−γ), while (Li et al., 2024) adjusts step size
with (unknown in practice) quantity λmin as α(small) ' (1− γ)λmin. This choice allows to improve
the variance component in Corollary 1, but forgetting the bias would require at least

Õ
( 1

(1− γ)2λ2
min

· log
‖θ0 − θ?‖

ε

)
iterations of Algorithm 1. Moreover, the remainder term R1(1/ε) will scale as (1−γ)−2λ

−3/2
min . The

same phenomenon can be traced in (Li et al., 2024, Theorem 1), albeit the authors do not separate
the bias and variance components of the error and assume that the procedure starts at θ0 = 0. This
dilemma is resolved in Li et al. (2023), but for a variance-reduced version of TD learning algorithm.

Instantiating Theorem 2 for TD(0), we can provide the bound on E1/p[‖θ̄n − θ?‖pΣϕ ] for p ≥ 2.
For completeness, this result is stated in Appendix B.3. With Markov’s inequality applied with
p = log (1/δ), we can translate it into the sample complexity bound. The corresponding deviation
bounds for ‖θ̄n − θ?‖Σϕ are provided in appendix, see Appendix B.3-Corollary 4.

Theorem 4 Fix ε > 0, δ > 0, assume TD1 and TD2. Let {θk}k∈N be a sequence of TD(0) updates
generated by (14). Then for any n ≥ 2, and step size

α ∈
(
0;

1− γ
128 log (n/δ)

]
to achieve error ‖(θ̄n − θ?)‖Σϕ ≤ ε with probability at least 1− δ it takes

Õ
(

(‖θ?‖2Σϕ + 1) log (1/δ)

(1− γ)2λminε2

(
1 +

α log (1/δ)

(1− γ)λmin

)
+ R2(1/ε, δ) +

log ‖θ0−θ?‖ε

αλmin(1− γ)

)
(18)

TD(0) updates, where R2(1/ε, δ) =
(‖θ?‖Σϕ+1) log (1/δ)
√
α(1−γ)3/2λminε

.

Discussion and comparison. Note that in Theorem 4 the symbol Õ hides logarithmic dependen-
cies in λmin, 1 − γ, and n, but not in 1/δ. Again the direct optimization of the bound Theorem 4
w.r.t. α yield to the same dilemma as in case of 2-nd moment. The stochastic part of the complexity

10
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bound (18) scales inversely proportional to λ2
min, which is worse than the scaling of the deterministic

component of the error. At the same time, choosing the smaller step size

α =
(1− γ)λmin(Σϕ)

128(p+ log n)
, (19)

we retrieve the leading variance term of deviation bound (Li et al., 2024, Theorem 1), while improv-
ing the second-order term in λmin. Indeed, (Li et al., 2024, Theorem 1) yields the high-probability
bound of order

Õ
(

(‖θ?‖2Σϕ + 1) log (d/δ)

(1− γ)2λminε2
+

(1 + ‖θ?‖Σϕ) log (nd/δ)

(1− γ)2λ2
minε

)
in order to achieve ‖θ̄n − θ?‖Σϕ

≤ ε with probability at least 1 − δ. This result is achieved for
the step size α which scales similarly to (19). Also, compared to (Li et al., 2024), we obtain a
clear separation between the deterministic and stochastic parts of the error, and remove the explicit
dependence upon the feature dimension d. Note, however, that the dependence upon d is hidden
implicitly inside λmin.

4. On optimality of TD(0) for i.i.d. sampling scheme

In this section we present a version of Theorem 3 with a leading variance term consistent with
the minimax lower bound due to (Li et al., 2023, Proposition 1). We first write the TD(0) noise
covariance matrix

Σ(TD)
ε = E[

(
(φ(sk)− γφ(s′k))

>θ? − rk
)2
φ(sk)φ(sk)

>] ,

which corresponds to the general LSA noise covariance matrix Σε defined in (3). We also define
the transformed covariance matrix

Σ(opt)
ε = Σ1/2

ϕ Ā−1Σ(TD)
ε Ā−TΣ1/2

ϕ ,

which corresponds to the covariance of modified noise variables Σ
1/2
ϕ Ā−1ε. Now let us introduce

the counterpart of Theorem 3 with the modified leading (w.r.t. the sample size n) term.

Theorem 5 Assume TD 1 and TD 2. Let {θk}k∈N be a sequence of TD(0) updates generated by
(14). Then for any p ≥ 2, n ≥ 2, α ∈

(
0; 1−γ

256

]
, it holds that

E1/2[‖θ̄n − θ?‖2Σϕ ] .

√
Tr(Σ

(opt)
ε )

n1/2
+

1 + ‖θ?‖Σϕ
(1− γ)3/2λminn1/2

(
1√
αn

+
√
α

)
︸ ︷︷ ︸

R3(n,λmin)

+ f2(α, λmin, n)
(
1− α(1− γ)λmin

)n/2‖θ0 − θ?‖ ,

(20)

where f2(α, λmin, n) is a polynomial in 1/α, 1/λmin, n specified in Appendix C-(45).

11
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The proof is postponed to Appendix C, along with the analogous p-th moment bound. We
highlight the fact that the leading term of (20) scales with the quantity Tr(Σ

(opt)
ε ) corresponding to

the instance optimal variance given in (Li et al., 2023, Section 2) and (Mou et al., 2020). At the
same time, with simple algebraic manipulations one can prove an upper bound

Tr(Σ
(opt)
ε ) ≤

‖θ?‖2Σϕ+1

(1−γ)2λmin
,

thus recovering the result obtained in Theorem 3 before. However, the bound of (20) contains also
a term R3(n, λmin), which scales directly with λ−1

min. Moreover, even setting α as n−κ , κ ∈ (0, 1)

would require to use large sample size n in order that the optimal noise term (Tr(Σ
(opt)
ε )/n)1/2

starts to dominate. This is on par with empirical evaluation from Khamaru et al. (2021). Now we
reformulate Theorem 5 as a sample complexity bound.
Corollary 2. Under the assumptions of Theorem 5, to achieve the weighted MSE E[‖θ̄n−θ?‖2Σϕ ] ≤
ε2 requires

Õ
( log ‖θ0−θ?‖ε

αλmin(1− γ)︸ ︷︷ ︸
initial error

+
Tr(Σ

(opt)
ε )

ε2
+
α(1 + ‖θ?‖2Σϕ)

(1− γ)3λ2
minε

2
+ R4(1/ε)︸ ︷︷ ︸

variance term

)
,

TD(0) updates, where R4(1/ε) scales linearly with 1/ε.

5. TD learning under Markov noise

Here we present an extension of the results of Section 3 under Markovian sampling. The corre-
sponding results generalize the high probability bounds of Corollary 4 and Theorem 4. We start
with the following assumption:

TD 3 Training tuples (sk, ak, sk+1) are generated sequentially following the generative model
ak ∼ π(·|sk), sk+1 ∼ P (·|sk, ak).

Note that the assumption TD 3 yields that the sequence {sk}k∈N is a Markov chain with the
Markov kernel Pπ(·|s) defined in (11), that corresponds to a classical problem of on-policy eval-
uation. However, since we are using a single chain for policy evaluation, our subsequent analysis
requires to impose ergodicity constraints on Pπ(·|s).

TD 4 The Markov kernel Pπ admits a unique invariant distribution µ and is uniformly geometri-
cally ergodic, that is, there exist tmix ∈ N, such that for any k ∈ N, it holds that

sup
s,s′∈S

(1/2)‖P kπ (·|s)− P kπ (·|s′)‖TV ≤ (1/4)bk/tmixc . (21)

We note that TD 4 is widely used in theoretical RL and stochastic optimization, see, e.g. (Bhandari
et al., 2018; Nagaraj et al., 2020; Dorfman and Levy, 2022; Patil et al., 2023). The parameter tmix

is the mixing time, see e.g. (Paulin, 2015). The constant 1/4 in (21) can be changed to arbitrary
constant in [0, 1) with proper rescaling of tmix.

The algorithm that we analyze in the Markovian setting is not a standard version of TD(0),
but its modification with data-drop. It is summarized in Algorithm 2 and has additional parameter
q ∈ N. We take every q-th tuple from the trajectory {(sk, ak, sk+1)}k∈N. Parameter q here needs

12
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Algorithm 2: Temporal difference learning TD(0) with data drop
Input : features ϕ(·) : S → Rd, step size α, number of iterations n, burn-in size n0, behavioral

policy π, time window q ∈ N
Compute number of blocks m = bn/qc

for k = 1, . . . , n do
Receive tuple (sk, ak, sk+1) following TD 4
if k = qj, j ∈ N then

Compute update θ̃j = θ̃j−1 − α(Akθ̃j−1 − bk) based on Ak, bk from (15)
else

skip current learning tuple
end

end
Output: tail-averaged estimate θ̄n = (2/m)

∑m
k=m/2+1 θ̃k

value function estimate V π
θ̄n

(s) = ϕ>(s) θ̄n

to be properly adjusted with tmix, see Theorem 6 below. The data-drop approach was previously
explored in (Nagaraj et al., 2020) for the general least-squares problems. The authors of (Nagaraj
et al., 2020) further established that this strategy is optimal in a sense that required number of
samples scales linearly with tmix, and this dependence is worst-case optimal. In the context of
TD(0) algorithm the same approach was suggested and studied by (Patil et al., 2023), with the
restriction to finite state space setting. Now we are ready to state and prove the counterpart of
Theorem 4 for the case of TD(0) updates generated by Algorithm 2.

Theorem 6 Assume TD 2, TD 3, and TD 4. Fix δ ∈ (0, 1/3) and let θ̄n be a tail-averaged estimate
generated by Algorithm 2 run with parameters

α =
1− γ

128 log (n/δ)
, q =

⌈
tmix log (n/δ)

log 4

⌉
,

given that the sample size n satisfies n ≥ log (1/δ)
(1−γ)2 ∨ 2tmix log(4/δ)

log 4 . Then it holds with probability at
least 1− 3δ that

‖θ̄n − θ?‖Σϕ .
(‖θ?‖Σϕ + 1)t

1/2
mix log (n/δ)

n1/2(1− γ)λmin

+ exp

{
− (1− γ)2λminn

128tmix log2(n/δ)

}
‖θ0 − θ?‖tmix log2 (n/δ)

(1− γ)2λminn
. (22)

The proof is postponed to Appendix D and is based on Berbee’s coupling lemma, see (Berbee,
1979). Note that the result of Theorem 6 is slightly suboptimal compared to Corollary 4. Indeed,
the leading term with respect to n of the bound (22) scales with log (1/δ) instead of

√
log (1/δ) in

the i.i.d. counterpart. That is, the leading term of (22) exhibits subexponential behaviour instead of
sub-Gaussian. This behaviour is a result of using Berbee’s coupling lemma.

Discussion The practical application of data-drop approach is limited, since the gap size q in
Algorithm 2 should scale with unknown in practice parameter tmix. It is possible to analyze under

13
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TD 3 and TD 4 a direct counterpart of Algorithm 1 without data-drop. The key difficulty of such
analysis is to verify an exponential stability assumption A2. This is done, for example, in (Durmus
et al., 2024, Proposition 7) for the general LSA problem. However, the respective stability threshold
αp,∞ scales as t−1

mix. This means, that from theoretical perspective we still observe the following
dilemma - either we run data-drop algorithm with the number of dropped observations, which scales
with tmix, or we run Algorithm 1 without data-drop, but the step size α has to be adjusted with t−1

mix.
Similarly to the i.i.d. setting, we can rewrite Theorem 6 as a sample complexity bound.

Corollary 3. Under assumptions of Theorem 6 in order to achieve ‖θ̄n−θ?‖Σϕ ≤ εwith probability
at least 1− 3δ it requires

Õ

(
tmix(‖θ?‖2Σϕ + 1) log (1/δ)

(1− γ)2λ2
minε

2
+
tmix log2 (1/δ)

λmin(1− γ)2
log
‖θ0 − θ?‖

ε

)

observation used in Algorithm 2.
Note that in Corollary 3 the symbol Õ hides logarithmic dependencies in λmin, 1−γ, and n, but

not in 1/δ. The sample complexity bounds of Corollary 3 matches the ones coming from Theorem 4
up to an additional tmix factor and extra factor of

√
log (1/δ). We believe that a factor of

√
log (1/δ)

can be removed using the analysis based on Algorithm 1 without data drop and appropriate versions
of Rosenthal inequality for Markov chains and leave it as a direction for further work.

6. Conclusion

In this paper we presented a refined analysis of linear stochastic approximation algorithms and
provide high-probability and sample complexity bounds for the TD(0) algorithm via the exponen-
tial stability argument. Our approach allows to obtain high-probability bounds without requiring
projections or instance-dependent step size. Further research directions include generalizing the
high-order error bounds to the Markov setting for versions of the TD learning algorithm that do
not use the data drop modification, while maintaining the precise variance from the corresponding
central limit theorem. Second, our version of Algorithm 2 requires knowledge of tmix, which is a
common drawback shared by the versions of SGD with data drop algorithm (Nagaraj et al., 2020).
To the best of our knowledge, it is an open problem to develop a version of this algorithm which
would be oblivious to tmix.
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Appendix A. Proofs of LSA error bounds presented in Section 2

Recall that we consider a sequence of LSA estimates {θn}n∈N given by the recurrence

θn = θn−1 − α{Anθn−1 − bn} , n ≥ 1 . (23)

In the formula above we use An and bn as a shorthand notations for A(Zn) and b(Zn), respectively.
We use the same convention throughout the appendix section. Our analysis relies heavily on the
stability assumption A2 for the matrix products of the form

Γ
(α)
1:n =

n∏
i=1

(I− αAi) .

We obtain the following refined bound on the last iterate error of the procedure (23):

Theorem 7

(i) Assume A1 and A2(2). Then, for any α ∈ (0;α2,∞) and n ∈ N, it holds that

E1/2[‖θn − θ?‖2] ≤ κ2(1− αa)n‖θ0 − θ?‖ +
κ2

√
αTr(Σε)√
a

. (24)

(ii) Let p ≥ 2. Assume A1 and A2(p). Then, for any α ∈ (0;αp,∞) and n ∈ N, it holds that

E1/p[‖θn − θ?‖p] ≤ κp(1− αa)n‖θ0 − θ?‖ +
κpp
√
α√

a
‖ε‖∞ . (25)

(iii) Grant A1 and A2(`) for any ` ≥ 2. Then for any p ≥ 2, n ≥ 2 and α ∈ [0;αp+logn,∞), it
holds that

E1/p[‖θn − θ?‖p] ≤ κp+logn(1− αa)n‖θ0 − θ?‖ + CRm,1 p
1/2κp+logn

√
αTr(Σε)√
a

+ CRm,2 eαpκp+logn‖ε‖∞ ,

(26)

where CRm,1 = 60 and CRm,2 = 60e are constants from the martingale version of Rosen-
thal’s inequality (Pinelis, 1994, Theorem 4.1).

Proof Using the error expansion technique from Aguech et al. (2000) (see also Durmus et al.
(2024)), we decompose θn into a transient and fluctuation terms

θn − θ? = θ̃(tr)
n + θ̃(fl)

n ,

where we have defined the quantities

θ̃
(tr)
n = Γ

(α)
1:n{θ0 − θ?} , θ̃

(fl)
n = −α

∑n
j=1 Γ

(α)
j+1:nεj . (27)

The first term θ̃
(tr)
n in the error decomposition (27) is transient and reflects the forgetting of the

initial error of the LSA. It can be directly controlled using the assumption A2(p), p ≥ 2:

E1/p[‖Γ(α)
1:n{θ0 − θ?}‖p] ≤ κp(1− αa)n‖θ0 − θ?‖ .
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In order to control the fluctuation term θ̃
(fl)
n , we note that it is a reverse martingale w.r.t. filtration

Fk = σ(Zj , j ≥ k). Thus, applying the Burkholder inequality (Osekowski, 2012, Theorem 8.6),
we obtain that, assuming A2(p)

E1/p
[∥∥∥α∑n

j=1
Γ

(α)
j+1:nεj

∥∥∥p] ≤ αp(E2/p

[(∑n

j=1
‖Γ(α)

j+1:nεj‖
2
)p/2])1/2

≤ αp
(∑n

j=1
E2/p

[
‖Γ(α)

j+1:nεj‖
p
])1/2

≤ αpκp
(
E2/p

[
‖ε1‖p]

∑n

j=1
(1− αa)2(n−j))1/2

≤ κpp
√
α√

a
‖ε‖∞ ,

where for the last bound we additionally used that αa ≤ 1/2. Substituting the bounds above into
(27) completed the proof. Obtaining the second moment bound (24) follows the same lines as above
using the martingale structure of θ̃(fl)

n , that is,

E1/2

[∥∥∥∥α n∑
j=1

Γ
(α)
j+1:nεj

∥∥∥∥2]
≤ α

( n∑
j=1

E
[
‖Γ(α)

j+1:nεj‖
2
])1/2

≤ ακp+logn

( n∑
j=1

(1− αa)2(n−j) Tr(Σε)

)1/2

≤
κp+logn

√
α√

a
{Tr(Σε)}1/2 .

Now we aim to obtain the refined bound (26). For k ∈ {1, . . . , n}, we set Fk = σ(Zs : s ≤ k),
and F0 = {∅,Z}. Then it is easy to see that EFj−1

[
Γ

(α)
j+1:nεj

]
= 0 for any j = 1, . . . , n. Hence,

applying the Pinelis version of Rosenthal inequality (Pinelis, 1994, Theorem 4.1), we obtain that

E1/p
[∥∥∥α∑n

j=1
Γ

(α)
j+1:nεj

∥∥∥p] ≤ αCRm,1 p
1/2E1/p

[(∑n

j=1
EFj−1

[
‖Γ(α)

j+1:nεj‖
2
])p/2]

+ αpCRm,2 E1/p

[
max
j
‖Γ(α)

j+1:nεj‖
p

]
. (28)

Since εj is independent of Γ
(α)
j+1:n, it is easy to see that

EFj−1

[
‖Γ(α)

j+1:nεj‖
2
]

= EFj−1

[
EFj

[
‖Γ(α)

j+1:nεj‖
2
]]
≤ κ2

p+logn(1− αa)2(n−j)EFj−1
[
‖εj‖2

]
= κ2

p+logn(1− αa)2(n−j) Tr(Σε) .

Thus, with simple algebra and using that αa ≤ 1/2, we get that

αCRm,1 p
1/2E1/p

[( n∑
j=1

EFj−1

[
‖Γ(α)

j+1:nεj‖
2
])p/2]

≤ CRm,1 p
1/2κp+logn

√
αTr(Σε)√
a

.
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In order to control the remainder term in Rosenthal’s inequality (28), we note that, with q = p +
log n, it holds

E1/p
[
max
j
‖Γ(α)

j+1:nεj‖
p
]
≤ E1/q

[
max
j
‖Γ(α)

j+1:nεj‖
q
]
≤
(∑n

j=1
E[‖Γ(α)

j+1:nεj‖
q]
)1/q

≤ κp+lognn
1/q‖ε‖∞ ≤ eκp+logn‖ε‖∞ .

Now it remains to combine the bounds above in (28), and the result of (26) follows.

Note that Theorem 7 provides 2 bounds for the last LSA iterate error, (25) and (26). The second
one might provide an improvement, since ‖ε‖∞ ≥

√
Tr(Σε). If we aim to obtain bounds in terms

of solely the noise variance Tr(Σε), we need that the reverse inequality holds, that is,

‖ε‖∞ ≤ c1

√
Tr(Σε)

for some appropriate constant c1 > 0. The problem is that the scaling of c1 with instance-dependent
quantities of Section 3 might be pessimistic. That is why it is desirable to have this dependence
coming with additional α factor, instead of just

√
α in (25).

Now we state and proof the similar results for the Polyak-Ruppert averaged estimator θ̄n0,n. We
use the following decomposition based on the summation by parts formula:

Ā
(
θ̄n0,n − θ?

)
=

θn0 − θn
α(n− n0)

−
∑n−1

t=n0
e (θt, Zt+1)

n− n0
, (29)

where we have defined

e(θ, z) = Ã(z)θ − b̃(z) = ε(z) + Ã(z)(θ − θ?) . (30)

The decomposition above is nothing but summation by parts formula used in Mou et al. (2020), yet
it can be traced to the preceding papers. Recall also that we have set the notation θ̄n as an alias for
θ̄n0,n used with n0 = n/2. Before we proceed to the proof of Theorem 2, we first provide a simpler
statement regarding the 2-nd moment of the PR-averaged error.

Theorem 8 Assume A1 and A2(2). Then for any n ≥ 2, α ∈ (0;α2,∞], it holds that

E[‖Ā(θ̄n − θ?)‖2] . κ2
2(1− αa)n

(
1

α2n2
+

C2
A

αan2

)
‖θ0 − θ?‖2

+
Tr(Σε)

n

(
1 +

κ2
2 C2

A α

a

)
+

κ2
2 Tr(Σε)

αan2
. (31)

Proof Our proof is essentially a version of (Durmus et al., 2024, Proposition 5) with tighter
instance-dependent bound on the last LSA iterate error provided by Theorem 7. We leverage the
error decomposition (29). Then we get

E[‖Ā(θ̄n − θ?)‖2] ≤
8E[‖θn/2 − θn‖2]

α2n2︸ ︷︷ ︸
T1

+
8E[‖

∑n−1
t=n/2 e (θt, Zt+1) ‖2]

n2︸ ︷︷ ︸
T2

,
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and estimate the terms T1 and T2 separately. Applying the bounds of Theorem 7, we get first that

T1 .
κ2

2(1− αa)n‖θ0 − θ?‖2

α2n2
+

κ2
2 Tr(Σε)

αan2
.

Similarly, since e (θt, Zt+1) is a martingale-difference sequence w.r.t. filtration Fk = σ(Zj , j ≤ k),
we get the following bound for T2:

T2 ≤ n−2
n−1∑
t=n/2

E[‖e (θt, Zt+1) ‖2] .
Tr(Σε)

n
+

κ2
2 C2

A(1− αa)n‖θ0 − θ?‖2

αan2
+

κ2
2 C2

A αTr(Σε)

an
,

and it remains to combine the above bounds.

Now we are ready to proceed with the main result of this section, that is, with the p-moment
error bound Theorem 2.

Theorem 9 Assume A1 and A2(∞). Then for any p ≥ 2, n ≥ 2, α ∈ [0;αp+logn,∞), it holds that

E1/p[‖Ā(θ̄n − θ?)‖p] .
p1/2

√
Tr(Σε)

n1/2

(
1 +

κp+logn
√
αpCA√
a

+
κp+logn CA αp‖ε‖∞√

Tr(Σε)

)

+
κp+lognp‖ε‖∞

n
(1 + CA α(p+ log n))

+
κp+lognp

1/2
√

Tr(Σε)√
an

[
1√
α

+ p1/2 CA

√
α(p+ log n)

]
+ κp+logn(1− αa)n/2

(
1

αn
+

pCA√
αan

)
‖θ0 − θ?‖ .

Proof The proof is also based on the expansion formula (29). We recall that we set n0 = n/2.
Then, with the direct application of Minkowski’s inequality, we obtain

E1/p
[
‖Ā
(
θ̄n − θ?

)
‖p
]
≤

E1/p[‖θn/2 − θn‖p]
αn︸ ︷︷ ︸
T1

+
E1/p

[
‖
∑n−1

t=n/2 e(θt, Zt+1)‖p
]

n︸ ︷︷ ︸
T2

,

and bound T1, T2 separately. Note that T1 is a remainder term (w.r.t. sample size n), and thus we
can control it using a simple bound on the last iterate error provided in Theorem 7-(26). Proceeding
this way, we obtain

T1 .
κp+logn(1− αa)n/2‖θ0 − θ?‖

αn
+

κp+lognp
1/2
√

Tr(Σε)√
αan

+
pκp+logn‖ε‖∞

n
.

Now we proceed with bounding T2. Using again Minkowski’s inequality, we get

T2 ≤ n−1 E1/p
[
‖
∑n−1

t=n/2 εt+1‖p
]

+ n−1 E1/p[‖
∑n−1

t=n/2 Ãt+1(θt − θ?)‖p] .

The first term of the above sum can be controlled by directly applying Pinelis’ version of Rosenthal’s
inequality (Pinelis, 1994, Theorem 4.3):

E1/p
[
‖
∑n−1

t=n/2 εt+1‖p
]
. p1/2n1/2

√
Tr(Σε) + p‖ε‖∞ .
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It remains to bound E1/p[‖
∑n−1

t=n/2 Ãt+1(θt − θ?)‖p]. Note that the sequence {Ãt+1(θt − θ?)} is
a martingale-difference w.r.t. Ft = σ(Zk, k ≤ t). A further application of Rosenthal’s inequality
thus shows that

E1/p

[∥∥∥∥ n−1∑
t=n/2

Ãt+1(θt − θ?)

∥∥∥∥p]

. p1/2E1/p

[( n−1∑
t=n/2

EFt

[
‖Ãt+1(θt − θ?)‖2

])p/2]
+ pE1/p

[
max

t
‖Ãt+1(θt − θ?)‖p

]

≤ p1/2 CA

 n−1∑
t=n/2

E2/p [‖θt − θ?‖p]

1/2

+ pCA E1/p
[
max

t
‖θt − θ?‖p

]
.

Now, applying the last iterate bound Theorem 7-(26), and using that αa ≤ 1/2, we get

p1/2 CA

( n−1∑
t=n/2

E2/p[‖θt − θ?‖p]
)1/2

.
κp+lognp

1/2 CA(1− αa)n/2‖θ0 − θ?‖√
αa

+
κp+logn CA p

√
αnTr(Σε)√

a
+ κp+logn CA αp

3/2n1/2‖ε‖∞ .

Moreover, a further application of Theorem 7-(26) together with n1/ logn ≤ e yield

pCA E1/p[max
t
‖θt − θ?‖p] ≤ pCA

 n∑
t=n/2

E[‖θt − θ?‖p+logn]

1/(p+logn)

. pCA n
1/(p+logn) max

n/2≤t<n
E1/(p+logn)[‖θt − θ?‖p+logn]

. κp+lognpCA(1− αa)n/2‖θ0 − θ?‖ + κp+lognpCA

√
α(p+ log n) Tr(Σε)

a
+ κp+lognpCA α(p+ log n)‖ε‖∞ .

Now it remains to combine the obtained bounds, and the statement follows. The result of The-
orem 2 follows from a simple observation that α(p + log n) ≤ 1/2 under A 2(p + log n) for
α ∈ (0;αp+logn,∞].

Appendix B. Proofs of TD learning of Section 3

B.1. Proof of Lemma 1

Proof Under TD 2, it is easily seen that ‖A1‖ ≤ (1 + γ) almost surely, which implies ‖Ā‖ ≤
(1 + γ). The remaining bounds follow from

‖ε‖∞ = sup
z∈Z
‖ε(z)‖ = sup

z=(s,s′)
‖(A(z)− Ā)θ? − (b(z)− b̄)‖ ≤ 2(1 + γ)(‖θ?‖ + 1) ,

Tr(Σε) = E[‖(A1 − Ā)θ? − (b1 − b̄)‖2] ≤ 2θ>? E[A>0 A0]θ? + 2E[r2(s0) Tr(ϕ(s0)ϕ>(s0))]

≤ 2(1 + γ)2θ>? Σϕθ? + 2 ≤ 2(1 + γ)2
(
‖θ?‖2Σϕ + 1

)
,
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and the statement follows.

B.2. Proof of Lemma 2

In this subsection we obtain a new, refined bounds on the transient term θ̃
(tr)
n = Γ

(α)
1:n{θ0 − θ?}

appearing in the error decomposition (27) in case of TD(0) algorithm. Recall that in case of the
general LSA algorithm we have to refer to the matrix product stability result of Theorem 13, which
is based on the framework suggested by Huang et al. (2021). The interplay between step size α∞,p
and maximal controlled moment p (which roughly can be written as α∞,p . 1/p) is in general
unavoidable. The respective 1−dimensional counterexample is provided in (Durmus et al., 2021a,
Example 1). At the same time, the general Lp-stability of the random matrix product appears to
induce some undesirable phenomenons. First, it induces the additional d1/p factor in the r.h.s. of
the bound (5). Such a dependence requires to introduce additional (logarithmic) dependence of the
dimension d in the step size α in order to remove the d1/p factor in the r.h.s..

Second, and more important, the trade-off between ‖I − αĀ‖ ≤ 1 − αa and upper bounds for
fluctuation term αE1/p[‖A−Ā‖p] requires that the step size α scales with some instance-dependent
quantities, related with the matrix Ā. Typically this means that the resulting rate-optimal algorithm
is not really implementable, as Ā is not accessible in practice.

This drawback is shared by most of the recent papers on the subject, see e.g. (Li et al., 2024,
Theorem 1), where the maximal allowed step size α scales with λmin(Σ). Our subsequent analysis
allows us to eliminate this drawback. Recall that for any 1 ≤ j ≤ n we set Fj = σ(Zi, 1 ≤ i ≤ j)
and F0 = ∅. Then the exponential stability property of Lemma 2 will follow from the following
general result:

Theorem 10 Let {θk}k∈N be a sequence of TD(0) updates generated by (14) under TD1 and TD2.
Then, for any n ∈ N, 1 ≤ j ≤ n, p ≥ 2, step size α ∈ (0; 1−γ

128p ], and any ξj−1 being a d-dimensional
Fj−1-measurable random vector, it holds P-a.s. that

EFj−1

[
‖Γ(α)

j:nξj−1‖p
]
≤ (1− αp(1− γ)λmin/2)n−j‖ξj−1‖p . (32)

In particular, for any θ0 ∈ Rd we obtain that

E1/p[‖Γ(α)
1:n(θ0 − θ?)‖p] ≤ (1− α(1− γ)λmin/2)n−j‖θ0 − θ?‖ . (33)

Proof Note that it is enough to prove the bound (32) for p = 2s, s ∈ N, since otherwise we can find
the nearest dyadic power q ≥ p and use the Lyapunov inequality. Note that we increase the power
of p by no more than a factor of 2 in such a case.

Now we consider the case p = 2s, s ∈ N. Then, expanding the p-power of the norm, we get

‖Γ(α)
j:nξj−1‖p =

(
ξ>j−1{Γ

(α)
j:n}

>Γ
(α)
j:nξj−1

)p/2
= (η>n−1(I− αAn)>(I− αAn)ηn−1)p/2 ,

where we have introduced a vector ηn−1 = Γ
(α)
j:n−1ξj−1. Note that a vector ηn−1 isFn−1-measurable,

and thus, combining Lemma 3 and Lemma 4, we get

EFj−1

[
‖Γ(α)

j:nξj−1‖p
]

= EFj−1

[
EFn−1

[
(η>n−1(I− αAn)>(I− αAn)ηn−1)p/2

]]
≤ (1− αp(1− γ)λmin/2)EFj−1

[
‖Γ(α)

j:n−1ξj−1‖p
]
,
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and the bound (32) follows by backward induction in n. In order to get the bound (33), it remains
to combine (32) together with the fact that g(x, p) = (1− px)1/p monotonically decreases in p for
p ≥ 1 and 0 < x < 1.

The stability result of Theorem 10 favorably compares to the one of Theorem 13. First, we
removed an artificial d1/p factor in the r.h.s. of the bound. Second, new stability threshold for α is
computable and does not contain any instance-independent quantities.

Below we provide some useful auxiliary technical lemmas required for the proof of Theorem 10.
Lemma 3. Let B = B> ≥ 0, B ∈ Rd×d be a symmetric positive definite matrix and u ∈ Rd be

some vector. Then, for any s ∈ N and p = 2s, it holds that(
u>Bu

)p ≤ ‖u‖2p−2u>Bpu . (34)

Proof We will proof the statement by induction in s ∈ N. The statement obviously holds for s = 0.
For s = 1 (resp., p = 2), we aim to prove that(

u>Bu
)2

= u>Buu>Bu ≤ ‖u‖2u>B2u , (35)

and the statement follows from the bound Buu>B ≤ ‖u‖2B2. Let us provide the detailed proof of
last inequality. We aim to check that for any y ∈ Rd it holds that

y>Buu>By ≤ ‖u‖2y>B2y .

Note that, since B is symmetric and positive definite, B = UΛU> with diagonal matrix Λ =
diag{λ1, . . . , λd} and orthogonal matrix U . Hence, the previous inequality is equivalent to

y>UΛU>uu>UΛU>y ≤ ‖u‖2y>UΛ2U>y .

Setting z = U>y and v = U>u, we have from the previous bound

z>Λvv>Λz ≤ ‖v‖2z>Λ2z .

Writing the previous bound in a coordinate form, we obtain that(
d∑
i=1

λizivi

)2

≤

(
d∑
i=1

v2
i

)(
d∑
i=1

λ2
i z

2
i

)
,

which holds due to Cauchy-Schwartz inequality, and (35) holds.
Suppose now that the inequality (34) holds for some p = 2s. Then(

u>Bu
)2p

=
(
u>Bu

)p(
u>Bu

)p ≤ ‖u‖4p−4u>Bpuu>Bpu ≤ ‖u‖4p−2u>B2pu ,

and the statement follows.

Now we provide a key statement on the in-expectation contraction of 1-step-ahead random
matrix A corresponding to the TD(0) algorithm.
Lemma 4. Let A = ϕ(s){ϕ(s)− γϕ(s′)}> be a random TD update matrix defined in (15), where
s′ ∼ P π(·|s), and s ∼ µ. Then, for any p ∈ N and α ∈ (0; 1−γ

64p ], it holds that

E
[
{(I− αA)>(I− αA)}p

]
� I− (1/2)αp(1− γ)Σϕ .
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Proof Consider the (random) matrix (I−αA)>(I−αA). Note that it is symmetric, and, introducing
matrix B = A + A> − αA>A, we get that

(I− αA)>(I− αA) = I− αB .

Using Lemma 5, it holds that for any k ∈ N,

E[B] � (1− γ)Σϕ , E[Bk] � 13

12
· 4kΣϕ .

Thus, expanding the brackets, we get

E[(I−αB)p] � I−αpE[B]+

p∑
k=2

αk
(
p

k

)
E[Bk] � I−αp(1−γ)Σϕ+

13

12
·
( p∑
k=2

(4α)k
(
p

k

))
Σϕ .

Since we know that αp ≤ (1− γ)/64, we can bound
p∑

k=2

(4α)k
(
p

k

)
≤

p∑
k=2

(4αp)k ≤ 16α2p2

1− 4αp
≤ 16

15
· 16α2p2 ≤ 16

15
· αp(1− γ)/4 .

Thus the combination of above bounds together with 16
15 ·

13
12 < 2 imply that

E[(I− αB)p] � I− (1/2)αp(1− γ)Σϕ ,

and the statement follows.

Now we provide a technical lemma on the behaviour of the symmetrized random matrix update
(I − αA)>(I − αA), where A is defined in (15). This lemma generalize the results presented in
(Patil et al., 2023, Lemma 5).
Lemma 5. For the random matrix A defined in (15) and B = A + A> − αA>A, p ∈ N and step
size α ∈ (0; 1−γ

(1+γ)2 ] it holds that

E[B] � (1− γ)Σϕ ,

E[Bp] � 13

12
· 4pΣϕ .

(36)

Proof With the definition of A, we get that

A + A> = ϕ(s){ϕ(s)− γϕ(s′)}> + {ϕ(s)− γϕ(s′)}ϕ(s)>

= 2ϕ(s)ϕ(s)> − γ{ϕ(s)ϕ(s′)> + ϕ(s′)ϕ(s)>} (37)

� (2− γ)ϕ(s)ϕ(s)> − γϕ(s′)ϕ(s′)> ,

where we used an elementary inequality uv> + vu> � (uu> + vv>) valid for any u, v ∈ Rd.
Similarly, with elementary algebra, we obtain

A>A = {ϕ(s)− γϕ(s′)}ϕ(s)>ϕ(s){ϕ(s)− γϕ(s′)}>

= ‖ϕ(s)‖2{ϕ(s)− γϕ(s′)}{ϕ(s)− γϕ(s′)}>

= ‖ϕ(s)‖2{ϕ(s)ϕ(s)> + γ2ϕ(s′)ϕ(s′)> − γ(ϕ(s)ϕ(s′)> + ϕ(s′)ϕ(s)>)}
(a)

� (1 + γ)ϕ(s)ϕ(s)> + γ(1 + γ)ϕ(s′)ϕ(s′)> ,

(38)
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where in (a) we additionally used that ‖ϕ(s)‖ ≤ 1 and

− (uu> + vv>) � uv> + vu> � (uu> + vv>)

for any u, v ∈ Rd. Combining the bounds above yields that for 0 ≤ α ≤ 1−γ
(1+γ)2 it holds that

E[B] � 2(1− γ)Σϕ − α(1 + γ)2Σϕ � (1− γ)Σϕ ,

and the first part of (36) is proved. To prove the second part it remains to notice that, for p ∈ N, and
0 ≤ α ≤ 1−γ

(1+γ)2 , it holds that

Bp = Bp−2B2 � ‖B‖p−2B2 ,

and
‖B‖ = ‖A + A> − αA>A‖ ≤ 2(1 + γ) + α(1 + γ)2 ≤ 3 + γ ≤ 4 .

Now it remains to analyze the expectation of the matrix B2, which is symmetric and positive semi-
definite:

B2 = (A + A> − αA>A)(A + A> − αA>A)

= (A + A>)2 − α
[
(A + A>)A>A + A>A(A + A>)

]
+ α2(A>A)2.

We start from the first term. With the simple algebra and the definition of A, we obtain that

A2 = ϕ(s)(ϕ(s)− γϕ(s′))>ϕ(s)(ϕ(s)− γϕ(s′))> = 〈ϕ(s), ϕ(s)− γϕ(s′)〉A ,

(A>)2 = (ϕ(s)− γϕ(s′))ϕ(s)>(ϕ(s)− γϕ(s′))ϕ(s)> = 〈ϕ(s), ϕ(s)− γϕ(s′)〉A> ,
AA> = ϕ(s)(ϕ(s)− γϕ(s′))>(ϕ(s)− γϕ(s′))ϕ(s)> = ‖ϕ(s)− γϕ(s′)‖2φ(s)φ(s)> ,

A>A = (ϕ(s)− γϕ(s′))ϕ(s)>ϕ(s)(ϕ(s)− γϕ(s′))>

= ‖ϕ(s)‖2(ϕ(s)− γϕ(s′))(ϕ(s)− γϕ(s′))> .

Additionally, in expectation we have the following relations, that follows from (37) and (38)

E
[
A + A>

]
� 2(1 + γ)Σϕ, E

[
A>A

]
≤ (1 + γ)2Σϕ.

Using this relations, and using the fact that

(A + A>)2 = A2 + AA> + A>A + (A>)2 ,

we obtain that
E
[
(A + A>)2

]
� 4(1 + γ)2Σϕ.

For the term (A>A)2 we obtain that

(A>A)2 = A>
(
AA>

)
A = ‖ϕ(s)− γϕ(s′)‖2A>φ(s)φ(s)>A

(a)
= ‖ϕ(s)− γϕ(s′)‖2‖ϕ(s)‖2A>A .
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Here the last identity (a) follows from the particular form of the matrix A = ϕ(s){ϕ(s)−γϕ(s′)}>.
Therefore, using the representation (38), we obtain that

E
[
(A>A)2

]
� (1 + γ)4Σϕ .

The above bounds together with the Cauchy-Schwartz inequality imply that, for any ε > 0, we have

B2 � (1 + ε)(A + A>)2 + (1 + 1/ε)α2(A>A)2 ,

which implies that

E[B2] � 4(1 + ε)(1 + γ)2Σϕ + (1 + 1/ε)α2(1 + γ)4Σϕ .

Thus, setting ε = 1/12, and using that γ ∈ [0; 1], we get that

E[B2] � (52/3)Σϕ = (13/12)16Σϕ .

As a result
E[B2] � (13/12)16Σϕ ⇒ E[Bp] � 4p−2E[B2] � (13/12)4pΣϕ.

B.3. Missing results from Section 3

We begin this section from instantiating Theorem 3 for the sequence {θk} which corresponds to
TD(0) algorithm. We use that κ2 = 1, Tr(Σε) ≤ 1 + ‖θ?‖2Σϕ , a = λmin(1− γ)/2. Then we get

Theorem 11 Assume TD 1 and TD 2. Let {θk}k∈N be a sequence of TD(0) updates generated by
(14). Then for any n ≥ 2, α ∈

(
0; 1−γ

256

]
, and θ0 ∈ Rd, it holds that

E1/2[‖θ̄n − θ?‖2Σϕ ] .
‖θ?‖Σϕ + 1
√
λminn(1− γ)

(
1 +

√
α√

(1− γ)λmin

)
+

‖θ?‖Σϕ + 1
√
α(1− γ)3/2λminn

+

(
1

αn(1− γ)λ
1/2
min

+
1

√
αn(1− γ)3/2λmin

)(
1− α(1− γ)λmin

2

)n/2
‖θ0 − θ?‖ .

Similarly to the discussion above, we can state the respective p-moment bound for the case of
TD(0) algorithm. This theorem is an adaptation of Theorem 2 (see also Theorem 9).

Theorem 12 Assume TD 1 and TD 2. Let {θk}k∈N be a sequence of TD(0) updates generated by
(14). Then for any p ≥ 2, n ≥ 2, and step size

α ∈
(

0;
1− γ

128(p+ log n)

]
,

we have that

E1/p[‖(θ̄n − θ?)‖pΣϕ ] .
p1/2(‖θ?‖Σϕ + 1)

n1/2(1− γ)λ
1/2
min

(
1 +

√
αp+ αp√

(1− γ)λmin

)
+

p(‖θ?‖Σϕ + 1)

n(1− γ)3/2λmin

(
1 +

1
√
αp

)

+

(
1− α(1− γ)λmin

2

)n/2(
(p+ log(n))1/2 +

p√
λmin

)
{p+ log(n)}1/2

(1− γ)2
√
λminn

‖θ0 − θ?‖ .
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The respective high-probability bound can be written as follows:
Corollary 4. Assume TD 1 and TD 2. Let {θk} be a sequence of TD(0) updates generated by (14).
Fix δ ∈ (0; 1/e). Then, for the step- and sample size

α =
1− γ

128 log (n/δ)
, n ≥ log (1/δ)

(1− γ)2

it holds with probability at least 1− δ that

‖θ̄n − θ?‖Σϕ
.

(‖θ?‖Σϕ
+ 1)

√
log (1/δ)

n1/2(1− γ)λmin
+
(
1− (1− γ)2λmin

128 log (n/δ)

)n/2 ‖θ0 − θ?‖ log3/2 (n/δ)

(1− γ)2λminn
.

B.4. Proof of stability bound (17) based on matrix stability argument

In the previous section we have presented a stability result Theorem 10, which allows for maximal
step size in the constant-step size TD(0) algorithm α∞,p of the form

α∞,p =
1− γ
128p

.

In this subsection we show that such type of result can not be readily obtained from existing results
on the stability of random matrix product Huang et al. (2021).

We first introduce some matrix notations. For the matrix B ∈ Rd×d we denote by (σ`(B))d`=1

its singular values. For p ≥ 1, the Shatten p-norm is denoted by ‖B‖p = {
∑d

`=1 σ
p
` (B)}1/p. For

p, q ≥ 1 and a random matrix X we write ‖X‖p,q = {E[‖X‖qp]}1/q. Then it is easily seen that

E1/q[‖X‖q] ≤ ‖X‖q,p ,

and one can control an operator norm of the matrix with its Shatten norm of an appropriate order.
Now we state the following result from (Durmus et al., 2021a, Proposition 2).

Proposition 13 Let {Y`}`∈N be a sequence on independent matrices, Y` ∈ Rd×d and Q be a
positive definite matrix. Assume that for each ` ∈ N there exist m` ∈ (0, 1) and σ` > 0 such that
‖E[Y`]‖2Q ≤ 1−m` and ‖Y` − E[Y`]‖Q ≤ σ` almost surely. Define Zn =

∏n
`=0 Y` = YnZn−1,

for n ≥ 1 with some (deterministic) matrix Z0 ∈ Rd×d. Then, for any 2 ≤ q ≤ p and n ≥ 1,

‖Zn‖2p,q ≤ κQ

n∏
`=1

(1−m` + (p− 1)σ2
` )‖Q1/2 Z0 Q−1/2 ‖2p,q , (39)

where κQ = λ−1
min(Q)λmax(Q).

Note that the result of Theorem 13 is generic in a sense that it allows us an additional degree of
freedom in the choice of the contracting matrix norm ‖·‖Q. An almost sure bound on ‖Y`−E[Y`]‖Q
can be generalized to a moment-type bound, with the same shape of the bound in (39). The main
drawback of this technique is an inevitable trade-off between m` and (p − 1)σ2

` factors, which
directly influences the speed with which ‖Zn‖2p,q decays to 0.
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Now we aim to apply Theorem 13 to check the assumption A2 for the TD(0) algorithm.
Lemma 6. Let {θk}k∈N be a sequence of TD(0) updates generated by (14) under TD 1 and TD 2.
Then this update scheme satisfies assumption A2(p) with

a =
(1− γ)λmin(Σϕ)

2
, αp,∞ =

1− γ
128p

∧ (1− γ)λmin(Σϕ)

64p
, κp = d1/p .

Proof We aim to apply here the result of Theorem 13 with Y` = I−αA` and Zn = Γ
(α)
1:n. Towards

this aim, note that Lemma 4 implies that, with A = ϕ(s){ϕ(s) − γϕ(s′)}> being a random TD
update matrix defined in (15), we have

‖I− αĀ‖ = ‖E[I− αA]‖ ≤
√
‖E[(I− αA)>(I− αA)}]‖

≤
√

1− α(1− γ)λmin(Σϕ)

≤ 1− (1/2)α(1− γ)λmin(Σϕ) ,

which holds for α ∈ (0; 1−γ
128 ). Moreover,

‖α(A− Ā)‖ ≤ α‖ϕ(s)(ϕ(s)− γϕ(s′))>‖+α‖E
[
ϕ(s)(ϕ(s)− γϕ(s′))>

]
‖ ≤ 2(1+γ)α ≤ 4α .

Hence, setting a = (1− γ)λmin(Σϕ), the assumptions of Lemma 4 are satisfied with

σ` = 4α ,m` = αa/2 .

Hence, applying the result of Lemma 4 with Q = I, Z0 = I, we get

E1/q
[
‖Γ(α)

1:n‖
q
]
≤ ‖Γ(α)

1:n‖p,q ≤ d
1/p(1− αa+ 16(p− 1)α2)n/2 .

Now we have to balance the terms αa/2 and 16(p−1)α2, which yields the scaling of α with a (and,
hence, with λmin(Σϕ)). In particular, setting α = a

32p , we get the statement of the Lemma.

Appendix C. Proofs of Section 4

In this section we need to introduce an additional assumptions which relates matrices G, Ā, and
(random) matrices Ai for i ∈ {1, . . . , n}.

C 1 There exist such symmetric positive-definite matrix G = G> > 0 and constants g > 0, ω > 0,
% > 0, such that

(i) for the system matrix Ā it holds that

G1/2Ā−>GĀ−1G1/2 � g2I ;

(ii) for the random matrix A1 it holds that

E[A>1 G
−1A1] � ω2G ;
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(iii) for the matrix Σε defined in (3) it holds that

Tr(Σε) ≤ %2 Tr(G1/2Ā−1ΣεĀ
−TG1/2) ;

Under Assumption C 1 we introduce a new notation

Σ(tr)
ε = G1/2Ā−1ΣεĀ

−TG1/2 .

Our proof in this section follows the general procedure introduced for the Polyak-Ruppert estimator
θ̄n0,n in (29). Recall that with summation by parts we obtain the following

Ā
(
θ̄n0,n − θ?

)
=

θn0 − θn
α(n− n0)

−
∑n−1

t=n0
e (θt, Zt+1)

n− n0
,

where the quantities e (θt, Zt+1) are defined in (30). Since we assume that Ā is non-degenerate, for
symmetric positive-definite matrix G = G> > 0 from C 1, we get from the previous inequality that

G1/2
(
θ̄n0,n − θ?

)
=

G1/2Ā−1(θn0 − θn)

α(n− n0)
−

G1/2Ā−1
∑n−1

t=n0
e (θt, Zt+1)

n− n0
. (40)

Based on the above identity, we prove the following counterpart of the 2-nd-moment bound
Theorem 1 for the general LSA problem.

Theorem 14 Assume A1, A2(2), and C 1. Then for any n ≥ 2, α ∈ (0;α2,∞], it holds that

E[‖θ̄n − θ?‖2G] .
Tr(Σ

(tr)
ε )

n
+

κ2
2g2 Tr(Σε)

an

(
‖G−1/2‖2

αn
+ ω2 ‖G1/2‖2α

)

+ κ2
2g2(1− αa)n

(
‖G−1/2‖2

α2n2
+
ω2‖G1/2‖2

αan2

)
‖θ0 − θ?‖2

Proof Following the pipeline of Theorem 1 and using (40), we get

E[‖θ̄n − θ?‖2G] .
E[‖G1/2Ā−1(θn/2 − θn)‖2]

α2n2︸ ︷︷ ︸
T1

+
E[‖

∑n−1
t=n/2 G

1/2Ā−1e (θt, Zt+1) ‖2]

n2︸ ︷︷ ︸
T2

,

and estimate the terms T1 and T2 separately. Applying the bounds of Theorem 7, we get first that

T1 . g2‖G−1/2‖2κ2
2

[
(1− αa)n‖θ0 − θ?‖2

α2n2
+

Tr(Σε)

αan2

]
.

Here we additionally used an upper bound

‖G1/2Ā−1u‖2 = u>Ā−>GĀ−1u

= u>G−1/2G1/2Ā−>GĀ−1G1/2G−1/2u

≤ g2u>G−1u

≤ g2‖G−1/2‖2‖u‖2 ,

(41)
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which is valid for any u ∈ Rd. Similarly, since {G1/2Ā−1e (θt, Zt+1)}t∈N is a martingale-
difference sequence w.r.t. filtration Fk = σ(Zj , j ≤ k), we get the following bound for T2:

T2 . n
−2

n−1∑
t=n/2

E[‖G1/2Ā−1e (θt, Zt+1) ‖2]

.
Tr(Σ

(tr)
ε )

n
+ κ2

2ω
2g2 ‖G1/2‖2

[
(1− αa)n‖θ0 − θ?‖2

αan2
+
αTr(Σε)

an

]
.

In particular, to bound the first term we use the bound

EFt
[
‖G1/2Ā−1Ãt+1(θt − θ?)‖2

]
(42)

= EFt
[
(θt − θ?)>Ã>t+1Ā

−>GĀ−1Ãt+1(θt − θ?)
]

= EFt
[
(θt − θ?)>A>t+1G

−1/2G1/2Ā−>GĀ−1G1/2G−1/2At+1(θt − θ?)
]

− EFt
[
(θt − θ?)>G(θt − θ?)

]
≤ g2EFt

[
(θt − θ?)>A>t+1G

−1At+1(θt − θ?)
]

≤ ω2g2(θt − θ?)>G(θt − θ?)
≤ ω2g2 ‖G1/2‖2 ‖θt − θ?‖2 .

Now we trace Theorem 16 in the case of TD (0) updates. First we check whether the assumption
C 1 holds.
Lemma 7. Let {θk}k∈N be a sequence of TD(0) updates generated by (14) under TD 1 and TD 2.
Then this update scheme satisfies assumption C 1 with

G = Σϕ , g = 1/(1− γ) , ω = (1 + γ)λ
−1/2
min , % = 1 + γ .

Moreover, it holds that
Σ−1/2
ϕ Ā>Σ−1

ϕ ĀΣ−1/2
ϕ � (1− γ)2I . (43)

Proof In order to prove that

Σ1/2
ϕ Ā−>ΣϕĀ

−1Σ1/2
ϕ � 1

(1− γ)2
I ,

it is enough to show the lower bound (43). For the finite state space S this follows from (Li et al.,
2024, Lemma 5), we provide a slightly modified argument for completeness. Indeed, for any x ∈
Rd, using that Ā = Σϕ − γE[ϕ(s1)ϕ(s′1)>], we have

x>Σ−1/2
ϕ Ā>Σ−1

ϕ ĀΣ−1/2
ϕ x = ‖Σ−1/2

ϕ ĀΣ−1/2
ϕ x‖2 = ‖

(
I− γΣ−1/2

ϕ E[ϕ(s1)ϕ(s′1)>]Σ−1/2
ϕ

)
x‖2

≥ (‖x‖ − γ‖Σ−1/2
ϕ E[ϕ(s1)ϕ(s′1)>]Σ−1/2

ϕ x‖)2 ,
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and to complete the proof it is enough to show that ‖Σ−1/2
ϕ E[ϕ(s1)ϕ(s′1)>]Σ

−1/2
ϕ ‖ ≤ 1. In order to

do it, note that

‖Σ−1/2
ϕ E[ϕ(s1)ϕ(s′1)>]Σ−1/2

ϕ ‖ = sup
‖x‖=1,‖y‖=1

x>Σ−1/2
ϕ E[ϕ(s1)ϕ(s′1)>]Σ−1/2

ϕ y

= sup
‖x‖=1,‖y‖=1

E
[(

[Σ−1/2
ϕ x]>ϕ(s1)

)(
ϕ(s′1)>Σ−1/2

ϕ y
)]

≤ sup
‖x‖=1,‖y‖=1

E
[

1

2

(
[Σ−1/2
ϕ x]>ϕ(s1)

)2
+

1

2

(
ϕ(s′1)>Σ−1/2

ϕ y
)2
]

= sup
‖x‖=1,‖y‖=1

[
1

2
x>Σ−1/2

ϕ E[ϕ(s1)ϕ(s1)>]Σ−1/2
ϕ x

+
1

2
y>Σ−1/2

ϕ E[ϕ(s′1)ϕ(s′1)>]Σ−1/2
ϕ y

]
= 1.

where we used the fact that a distribution µ is the invariant. Hence, we get

x>Σ−1/2
ϕ Ā>Σ−1

ϕ ĀΣ−1/2
ϕ x ≥ (1− γ)2‖x‖2 ,

and the bound (43) is proved. To prove the second part of the bound, we use (38) and obtain that

E[A>1 Σ−1
ϕ A1] = E[

(
ϕ(s1)− γϕ(s′1)

)
ϕ(s1)>Σ−1

ϕ ϕ(s1)
(
ϕ(s1)− γϕ(s′1)

)>
]

� λ−1
minE[

(
ϕ(s1)− γϕ(s′1)

)(
ϕ(s1)− γϕ(s′1)

)>
] � λ−1

min(1 + γ)2Σϕ ,

where the last inequality follows (38) in the proof of Lemma 5. To check the last one, note that

Tr(Σε) = Tr(Ā>Σ−1/2
ϕ Σ1/2

ϕ Ā−>ΣεĀ
−1Σ1/2

ϕ Σ−1/2
ϕ Ā)

(a)
= Tr(Σ−1/2

ϕ ĀΣ−1/2
ϕ ΣϕΣ−1/2

ϕ Ā>Σ−1/2
ϕ Σ1/2

ϕ Ā−>ΣεĀ
−1Σ1/2

ϕ )

(b)

≤ ‖Σ−1/2
ϕ ĀΣ−1/2

ϕ ΣϕΣ−1/2
ϕ Ā>Σ−1/2

ϕ ‖Tr(Σ1/2
ϕ Ā−>ΣεĀ

−1Σ1/2
ϕ ) .

Note that the identity (a) above follows from the cyclic property of trace, and the inequality (b) is
due to Tr(CD) ≤ ‖C‖Tr(D), which is valid for symmetric positive semi-definite matrices C,D.
In the bound above it remains to estimate

‖Σ−1/2
ϕ ĀΣ−1/2

ϕ ΣϕΣ−1/2
ϕ Ā>Σ−1/2

ϕ ‖ ≤ ‖Σ−1/2
ϕ ĀΣ−1/2

ϕ ‖2‖Σϕ‖ . (44)

Consider now the operator norm of the matrix Σ
−1/2
ϕ ĀΣ

−1/2
ϕ . Note that Ā = Σϕ−γE[ϕ(s1)ϕ(s′1)>].

Thus, we get

‖Σ−1/2
ϕ ĀΣ−1/2

ϕ ‖ = sup
‖x‖=1,‖y‖=1

x>Σ−1/2
ϕ (Σϕ − γE[ϕ(s1)ϕ(s′1)>])Σ−1/2

ϕ y

≤ 1 + γ sup
‖x‖=1,‖y‖=1

[
x>Σ

−1/2
ϕ E[ϕ(s1)ϕ(s1)>]Σ

−1/2
ϕ x

2
+
y>Σ

−1/2
ϕ E[ϕ(s′1)ϕ(s′1)>]Σ

−1/2
ϕ y

2

]
= 1 + γ .
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Plugging this inequality into (44), we get

‖Σ−1/2
ϕ ĀΣ−1/2

ϕ ΣϕΣ−1/2
ϕ Ā>Σ−1/2

ϕ ‖ ≤ (1 + γ)2 .

In the last bound we additionally used that ‖Σϕ‖ ≤ 1 under TD 2.

Now a simple combination of the above bounds allows us to prove the following result:

Theorem 15 Assume TD 1 and TD 2. Let {θk}k∈N be a sequence of TD(0) updates generated by
(14). Then for any p ≥ 2, n ≥ 2, α ∈

(
0; 1−γ

256

]
, it holds that

E[‖θ̄n − θ?‖2Σϕ ] .
Tr(Σ

1/2
ϕ Ā−1Σ

(TD)
ε Ā−TΣ

1/2
ϕ )

n
+

1 + ‖θ?‖2Σϕ
(1− γ)3λ2

minn

(
1

αn
+ α

)
+

(1− α(1− γ)λmin/2)n

λmin(1− γ)2

(
1

α2n2
+

1

α(1− γ)λminn2

)
‖θ0 − θ?‖2

(45)

Based on the identity above, we can prove the following counterpart of the result Theorem 9 for
the general LSA problem.

Theorem 16 Assume A1, A2(∞), and C 1. Then for any p ≥ 2, n ≥ 2, α ∈ [0;αp+logn,∞), it
holds that

E1/p[‖θ̄n − θ?‖pG] .
p1/2

√
Tr(Σ

(tr)
ε )

n1/2

1 +

√
αpκ∞ωg%‖G1/2‖CA√

a
+
αpκ∞ωg‖G1/2‖‖ε‖∞√

Tr(Σ
(tr)
ε )


+
p1/2g%‖G−1/2‖κ∞

√
Tr(Σ

(tr)
ε )

√
an

[
1√
α

+ p1/2 CA

√
α(p+ log n)

]
+
pg‖G−1/2‖κ∞‖ε‖∞

n
(1 + CA α(p+ log n))

+ g‖G−1/2‖κ∞(1− αa)n/2‖θ0 − θ?‖

(
1

αn
+
pCA

n
+
p1/2ω√
αan

)
.

Proof The proof follows the general scheme of Theorem 9. Setting n0 = n/2 and using Minkowski’s
inequality, we obtain from (40) that

E1/p
[
‖θ̄n − θ?‖pG

]
≤

E1/p[‖G1/2Ā−1(θn/2 − θn)‖p]
αn︸ ︷︷ ︸
T1

+

E1/p
[
‖G1/2Ā−1

∑n−1
t=n/2 e(θt, Zt+1)‖p

]
n︸ ︷︷ ︸
T2

, (46)

and bound T1, T2 separately. We begin with bounding the term T1, which is a remainder term (w.r.t.
sample size n). With Theorem 7-(26), C 1, and (41), we obtain

T1 . g‖G−1/2‖κ∞
[

(1− αa)n/2‖θ0 − θ?‖
αn

+
p1/2%

√
Tr(Σ

(tr)
ε )

√
αan

+
p‖ε‖∞
n

]
.
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Now we bound T2. Using again Minkowski’s inequality, we get

T2 ≤ n−1 E1/p
[
‖
∑n−1

t=n/2 G
1/2Ā−1εt+1‖p

]
+ n−1 E1/p[‖

∑n−1
t=n/2 G

1/2Ā−1Ãt+1(θt − θ?)‖p] .

The first term of the above sum can be controlled by directly applying Pinelis’ version of Rosenthal’s
inequality (Pinelis, 1994, Theorem 4.3):

E1/p

∥∥∥∥ n−1∑
t=n/2

G1/2Ā−1εt+1

∥∥∥∥p
 . p1/2n1/2

√
Tr(G1/2Ā−1ΣεĀ−TG1/2) + p‖G1/2Ā−1ε‖∞

(a)

. p1/2n1/2

√
Tr(Σ

(tr)
ε ) + pg‖G−1/2‖‖ε‖∞ .

In order to prove the step (a) above we used the bound (41). Hence it remains to bound the quantity

E1/p[‖
n−1∑
t=n/2

G1/2Ā−1Ãt+1(θt − θ?)‖p] .

Note that {G1/2Ā−1Ãt+1(θt − θ?)} is a martingale-difference w.r.t. Ft = σ(Zk, k ≤ t). A further
application of Rosenthal’s inequality thus shows that

E1/p

[∥∥∥∥ n−1∑
t=n/2

G1/2Ā−1Ãt+1(θt−θ?)
∥∥∥∥p] . p1/2E1/p

[( n−1∑
t=n/2

EFt
[
‖G1/2Ā−1Ãt+1(θt − θ?)‖2

])p/2]
+ pE1/p

[
max
t
‖G1/2Ā−1Ãt+1(θt − θ?)‖p

]
. (47)

Now we upper bound both terms in the r.h.s. separately. Using the bound (42), for the first term in
r.h.s. of (47) we have, using Theorem 7-(26) and C 1, that

p1/2E1/p

[( n−1∑
t=n/2

EFt
[
‖G1/2Ā−1Ãt+1(θt − θ?)‖2

])p/2] ≤ p1/2ωg‖G1/2‖
[ n−1∑
t=n/2

E2/p [‖θt − θ?‖p]
]1/2

. κ∞p1/2ωg‖G1/2‖ ·
[

(1− αa)n/2‖θ0 − θ?‖√
αa

+
p1/2%

√
αnTr(Σ

(tr)
ε )

√
a

+ αpn1/2‖ε‖∞
]
.

For the second term in (47) we have, applying Theorem 7-(26) and using n1/ logn ≤ e, that

pE1/p[max
t
‖G1/2Ā−1Ãt+1(θt − θ?)‖p]

. pCA g‖G−1/2‖n1/(p+logn) max
n/2≤t<n

E1/(p+logn)[‖θt − θ?‖p+logn]

. κ∞pCA g‖G−1/2‖ ·
[
(1− αa)n/2‖θ0 − θ?‖ +

√
α(p+ log n) Tr(Σ

(tr)
ε )

a
+ α(p+ log n)‖ε‖∞

]
.

Now the statement follows from combining the above estimates in (46).

Now a simple combination of the above bounds allows us to prove the following bound:
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Theorem 17 Assume TD 1 and TD 2. Let {θk}k∈N be a sequence of TD(0) updates generated by
(14). Then for any p ≥ 2, n ≥ 2, α ∈

(
0; 1−γ

128(p+logn)

]
, it holds that

E1/p[‖(θ̄n − θ?)‖pΣϕ ] .
p1/2

√
Tr(Σ

1/2
ϕ Ā−1Σ

(TD)
ε Ā−TΣ

1/2
ϕ )

n1/2

(
1 +

√
αp

(1− γ)3/2λmin

)
+
αp3/2(1 + ‖θ?‖)
(1− γ)λ

1/2
minn

1/2

+
p1/2

√
Tr(Σ

1/2
ϕ Ā−1Σ

(TD)
ε Ā−TΣ

1/2
ϕ )

(1− γ)3/2λminn

[
1√
α

+ p1/2
√
α(p+ log n)

]
+

p(1 + ‖θ?‖)
(1− γ)λminn

[
1 + α(p+ log n)

]
+

1

(1− γ)λ
1/2
min

(
1− α(1− γ)λmin

)n/2
‖θ0 − θ?‖

(
1

αn
+
p

n
+

p1/2

√
α(1− γ)λ

1/2
minn

)
.

Appendix D. Berbee’s lemma and coupling inequalities for Markov chains

We preface this section with some definitions essential for the Berbee’s lemma construction. Con-
sider a probability space (Ω,F ,P) equipped with σ-fields F and G such that F ⊆ F ,G ⊆ F . Then
the β-mixing coefficient of F and G is defined as

β(F,G) = (1/2) sup
∑
i∈I

∑
j∈J

|P(Ai ∩ Bj)− P(Ai)P(Bj)| ,

and the supremum is taken over all pairs of partitions {Ai}i∈I ∈ FI and {Bj}j∈J ∈ GJ of Z̃N with
finite I and J.

Now let (Z, dZ) be a Polish space endowed with its Borel σ-field, denoted by Z , and let
(ZN,Z⊗N) be the corresponding canonical space. Consider a Markov kernel Q on Z × Z and
denote by Pξ and Eξ the corresponding probability distribution and expectation with initial distribu-
tion ξ. Without loss of generality, we assume that (Zk)k∈N is the associated canonical process. By
construction, for any A ∈ Z , Pξ (Zk ∈ A |Zk−1) = Q(Zk−1,A), Pξ-a.s. In the case ξ = δz , z ∈ Z,
Pξ and Eξ are denoted by Pz and Ez , respectively. We now make an assumption about the mixing
properties of Q, which essentially reflects TD 4.

UGE 1 The Markov kernel Q admits µ as an invariant distribution and is uniformly geometrically
ergodic, that is, there exists tmix ∈ N such that for all k ∈ N,

∆(Qk) = sup
z,z′∈Z

(1/2)‖Qk(z, ·)−Qk(z′, ·)‖TV ≤ (1/4)bk/tmixc .

For q ∈ N, k ∈ N, and the Markov chain {Zn}n∈N satisfying the uniform geometric ergodicity
condition UGE 1, we define the σ-algebras Fk = σ(Z`, ` ≤ k) and F+

k+q = σ(Z`, ` ≥ k + q). In
such a scenario, using (Douc et al., 2018, Theorem 3.3), the respective β-mixing coefficient of Fk
and F+

k+q is bounded by

β(q) ≡ β(Fk,F+
k+q) ≤ (1/4)bq/tmixc .

In this chapter we rely on the following useful version of Berbee’s coupling lemma Berbee (1979),
which is due to (Dedecker and Louhichi, 2002, Lemma 4.1):
Lemma 8. (Lemma 4.1 in Dedecker and Louhichi (2002)) Let X and Y be two random variables
taking their values in Borel spaces X and Y , respectively, and let U be a random variable with
uniform distribution on [0; 1] that is independent of (X,Y ). There exists a random variable Y ? =
f(X,Y, U) where f is a measurable function from X × Y × [0, 1] to Y , such that:
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1. Y ? is independent of X and has the same distribution as Y ;

2. P(Y ? 6= Y ) = β(σ(X), σ(Y )).

Let us now consider the extended measurable space Z̃N = ZN× [0, 1], equipped with the σ-field
Z̃N = Z⊗N ⊗ B([0, 1]). For each probability measure ξ on (Z,Z), we consider the probability
measure P̃ξ = Pξ ⊗ Unif([0, 1]) and denote by Ẽξ the corresponding expected value. Finally,
we denote by (Z̃k)k∈N the canonical process Z̃k : ((zi)i∈N, u) ∈ Z̃N 7→ zk and U : ((zi)i∈N, u) ∈
Z̃N 7→ u. Under P̃ξ, {Z̃k}k∈N is by construction a Markov chain with initial distribution ξ and
Markov kernel Q independent of U . Moreover, the distribution of U under P̃ξ is uniform over [0, 1].
Using the above construction, we obtain a useful blocking lemma, which is also stated in Dedecker
and Louhichi (2002).
Lemma 9. Assume UGE 1, let q ∈ N and ξ be a probability measure on (Z,Z). Then, there exists
a random process (Z̃?k)k∈N defined on (Z̃N, Z̃N, P̃ξ) such that for any k ∈ N,

(a) For any i, vector V ?
i = (Z̃?iq+1, . . . , Z̃

?
iq+q) has the same distribution as Vi = (Ziq+1, . . . , Ziq+q)

under P̃ξ;

(b) The sequences (V ?
2i)i≥0 and (V ?

2i+1)i≥0 are i.i.d. ;

(c) For any i, P̃ξ(Vi 6= V ?
i ) ≤ β(q);

Proof The proof follows from Lemma 8 and the relations between UGE1 and β-mixing coefficient,
see (Douc et al., 2018, Theorem 3.3).

D.1. Proof of Theorem 6

We aim to reduce the proof of the given bound to that of Corollary 4. Since the initial distribution
of the sequence of states is s0 ∼ ν, we must first remove the dependence on the initial condition.
Indeed, using (Douc et al., 2018, Lemma 19.3.6 and Theorem 19.3.9 ) for any two probabilities ν
and ν̃ on (S,B(S)) there is a maximal exact coupling (Ω,F , P̃ν,ν̃ , s, s̃, T ) of Pν and Pν̃ , that is,

‖νPnπ − ν̃Pnπ ‖TV = 2P̃ν,ν̃(T > n) .

Under P̃ν,ν̃ , the sequences {sk}k∈N and {s̃k}k∈N are Markov chains with initial distributions ν and
ν̃, respectively. We write Ẽν,ν̃ for the expectation with respect to P̃ν,ν̃ . T is the coupling time, which
is defined as

T = inf
k∈N
{sk = s̃k} .

Let us now fix ν̃ = µ and for n ∈ N define an event An = {T > n/2}. Under TD 4, we can bound
its probability as

P̃ν,µ(An) = P̃ν,µ(T > n/2) ≤ (1/4)bn/(2tmix)c .

Thus, for a fixed δ ∈ (0; 1/3) we can achieve P̃ν,µ(An) ≤ δ as soon as

n ≥ 2tmix log(4/δ)

log 4
.
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Hence, starting from this point we work on the event Ω \ An which has probability at least 1 − δ.
On this event {sk}k≥n/2 coincides with {s̃k}k≥n/2, which is a stationary Markov chain with initial
distribution µ. Assume now that the sample size n satisfies

n/2 = 2qm+ k , 0 ≤ k < 2q , (48)

where q ∈ N is a parameter that will be determined later. Using the construction of Lemma 9, we
then construct a sequence of random variables{s̃?n/2+2jq}j=1,...,m, which are i.i.d. with law µ under

P̃ν,µ. Moreover, with a union bound,

P̃ν,µ(∃j ∈ {1, . . . ,m} : s̃?n/2+2jq 6= s̃n/2+2jq) ≤ m(1/4)bq/tmixc .

The bound (48) implies that m ≤ n/(4q). Thus in order to achieve that P̃ν,µ(∃j ∈ {1, . . . ,m} :
s̃?n/2+2jq 6= s̃n/2+2jq) ≤ δ it is enough to ensure that

m(1/4)bq/tmixc ≤ 4m(1/4)q/tmix ≤ (n/q)(1/4)q/tmix ≤ δ .

In order to satisfy this constraint for fixed δ ∈ (0, 1), we choose

q =

⌈
tmix log (n/δ)

log 4

⌉
. (49)

Thus, setting the block size q as in (49), we get that for sample size n satisfying (48), with probability
at least 1− 2δ the results of Algorithm 2 are indistinguishable from the result of Algorithm 1 under
the generative model assumption TD 1 applied with sample size

n/(4q)− 1 ≤ m ≤ n/(4q) .

Hence, the rest of the proof follows directly from the results of Corollary 4 applied with sample size
m.
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