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Abstract

Consider an n dimensional binary feature vector with k non-zero entries. The vector can be in-
terpreted as the incident vector corresponding to n items out of which k items are defective. The
quantitative group testing (QGT) problem aims at learning this binary feature vector by queries
on subsets of the items that return the total number of defective items. We consider this problem
under the non-adaptive scenario where the queries on subsets are designed collectively and can be
executed in parallel. Most of the existing efficient non-adaptive algorithms for the sublinear regime
where k = n% with 0 < a < 1 fall short of the information-theoretic lower bound, with a multi-
plicative gap of log k. Recently, Hahn-Klimroth and Miiller (2022) closed this gap by providing a
non-adaptive algorithm with decoding complexity of O(13).

In this work, we present a concatenated construction method yielding a non-adaptive algorithm
with the decoding complexity of O(n?* +n log2 n). The probability of decoding failure is analyzed
by establishing a connection between the QGT problem and the so-called balls into bins problem.
Our algorithm reduces the gap between the information-theoretic and computational bound for the
number of required queries/tests from log k to log log k. This narrows the gap in number of tests for
non-adaptive algorithms within the class of algorithms with 0(n?) decoding complexity. Moreover,
although our algorithm exhibits a loglog k gap in terms of the number of tests, it is surpassed by
the existing asymptotically optimal construction only in scenarios where k is exceptionally large for
moderate values of &, such as k > 10%” for & = 0.7, thereby highlighting the practical applicability
of our proposed concatenated construction.

Keywords: Statistical inference, Quantitative group testing, Urn models, Compressed sensing

1. Introduction

Quantitative Group Testing (QGT) is the problem of detecting k defective items within a collection
of n items through a series of tests conducted on m distinct pools. The result of each individual
test yields the number of defective items present in the corresponding pool. This problem finds
applications across a diverse spectrum of domains, including identifying rare variant carriers in
genome sequencing (Cao et al., 2014), network traffic control (Wang et al., 2015), resource allo-
cation in random access channels (De Marco et al., 2021), and signal recovery (Matsumoto et al.,
2023; Mazumdar and Pal, 2021).

The QGT problem is often studied within two primary statistical models that define the ar-
rangement of underlying items. In the probabilistic model, each item has a probability p of being
defective, which is independent of other items. In the combinatorial model, the number of defec-
tive items, denoted as k, is known in advance. Strategies for addressing the QGT problem fall into
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two distinct categories: adaptive and non-adaptive. In the non-adaptive approach, all tests must
be predetermined and can be executed in parallel. In contrast, in the adaptive approach, one can
observe the results of previous tests and utilize this information to design subsequent tests . In
particular, Bshouty (2009) provides an order-optimal adaptive algorithm that is within a factor of
2 of the information-theoretic lower bound. Recently, Soleymani and Javidi (2024) introduced an
adaptive algorithm with tunable adaptation, allowing for a trade-off between the number of tests and
the number of adaptive stages. In this paper, we focus on the non-adaptive QGT problem within the
combinatorial model.

Developing an algorithm for non-adaptive QGT can be considered as the construction of a binary
matrix, where the rows represent the tests and the columns correspond to the items. An item is
included in a pool test if the corresponding entry in the associated row is equal to 1. This setup
bears a significant resemblance to the compressive sensing (CS) (Candes et al., 2006; Donoho,
2006) and sparse recovery problems that are studied extensively in the literature. In particular,
the QGT problem can be regraded as a binary CS problem, with the additional constraint that the
measurement matrix must also be binary.

In this paper, we investigate the QGT problem within the sublinear regime, where k = n* for
0 < a < 1. The information-theoretic lower bound on the number of tests required in a non-adaptive
scheme for the QGT problem in this regime is (Djackov, 1975)

modzef 2k log n
log k k’
Since this problem can be regarded as a special case of the CS problem, utilizing the linear program-
ming methods proposed recovers the underlying binary vector w.h.p. using ®@(kIn n). Several stud-
ies in the literature addressed the construction of techniques tailored to the QGT problem (Karimi
et al., 2019b,a; Coja-Oghlan et al., 2020; Feige and Lellouche, 2020; Gebhard et al., 2022; Soley-
mani et al., 2023; Tan et al., 2023). All such algorithms contribute to a reduction in the required
number of tests compared to linear programming techniques, primarily focusing on improving mul-
tiplicative constant factors and the gap to the information theoretic gaps remains at O(logk).

Recently, Hahn-Klimroth and Miiller (2022); Hahn-Klimroth et al. (2023) successfully bridged
this gap by introducing a non-adaptive algorithm that infers all k defective items w.h.p. with the
number of tests approaching %mo as n grows large and a decoding complexity of O(n?). No-
tably, this marks the first polynomial-time algorithm achieving an orderwise optimal number of tests
for recovering defective items in the QGT problem. Our main focus in this study is to continue the
effort of reducing the decoding complexity of non-adaptive algorithms for the QGT problem by
addressing the fundamental question of whether it is possible to narrow the mentioned O(log k) gap
while achieving decoding complexity superior to O(n3), ideally approaching near-linear complex-
ity. To this end, we provide a construction method that reduces the O(logk) gap to O(loglogk)
in the number of required tests accompanied by a computational complexity of O(n?* + n logn).
Our approach involves the introduction of a concatenation method that can be utilized to tackle the
QGT problem through a divide-and-conquer strategy. The theoretical guarantee on the probability
of successful detection of the defective items is established by introducing a certain probabilistic
urn model (Sprott, 1978) and making a connection to the well-known balls into bins problem (Park,
1980). Our contribution can be summarized in the following:

D

* Decoding Complexity: In the sublinear regime, for 0 < a < % the decoding complexity of
our algorithm is O(n log 1), achieving an almost linear decoding complexity while narrowing



the computational-semantic gap from log k to loglog k in number of tests. For % <a<l,
the complexity is o(n%), improving upon the state-of-the-art complexity of O(n°).

* Non-asymptotic behavior: Our proposed algorithm outperforms the algorithm proposed by
Hahn-Klimroth and Miiller (2022) in the non-asymptotic regime in terms of the number of
tests for moderate values of a. In other words, in order for the mentioned algorithm to surpass
ours in terms of the number of tests, the parameter n must be significantly large.

The rest of the paper is organized as follows. Section 2 introduces the system model and presents
a concatenation approach that is utilized in our proposed test matrix design. Section 3 provides an
overview of a result regarding the balls into bins problem and introduces a novel probabilistic urn
model tailored to the QGT setting. We establish a connection between these two models, allowing
us to utilize the probability bounds derived from the former for the latter. In Section4, we discuss
two fundamental components that can serve as the building blocks for our concatenated scheme, and
provide our construction and analyse its performance. Finally, the paper is concluded in Section 5.

2. Problem Setting and a Concatenated Construction

2.1. Notation

The vectors and matrices are represented by bold lower and upper case characters, respectively. The
component i of a vector a is represented by 4;. The number of non-zero elements in a is referred to
as the Hamming weight of a and is denoted by |a|. The Hamming distance between two vectors a
and b is |a — b|. Throughout this paper, log(-) denotes the base 2 logarithm, while In(-) represents
the natural logarithm with base e. The set of all non-negative integers is denoted by INj.

2.2. Problem Setting

The problem of quantitative group testing (QGT) is the following: A set of #n items is given out of
which k items are defective. The incident vector corresponding to these items is a binary vector
x € {0,1}" such that x; = 1 if the item is defective and x; = 0, otherwise. Let %, ; denote the set of
all binary vectors of size n with k non-zero elements. In this paper, we consider the combinatorial
model for the QGT problem where x is picked from %, ; uniformly at random. This problem is
reffered to as (n,k)-QGT problem. The goal is to identify all defective items, i.e., recover x, by
performing tests/measurements over as few subsets of the items as possible. The outcome of a test
is the number of defective items belonging to the underlying subset. This problem is also referred to
as the coin weighing problem in the literature where one attempts to detect k counterfeit coins from
a collection of 7 coins using a spring scale, given that all counterfeit coins weight the same, which
is different from the weight of genuine coins. Designing a non-adaptive strategy for the (1, k)-QGT
problem is equivalent to constructing a binary matrix with # columns such that the sum of any
subset of size k of the columns is distinct. This matrix is referred to as a search matrix, which is
defined as follows.

Definition 1 A binary matrix A € {0,1}"*" is called an (n, k)-search matrix if Ax # Ax' for all
x #x' € By

Next, Definition 1 is extended to to the case where the entries of x are non-negative integers.
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Definition 2 A binary matrix D € {0, 1}"*" is called a (dy, - - - , d,)-detecting matrix if Dx # Dx’
forallx # x' € {a:0 < a; < d;,Vie [n]}. Inparticular, if d; = d for all i € [n], the matrix is
referred to as an (n,d)-detecting matrix.

We leverage an off-the-shelf construction for the (7, d)-detecting matrix, in particular the one
introduced by Bshouty (2009). This serves as a building block in constructing measurement matri-
ces for the QGT problem with balanced incident vectors. The notion of balanced vector is defined
next.

Definition 3 A binary vector x of length n is called an (m, t)-balanced vector for some integer m
that divides n if

n
m n

2
max(Zx,-, Z Xijooo, Z xi) < t.
1

=1 =141 i=n—1 41

In other words, in an (m, t)-balanced vector x, the number of ones inside each block of length
does not exceed t.

2.3. Concatenated Construction

One of the main ideas of the construction provided in this paper involves reducing a QGT problem
into carefully selected smaller QGT subproblems. These subproblems are then tackled using a test
matrix tailored for solving the smaller instances, in conjunction with a detection matrix with pre-
cisely crafted parameters. To establish this, the following theorem demonstrates that the Kronecker
product of an (171, d)-detecting matrix with an (715, d)-search matrix can uniquely recover any vector
x of length nqny that is (1, d)-balanced.

Theorem 4 LetA € {0,1}"™*™ and B € {0,1}"2*" be an (n1, d)-detecting matrix and an (ny, d)-

search matrix, respectively. Let
def

C=AQ®B.
Then, one can uniquely recover the binary vector x of length niny from Cx if x is (n1, d)-balanced.
Moreover, if there exist algorithms </ and A that retrieve a and a' from Aa and Ba' within
computation complexities of O, and Og, respectively, then one can recover x from Cx with a
computation complexity of m;O ., + 110 4.

Proof: Suppose x is a binary vector of length n1n; that is (n11,d)-balanced. That is, we have

jna

>, x; < dforall j € [n1]. We prove the statement of the theorem by proposing a decoder
i=(j—1)ny+1
that recovers x from Cx. Suppose that there exist algorithms <7 : 1N811 — {0,1,---,d}™ and
% : Ny? — {0,1}" that recover a and a’ from Aa and Ba’ within time complexities of O; and

Oy, respectively. Let b2 Cx denote the corresponding measurement vector. We use the so-called
mixed Kronecker matrix-vector product property as follows:

vec(BXAT) = (A® B) vec(X), )

for any np x ny matrix X, where the vec(-) operator constructs a column vector from the input
matrix T = [#1]- - |y, ] by vertically stacking the column vectors of T beneath each other, i.e.,



f . )
VeC(T)Cle [tl, R 1]t. We partition x into 71 column vectors of length 7, and arrange them as the

. . def . ..
columns of a new 1y x 17 matrix referred to as X, i.e., X= [x1] - - - |, ]. Following this, it can be
verified that vec(X) = x. Then, one can write

def
:eBYHzananXﬂl = [Bx1|Bx2| o ‘Ble]]' (3)

Pm2><n1

Let Fl ., = [ Filfol - fmz] Note that f,’s represent the columns of FT, hence they are column
vectors of length #1. Then, we have

vec(BXAT) = vec(FAT) = vec((AF")") = vec([Af,|Af,| - |Af,,]7) 4)
eC([y1| o |ym1]T) = []/11, oy Yme1 Y12, s Yme2s s Y 1wy, /ymzml]T/ (5)

where y; = [yi1, Vi2, -+~ ,yiml]Tde A fl, for all i € [my]. Combining (2) together with (5) and
recalling that A® B = C and vec(X) = x result in

b = [y]ll e /ym21/ y12/ e /ymzzz e /ylmll e /ymzml]T- (6)

Hence, all y; values for each i € [my] can be deduced from the measurement vector b using (6);
specifically, yj; = b(j_1ym,+ for all i € [my] and j € [m1]. Then, one can arrange the following
equations:

Af, =y, Vi € [my]. @)

Note that all f s then can be determined by utilizing the decoding algorithm corresponding to the
matrix A which is algorithm <7, i.e., f; = & (y;), provided that the entries of f,’s are not larger than
d. This requirement is necessary because matrix A is an (11, d)-detecting matrix. Hence the correct
recovery of f ; is only guaranteed if all the entries of f ; do not exceed d. As f ;’s are the columns of
FT, it is sufficient to show that the entries of F do not exceed d. To establish this, note that all entries
of Bx; for all j € [11] are not greater than d. This follows because each entry is the sum of at most
ny binary variables (recall that B is a binary matrix with 7, columns), at most d of which are 1. The
latter holds since x is (111, d)-balanced, leading to the constraint that the total number of 1’s in x;
does not exceed d, according to Definition 3. Therefore, the entries of F satisfy the same condition
due to (3). This confirms that none of the entries in fi exceed d. As aresult, one can reconstruct the
matrix F by invoking the algorithm .7 for m; times and stacking the results as the columns of F'.
Next, let f; for all j € [n1] denote the columns of F, i.e., Fuyxn, = [f1|f] -+ [f,,]- This together
with (3) leads to

ij = f-, V] € [1’11]. (8)

Similarly, each of the individual equations can be solved by invoking the decoding algorithm cor-
responding to the test matrix B, namely, %. In other words, we have x; = Z(f j) for all j € [nq].
Therefore, the incident vector x can be recovered by invoking the algorithms .« and £ for m; and
ny times, respectively. This results in 71,01 + 110, combined computation complexity to decode
x from Cx, which completes the proof. [ ]

The result of Theorem 4 implies that when dealing with a binary vector x of length 117, that is
(n1,d)-balanced, the Kronecker product of an (111, d)-detection matrix with an (15, d)-search matrix
yields a test matrix that can uniquely recover x. In order to gain an insight into the implication of
the result, one can regard the problem as a coin weighing problem with n171; coins. The (n1,d)-
balanced assumption implies that one can partition all coins into 111 subgroups consisting of 7,
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coins, such that the total number of counterfeit coins (corresponding to 1’s in the underlying incident
vector x) inside each subgroup does not exceed d. Suppose that the matrix B € {0,1}"2*"2 is an
(np,d)-search matrix which solves this sub-problem. A naive approach then would be to utilize
B for each subgroup independently in order to identify the location of all counterfeit coins. The
overall test matrix then can be characterized as I,;; ® B, which results in a total number of mym;
tests. In comparison, the test matrix constructed in Theorem 4, which is the concatenation of B with
an (n1,d)-detecting matrix, requires only mpm; tests where my = o(ny) is achievable. Therefore,
the result of Theorem 4 introduces an approach for addressing the QGT problem through a divide-
and-conquer strategy that significantly reduces the number of tests. However, this is true only when
the underlying binary vector to be reconstructed adheres to a specific condition termed as a balanced
vector, as defined in Definition 3. We will show in the next section that this holds with probability
approaching 1 as the length of x grows large, if one carefully chooses the size of the underlying
subgroups under the combinatorial model for the QGT problem.

3. Connection to Urn Models

In this section we first review some results on the so-called balls into bins problem from the litera-
ture. We then demonstrate that a randomly selected vector x from the set B, x is a balanced vector
with certain parameters by making a connection between the underlying probabilistic model for the
incident vector x to the balls into bins problem. The description of this problem is as follows: There
are n bins and m balls. Each ball is thrown into one of these 7 bins. In the simplest scenario, the
bins are chosen uniformly at random, i.e., each with probability %, as illustrated in Figure 1. There
are various questions that arise concerning the statistics of the ball distributions including the statis-
tics of the number of empty bins, the maximum number of balls inside a single bins, etc. Several
variants of this problem are extensively studied in the literature, collectively falling under the broad
category referred to as urn models (Sprott, 1978; Park, 1980). Let M denote the maximum number
of balls inside the individual bins in the balls into bins problem. We will use the following result on
the probability of M exceeding a certain threshold proposed by Raab and Steger (1998).

Theorem 5 ((Raab and Steger, 1998), Theorem 1) Let M be the random variable that counts the
maximum number of balls in any bin, if we throw m balls independently and uniformly at random
into n bins. Then, if m = cnInn for some constant ¢, we have

Pr[M > (d. — 1+ a)Inn] = o(1), )
for any & > 1. Here d. is a solution to
1+x(Inc—Inx+1)—c=0 (10)
that is larger than c.

It’s worth noting that within the parameter range considered in Theorem 5, on average, each
bin holds around cInn balls. In particular, the pigeonhole principle implies that the maximum is
always greater than ¢ In nn. The importance of the result in Theorem 5 is that it ensures the maximum
number of balls in each bin deviates from its average by a constant that does not depend on 7.

Next, we explore the connection between the (7, k)-QGT problem with the balls into bins prob-
lem and demonstrate how the result of Theorem 5 can be applied within the context of the QGT
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Figure 1: Illustration of balls Figure 2: Sampling without replacement demonstrated as an
into bins problem with m balls LDLC model. # items are distributed into [ bins, with each se-
and 7 bins. lection of a red-colored ball representing a placement into a bin

according to the LDLC model.

problem. Recall that x is drawn from B,, ; uniformly at random, i.e., the subset of defective items
is uniformly distributed over all k-subsets of [1]. One possible approach to generate a k-subset
with incident vector x according to the uniform distribution from 2, x is to repeat the following for
k steps: At each step, one chooses an item among those items in [#] that have not been chosen in
previous steps uniformly at random and labels it as a defective item. This is often referred to as sam-
pling without replacement. Let the set of all items be partitioned into [ distinct subsets, as depicted
in Figure 2. Each of these partitions can be viewed as a bin, and the act of selecting an item from
a particular partition can be regarded as placing a ball into that bin. Therefore, sampling k items
without replacement from the set of # items can can be comprehended within the framework of urn
models. One may note that the procedure of placing balls in the mentioned urn model does not align
with the procedure in the balls into bins problem, where the result of Theorem 5 remains applicable.
To see that, let X]l for i € [k] and j € [I] denote random variables representing the number of items
that have not been selected yet from bin j (corresponding to uncolored items in Figure 2) before ball
i is placed. The main difference of the above urn model with the balls into bins problem is that
ball i is placed into bin j with a probability that is proportional to X!, whereas all bins are chosen
uniformly at random in all steps in the balls into bins problem as depicted in Figure 1. Thus, the
urn model depicted in Figure 2 differs from the balls into bins problem in two major aspects. First,
the capacity of each urn is limited, meaning there is a constraint on the number of balls that can be
placed into each bin. In particular, for the scenario considered above where n items are divided into
[ partitions, the number of defective items in each bin cannot exceed 7. Second, when regarded as
an urn model, sampling without replacement intrinsically exhibits a form of negative reinforcement,
where a new ball is less likely to be placed in a bin that already contains more balls, compared to
other bins. We refer to this urn model as linearly de-preferential with limited capacity (LDLC) urn
model. In the next lemma, we show that the probability of the maximum number of balls inside bins
in the LDLC urn model is always lower bounded by that of the balls into bins problem.

Lemma 6 Let M;?m denote the maximum number of balls in the balls into bins problem with n
bins and m balls. Let also M,f‘ﬂm denote the maximum number of balls in the LDLC urn model with
n bins and m balls. Then, for any positive integer t, we have

Pr[M7, <t] <Pr[M;7,, <t]. (11)
The proof of Lemma 6 is provided in Appendix A.

The result of Lemma 6 can be intuitively justified by comparing the bin selection process in each
step. Note that in the balls into bins problem, a ball is placed into a randomly chosen bin, regardless
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of the arrangement of previously placed balls. In contrast, in the LDLC model, the probability of
selecting a bin with a higher number of balls already in it is reduced, creating a disincentive to
choose bins with more balls. This negative feedback mechanism makes it less likely for the bin
containing the maximum number of balls to be chosen for the next ball placement. In other words,
the random variable Mfm is less likely to increase compared to Mfm at each step.

Building upon the results of Theorem 5 and Lemma 6, it is shown in the following corollary
that the incident vector x drawn uniformly from 2, is an (I, ¢’ log k)-balanced vector with high
probability for any constant ¢’ > 2 and a carefully chosen parameter .

Corollary 7 Let x be a vector that is drawn from 9%, ;. according to a uniform distribution. Then,
X is (ﬁ, (e + ) Ink)-balanced with probability 1 — o(1), for any constant 7y > 0.

Proof: Suppose x is partitioned into [ distinct subsets as shown in Figure 2 where | = ﬁ
Note that this resembles an LDLC urn model with m = k balls and nn = ﬁ bins. Then,
Pr[M%

Ink

cS (et v)Ink] < Pr[M% S (e+7v)Ink] (12)

Ink

—1-0(1), (13)

where (12) follows by the result of Lemma 6 and (13) is established by recognizing that the number
of balls and bins satisfy the condition in Theorem 5. In other words, we have nlnn = ﬁ log(ﬁ) =
k(1 +o0(1)) = m, corresponding to the choice of ¢ = 1 in Theorem 5. Consequently, d. represents
the larger solution to the equation (10) with ¢ = 1, which results in d. = e. Lastly, note that & — 1
for any « > 1 can be replaced with y for any 7 > 0. [ |
The implication of the result established in Corollary 7 bears considerable significance for the
(n, k)-QGT problem. In essence, as 1 grows large, this implies that the problem can be decomposed
into ﬁ instances of (”ll?k ,eInk)-QGT problems. This decomposition enables us to tackle the
problem by using the concatenated approach detailed in Section 2. Roughly speaking, this suggests
that a typical incident vector x, selected uniformly at random from %,, x, can be divided into roughly
ﬁ distinct subsets, with the total number of defective items across all these subsets not exceeding
eIn k. Recall that the pigeonhole principle implies that the maximum is at least In k. This shows the
bound derived through observing the connection to the balls into bins problem, as characterized in
Lemma 6, is essentially optimal up to a constant factor less than e. In the next section, we provide
specific details about the constructions employed for certain detecting and search matrices that are
utilized in the concatenation method proposed in Section 2 to tackle the (7, k)-QGT problem.

4. Proposed Construction

In this section, we briefly overview specific constructions for (1, d)-detecting matrices and (n, k)-
search matrices employed in our construction. In particular, we show that the decoding algorithm
of the (n, d)-detecting matrices constructed by Bshouty (2009) can be modified to detect decoding
failure when at least one of the entries of the underlying integer vector exceeds d. Then, building
upon the results provided in Section 2 and Section 3, we propose our concatenated construction.

4.1. An Optimal Construction for Detecting Matrices

We provide a concise summary of the construction method proposed in Bshouty (2009) for detecting
matrices. This construction is designed to generate optimal (dy,-- - ,d,)-detecting matrices. In



particular, our specific focus is on detecting matrices where d; = d for all i € [n]. Therefore, we
will explore the construction tailored to this specific case.

The primary idea behind constructing the (1, d)-detection matrix in Bshouty (2009) involves
carefully crafting a certain collection of binary functions defined on the domain {—1, +1}2V for a
given integer v. The specific characteristics of these functions are detailed in Appendix B. These
functions are labeled by a € {0,1}" and i € [I,], where [, is a non-negative integer that satisfies the
condition d' < 2/71=1 < gla*1. We represent these functions as g,; : {—1,+1}" — {0, 1}, and the
entire set containing such functions is denoted as G, 4. The (1, d)-detecting matrix takes the form of
a matrix with rows labeled by binary vectors of +1 values and columns labeled by functions from
the set G, 4. Then, the (7, ) entry of M is equal to the evaluation of the function corresponding to
column j, evaluated at the evaluation point corresponding to row i. In simpler terms, each column of
this matrix stores the results of applying a function from G, ;4 to all possible inputs from {—1, +1}".
The number of rows in matrix M is at most

2n
logn

logd (1+0(1)), (14)

which asymptotically matches the information theoretic lower bound for the minimum number of

non-adaptive tests. Let deef{ Xa (x)dzef [ 5,1 xila € {0,1}"}. Since B is an orthogonal set of func-

tions, any function f(x) with domain {—1,1}", including the functions in G, 4, can be uniquely
represented as

f) = > faxa(®), (15)

ac{0,1}V

where f,, is called the Fourier coefficient of ), (x) in f(x) and is equal to

fao=o D f@xalx). (16)

xe{—1,+1}v

The functions in the set G, ; have an important property that is utilized in establishing the matrix
M as a d-detecting matrix. This property also enables the development of an efficient decoder for
determining x from Mx, provided that all entries of x are non-negative integers less than d. This
property can be described as in the following. Consider a linear combination of such functions as
ha(x) = Dlaea 2ic(o, - 1u} Aai§ai(x) for some A < {0,1}". Then, if b € A is a maximal element
in A, the Fourier coefficient of /i(x) in ) is equal to Z]-e (01, Ja} )\b,]-dj . This property is exploited
during the decoding procedure as discussed below.

Suppose we have a vector A € {0,1,--- ,d — 1}". This vector can be regarded as a function
within the basis G, ;. Therefore, recovering A is equivalent to retrieving the function h)(x) =
2ae{04} 2ief0,1, ) Va,i8a,i(x). Note that the measurement vector MA provides all the evalua-
tions of /1) (x) over {—1,1}". Therefore one can determine all the Fourier coefficients of 1, (x) at the
decoder and search for a maximal a € {0, 1} whose corresponding Fourier coefficient is non-zero.
All the entries of A corresponding to a can be recovered from the expansion of ) €01, I, /\a,]-dj in
base d. This process can be repeated recursively, replacing /1, (x) with hiy (x) — ijeo,l,--- 1, Ma,j8a
until all the entries of A are determined. This demonstrates that the recovery of A can be accom-
plished in O(n?) time. Next, we present our observation that extends the decoding algorithm to
handle cases where the vector A violates the assumption that all of its non-negative integer entries
are less than d. In particular, we show that the decoding procedure discussed earlier, with a slight
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Algorithm 1 Modified decoding algorithm for detecting matrix M

Input: MA,ie., hy(x) forall x e {—1,1}".

Output: A or decoding failure.

while 713 (x) # 0 do

Compute Fourier coefficients /1, of x,(x) in k1 (x), defined in (16), for all a € {0,1}".

Find a maximal @ € {0,1}" such that /15 + 0.

Expand ﬁﬁ in base d. The coefficients are )L,,,j for j € [I4], where I, is a non-negative integer that satisfies

the condition d'a < 20al=1 < glat1,

if The expansion surpasses the maximum integer representable with l,, + 1 digits in base d: then
| Break; declare decoding failure.

end

Set 1y (x) = ha(X) = Xic(01,.-- 1o} Mayj8ay,j(%)-

Compute the Fourier coefficient /1; of xa(x) in 1 (x).

if 1z +# 0 then
| Break; declare decoding failure.

end

end
Return A.

adjustment, can determine whether any entry of A exceeds d and declare it as a decoding failure.
This modified algorithm is detailed in Algorithm 1.

Lemma 8 Consider MA = v, where A is a non-negative integer vector. By modifying the algo-
rithm described in Bshouty (2009), as provided in Algorithm 1, it can effectively detect a decoding
failure when there exists at least one entry in A that is greater than or equal to d.

Proof: Let hj(x) represent the function remaining after iteration i during the recursive de-
coding procedure described above. Suppose that at iteration 7, we select the maximal binary vector
denoted as a;. In this case, we can express /;(x) as: hj(x) = hj_1(x) — Zje{O,l,---,lu} Aa; j8a;,j- This
means that all the coefficients corresponding to the functions indexed by a; are effectively subtracted
from £;(x), resulting in the removal of all such functions, i.e., g4, ; for all j € [I5,]. Consequently,
the Fourier coefficient of x,, in /(x) becomes zero.

In the event that any of the A,, ; values is greater than or equal to d, two scenarios arise. Either
the Fourier coefficient of X, in /;(x) surpasses the maximum integer representable with [, + 1
digits in base d, or at least one of the A, ; values is incorrectly recovered during the decoding
process at iteration i. In the former case, the decoder effortlessly detects that at least one entry is
not an integer less than d. In the latter case, where a decoding failure is not immediately apparent
from the Fourier coefficient of ), in /;(x), the decoder must additionally verify whether the Fourier
coefficient of ), in the function derived from the pruning of h;(x) is zero or not. If this coefficient
is indeed zero, it shows that the entries are determined correctly, implying that all such entries are
integers less than d. Conversely, if the coefficient is non-zero, the decoder realizes that at least one
entry violates the initial assumption. ]

The result of Lemma 8 implies that by incorporating this modification into the decoder for the
(n,d)-detecting matrix constructed by Bshouty (2009), the decoder gains the ability to determine
whether the input vector adheres to the assumption that all of its non-negative integer entries are
less than d or not. It can also correctly recover these entries if they do satisfy the assumption. Later
in this section, we will demonstrate how this modification enables our decoding algorithm for the
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(n,k)-QGT problem to identify cases where it cannot recover the underlying incident vector. This
capability allows the algorithm to declare a decoding failure, affirming that if it does produce a
vector, that vector must indeed be the unique incident vector.

4.2. (n,k)-Search matrix with k = O(logn)

In this subsection, we focus on addressing the (1, k)-QGT problem with a specific condition: when
k is O(log n). This scenario represents a much sparser setting compared to the case where k = n*.
Note that the number of defective items still grows large, although with a speed that is logarithmic
in n, which means that algorithms designed for the sparse regime where k is constant, may not be
optimal. In this regime, for (1, k)-search matrices, we utilize the construction of BCH codes from
coding theory literature. In particular, the parity-check matrix of BCH codes with length nn = 21
for some positive integer m, and parameter k, referred to as an (1, k) BCH code, is an (7, k)-search
matrix. These codes has been also utilized as a building block to construct test matrices for the
QGT problem in Karimi et al. (2019b). For a concise summary on BCH codes, please refer to
Appendix C. It suffices to mention that the parity-check matrix of this code has at most k log(n + 1)
measurements/rows. Moreover, a binary vector x of Hamming weight at most k can be recovered
from Hx in O(kn) time complexity by utilizing the well known algorithms for decoding BCH codes,
e.g., the Berlekamp-Massey algorithm (Berlekamp, 2015; Massey, 1969) the Euclidean algorithm
(Sugiyama et al., 1975) the Berlekamp-Welch algorithm (Welch and Berlekamp, 1986).

4.3. Our Construction

Now that all necessary building blocks and theoretical results are established, we are ready to pro-
pose our construction for (1, k)-search matrices. The main idea behind our construction can be
described as in the following: The set of all items are first partitioned into ﬁ groups. Then, the
result of Corollary 7 implies that there are at most e In k in each partition with probability 1 — o(1).
The problem then can be solved by using the concatenation scheme outlined in Section 2, where the
(n,d)-detecting matrix reviewed in Section4.1 and the parity-check of a BCH code with suitable
parameters, as discussed in Section 4.2 are used as building blocks.
Let D denote a (ﬁ, (e + ) Ink)-detecting matrix constructed according to the scheme overviewed

in 4.1 for some y > 0. Let H denote the parity-check matrix of a (7, (e + ) In k) BCH code, where

71 is the smallest power of 2 such that ”llf‘k < fi. Let also H be a submatrix of H consisting

of any ﬁ columns of H. One can see that H is a (ﬁ, (e + 7) Ink)-search matrix since H is
a (71, (e + 7v) Ink)-search matrix. Then, the following matrix is our proposed test matrix for the

(n, k)-QGT problem in the sublinear regime where k = n* for some 0 < a < 1:

T=DQ®H. (17)

The following theorem establishes the probability of successfully decoding the underlying incident
vector when utilizing this test matrix.

Theorem 9 Let x be a binary vector sampled from the uniform distribution over B,, . Then, x can
be recovered from Tx, where T is characterized in (17), with probability 1 — o(1) and the decoding
complexity of

O(K* + nlog?k),

11
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using no more than
k

tests for any v > 0. Moreover, in cases where the decoder cannot obtain a unique reconstruction of
x, it can reliably detect this condition and report a decoding failure.

Proof: The result of Corollary 7 implies that the vector x is (lnk’ (e + ) Ink)-balanced with
probability 1 — o(1), for any constant v > 0. In other words, for any positive constant vy, it is highly
likely that the number of defective items allocated to each of the ﬁ partitions will not exceed
(e + ) Ink. Therefore, the result of Theorem 4 can be applied to this case with n; = ﬁ, my =

2U_]og((e+ ) Ink) according to (14), and 1y = l,?k, my = (e+)Inklog(#i + 1), as described

log nq
in4.2,andd = (e + ) Ink. Recall that 7i is the smallest power of 2 such that * lr‘k

i< i“k and thus, my < (e + ) Inklog(<** nlnk | 1), Specifically, the result of Theorem 4 implies

that the underlying incident vector can be recovered with complexity m,0, + 1104, where O
and O denote the complexities of the underlying decoders associated with D and H, respectively.

Recall that the complexity of the decoding algorithm described in 4.1 is O, = O(n?) = O(]nszk)

and the decoding complexity of BCH codes, described in 4.2, is Og = O(many) = O(%Bk)
Therefore, the overall combined computational complexity is O(k? 4 n log2 k). Note that decoding
failure only occurs when x is not (ﬁ, (e + ) Ink)-balanced, in which case the decoder detects it
during the decoding procedure (Lemma 8). Also, the number of rows in D is upper bounded by
2m logd (14+0(1)) = logklnk loglogk (1 + 0(1)), according to (14), and the number of rows in H

log nq

< 71. This implies

is my log(ﬁ +1) < (e+7) lnklog(z’1 Inky " Overall, the number of rows in T is upper bounded by

(2e + 7) ks log(%)loglogk, for an arbitrarily small > 0. [

log k

5. Conclusion

In this work, we proposed a method to recover a k-sparse binary vector from additive tests in the
sublinear regime, where n = k* with 0 < a < 1. Our construction uses 2emgloglog(k) tests
with decoding complexity of O(n?* + n log2 n) while the asymptotically optimal scheme (Hahn-

Klimroth and Miiller, 2022; Hahn-Klimroth et al., 2023) requires (}er)mo tests with the decoding

complexity of O(n®), where mq denotes the information-theoretic lower bound. This demonstrates
that our construction offers improvement in decoding complexity at the cost of a gap of loglogk
in terms of the number of measurements. In particular, our construction achieves an almost linear
decoding complexity for & < % and sub-quadratic decoding complexity for & > % Moreover,
despite a double logarithmic gap, our scheme numerically outperforms the asymptotically optimal
construction when « is in the higher range of the unit interval. Specifically, the crossover value for

kisk* = exp(exp(e(llt‘/\/% )), growing double-exponentially in ﬁ Hence, for moderate values

of w, the crossover becomes significantly large, highlighting the practicality of our scheme in the
sublinear regime for higher « values. For example, with & = 0.7, we find k* ~ 10%.
Compared to other works in the literature that provide nearly linear decoding complexity (Geb-

hard et al., 2022; Karimi et al., 2019b,a), which fall short of the information-theoretic bound by
logk
loglogk

a factor of log k, our construction reduces this gap by a factor of

decoding complexity for 0 < a < %

while offering the same

12



Moreover, our decoding algorithm reliably identifies decoding failures when unique recovery
is not feasible. As a result, in cases where decoding is successful, the inferred feature vector is
error-free, a feature not guaranteed in the aforementioned schemes.
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Appendix A. Proof of Lemma 6

Proof: The main idea involves creating a combined process that mixes random allocation
based on the balls into bins problem with an extra step called the leakage phase, similar to the
assignment method in the LDLC urn model. Showing that this extra step does not increase the
maximum number of balls leads to the desired outcome. Consider the process shown in Figure 3,
which includes 7 bins and m balls. Each bin has a capacity of ¢, meaning it can hold up to ¢
balls. Initially, each ball, numbered i € [m], is randomly placed in one of the n bins, namely bin /,
according to the uniform distribution, following the same method as the original urn model in the
balls into bins problem. Let X' represent the number of empty spaces in bin j before ball i is placed
in any bin j € [n]. Upon ball i landing in bin j during the first step, the subsequent phase involves
the potential leakage of the same ball to another bin j # [, with probability.

. —-Xi
pij= n)+ vje [n]\{l} (18)

where (x)+d=Ef max (0, x). Also the ball remains in bin j with probability
Pi=1 - Z Pij- (19)
=Ll

To demonstrate that equations (18)-(19) constitute a valid probability distribution, we need to estab-

n .
lishthat >} p; j < 1. To this end, consider the following:

j=Lj#l
- > X vxi
noo (X=X XX =
i ] < ] ] -1
Z pl] - Z n ] ~ n ] ~ n . - 7
=LAl =l 3 XL XX XX
k=1 k=1 k=1

where the first and the second inequalities arise from the fact that X; > 0 and X]i > 0, forall j € [n],
respectively.

Next, we determine the probability that ball i ultimately lands in bin j after the second random
transition described above. This probability is denoted as q; Let A; for all [ € [n] represent the

probability of ball i landing in bin [ after the first step. It follqws that Pr[Af] = % since the initial
random allocation in the first step is uniform. Similarly, let B;- denote the event that ball i lands in
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Figure 3: Demonstration of the combined process equivalent to random allocation within the LDLC urn
model is depicted here. In this instance, with a total of n = 4 bins, two steps are illustrated concerning
the placement of ball i = 7. Each bin has a capacity denoted by c. Solid lines denote the outcomes of the
random decision made at each step, while dashed lines represent all alternative potential decisions. Transition
probabilities are represented for each possibility. Note that during the initial allocation step, all transition
probabilities are identical which resembles the allocation procedure in the balls into bins problem. However,
during the second allocation, probabilities are contingent upon the remaining space within the respective bins.
Specifically, the transition from bin 2 to bin 4 is prohibited (pé4 = () because bin 4 possesses only ¢ — 3
vacant spaces, whereas bin 2 has ¢ — 2 vacant spaces remaining.

bin j after the second step. Then, we have

n l=n
.df 1
;= < § i1 Pr[ B |A - E B1|A (20)

a1 1
ZEZPU:EO— Z.Pﬂ n_lZ 2

=1 I=1,1#]
1] (- XD — (X XD,
=iy — (22)
I=1 >, X
B k=1
[ > (Xi-X)- ¥ (Xj-X)
1 :XI=X! l:X’<X;
= |1+ — (23)
2 X
L k=1 k
n
nX: lgl)q X]l
-l ) - (24)
2 X 2 X
k=1 k=1
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where (20) arises from the law of total probability and noting that Pr[Al] = 1 for all I, (21) is
established by considering Pr[B]’-|A§] as the transition probability p; i then delineating the sum for
each case, whether [ = jor [ # j, (22) is derived from equations (18) and (19), taking into account
the condition (X]l —Xh, = (X - X;)+ = 0 when / = j, (23) arises from the definition of (x),
and, (24) follows through simplification steps.

The result in (24) demonstrates that the probability of ball i ultimately landing in bin j is pro-
portional to XJZ the number of remaining spaces in bin j, thereby validating the consistency of the
discussed process with the LDLC model. Consequently, the maximum number of balls in each bin is
Mfm. Note also that if we omit the second step for each iteration of placing ball i, the bins are cho-
sen uniformly at random, resembling the balls into bins problem. Let M,?m represent the maximum
number of balls in the bins for this scenario. A crucial observation is that the maximum number
of balls never increases during the leakage process (the second step), as the probability of ball i
transitioning from bin [ to another bin j where X]l < Xli is zero. This implies that ball i might either

remain in the same bin or leak to a bin with a lesser number of balls. Let P% = {(I}, ) : i € [m]}
denote a sample outcome of the random assignment rule with leakage, and Q% = {I' : i € [m]}
denote the same path without leakage. The set Q7 is derived from P< by removing the second
elements in all pairs. Note that for all samples Q% with M;%m < t for some constant t we also have
thm < t for the corresponding sample(s) P since the maximum number of balls never increases
during the leakage step. This implies that the event M,?m < tis a subset of the event M,f’pm <t,
thus implying

Pr[M7, <t] < Pr[M7,, <t]. (25)

Appendix B. Summary of the Construction for Detecting Matrix in Bshouty (2009)

In this section, we first introduce a construction for an (kq, ky, - - - , ky,)-detection matrix, i.e., a test
matrix for the coin weighing problem with constraints that achieves the asymptotically optimal
number of tests. This scheme is proposed by Bshouty (2009). The ith component of a vector x
is denoted by x;. Let < denotes the usual lattice partial ordering over on dimensional vectors.
Specifically, for two a, b € {0,1}", we say b < a if and only if the support of b is a subset of a. For
a,b e {0,1}" where b < a, we define

“1)biy,
fal) = [T S5 (26)

ai:1

Algorithm 2 provides the steps of the construction proposed for detection matrices in Bshouty
(2009) in detail. The algorithm outputs a binary matrix M whose number of rows are asymptotically
optimal as the number of coins, namely /, grows large.

17



SOLEYMANI JAVIDI

Algorithm 2 Constructing an (kq, - - - , k;) detecting matrix M.
Input: klr cee ,kl, (kl <k - < kl), l.
Find the maximal integer v such that

n—2"

(v—2)2""" <log(kf_p | ] ko). 27)
i=1

Sethle = 02”><lv r=0ands = 0.
for Va € {0,1}"\{0} do
Find I, such that
kyy1kri2 - 'kr-l,-la < ollalo—1 kyy1kpio - kr+lakr+l,,+1

Construct G, = {f,p(») : b < a,||bl|[g =0 mod 2} (check ||Gally = 2llallo—1y
Choose any collection of subsets
Gu,OI th,l/ Tty Gu,lu = Gu

such that
||Ga,0 0= 1, ||Ga,i = kr+lkr+2 T kr+i Vi=1,I,.

forie [l;] do

Set t

hei()= Y, g).
g(x)eca,i(x)
Set
M, r+i] = ha,i(x)|{f1,+1}v~

end
Set t
haf, )= Y g(x).
g(x)eGy 1, (x)
Set

M[:; 1 -2"+s5+1] =h,, (x)|{_1,+1}V'

Setr =r+1,;,and,s = s+ 1.
end
Return M.

Let m denote the number of rows in M, and (kq, - - - , k;)-detection matrix constructed according

2l log ¥
ot (1+0(1)).

to Algorithm 2. It is proved in Bshouty (2009) that m =

Appendix C. BCH codes

An [n, k,d] binary code C is a k-dimensional linear subspace of the binary vector space of dimension

n over [F,. The rate of C is Rdzef%. The parameter d represents the minimum Hamming distance
between the codewords. A generator matrix of C is a k x n matrix whose rows span C. A parity-
check matrix of C is an (n — k) x n whose rows span the null space of G, i.e., GH' = 0. This
implies that Hx = 0 if x € C. A code with a minimum distance of d can uniquely recover any

codeword x in the presence of up to t = VZ;lJ errors. This property implies that all He’s are

distinct for every e € {0,1}" with Hamming weight at most f.
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Note that all arithmetic operations are conducted within the field IF,, which also implies validity
over the real numbers IR. Consequently, a parity-check matrix of a t-error correcting code satisfies
the criteria of an (n, f)-search matrix, as outlined in Definition 1.

In particular, we employ binary BCH codes, known for providing an optimal trade-off between
minimum distance and code rate for cases where d < 5. Such codes has been also utilized as a
building block to construct test matrices for the QGT problem in Karimi et al. (2019b).

Let n = 2™ — 1 for for some m > 3 and t < 2! be an integer. There exists a binary BCH
that corrects ¢ errors with n —k < mtand d > 2t + 1. Let

1 0% ,)/2 e ,)/1’1—1

~ 1 ,),3 ,)/3 2 . ,)/3 n—1

P A _ ) , (28)
i ,YZ;‘—l (,)/Zt.—l)Z ‘ (,YZt—.l)n—l

where 7 is a primitive element in IFpn. Then, the matrix H that is derived from H by replacing its
entries by their corresponding representation in IF, as a column vector is a parity-check matrix of
this binary code. Since each element of the the extension field [Fo» is represented in m elements in
the binary base field, the matrix H has at most mt = tlog(n + 1) rows. Equivalently, the matrix H
is an (7, t)-search matrix with at most ¢ log(# + 1) measurements/rows. Moreover, a binary vector x
of Hamming weight at most f can be recover from Hx in O(#n) time complexity by utilizing the well
known algorithms for decoding BCH codes, e.g., Berlekamp-Massey algorithm Berlekamp (2015);
Massey (1969) the Euclidean algorithm Sugiyama et al. (1975) the Berlekamp-Welch algorithm
Welch and Berlekamp (1986). We utilize the aforementioned parity-check matrix of the BCH code
as a search matrix that solves the QGT problem where the number of defective items is logarithmic
in the total number of items 7.
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