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Abstract
We propose a new method called the Metropolis-adjusted Mirror Langevin algorithm for approxi-
mate sampling from distributions whose support is a compact and convex set. This algorithm adds
an accept-reject filter to the Markov chain induced by a single step of the Mirror Langevin algo-
rithm (Zhang et al., 2020), which is a basic discretisation of the Mirror Langevin dynamics. Due to
the inclusion of this filter, our method is unbiased relative to the target, while known discretisations
of the Mirror Langevin dynamics including the Mirror Langevin algorithm have an asymptotic bias.
For this algorithm, we also give upper bounds for the number of iterations taken to mix to a con-
strained distribution whose potential is relatively smooth, convex, and Lipschitz continuous with
respect to a self-concordant mirror function. As a consequence of the reversibility of the Markov
chain induced by the inclusion of the Metropolis-Hastings filter, we obtain an exponentially better
dependence on the error tolerance for approximate constrained sampling.

Keywords: Sampling, constrained spaces, Langevin algorithm, mirror methods

1. Introduction

Continuous distributions supported on high-dimensional spaces are prevalent in various areas of
science, more commonly so in machine learning and statistics. Samples drawn from such distri-
butions can be used to generate confidence intervals for a point estimate, or provide Monte Carlo
estimates for functionals of distributions. This motivates development of efficient algorithms to
sample from such distributions. However, not all distributions are supported on the entire space
(for e.g., Rd). In one dimension, some common examples are the Gamma and Beta distributions
(supported on (0,∞) and (0, 1), respectively), and the latter’s generalisation to multiple dimensions
is the Dirichlet distribution (supported on a simplex ∆d+1, which is a compact and convex subset
of Rd). Such constrained distributions not only occur in theory, but also in practice: for instance, in
several Bayesian models (Pakman and Paninski, 2014), latent Dirichlet allocation (Blei et al., 2003)
for topic modelling, regularised regression (Celeux et al., 2012), more recently in language mod-
els (Kumar et al., 2022), and for modelling metabolic networks (Heirendt et al., 2019; Kook et al.,
2022). Analogous to sampling, optimisation over constrained domains are also of interest, and con-
strained optimisation is generally harder than unconstrained optimisation. Two popular families of
approaches for solving constrained optimisation problems include interior-point methods (Nesterov
and Nemirovski, 1994), and mirror descent (Nemirovski and Yudin, 1983).
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The constrained sampling problem More formally, in this paper, we are interested in gen-
erating (approximate) samples from a target distribution Π with support K that is a compact,
convex subset of Rd, and whose density π is of the form

π(x) ∝ e−f(x) .

Here, f : K → R ∪ {∞} is termed the potential of Π.

The constrained sampling problem has been long-studied and a variety of prior approaches exist.
The earliest inventions initially focused on obtaining uniform samples over K (i.e., when f = 0).
This task had applications in estimating the volume ofK, and these methods were subsequently gen-
eralised to sampling from log-concave distributions supported on K (equivalently when f is convex
in its domain). These inventions include the Hit-And-Run (Smith, 1984; Lovász, 1999; Lovász and
Vempala, 2003), and BallWalk algorithms (Lovász and Simonovits, 1993; Kannan et al., 1997).
Amongst other later modifications and analyses of these algorithms, the DikinWalk (Kannan and
Narayanan, 2009; Narayanan and Rakhlin, 2017) is particularly notable due to the use of Dikin
ellipsoids which are extensively used in the design and analysis of interior-point methods in opti-
misation. A commonality of all the aforementioned methods is that they only require calls to the
(unnormalised) density of the target distribution.

To see how the gradients of f could be useful, consider the unconstrained setting where K = Rd. A
popular algorithm for sampling in this setting is the unadjusted Langevin algorithm (ULA), which
is the Euler-Maruyama discretisation of the continuous-time Langevin dynamics (LD).

dXt = −∇f(Xt)dt+
√
2 dBt (LD)

Xk+1 −Xk = −h · ∇f(Xk) +
√
2h · ξk; ξk ∼ N (0, Id) (ULA)

In the seminal work of Jordan et al. (1998), the Langevin dynamics was shown to be the gradient
flow of the KL divergence in the space of probability measures equipped with the Wasserstein metric
via the Fokker-Planck equation – thus making the connection between sampling and optimisation
more substantive; see also the paper by Wibisono (2018). However, in the constrained sampling
problem described earlier, the Langevin dynamics (or algorithm) is not applicable since the solutions
(or iterates) are no longer guaranteed to remain inK. The Mirror Langevin dynamics (MLD) (Zhang
et al., 2020; Chewi et al., 2020)1 was proposed to address this inapplicability, which draws from the
idea from mirror descent in optimisation. Specifically, an invertible mirror map is used, which is
often defined as the gradient of a barrier function (also called the mirror function) ϕ over K.

Yt = ∇ϕ(Xt); dYt = −∇f(Xt)dt+
√
2 ∇2ϕ(Xt)

1/2 dBt (MLD)

Fundamentally, the mirror function serves two key purposes: (1) it changes the geometry of the
primal space (K) suitably; the underlying metric is given by the Hessian of the mirror function,
and (2) it allows us to perform unconstrained LD-style diffusion in the dual space (the range of the
mirror map) which is unconstrained when the domain is bounded. Due to the occurrence of the

1. A closely related dynamics was proposed in Hsieh et al. (2018) which is also termed Mirror Langevin dynamics –
for a detailed comparison between the two dynamics, see Zhang et al. (2020, §1.2).
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time-varying diffusion matrix in MLD, the dynamics can be discretised in a variety of ways. The
most basic discretisation (or also called the Euler-Maruyama discretisation) of MLD is commonly
referred to as the Mirror Langevin algorithm (MLA) (Zhang et al., 2020; Li et al., 2022a).

Yk = ∇ϕ(Xk) ;

Yk+1 − Yk = −h · ∇f(Xk) +
√
2h · ∇2ϕ(Xk)

1/2 ξk , ξk ∼ N (0, Id) ;

Xk+1 = (∇ϕ)−1(Yk+1)

(MLA)

Other discretisations have since been proposed and analysed (Ahn and Chewi, 2021; Jiang, 2021);
however, the advantage of MLA over these other discretisations is that MLA can be implemented ex-
actly, whereas the latter methods involve simulating a stochastic differential equation (SDE) which
cannot be performed exactly, and has to be approximated for practical purposes.

Theoretically, for MLA, the distribution of Xk as k →∞ is not guaranteed to coincide with Π, and
such an algorithm is said to be biased, where the distance between this limit and Π is termed the bias.
This phenomenon is not specific to MLA; for instance, the more popular ULA is also biased, and this
bias is shown to scale with the step size h under relatively weak assumptions made on the target dis-
tribution – see Durmus and Moulines (2017); Dalalyan (2017b,a); Dalalyan and Karagulyan (2019);
Cheng and Bartlett (2018); Vempala and Wibisono (2019); Li et al. (2022b) for a variety of analyses
of ULA. Interestingly, due to the dependence on h, the bias of ULA tends to 0 as h → 0 (thus
termed a “vanishing bias”). In the case of MLA however, the first analysis by Zhang et al. (2020)
suggested that MLA had a non-vanishing bias, and conjectured that this was unavoidable. Notably,
their analysis assumed a modified self-concordance condition on ϕ, which is sufficient to ensure the
existence of strong solutions for the continuous-time dynamics (MLD). In contrast, a more natural
assumption placed on ϕ is self-concordance, especially considered in optimisation. A subsequent
but different analysis of MLA by Jiang (2021) assumed the more standard self-concordance condi-
tion over ϕ, but their analysis was also unable to improve the non-vanishing bias of MLA. They also
presented an analysis of an alternate yet impractical discretisation of MLD developed and analysed
by Ahn and Chewi (2021) that we refer to as MLAFD, and independent analyses in both of these
works showed that MLAFD has a vanishing bias when the more natural self-concordance condition
over ϕ is considered. More recently, Li et al. (2022a) improved the result due to Zhang et al. (2020),
and showed that MLA has a vanishing bias when ϕ satisfies the modified self-concordance condi-
tion. This newer result is based on a mean-square analysis technique developed in Li et al. (2019),
for which the modified self-concordance condition is more amenable.

A SUMMARY OF OUR WORK Despite these recent results, a question that has been left unan-
swered is if MLA, or any other exactly implementable algorithm based on discretising MLD has a
vanishing bias when ϕ is simply self-concordant. In this paper, we give an algorithm that is unbi-
ased, and with provable guarantees while assuming self-concordance of ϕ. Our proposed algorithm
applies a Metropolis-Hastings filter to the proposal induced by a single step of MLA – we call this
the Metropolis-adjusted Mirror Langevin algorithm (or MAMLA in short). Each iteration of the
algorithm is composed of three key steps, and these are formalised in Algorithm 1 in the sequel.

1. Generate a proposal Zk from iterate Xk using a single step of MLA.

2. Compute the Metropolis-Hastings acceptance probability paccept.

3. With probability paccept, set Xk+1 = Zk (accept); otherwise set Xk+1 = Xk (reject).
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In principle, this is similar to the Metropolis-adjusted Langevin algorithm (MALA) (Roberts and
Tweedie, 1996), which applies a Metropolis-Hastings filter to the proposal induced by a single step
of ULA. Due to the form of MLA, MAMLA is exactly implementable much like MALA, which
crucially relies on the ability to compute the proposal densities. Moreover by construction, the
inclusion of a Metropolis-Hastings filter results in a Markov chain that is reversible with respect
to the target distribution. Consequently, the algorithm converges to the target distribution (and
is therefore unbiased) unlike MLA and other discretisations of MLD, and does so exponentially
quickly. In particular, let f be µ-strongly convex, λ-smooth, and β-Lipschitz relative to a self-
concordant mirror function ϕ (see Section 2.1 for formal definitions). We show in Theorem 6 that

1. when µ > 0, the δ-mixing time of MAMLA scales as O
(

1
µ ·max

{
d3, dλ, β2

}
· log

(
1
δ

))
, and

2. when µ = 0, the δ-mixing time of MAMLA scales as O
(
ν ·max{d3, dλ, β2} · log

(
1
δ

))
, where

ν is a constant that depends on the structure of K as induced by ϕ.

We obtain these guarantees through the classical one-step overlap technique due to Lovász and Si-
monovits (1993), which was also used to give mixing time guarantees for MALA in Dwivedi et al.
(2018); Chewi et al. (2021). Our analysis is however not a direct consequence of these aforemen-
tioned results specifically due to the occurrence of the mirror map ∇ϕ and metric ∇2ϕ in MLA,
which poses certain difficulties. We handle these newer quantities by strongly leveraging the self-
concordant nature of the mirror function ϕ and use recent isoperimetry results for distributions
supported on a Hessian manifold induced by a self-concordant function (Gopi et al., 2023) to pro-
vide guarantees for MAMLA. A notable special case is when the mirror function ϕ is chosen to be
the potential f , and the Mirror Langevin dynamics (MLD) specialises to the Newton Langevin dy-
namics (NLD), which is the sampling analogue of the continuous time version of Newton’s method
in optimisation. NLD particularly has parameter-free convergence rates when f is strictly convex,
and we defer an extended discussion pertaining to this to Appendix C due to space constraints.

1.1. Related work

The original version of DikinWalk (Kannan and Narayanan, 2009) was developed with the goal
of uniform sampling over polytopes, and this algorithm was based on generating either (a) uni-
form samples from Dikin ellipsoids, or (b) samples from a Gaussian distribution with covariance
given by the Dikin ellipsoid (Sachdeva and Vishnoi, 2016; Narayanan, 2016). Other related algo-
rithms are the JohnWalk (Gustafson and Narayanan, 2018), VaidyaWalk (Chen et al., 2018), and
WeightedDikinWalk (Laddha et al., 2020). Narayanan and Rakhlin (2017) modify the filter in Dik-
inWalk to make it amenable for the more general constrained sampling problem. This was recently
modified by Mangoubi and Vishnoi (2023) who propose a modified Soft-Threshold DikinWalk,
which primarily focuses on the case where K is a polytope. Kook and Vempala (2023) develop a
broader theory of interior point sampling methods while generalising the ideas from the analysis
of DikinWalk in Laddha et al. (2020). As remarked in Narayanan and Rakhlin (2017), while the
existence of such a self-concordant barrier is a stronger assumption than a separation oracle for K,
the self-concordant barrier enables leveraging the geometry of K better.

The aforementioned methods related to DikinWalk do not require access to gradients of f . Drawing
inspiration from projected gradient descent for optimising functions over constrained feasibility sets,
Bubeck et al. (2018) propose a projected Langevin algorithm, where each step of ULA is projected
onto the domain. Another class of approaches (Brosse et al., 2017; Gürbüzbalaban et al., 2022)
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propose obtaining a good approximation Π̃ of the target Π such that the support of Π̃ is Rd, but
this does not eliminate the likelihood of iterates lying outside K. This enables running the simpler
unadjusted Langevin algorithm over Π̃ to obtain approximate samples from Π. MALA (Roberts
and Tweedie, 1996; Dwivedi et al., 2018; Chewi et al., 2021), or Hamiltonian Monte Carlo (HMC)
(Neal, 2011; Durmus et al., 2017; Bou-Rabee et al., 2020) is also a viable option for sampling from
log-concave distributions over K; however, the isoperimetric inequalities used in deriving these
guarantees are based on the Euclidean metric / distance (i.e., Euclidean geometry) overK as opposed
a non-Euclidean metric / distance. Riemannian Hamiltonian Monte Carlo (RHMC) (Girolami and
Calderhead, 2011; Lee and Vempala, 2018) extends HMC to allow for sampling in such settings
and with provable guarantees, and this has recently been modified to handle constrained domains
better in Kook et al. (2022); Noble et al. (2023), while assuming that there exists a computable self-
concordant barrier for K Girolami and Calderhead (2011) also proposed the Riemannian Langevin
algorithm as a generalisation of ULA, and this was subsequently analysed in Gatmiry and Vempala
(2022); Li and Erdogdu (2023). Relatedly, drawing from proximal methods for sampling, Gopi
et al. (2023) propose a novel proximal sampler for sampling over non-Euclidean spaces.

Condition number independence Here, the condition number is a property of the domain K and
is defined as CK = R/r, where R and r are the radii of the smallest ball containing K and the largest
ball contained entirely in K respectively (Kannan and Narayanan, 2009). A Euclidean ball in Rd of
arbitrary radius has condition number 1, and non-unitary affine transformations of this ball results in
sets with different condition numbers. Constrained sampling methods over K that have mixing time
guarantees that are independent of CK are valuable, and this is because the complexity of approx-
imate sampling from distributions with affine invariant properties over a possibly ill-conditioned
domain K is the same as approximate sampling from similar distributions over a well-conditioned
(or isotropic) domain like a ball. It is important to note that CK is not the same as the value κ = λ/µ;
the latter corresponds to the conditioning of the potential relative to a mirror function defined over
K. The dependence on κ is expected; intuitively, it is harder to sample from sharper / peakier distri-
butions (equivalent to a higher value of κ), even when supported over a well-conditioned domain.

DikinWalk is a popular example of a sampling algorithm whose mixing time is independent of CK,
and this is primarily due to the involvement of Dikin ellipsoids. As far as discretisations of MLD
are concerned, the analysis of MLAFD from Ahn and Chewi (2021) gives mixing time guarantees
that depend on constants in the assumptions made. Notably, these assumptions are affine invariant,
which implies these constants are independent of CK, and results in mixing time guarantees that are
independent of CK. On the other hand, the recent analysis of MLA due to Li et al. (2022a) assumes
a modified self-concordance condition. This is not affine invariant in the sense that the parameter
in this condition can change when the domain is transformed by an affine map (Li et al., 2022a,
§D). Put simply, this parameter could depend on CK. As this parameter appears in their mixing time
guarantee, it suggests that the mixing time of MLA is also possibly dependent on CK. Our mixing
time guarantees for MAMLA crucially does not depend on CK much like the guarantees for MLAFD,
and this is due to the affine invariance of the assumptions we make for the analysis.

Organisation The rest of this paper is organised as follows: in Section 2, we review notation and
definitions that are key for this work, in Section 3, we define the algorithm and provide mixing time
guarantees. We discuss corollaries of our guarantees for applying MAMLA to a variety of sampling
tasks in Section 4, and conclude with a discussion of our results in Section 5. Other details including
the proofs of our mixing time guarantees and corollaries are deferred to the Appendix.
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2. Preliminaries

We begin by introducing some general notation that will be used throughout this work. We remind
the reader that K is a compact, convex subset of Rd.

Notation The set {1, . . . ,m} is denoted by [m]. We denote the set of positive reals by R+. Let
A ∈ Rd×d be a symmetric positive definite matrix. For x, y ∈ Rd, we define ⟨x, y⟩A = ⟨x,Ay⟩,
and ∥x∥A =

√
⟨x, x⟩A. When the subscript is omited as in ∥x∥, then this corresponds to A = Id×d,

or the Euclidean norm of x. For a setA, int(A) denotes its interior, and collection of all measurable
subsets ofA is denoted by F(A). For a measurable map T : A → B and a distribution P supported
onA, we denote T#P to be the pushforward measure of P using T ; in other words, T#P is the law
of T (x) where x is distributed according to P , and T#P has support B. Unless specified explicitly,
the density of a distribution P (if it exists) at x is denoted by dP (x).

2.1. Function classes

Throughout this work, we make the standard assumption that the mirror function is of Legendre
type. A function with domain K is of Legendre type if it is differentiable and strictly convex in
int(K), and has gradients that become unbounded as we approach the boundary of K; we give
the precise definition of Legendre type functions as stated in Rockafellar (1970, Chap. 26) in the
appendix (Definition 9). The convex conjugate of ϕ is denoted by ϕ∗, and is defined as

ϕ∗(y) = max
x∈K
⟨x, y⟩ − ϕ(x) .

For both the mirror descent algorithm in optimisation and MLA, a method to compute the inverse
of ∇ϕ is required, as the respective updates are made in the dual space (range of ∇ϕ). Crucially,
when ϕ is of Legendre type, then ∇ϕ is an invertible map between K and the domain of ϕ∗, and
the inverse of this map is ∇ϕ∗. Additionally, when K is a bounded subset of Rd, the domain of
ϕ∗ is Rd (Rockafellar, 1970, Corr. 13.3.1). This implies that for any y ∈ Rd, there exists a unique
x ∈ int(K) such that ∇ϕ∗(y) = (∇ϕ)−1(y) = x. This fact is essential for MLA as the random
vector ξk in MLA is unrestricted, and Xk+1 could be undefined unless the domain of ϕ∗ is Rd.

Self-concordance Self-concordant functions are ubiquitous in the study and design of interior-
point methods in optimisation, and are defined as follows.

Definition 1 (Nesterov (2018, §5.1.3)) A thrice differentiable strictly convex function ψ : K →
R ∪ {∞} is said to be self-concordant with parameter α ≥ 0 if for all x ∈ int(K) and u ∈ Rd ,

|∇3ψ(x)[u, u, u]| ≤ 2α∥u∥3∇2ψ(x) .

Relative convexity and smoothness These classes of functions can be viewed as generalisations
of convex and smooth functions with different geometrical properties, and were independently stud-
ied in Bauschke et al. (2017) and Lu et al. (2018).

Definition 2 Let g, ψ : K → R ∪ {∞} be differentiable convex functions. We say that g is µ-
relatively convex with respect to ψ if g− µ ·ψ is convex, where µ ≥ 0. Equivalently, when g, ψ are
twice differentiable, then µ · ∇2ψ(x) ⪯ ∇2g(x) for all x ∈ int(K) .
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Definition 3 Let g, ψ : K → R ∪ {∞} be differentiable convex functions. We say that g is λ-
relatively smooth with respect to ψ if λ ·ψ− g is convex, where λ ≥ 0. Equivalently, when g, ψ are
twice differentiable, then λ · ∇2ψ(x) ⪰ ∇2g(x) for all x ∈ int(K) .

Relative Lipschitz continuity This class of functions is a generalisation of Lipschitz continuity
of a differentiable function, and has been useful in the analysis of MLAFD (Ahn and Chewi, 2021).

Definition 4 (Jiang (2021); Ahn and Chewi (2021)) Let g : K → R ∪ {∞} be a differentiable
function. We say that g is β-relatively Lipschitz continuous with respect to a twice differentiable
strictly convex function ψ : K → R ∪ {∞} with parameter β if for all x ∈ int(K), it holds that
∥∇g(x)∥∇2ψ(x)−1 ≤ β , or equivalently, β2 · ∇2ψ(x) ⪰ ∇g(x)∇g(x)⊤.

Self-concordance, relative convexity, relative smoothness and relative Lipschitz continuity are in-
variant to affine transformations of the domain. More precisely, let TAff be an affine transformation
of suitable dimensions. If ψ is a self-concordant function with parameter α, then ψ ◦ TAff is also a
self-concordant function with parameter α (Nesterov, 2018, Thm. 5.1.2). If g is a µ-relatively con-
vex (or λ-relatively smooth, or β-relatively Lipschitz continuous) function with respect to ψ, then
g ◦ TAff is also a µ-relatively convex (or λ-relatively smooth, or β-relatively Lipschitz continuous,
resp.) function with respect to ψ ◦ TAff (Lu et al. (2018, Prop. 1.2); Nesterov (2018, Thm. 5.3.3)).

Symmetric Barrier Symmetric barriers were introduced in Laddha et al. (2020) where it was
used to obtain mixing time bounds for the Dikin walk and weighted variant. This property was
originally introduced in Gustafson and Narayanan (2018) in the development of the John walk.

Definition 5 (Laddha et al. (2020, Def. 2)) Let ψ : K → R ∪ {∞} be a twice differentiable func-
tion, and let Eψx (r) = {y : ∥y − x∥∇2ψ(x) ≤ r} be the Dikin ellipsoid of radius r centered at x. We
say that ψ is a symmetric barrier with parameter ν > 0 if for all x ∈ int(K) ,

Eψx (1) ⊆ K ∩ (2x−K) ⊆ Eψx (
√
ν) .

Examples of such barriers are the log-barrier of a polytope formed by m constraints is a symmetric
barrier with parameter ν = m (Lemma 10), and the log-barrier of an ellipsoid with unit radius
is also a symmetric barrier with parameter ν = 2 (Lemma 11). Notably, the symmetric barrier
parameters of these log-barriers is independent of the conditioning of these sets.

2.2. Markov chains, conductance and mixing time

Markov chains Let the domain of interest be K. A (time-homogeneous) Markov chain over K
is characterised by a set of transition kernels P = {Px : x ∈ K}, where Px is the one-step
distribution that maps measurable subsets of K to non-negative values. With this setup, we have a
transition operator TP on the space of probability measures defined by

(TPµ)(S) =

∫
K
Py(S) · dµ(y) ∀ S ∈ F(K) .
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The distribution after k applications of the transition operator to µ is denoted by TkPµ. A probability
measure π is called a stationary measure of a Markov chain P if π = TPπ. A Markov chain P is
said to be reversible with respect to a measure π if for any A,B ∈ F(K),∫

A
Px(B) · dπ(x) =

∫
B
Py(A) · dπ(y) .

If P is reversible with respect to π, then π is a stationary measure of P.

Conductance, total variation distance and mixing time The conductance of a Markov chain
P = {Px : x ∈ K} with stationary measure π supported on K is defined as

ΦP = inf
A∈F(K)

1

min{π(A), 1− π(A)}

∫
x∈A
Px(K \A) · dπ(x) .

To measure how quickly a Markov chain mixes to its stationary distribution, we use the total varia-
tion (TV) distance. The TV distance between two distributions µ and ν with support K is

dTV(µ, ν) = sup
A∈F(K)

µ(A)− ν(A) .

Let P be a Markov chain with reversible distribution π. For δ ∈ (0, 1), the δ-mixing time from an
initial distribution µ0 of P, denoted by τmix(δ;P, µ0), is defined as

τmix(δ;P, µ0) = inf{k ≥ 0 : dTV(TkPµ0, π) ≤ δ} .

Finally, we introduce the notion of a warm distribution, which is useful for obtaining mixing time
guarantees. A distribution µ supported on K is said to be M -warm with respect to another distribu-
tion Π also supported on K if for all A ∈ F(K), µ(A) ≤M ·Π(A).

3. Metropolis-adjusted Mirror Langevin algorithm

In this section, we introduce the Metropolis-adjusted Mirror Langevin algorithm (MAMLA). Let P
be a Markov chain which defines a collection of proposal distributions at each x ∈ K with densities
{px : x ∈ K}. The acceptance ratio of z with respect to x (given a target density π) is defined as

pPaccept(z;x) = min

{
1,
π(z)pz(x)

π(x)px(z)

}
. (1)

We recap the general outline of the Metropolis-adjustment of a Markov chain from Section 1. From
a point x, the Markov chain P generates a proposal z ∼ Px. This proposal z is accepted to be the
next iterate with probability pPaccept(z;x), and if not accepted, x is retained. Let T def

= {Tx : x ∈
K} denote the Metropolis-adjusted Markov chain, where Tx is the one-step distribution after this
adjustment. As noted earlier, by construction, T is reversible with respect to Π with density π.

In our setting, the Markov chain P is induced by one step of MLA. Let ξ be an independent standard
normal vector in d dimensions. From any x ∈ int(K), one step of MLA returns the point

x′ = ∇ϕ∗(∇ϕ(x)− h · ∇f(x) +
√
2h · ∇2ϕ(x) ξ) .
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We consider Px to be the law of x′ for a given x, and P = {Px : x ∈ K}2. To compute the
acceptance ratio (eq. (1)), we require the density of the Px for each x, and this can be obtained
by the change of the variable formula. Let N (x;µ,Σ) denote the density of a multivariate normal
distribution with mean µ and covariance Σ at x, and the density of Px at any z ∈ int(K) is given by

px(z) = N (∇ϕ(z);∇ϕ(x)− h · ∇f(x), 2h · ∇2ϕ(x)) · | det∇2ϕ(z)| . (2)

With these definitions, the algorithm is composed of three key steps described previously. For
completeness, we derive eq. (2), and state the algorithm (MAMLA) formally in Appendix B.

3.1. Mixing time analysis

Here, we state our main theorem concerning the mixing time of MAMLA, under assumptions made
on both the potential f , and the mirror function ϕ. Recall that ϕ is assumed to be of Legendre type.
The other key assumptions are

(A1) ϕ is a self-concordant function with parameter α (Definition 1),

(A2) f is µ-relatively convex and λ-relatively smooth with respect to ϕ (Definitions 2 and 3),

(A3) f is β-relatively Lipschitz continuous with respect to ϕ (Definition 4), and

(A4) ϕ is a symmetric barrier with parameter ν (Definition 5).

Define the constants ᾱ = max{1, α} and γ = λ
2 + α · β, which appear in the theorem below.

Theorem 6 Consider a distribution Π with density π(x) ∝ e−f(x) that is supported on a compact
and convex set K ⊂ Rd, and mirror map ϕ : K → R ∪ {∞}. If f and ϕ satisfy assumptions
(A1)-(A3), then there exists a maximum step size hmax > 0 given by

hmax = min

{
1,

C(1)

α2d3
,
C(2)

dγ
,

C(3)

α4/3β2/3
,

C(4)

β2/3γ2/3
,
C(5)

β2

}
(3)

for universal constants C(1), . . . , C(5) such that for any 0 < h ≤ hmax, δ ∈ (0, 1), and M -warm
initial distribution Π0 with respect to Π, MAMLA has the following mixing time guarantees.

When µ > 0 (strongly convex),

τmix(δ;T,Π0) = O

(
max

{
1,

ᾱ4

µ · h

}
· log

(√
M

δ

))
. (4)

When µ = 0 (weakly convex), and additionally assuming that ϕ satisfies (A4),

τmix(δ;T,Π0) = O

(
max

{
1,
ν · ᾱ2

h

}
· log

(√
M

δ

))
. (5)

The proof of Theorem 6 is given in Section D.2 of the Appendix.
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Setting of µ in (A2)
MAMLA
(this work)

MLA* MLAFD MLABD

µ > 0 Õ
(

1
µ max

{
d3, dλ

}
log
(
1
δ

))
Õ
(
dλ2

µ3δ2

)
Õ
(
dλ
µδ2

)
Õ
(√

λ2+d3

µ3/2δ

)
µ = 0 Õ

(
νmax

{
d3, dλ

}
log
(
1
δ

))
N/A Õ

(
d2λ
δ4

)
N/A

Table 1: Comparison of mixing time guarantees for algorithms based on discretisations of MLD.
We use the Õ notation to only showcase the dependence on λ, µ, d, and δ, and omit the dependence
on other parameters. For MLABD in Jiang (2021), µ is the constant in the mirror log-Sobolev
condition, as relative strong convexity is not considered, and λ is the constant in the alternative
relative smoothness condition assumed on f .

3.1.1. A DISCUSSION OF THE RESULT IN THEOREM 6

We begin by discussing the assumptions (A2)-(A4). (A2) states that f is a relatively convex and
smooth function with respect to ϕ. Prior works that analyse MLA and other discretisations of MLD
(Zhang et al., 2020; Ahn and Chewi, 2021; Jiang, 2021; Li et al., 2022a) consider this assumption.
We note that Jiang (2021) assumes that Π satisfies a mirror log-Sobolev inequality in lieu of relative
convexity of f with respect to ϕ to analyse MLA, MLAFD, and another discretisation proposed in
their work that we refer to as MLABD. While the usual strong convexity of f implies the log-Sobolev
inequality (Bakry and Émery, 1985), it is not known if relative strong convexity of f with respect
to ϕ yields a mirror log-Sobolev inequality. This makes it hard to assess whether this substitution
in Jiang (2021) is a weaker assumption than relative (strong) convexity in (A2). Additionally, the
mixing time guarantees for MLA in Li et al. (2022a) (who work with a subset of assumptions in
Zhang et al. (2020)) is only meaningful when µ > 0 in (A2), and a guarantee for MLA in the case
where f is (weakly) convex (µ = 0) is unknown still. On the other hand, Ahn and Chewi (2021)
give an analysis of MLAFD for both cases i.e., µ > 0 and µ = 0. Next, (A3) states that the gradients
of f are bounded in the local norm ∥.∥∇2ϕ(.)−1 . This is used in the analysis of MLAFD and MLABD
in Ahn and Chewi (2021) and Jiang (2021) respectively, but is not used in any existing analysis of
MLA. Finally, (A4) is a geometric property of ϕ, and is useful to obtain guarantees in the case where
µ = 0 in (A2). In this case, we rely on isoperimetric inequalities for sampling from log-concave
densities over convex bodies (Vempala, 2005), which we get through (A4). This assumption has
been employed in prior work to analyse the Dikin walk (Laddha et al., 2020; Kook and Vempala,
2023), constrained RHMC (Kook et al., 2023), hybrid RHMC (Gatmiry et al., 2023).

Under these assumptions, we are interested in how the mixing time guarantees scale with the error
tolerance δ, and the dimension d of K. Table 1 summarises the comparison between MAMLA and
other algorithms based on discretisations of MLD that have been discussed above. The analyses of
MLA, MLAFD, and MLABD in the aforementioned works consider varying definitions of mixing time
to the δ-mixing time in TV distance we define in Section 2.2, and additional assumptions which we
highlight as follows. The most recent mixing time guarantees for MLA in Li et al. (2022a) is given
in terms of the mirrored 2-Wasserstein distance, as was previously done in Zhang et al. (2020); this
is indicated by an asterisk in Table 1. Both of these works also assume that ϕ satisfies a modified

2. The transition kernel for any x ∈ ∂K is analytically undefined since ϕ is of Legendre type, but this will not have any
influence since the boundary ∂K is a Lebesgue null set as K is convex.
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self-concordance condition instead of self-concordance as we do in (A1). Furthermore, the relation
between the mirrored 2-Wasserstein distance and a more canonical functional like the KL divergence
(dKL) / TV distance (dTV) cannot be easily established without assuming that ϕ satisfies additional
properties. For MLAFD, Ahn and Chewi (2021) establish bounds on K such that dKL(ΠK ,Π) ≤ δ.
Here, ΠK is a uniform mixture distribution composed of the sequence of iterates {Πk}Kk=1, where
Πk is the distribution at iteration k. For MLABD, Jiang (2021) gives upper bounds on K such
that dKL(ΠK ,Π) ≤ δ. To do so, they place a different relative smoothness assumption over f ,
and additionally assume that ϕ is strongly convex. For MLAFD and MLABD, we infer mixing time
guarantees in TV distance from guarantees in KL divergence using Pinsker’s inequality which states

that dTV(µ, ν) ≤
√

1
2dKL(µ, ν). We call MAMLA fast due to the dependence on δ in the mixing

time guarantees (log(1/δ)), which is exponentially better than the dependence of δ in the mixing
time guarantees for MLA, MLAFD, and MLABD (poly(1/δ)). This echoes the improvement observed
in the mixing time guarantees for MALA relative to ULA (Dwivedi et al., 2018; Chewi et al., 2021).
In contrast, the dependence on d is better in the mixing time guarantees for the unadjusted Mirror
Langevin discretisations; fixing β, λ, µ, the mixing time bound for MAMLA scales as d3 compared
to dγ with γ ∈ {1, 1.5, 2} in the mixing time bounds for the other methods that we compare to.

4. Applications of MAMLA with provable guarantees

In this subsection, we discuss some applications of MAMLA for which we can infer mixing time
guarantees from Theorem 6. These are (1) uniform sampling from polytopes and regions defined
by the intersection of ellipsoids, and (2) sampling from Dirichlet distributions. The proofs of the
statements given in this subsection are stated in Section D.4. We useC to denote a universal positive
constant in the corollaries, which can change between corollaries.

4.1. Uniform sampling over polytopes and intersection of ellipsoids

For uniform sampling, the target density π is a constant function, and consequently ∇f(x) = 0 for
any x ∈ int(K). In this setting, MAMLA can be viewed as a Gaussian DikinWalk in the dual space
(Rd,∇2ϕ∗). We are interested in approximate uniform sampling from the following sets.

• Polytope(A, b): a bounded polytope with non-zero volume defined by {x ∈ Rd : Ax ≤ b} for
matrix A ∈ Rm×d and vector b ∈ Rm, and

• Ellipsoids({(ci,Mi)}mi=1): a non-empty region defined by the intersection of ellipsoids {x ∈ Rd :
∥x− ci∥2Mi

≤ 1 ∀ i ∈ [m]} for a sequence of d× d symmetric positive definite matrices {Mi}mi=1

and centres {ci}mi=1. The radius of 1 does not affect the generality of this region.

The following corollary establishes mixing time guarantees for uniform sampling over these sets.

Corollary 7 Let Π0 be a M -warm distribution with respect to the uniform distribution over either
K = Polytope(A, b), or K = Ellipsoids({(ci,Mi)}mi=1), and let ϕ be the log-barrier of K. Then,
for any δ ∈ (0, 1), the mixing time of MAMLA is

C ·m · d3 · log

(√
M

δ

)
.
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Remark. For polytopes, Laddha et al. (2020) show that DikinWalk satisfies a mixing time of
m · d owing to a strong self-concordance condition that holds in this setting. They also propose
WeightedDikinWalk, which has a mixing time that scales as d2 (independent of the number of
constraints). In a similar vein, Gatmiry et al. (2023) propose a modification to RHMC, and prove
a mixing time guarantee that scales as m1/3 · d4/3 for their method. Kook et al. (2023) study a
constrained RHMC algorithm applicable to this setting i.e., uniform sampling from both polytopes
and intersection of ellipsoids, and show a mixing time guarantee for this algorithm that scales as
m · d3. Our analysis echoes the mixing time guarantee of the latter method and scales as m · d3.

4.2. Sampling from Dirichlet distributions

The Dirichlet distribution is the multi-dimensional generalisation of the Beta distribution. A sample
from the Dirichlet distribution x′ ∈ Rd+1 satisfies x′i ≥ 0 for all i ∈ [d+1], and 1⊤x′ = 1, and thus
an element of ∆d. Equivalently, we can also express this sample with the first d elements x ∈ Rd+
satisfying an inequality constraint 1⊤x ≤ 1, and write x′d+1 = 1 − 1⊤x. We work with the latter
definition, and K = {x ∈ Rd+ : 1⊤x ≤ 1}. The Dirichlet distribution is parameterised by a vector
of positive reals3 a ∈ Rd+1

+ called the concentration parameter. The density is

π(x) ∝ exp(−f(x)) ; f(x) = −
d∑
i=1

ai · log xi − ad+1 · log

(
1−

d∑
i=1

xi

)
. (6)

We use amin to denote the minimum of a. Since the sample space is a special polytope, the log-
barrier of K is a natural consideration for the mirror function ϕ, and with this choice of ϕ, we
generate approximate samples from a Dirichlet distribution using MAMLA. The following corollary
states a mixing time upper bound for this task.

Corollary 8 Let Π0 be a M -warm distribution with respect to a Dirichlet distribution parame-
terised by a ∈ Rd+1

+ . Let ϕ be the log-barrier of K, and f be as defined in eq. (6). If ∥a∥ ≥ 1, then
for any δ ∈ (0, 1), the mixing time of MAMLA is

C · max{d3, d · ∥a∥, ∥a∥2}
amin

· log

(√
M

δ

)
.

Remark. In comparison, a corollary of the guarantee for MLA as shown in Li et al. (2022a) gives
a mixing time guarantee that scales as da2

max

a3
min
· 1
δ2

for this task. It is worth noting that this holds only
when the modified self-concordance parameter used in its analysis is at most amin, and that this is
in the mirrored 2-Wasserstein distance. MLAFD (Ahn and Chewi, 2021) on the other hand satisfies
a mixing time guarantee that scales as d∥a∥

amin
· 1
δ2

. We cannot establish mixing time guarantees for
MLABD in this case due to the use of a mirror log-Sobolev inequality instead of relative strong
convexity, and this former condition is hard to verify in general.

5. Conclusion

To summarise, we introduce the Metropolis-adjusted Mirror Langevin algorithm (MAMLA), and
provide non-asymptotic mixing time guarantees for it. This algorithm adds a Metropolis-Hastings

3. More generally, ai > −1, but we focus on when ai > 0. The case where ai ∈ (−1, 0) results in antimodes.
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accept-reject filter to the proposal Markov chain defined by a single step of the Mirror Langevin
algorithm (MLA) which is the Euler-Maruyama discretisation of the Mirror Langevin dynamics
(MLD), at each point in K. The resulting Markov chain is reversible with respect to the target
distribution that we seek to sample from, unlike the Markov chain induced by MLA.

Our mixing time guarantees are strongly related to the maximum permissible stepsize that results in
non-vanishing acceptance rates, and our current analysis shows that this scales as 1/d3 as d grows.
We believe that for structured domains like polytopes where ϕ is chosen to be the log-barrier of
the domain, a step size that scales as 1/dγ for γ < 3 can lead to non-vanishing acceptance rates for
MAMLA, and consequently yield better mixing time guarantees. Another question that we leave
for the future is to check if the relative Lipschitz continuity assumption over f can be relaxed or
removed altogether for the mixing time analysis of MAMLA, especially when used in conjuction
with relative convexity and smoothness of f . This is motivated by the analysis in Li et al. (2022a),
which does not employ such a condition to derive mixing time guarantees for MLA.
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László Lovász and Miklós Simonovits. Random walks in a convex body and an improved volume
algorithm. Random structures & algorithms, 4(4):359–412, 1993.
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Appendices

Organisation In Appendix A, we provide an extended discussion about the function classes that
were previously discussed in Section 2. In Appendix B, we give the complete pseudocode for
MAMLA, and include a derivation of the density of the proposal distribution (eq. (2)) defined by a
single step of MLA. We provide a short discussion of the Newton Langevin dynamics and its Euler-
Maruyama discretisation, the Newton Langevin algorithm, and provide mixing time guarantees for
the Metropolis-adjusted Newton Langevin algorithm in Appendix C. Finally, we give the complete
proofs of Theorem 6, and its corollaries stated in Section 4 in Appendix D, and some miscellaneous
mathematical facts used in these proofs in Appendix E.

Appendix A. Extended discussion about the function classes

Legendre Type Formally, a function of Legendre type is defined as follows.

Definition 9 (Rockafellar (1970, Chap. 26)) Let ψ : K → R ∪ {∞} be a proper, lower semicon-
tinuous, convex function. ψ is of Legendre type if

1. The set int(K) is non-empty,

2. ψ is differentiable and strictly convex in int(K), and

3. For any sequence {xk}k∈N in int(K) whose limit lies on ∂K, limk→∞ ∥∇ϕ(xk)∥ → ∞ .

A naive approach to compute the inverse of the mirror map is by inverting the mirror map exactly.
However, when the mirror function is of Legendre type, there are two other approaches by which
this can be computed. The first is by computing the convex conjugate in closed form, and taking its
gradient at the query point, which yields the inverse of the mirror map by definition. The second
approach is an approximate method, and involves solving the optimisation problem in the definition
of the convex conjugate. At optimality, the solution x̂ satisfies y = ∇ϕ(x̂)⇔ x̂ = (∇ϕ)−1(y).

Relative convexity and smoothness Let ψ : K → R ∪ {∞} be a differentiable convex function.
The Bregman divergence of ψ at y with respect to x is defined as Dψ(y;x) = ψ(y) − ψ(x) −
⟨∇ψ(x), y− x⟩. The µ-relative convexity and λ-relative smoothness of a function g with respect to
ψ imply respectively that for any x, y ∈ int(K),

g(y) ≥ g(x) + ⟨∇g(x), y − x⟩+ µ ·Dψ(y;x) ,

g(y) ≤ g(x) + ⟨∇g(x), y − x⟩+ λ ·Dψ(y;x) .

When ψ(x) = ∥x∥2
2 , and K = Rd, Dψ(y;x) = ∥y−x∥2

2 for any x, y ∈ Rd, and substituting the
equation for Dψ in the inequalities above recovers the standard first order definitions of convexity
and smoothness (Nesterov, 2018, §2.1).

Relative Lipschitz continuity Let g : K → R ∪ {∞} be a differentiable function, and ψ : K →
R∪{∞} be a twice differentiable, strictly convex function. If g is β-relatively Lipschitz continuous
with respect to ψ, then for any x ∈ int(K),

∥∇g(x)∥∇2ψ(x)−1 ≤ β .
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When ψ(x) = ∥x∥2
2 , and K = Rd, then ∇2ψ(x) = I for all x ∈ Rd, and consequently this relative

Lipschitz continuity condition reads

∥∇g(x)∥ ≤ β ∀ x ∈ Rd ,

which is an equivalent characterisation of standard Lipschitz continuity of g.

A special case to make note of is when ψ = g, and a function g that satisfies ∥∇g(x)∥∇2g(x)−1 ≤ β
for all x ∈ int(K) is termed a barrier function (Nesterov, 2018, §5.3.2). This property is useful
in the analysis of Newton’s method in optimisation. In this work, we use this property to give
guarantees for the Metropolis-adjusted Newton Langevin algorithm (Corollary 12).

Symmetric barriers The logarithmic barriers of Polytope(A, b) and Ellipsoids({(ci,Mi)}mi=1)
are symmetric barriers, which is useful to providing guarantees for approximate uniform sampling
over these domains. The following two lemmas formally state this.

Lemma 10 LetK = Polytope(A, b) whereA ∈ Rm×d, b ∈ Rm be a non-empty, bounded polytope,
and ϕ be the log-barrier of K. Then, ϕ is a symmetric barrier with parameter m.

Lemma 11 Let K = Ellipsoids({Mi}mi=1) for a sequence of positive definite matrices {Mi}mi=1,
and ϕ be the log-barrier of K. Then, ϕ is a symmetric barrier with parameter 2m.

Lemma 10 was stated as Kook and Vempala (2023, Lem. 5.5). To the best of our knowledge,
Lemma 11 has not been discussed in any prior work, and we give a proof of this lemma in Sec-
tion D.5.1.

Appendix B. Additional details about the Metropolis-adjusted Mirror Langevin
algorithm

We begin by giving the formal definition of the Metropolis-adjusted Mirror Langevin algorithm
(MAMLA), as introduced in Section 3.

In eq. (2), we gave the formula for the density of the proposal distribution. This can be derived via
the change of variable formula as shown below. Recall that

Px = (∇ϕ∗)#N (.;∇ϕ(x)− h · ∇f(x), 2h · ∇2ϕ(x)) ,

whereN (.;µ,Σ) is the multivariate normal distribution with mean µ and Σ. The change of variable
formula states that for a probability distribution µ with a density, and a differentiable invertible map
T ,

dT#µ(x) = dµ(T−1(x))|det JT−1(x)| ,

where JT−1(x) is the Jacobian of T−1 evaluated at x. Since ϕ is assumed to be of Legendre type,
∇ϕ (and equivalently,∇ϕ∗) is an invertible map. Hence,

px(z) = N ((∇ϕ∗)−1(z);∇ϕ(x)− h · ∇f(x), 2h · ∇2ϕ(x)) · | det∇(∇ϕ∗)−1(z)|

=
det∇2ϕ(z)

(4hπ)d/2 ·
√
det∇2ϕ(x)

exp

(
−
∥∇ϕ(z)−∇ϕ(x) + h · ∇f(x)∥2∇2ϕ(x)−1

4h

)
.
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Algorithm 1: Metropolis-adjusted Mirror Langevin algorithm (MAMLA)
Input : Potential f of Π, mirror function ϕ, iterations K, initial distribution Π0, step size h > 0
Sample x0 ∼ Π0.
for k ← 0 to K − 1 do

Sample a random vector ξk ∼ N (0, I).
Generate proposal z = ∇ϕ∗(∇ϕ(xk)− h · ∇f(xk) +

√
2h · ∇2ϕ(xk) ξk).

Compute acceptance ratio paccept(z;xk) = min
{
1, π(z)pz(xk)π(xk)pxk (z)

}
using eq. (2).

Obtain U ∼ Unif([0, 1]).
if U ≤ paccept(z;xk) then

Set xk+1 = z.
else

Set xk+1 = xk.
end

end
Output: xK

Appendix C. Discussion on the Newton Langevin dynamics and algorithm

As remarked in the introduction, a special case of the Mirror Langevin dynamics and algorithm is
when ϕ = f , which results in the Newton Langevin dynamics (NLD) and the Newton Langevin
algorithm (NLA) respectively.

Yt = ∇f(Xt); dYt = −∇f(Xt)dt+
√
2 ∇2f(Xt)

1/2 dBt . (NLD)


Yk = ∇f(Xk) ;

Yk+1 − Yk = −h · ∇f(Xk) +
√
2h · ∇2f(Xk)

1/2 ξk , ξk ∼ N (0, Id) ;

Xk+1 = (∇f)−1(Yk+1) .

(NLA)

Chewi et al. (2020) showed that when f is strictly convex over K, NLD converges exponentially
quickly to the target in χ2-divergence at a rate that is invariant to affine transformations of K. This
result is due to the Brascamp-Lieb inequality. Hence, it is reasonable to expect that the Newton
Langevin algorithm (NLA), which is the specialisation of the Mirror Langevin algorithm (MLA) in
this case, also has mixing time guarantees that are invariant to affine transformations. But unfortu-
nately, the most recent analysis of this method in Li et al. (2022a) cannot show this, owing to the
modified self-concordance assumption as elaborated in section 1. Despite this, a special case of our
analysis yields a guarantee for the Metropolis-adjusted Newton Langevin algorithm that is invariant
to affine transformations of K, which we discuss next.

C.1. Mixing time for the Metropolis-adjusted Newton Langevin algorithm

This setting satisfies assumption (A2) with constants µ = λ = 1, and when f is self-concordant
with parameter α, and a barrier function with parameter β, assumptions (A1) and (A3) are satisfied
as well. This leads to a corollary of Theorem 6 for the Metropolis-adjusted Newton Langevin
algorithm, which is also unbiased with respect to the target, as stated in the following corollary.
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Corollary 12 Consider a distribution Π with density π(x) ∝ e−f(x) that is supported on compact
and convex set K ⊂ Rd. When f is a self-concordant function with parameter α and a barrier
function with parameter β, there exists a maximum step size hmax > 0 of the form in eq. (3) where
γ = 1

2 + α · β, such that for any 0 < h ≤ hmax, δ ∈ (0, 1), and M -warm initial distribution Π0

with respect to Π, MAMLA with ϕ = f satisfies

τmix(δ;T,Π0) = O

(
max

{
1,
ᾱ4

h

}
· log

(√
M

δ

))
.

Appendix D. Proofs

This section is devoted providing the proofs of the main theorem and its corollaries in Section 3. In
Section D.1, we give the main lemmas that form the proof of the Theorem 6, whose proof follows in
Section D.2. The proofs of these main lemmas are given in Section D.3, and finally in Section D.4,
we give the proofs of the corollaries from Section 4.

D.1. Results for conductance using one-step overlap

The following classical result by Lovász and Simonovits (1993) is the basis of the mixing time
guarantee of MAMLA, which is a common tool for studying reversible Markov chains.

Proposition 13 Let Q be a lazy, reversible Markov chain over K with stationary distribution Π
and conductance ΦQ. For any Π0 that is M -warm with respect to Π, we have for all k ≥ 1 that

dTV(TkQΠ0,Π) ≤
√
M

(
1−

Φ2
Q

2

)k
.

The above result indicates that it suffices to show a non-vacuous lower bound on the conductance of
a reversible Markov chain to derive mixing time upper bounds for it. To do so, we use the one-step
overlap technique developed in Lovász (1999). The gist of this technique is to show that when
given a reversible Markov chain Q = {Qx : x ∈ K}, the distance dTV(TQ(δx),TQ(δy)) (also
equal to dTV(Qx,Qy)) is uniformly bounded away from 1 for any x, y ∈ int(K) that are close. For
MAMLA, recall that T = {Tx : x ∈ K} denotes the Markov chain induced by a single iteration of
the algorithm, and Px is proposal distribution defined whose density is given in eq. (2).

Lemmas 14 and 15 precisely state how a one-step overlap can yield lower bounds on the conduc-
tance of T, whose stationary distribution has density π ∝ e−f . These are two separate lemmas, one
for when f is µ-strongly convex relative to a self-concordant mirror function ϕ with µ > 0, and the
other for when the potential f is simply convex i.e., when µ = 0.

Lemma 14 Let ϕ : K → R ∪ {∞} be a self-concordant function with parameter α, and let f be
µ-relatively convex with respect to ϕ. Assume that for any x, y ∈ int(K), if ∥x − y∥∇2ϕ(y) ≤ ∆

where ∆ ≤ 1
2α , then dTV(Tx, Ty) ≤ 1

4 . Then, for any measurable partition {A1, A2} of K,∫
A1

Tx(A2)π(x)dx ≥
3

16
·min

{
1,

√
µ ·∆

2 · (8α+ 4)

}
·min{Π(A1),Π(A2)} .
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Lemma 15 Let ϕ : K → R ∪ {∞} be a symmetric barrier with parameter ν, and let f : K →
R ∪ {∞} be a convex function. Assume that for any x, y ∈ int(K), if ∥x − y∥∇2ϕ(y) ≤ ∆, then
dTV(Tx, Ty) ≤ 1

4 . Then, for any measurable partition {A1, A2} of K,∫
A1

Tx(A2)π(x)dx ≥
3

16
·min

{
1,

1

8
· ∆√

ν

}
·min{Π(A1),Π(A2)} .

These lemmas are based on two different isoperimetric inequalities. Specifically, Lemma 14 relies
on an isoperimetric inequality for distributions whose potentials f are relatively convex with respect
to a self-concordant function, and Lemma 15 uses another isoperimetric inequality for log-concave
distributions supported on bounded sets from Lovász and Vempala (2003) in conjunction with the
notion of symmetric barriers to arrive at the result.

Next, we establish the one-step overlap that we have assumed in the aforementioned lemmas. The
triangle inequality for the TV distance gives for any x, y ∈ int(K)

dTV(Tx, Ty) ≤ dTV(Tx,Px) + dTV(Px,Py) + dTV(Py, Ty) .

The goal is to show that dTV(Tx, Ty) is sufficiently bounded away from 1, and one method to
achieve this is by showing that each of the three quantities above are also sufficiently bounded away
from 1. In the following lemma, we give bounds for each of these quantities. First, we define the
function b : [0, 1)→ (0, 1) as

b(ε; d, α, β, λ) = min

{
1,
C1(ε)
α2 · d3

,
C2(ε)
d · γ

,
C3(ε)

β2/3 · α4/3
,
C4(ε)

β2/3 · γ2/3
,

ε

4 · β2

}
, (7)

where C1(ε), . . . , C4(ε) are functions of ε defined in eq. (12) later.

Lemma 16 Let ϕ and f satisfy (A1), (A2), and (A3). Then, the following statements hold.

1. For any two points x, y ∈ int(K) such that ∥x−y∥∇2ϕ(y) ≤
√
h

10·ᾱ and any step size h ∈ (0, 1),

dTV(Px,Py) ≤
1

2

√
h · d
20

+
1

80
+

9

2
· h · β2 .

2. For any x ∈ int(K), ε < 1, and step size h ∈ (0, b(ε; d, α, β, λ)].

dTV(Tx,Px) ≤
ε

2
.

where ᾱ = max{1, α}, γ = λ
2 + α · β.

The proofs of Lemmas 14 to 16 are given in Section D.3. With these results, we proceed to the
proof of Theorem 6.
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D.2. Complete proof of Theorem 6

Proof Let h ∈ (0, b(ε; d, α, β, λ)] ⊆ (0, 1]. From Lemma 16, we have that for any x, y ∈ int(K)
such that ∥x− y∥∇2ϕ(y) ≤

√
h

10·ᾱ ,

dTV(Px,Py) ≤
1

2

√
h · d
20

+
1

80
+

9

2
· h · β2 ≤ 1

2

√
1

20
+

1

80
+

9

8
· ε .

For ε = 1/24,

dTV(Px,Py) ≤
1

2

√
1

20
+

1

80
+

3

64
≤ 1

6

dTV(Tx,Px) ,dTV(Ty,Py) ≤
1

48

Consequently, dTV(Tx, Ty) ≤ 1
24 + 1

6 ≤
1
4 .

Let {A1, A2} be an arbitrary measurable partition of K. When f is µ-strongly convex with respect
to ϕ such that µ > 0, we invoke Lemma 14 with ∆ =

√
h

10·ᾱ to obtain∫
A1

Tx(A2)π(x)dx ≥
3

16
·min

{
1,

Cα ·
√
µ ·
√
h

20 · ᾱ

}
·min{Π(A1),Π(A2)} ; Cα =

1

8α+ 4
.

Consequently,

ΦT ≥
3

16
·min

{
1,
Cα ·
√
µ ·
√
h

20 · ᾱ

}
.

Instead, when µ = 0 i.e., when f is convex, the additional assumption about ϕ being a symmetric
barrier with parameter ν allows us to use Lemma 15 with ∆ =

√
h

10·ᾱ to get∫
A1

Tx(A2)π(x)dx ≥
3

16
·min

{
1,

√
h

80 ·
√
ν · ᾱ

}
·min{Π(A1),Π(A2)} ,

and as a result,

ΦT ≥
3

16
·min

{
1,

√
h

80 ·
√
ν · ᾱ

}
.

Since Π0 is M -warm with respect to Π, we instantiate Proposition 13, which provides bounds on
the mixing time for any δ ∈ (0, 1) in the two cases discussed above. To be precise,

dTV(TkTΠ0,Π) ≤
√
M ·

(
1−

Φ2
T

2

)k
≤
√
M · exp

(
−k ·

Φ2
T

2

)
.

When k = 2
Φ2

T
log
(√

M
δ

)
, dTV(TkTΠ0,Π) ≤ δ. Thus,

when µ > 0

τmix(δ;T,Π0) = O

(
max

{
1,

ᾱ4

µ · h

}
· log

(√
M

δ

))
, and
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when µ = 0

τmix(δ;T,Π0) = O

(
max

{
1,
ᾱ2 · ν
h

}
· log

(√
M

δ

))
.

D.3. Proofs of conductance results and one-step overlap in Section D.1

Prior to presenting the the proofs of Lemmas 14 and 15, we first introduce and elaborate on two
specific isoperimetric lemmas which we use in the proofs, which follow after this introduction.

The proof of Lemma 14 uses an isoperimetric lemma for a distribution supported on a compact,
convex subset K ⊂ Rd with density π ∝ e−f where f is relatively strongly convex with respect
to a self-concordant function ψ with domain K. This lemma is due to Gopi et al. (2023); their
original lemma assumes the self-concordance parameter of ψ to be 1 while we generalise it for
ψ with an arbitrary self-concordance parameter α. Additionally, we have the following metric
dψ : K × K → R+ ∪ {0}. For any two points x, y ∈ K, dψ(x, y) is the Riemannian distance
between x, y as measured with respect to the Hessian metric∇2ψ overK. We overload this notation
to take sets as arguments; for two disjoint sets A,B of K, dψ(A,B) is defined as dψ(A,B) =
infx∈A,y∈B dψ(x, y). We state the lemma due to Gopi et al. (2023) as stated in Kook and Vempala
(2023), which addresses the subtlety of f only taking finite values in int(K), and also highlight the
dependence on the self-concordance parameter.

Proposition 17 (Kook and Vempala (2023, Lemma 2.7)) Let ψ : K → R ∪ {∞} be a self-
concordant function with parameter α, and let f be a µ-relatively convex function with respect
to ψ. Then, for any given partition {A1, A2, A3} of K,

Π(A3) ≥ Cα ·
√
µ · dψ(A1, A2) ·min {Π(A1) ,Π(A2)}

for positive constant Cα = 1
8α+4 .

To operationalise this in order to obtain lower bounds on the conductance using the one-step overlap
which uses a closeness criterion in terms of ∥x− y∥∇2ϕ(y), we require a relation between dϕ(x, y)
and ∥x − y∥∇2ϕ(y). The self-concordance property of ϕ ensures that the metric ∇2ϕ is relatively
stable between two points that are close, and thus implying that the Riemannian distance between
x, y is approximately the local norm ∥x− y∥∇2ϕ(y). The following lemma from Nesterov and Todd
(2002) formalises this intuition. The lemma below is a slight modification of their original lemma
that makes the dependence on the self-concordance parameter explicit.

Proposition 18 (Nesterov and Todd (2002, Lemma 3.1)) Let ψ : K → R ∪ {∞} be a convex
and self-concordant with parameter α. For any ∆ ∈ [0, 1/α), if for any x, y ∈ int(K) it holds that
dψ(x, y) ≤ ∆− α · ∆2

2 , then ∥x− y∥∇2ψ(x) ≤ ∆.

Next, for the proof of Lemma 15, we use an isoperimetric inequality for a log-concave distribution
Π from Lovász and Vempala (2003). Before we state this, we introduce the notion of the cross ratio
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between two points inK, which is compact. Let x, y ∈ int(K), and consider a line segment between
x and y. Let the endpoints of this extension of the line segment to the boundary of K be p and q
respectively (thus forming a chord), with points in the order p, x, y, q. The cross ratio between x
and y (with respect to K) is

CR(x, y;K) = ∥y − x∥ · ∥q − p∥
∥y − q∥ · ∥p− x∥

.

We overload this notation to define the cross ratio between sets as

CR(A2, A1;K) = inf
y∈A2, x∈A1

CR(y, x;K) .

Proposition 19 (Lovász and Vempala (2003, Thm. 2.2)) Let Π be a log-concave distribution on
Rd with support K. For any measurable partition {A1, A2, A3} of K,

Π(A3) ≥ CR(A2, A1;K) ·Π(A2) ·Π(A1) .

As seen previously, to operationalise this isoperimetric inequality, we have to relate the cross ratio
between two points to the local norm ∥x−y∥∇2ϕ(y). When ϕ is a symmetric barrier, this is possible
due to the following lemma.

Proposition 20 (Laddha et al. (2020, Lem. 2.3)) Let ψ : K → R ∪ {∞} be a symmetric barrier

with parameter ν. Then, for any x, y ∈ int(K), CR(y, x;K) ≥
∥y−x∥∇2ψ(y)√

ν
.

With all of these ingredients, we give the proofs of Lemmas 14 and 15. The proofs of both lemmas
only differ in the isoperimetric inequalities used, and hence are presented together.

D.3.1. PROOFS OF LEMMAS 14 AND 15

Proof By the reversibility of the Markov chain T, we have for any partition {A1, A2} of K that∫
A1

Tx(A2)π(x)dx =

∫
A2

Tx(A1)π(x)dx . (8)

Define the subsets A′
1 and A′

2 of A1 and A2 respectively as

A′
1 =

{
x ∈ A1 : Tx(A2) <

3

8

}
; A′

2 =

{
x ∈ A2 : Tx(A1) <

3

8

}
.

We consider two cases, which cover all possibilities

Case 1 : Π(A′
1) ≤

Π(A1)
2 or Π(A′

2) ≤
Π(A2)

2 .

Case 2 : Π(A′
i) >

Π(Ai)
2 for i ∈ {1, 2}
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Lower bound from case 1: Let Π(A′
1) ≤

Π(A1)
2 . Then,

Π(A1 ∩ (K \A′
1)) = Π(A1)−Π(A′

1) ≥
Π(A1)

2
.

Consequently,∫
A1

Tx(A2)π(x)dx ≥
∫
A1∩(K\A′

1)
Tx(A2)π(x)dx ≥

∫
A1∩(K\A′

1)

3

8
· π(x)dx ≥ 3

16
·Π(A1) .

The first inequality is due to A1 ∩ (K \ A′
1) ⊂ A1. The second inequality uses the fact that since

x ∈ A1 ∩ (K \ A′
1), x ∈ A1 \ A′

1, and for such x, Tx(A2) ≥ 3
8 . The final step uses the fact shown

right above. We can use this same technique to show that when Π(A′
2) ≤

Π(A2)
2 ,∫

A2

Tx(A1)π(x)dx ≥
3

16
·Π(A2) .

Combining these gives, ∫
A1

Tx(A2)π(x)dx ≥
3

16
·min{Π(A1),Π(A2)} .

Lower bound from case 2: We start by considering arbitrary x′ ∈ A′
1 and y′ ∈ A′

2. From eq. (8),∫
A1

Tx(A2)π(x)dx =
1

2

(∫
A1

Tx(A2)π(x)dx+

∫
A2

Ty(A1)π(y)dy

)
≥ 1

2

(∫
A1∩(K\A′

1)
Tx(A2)π(x)dx+

∫
A2∩(K\A′

2)
Ty(A1)π(y)dy

)

≥ 3

16

(∫
A1∩(K\A′

1)
π(x)dx+

∫
A2∩(K\A′

2)
π(y)dy

)
=

3

16
·Π(K \ (A′

1 ∪A′
2)) =

3

16
·Π(K \A′

1 \A′
2) . (9)

Also, by the definition of dTV(Tx′ , Ty′), and using the fact that A1 and A2 form a partition,

dTV(Tx′ , Ty′) ≥ Tx′(A1)− Ty′(A1) = 1− Tx′(A2)− Ty′(A1) > 1− 3

8
− 3

8
=

1

4
.

At this juncture, the proofs of Lemmas 14 and 15 will differ due to the different isoperimetric
inequalities discussed previously.

When µ > 0 We first discuss Case 2 in the context of Lemma 14. From the assumption of the
lemma, this implies by contraposition that ∥x′−y′∥∇2ϕ(y′) > ∆ for ∆ ≤ 1

2α . LetA′
3 = K\A′

1\A′
2.

Note that {A′
1, A

′
2, A

′
3} forms a partition of K. Since f is µ-relatively convex with respect to ϕ,

which is self-concordant with parameter α, Proposition 17 then gives

Π(A′
3) ≥ Cα ·

√
µ · dϕ(A′

2, A
′
1) ·min

{
Π(A′

1),Π(A
′
2)
}
.
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From Proposition 18, if ∥x′ − y′∥∇2ϕ(y′) > ∆ for ∆ ≤ 1
2α , dϕ(y′, x′) > ∆ − α · ∆2

2 . Since
x′ ∈ A′

1, y
′ ∈ A′

2 are arbitrary, this holds for all pairs of (x′, y′) ∈ A′
1 ×A′

2, and hence

dϕ(A
′
2, A

′
1) = inf

x′∈A′
1,y

′∈A′
2

dϕ(y
′, x′) > ∆− α · ∆

2

2
≥ ∆

2

where the final inequality uses the fact that t− t2

2 ≥
t
2 for t ∈ [0, 0.5] with t = α ·∆. Substituting

the above two inequalities in eq. (9), we get the lower bound∫
A1

Tx(A2)π(x)dx ≥ Cα ·
√
µ ·∆ · 3

32
·min{Π(A′

1),Π(A
′
2)}

≥ Cα ·
√
µ ·∆ · 3

64
·min{Π(A1),Π(A2)} .

where the final inequality uses the assumption of the case that Π(A′
i) >

Π(Ai)
2 for i ∈ {1, 2}.

When µ = 0 Next, we discuss Case 2 in the context of Lemma 15. From Proposition 19,

Π(K \A′
1 \A′

2) ≥ CR(A′
2, A

′
1;K) ·Π(A′

1) ·Π(A′
2) .

From Proposition 20, CR(y′, x′;K) ≥
∥y′−x′∥∇2ϕ(y′)√

ν
. Since x′ ∈ A′

1, y
′ ∈ A′

2 are arbitrary, this
holds for all pairs of (x′, y′) ∈ A′

1 ×A′
2, and hence

CR(A′
2, A

′
1;K) = inf

y′∈A′
2,x

′∈A′
1

CR(y′, x′;K) ≥ inf
y′∈A′

2,x
′∈A′

1

∥y′ − x′∥∇2ϕ(y′)√
ν

≥ ∆√
ν
.

Substituting the above two inequalities in eq. (9), we get the lower bound∫
A1

Tx(A2)π(x)dx ≥
3

16
· ∆√

ν
·Π(A′

2) ·Π(A′
1)

≥ 3

64
· ∆√

ν
·Π(A2) ·Π(A1)

≥ 3

128
· ∆√

ν
·min {Π(A1),Π(A2)}

where the second inequality uses the assumption of the case that Π(A′
i) >

Π(Ai)
2 for i ∈ {1, 2}, and

the final inequality uses the simple fact that t(1− t) ≥ 0.5 ·min{t, (1− t)} when t ∈ [0, 1].

We collate the inequalities from Case 1 and 2 to get the following inequalities

when µ > 0 as in Lemma 14∫
A1

Tx(A2)π(x)dx ≥ min

{
3

16
,
3

64
· Cα ·

√
µ ·∆

}
·min{Π(A1),Π(A2)} ,

when µ = 0 as in Lemma 15∫
A1

Tx(A2)π(x)dx ≥ min

{
3

16
,

3

128
· ∆√

ν

}
·min{Π(A1),Π(A2)} ,

which concludes the proofs.
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D.3.2. PROOF OF LEMMA 16

In this subsection, we give the proof of both statements of the lemma. Specifically,

Part 1 provides the proof for the first statement about dTV(Px,Py), and

Part 2 provides the proof for the second statement about dTV(Tx,Px).

Before giving the proofs, we state some key properties of ϕ due to its self-concordance.

Proposition 21 (Nesterov (2018, §5.1.4)) Let ϕ : K → R ∪ {∞} be a self-concordant function
with parameter α.

1. For any x, y ∈ int(K) such that ∥x− y∥∇2ϕ(y) <
1
α ,

(1− α · ∥x− y∥∇2ϕ(y))
2 · ∇2ϕ(y) ⪯ ∇2ϕ(x) ⪯ 1

(1− α · ∥x− y∥∇2ϕ(y))
2
· ∇2ϕ(y) .

2. For any x, y ∈ int(K) such that ∥x− y∥∇2ϕ(y) < 1/α, the matrix

Gy =

∫ 1

0
∇2ϕ(y + τ(x− y))dτ

satisfies

Gy ⪯
1

1− α · ∥x− y∥∇2ϕ(y)
· ∇2ϕ(y) .

3. ϕ∗ is also a self-concordant function with parameter α.

Proof [Part 1.] By definition of Px, Px = (∇ϕ∗)#P̃x, where P̃x = N (∇ϕ(x) − h · ∇f(x), 2h ·
∇2ϕ(x)). Starting with Pinsker’s inequality, we have

dTV(Px,Py) ≤
√

1

2
dKL(Px,Py)

=

√
1

2
dKL((∇ϕ∗)#P̃x, (∇ϕ∗)#P̃y)

=

√
1

2
dKL(P̃x, P̃y) .

Since ϕ is of Legendre type,∇ϕ∗ is a bijective and differentiable map. This allows us to instantiate
Vempala and Wibisono (2019, Lemma 15) to get the final equality.

To further work with dKL(P̃x, P̃y), we use the identity

dKL(N (m1,Σ1),N (m2,Σ2)) =
1

2

(
trace(Σ−1

2 Σ1 − I) + log
detΣ2

detΣ1
+ ∥m2 −m1∥2Σ−1

2

)
.

In our case,

Σ1 = 2h∇2ϕ(x) , Σ2 = 2h∇2ϕ(y) , m1 = ∇ϕ(x)− h∇f(x) , m2 = ∇ϕ(y)− h∇f(y) .
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This yields a closed form expression dKL(P̃x, P̃y) = 1
2

(
TP1 + TP2

)
where

TP1 = trace(∇2ϕ(y)−1∇2ϕ(x)− I)− log det∇2ϕ(y)−1∇2ϕ(x) ,

TP2 =
1

2h
∥(∇ϕ(y)−∇ϕ(x))− h(∇f(y)−∇f(x))∥2∇2ϕ(y)−1 .

The rest of the proof is dedicated to showing that

TP1 ≤
h · d
20

; TP2 ≤
1

80
+

9

2
· h · β ,

under assumptions made in the statement of the lemma.

For convenience, we denote ∥x− y∥∇2ϕ(y) by ry. From the statement of the first part of the lemma,

ry ≤
√
h

10·ᾱ ≤
√
h

10·α , since ᾱ = max{1, α}.

Bounding TP1 Owing to the cyclic property of trace and the product property of determinants, we
have

trace(∇2ϕ(y)−1∇2ϕ(x)) = trace(∇2ϕ(y)−
1/2∇2ϕ(x)∇2ϕ(y)−

1/2)

det∇2ϕ(y)−1∇2ϕ(x) = det∇2ϕ(y)−
1/2∇2ϕ(x)∇2ϕ(y)−

1/2.

Let M = ∇2ϕ(y)−1/2∇2ϕ(x)∇2ϕ(y)−1/2 for convenience, and let {λi(M)}di=1 be its eigenvalues.

TP1 = trace(M − I)− log detM =
d∑
i=1

{λi(M)− 1− log λi(M)} .

Lemma 22 states that λi(M)− 1− log λi(M) ≤ (λi(M)−1)2

λi(M) . Therefore, we have the upper bound

TP1 ≤
d∑
i=1

(λi(M)− 1)2

λi(M)
.

From Proposition 21(1), each λi(M) is bounded as

λi(M) ∈
[

1

(1− α · ry)2
, (1− α · ry)2

]
.

The function t 7→ (t−1)2

t is strictly convex for t > 0. This is because its second derivative is t 7→ 1
t3

.

This implies that when t is restricted to a closed interval [a, b], the maximum of (t−1)2

t is attained at
the end points.

max
t∈[a,b]

(t− 1)2

t
= max

{
(a− 1)2

a
,
(b− 1)2

b

}
.

When b = 1
a , the maximum on the right hand side is (a−1)2

a . We use this fact with bounds on
t = λi(M), and thus have for all i ∈ [d] that

(λi(M)− 1)2

λi(M)
≤ ((1− α · ry)2 − 1)2

(1− α · ry)2
=
α2 · r2y · (2− α · ry)2

(1− α · ry)2
≤

4 · α2 · r2y
(1− α · ry)2

.

29



SRINIVASAN WIBISONO WILSON

and consequently,

TP1 ≤ d ·
4 · α2 · r2y

(1− α · ry)2
.

The function t 7→ 4t2

(1−t)2 is an increasing function since it is a product of two increasing functions

t 7→ 4t2 and t 7→ 1
(1−t)2 . As stated earlier, ry ≤

√
h

10·α , which implies

TP1 ≤ d ·
4 · h

100

(1−
√
h

10 )
2
≤ h · d

20
.

The final inequality uses the fact that h ≤ 1 which implies
(
1−

√
h

10

)−2
≤ 100

81 ≤
5
4 .

Bounding TP2 Using the fact that ∥a+ b∥2M ≤ 2∥a∥2M + 2∥b∥2M successively,

TP2 =
1

2h
∥(∇ϕ(y)−∇ϕ(x))− h(∇f(y)−∇f(x))∥2∇2ϕ(y)−1

≤ 1

2h

(
2 · ∥∇ϕ(y)−∇ϕ(x)∥2∇2ϕ(y)−1 + 2h2 · ∥∇f(y)−∇f(x)∥2∇2ϕ(y)−1

)
≤ 1

h
· ∥∇ϕ(y)−∇ϕ(x)∥2∇2ϕ(y)−1 + 2h · ∥∇f(y)∥2∇2ϕ(y)−1 + 2h · ∥∇f(x)∥2∇2ϕ(y)−1 .

Note that

∇ϕ(x)−∇ϕ(y) =
∫ 1

0

d

dτ
∇ϕ(y+ τ(x−y))dτ =

∫ 1

0
∇2ϕ(y+ τ(x−y))(x−y)dτ = Gy(x−y).

From Proposition 21(2), and using the fact that ry < 1/α, we have Gy ⪯ 1
(1−α·ry) · ∇

2ϕ(y). By
virtue of ϕ being of Legendre type, Gy ≻ 0. As a result,

G−1
y ⪰ (1− α · ry) · ∇2ϕ(y)−1 ⇔ Gy ⪯

1

1− α · ry
· ∇2ϕ(y) , (10)

where the equivalence is due to the Loewner ordering. Let v = G
1/2
y (x− y).

∥∇ϕ(x)−∇ϕ(y)∥2∇2ϕ(y)−1 = ∥Gy(x− y)∥2∇2ϕ(y)−1

= ⟨v,G1/2
y ∇2ϕ(y)−1G

1/2
y v⟩

≤ ⟨v, v⟩
1− α · ry

=
⟨x− y,Gy(x− y)⟩

1− α · ry

≤
r2y

(1− α · ry)2
.

The inequalities above are due to eq. (10). Next, from Proposition 21(1), we have ∇2ϕ(x) ⪰
1

(1−α·ry)2 · ∇
2ϕ(y), and using the fact that ϕ is strictly convex yields

∥∇f(x)∥2∇2ϕ(y)−1 ≤
1

(1− α · ry)2
· ∥∇f(x)∥2∇2ϕ(x)−1 .
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This gives a bound for TP2 in terms of ry as

TP2 ≤
r2y

h · (1− α · ry)2
+ 2h · ∥∇f(y)∥2∇2ϕ(y)−1 +

2h · ∥∇f(x)∥2∇2ϕ(x)−1

(1− α · ry)2

≤
r2y

h · (1− α · ry)2
+ 2h · β2 + 2h · β2

(1− α · ry)2
,

where in the final inequality, we have used the fact that f is a β-relatively Lipschitz with respect to
ϕ. Finally, since α · ry ≤

√
h

10 ≤
1
10 , (1−α · ry)−2 ≤ 5

4 as noted earlier. This gives the upper bound

TP2 ≤
5

4
·
r2y
h

+
9

2
· h · β2 .

From the statement of the lemma, ry ≤
√
h

10·max{1,α} which also implies that ry ≤
√
h

10 . Finally,
substituting this bound over ry, we get

TP2 ≤
5

4
· 1
h
· h

100
+

9

2
· h · β ≤ 1

80
+

9

2
· h · β2 .

Using the bounds derived for TP1 and TP2 , we can complete the proof.

dKL(P̃x, P̃y) ≤
1

2

(
h · d
20

+
1

80
+

9

2
· h · β2

)
.

Finally, applying Pinsker’s inequality as stated in the beginning of the proof yields

dTV(Px,Py) ≤
1

2

√
h · d
20

+
1

80
+

9

2
· h · β2 .

Proof [Part 2.]

For ε ∈ (0, 1), define the following quantities.

Nε = 1 +

√
2 log

(
8

ε

)
+ 2 log

(
8

ε

)
; Iε =

√
2 log

(
8

ε

)
. (11)

The explicit forms of the C1(ε), . . . , C4(ε) in eq. (7) are given below.

C1(ε) =
(( ε

24

)2/3 1

6 · Nε

)3

, C2(ε) =
ε

16
· 1

6 · Nε

C3(ε) =
(( ε

72

)2
· 1

6
√
2 · Iε

)2/3

, C4(ε) =
ε

16
· 1

6
√
2 · Iε

 (12)

Recall that the transition kernel has an atom i.e., Tx({x}) ̸= 0. The explicit form of this is given by

Tx({x}) = 1−
∫
z∈K

αP(z;x)px(z)dz = 1−
∫
z∈K

min

{
1,
π(z)pz(x)

π(x)px(z)

}
px(z)dz .
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Using this, we have the expression for dTV(Tx,Px) as (c.f. Dwivedi et al. (2018, Eq. 46))

dTV(Tx,Px) = 1− Ez∼Px

[
min

{
1,
π(z)pz(x)

π(x)px(z)

}]
.

Our goal is to bound this quantity from above, which equivalently implies bounding the expectation
on the right hand side from below. This can be achieved using Markov’s inequality; for any t > 0,

Ez∼Px

[
min

{
1,
π(z)pz(x)

π(x)px(z)

}]
≥ t Pz∼Px

[
min

{
1,
π(z)pz(x)

π(x)px(z)

}
≥ t
]
.

If t ≤ 1, then

Pz∼Px

[
min

{
1,
π(z)pz(x)

π(x)px(z)

}
≥ t
]
= Pz∼Px

[
π(z)pz(x)

π(x)px(z)
≥ t
]
.

Due to eq. (2), we can write the explicit expression for this ratio

π(z) · pz(x)
π(x) · px(z)

= exp

(
f(x)− f(z) + 3

2

{
log det∇2ϕ(x)− log det∇2ϕ(z)

}
+

1

4h
∥∇ϕ(z)−∇ϕ(x) + h · ∇f(x)∥2∇2ϕ(x)−1

− 1

4h
∥∇ϕ(x)−∇ϕ(z) + h · ∇f(z)∥2∇2ϕ(z)−1

)
.

Concisely, π(z)·pz(x)π(x)·px(z) = exp(A(x, z)), where A(x, z) = TA1 + TA2 + TA3 + TA4 + TA5 and each of
these terms are

TA1 :=
∥∇ϕ(z)−∇ϕ(x)∥2∇2ϕ(x)−1

4h
−
∥∇ϕ(x)−∇ϕ(z)∥2∇2ϕ(z)−1

4h
(13a)

TA2 :=
3

2
log det∇2ϕ(z)−1∇2ϕ(x) (13b)

TA3 :=
1

2

(
f(x)− f(z)− ⟨∇f(z),∇ϕ(x)−∇ϕ(z)⟩∇2ϕ(z)−1

)
(13c)

TA4 :=
1

2

(
f(x)− f(z)− ⟨∇f(x),∇ϕ(x)−∇ϕ(z)⟩∇2ϕ(x)−1

)
(13d)

TA5 :=
h2

4h

(
∥∇f(x)∥2∇2ϕ(x)−1 − ∥∇f(z)∥2∇2ϕ(z)−1

)
. (13e)

The self-concordant nature of ϕ enables using Proposition 21 to control some of these quantities
above, but only when∇ϕ(x) and∇ϕ(z) are close in the local norm. Therefore, we condition on an
event E which implies that ∥∇ϕ(x)−∇ϕ(z)∥∇2ϕ(x)−1 ≤ 3

10·α . To be specific,

Pz∼Px

[
π(z)pz(x)

π(x)px(z)
≥ t
]
≥ Pz∼Px

[
π(z)pz(x)

π(x)px(z)
≥ t ∧ E

]
= Pz∼Px

[
π(z)pz(x)

π(x)px(z)
≥ t

∣∣∣∣ E] · Pz∼Px(E) .

The remainder of the proof consists of three parts.

32



FAST CONSTRAINED SAMPLING WITH METROPOLIS-ADJUSTED MLA

• In Part D.3.2.1, we identify an event E satisfying our requirements, and show that it occurs
with high probability. We show that for the choice of step size h assumed, E also implies that
∥∇ϕ(x)−∇ϕ(z)∥∇2ϕ(x)−1 ≤ 3

10·α .

• Next, in Part D.3.2.2, we condition on event E and give lower bounds for each of the TAi
quantities by leveraging the implication in the previous part.

• Finally, in Part D.3.2.3, we show that for the choice of h in the statement of the lemma there
exists t ≤ 1 such that the conditional probability is 1, thus reducing the lower bound to
t · Ez∼Px [E].

D.3.2.1. Identifying an event E Since Px = (∇ϕ∗)#P̃x,

z ∼ Px ⇔ ∇ϕ(z) ∼ P̃x = N (∇ϕ(x)− h · ∇f(x), 2h∇2ϕ(x)) .

We use this to show that ∥∇ϕ(x) − ∇ϕ(z)∥∇2ϕ(x)−1 concentrates well, since given ξ ∼ N (0, I),
∇ϕ(z) is distributionally equivalent to∇ϕ(x)− h · ∇f(x) +

√
2h∇2ϕ(x)1/2ξ when z ∼ Px.

We begin by expanding the squared norm as

∥∇ϕ(z)−∇ϕ(x)∥2∇2ϕ(x)−1

= h2 · ⟨∇f(x),∇2ϕ(x)−1∇f(x)⟩+ 2h · ⟨ξ, ξ⟩+ 2
√
2h
√
h · ⟨ξ,∇2ϕ(x)−

1/2∇f(x)⟩.

Consider the following probability

Pz∼Px(∥∇ϕ(x)−∇ϕ(z)∥2∇2ϕ(x)−1 > h2 · ∥∇f(x)∥2∇2ϕ(x)−1 + 2h · d · Nε + 2
√
2h
√
h · Iε)

= Pξ∼N (0,Id)(2h · ∥ξ∥
2 + 2

√
2h
√
h · ⟨ξ,∇2ϕ(x)−

1/2∇f(x)⟩ > 2h · d · Nε + 2
√
2h
√
h · β · Iε)

≤ Pξ∼N (0,Id)(∥ξ∥
2 > d · Nε) + Pξ∼N (0,Id)(⟨ξ,∇

2ϕ(x)−
1/2∇f(x)⟩ > β · Iε)

where the final inequality uses the fact that for random variables a, b,

(a ≤ a) ∧ (b ≤ b)⇒ a+ b ≤ a+ b

P(a+ b > a+ b) ≤ P(a > a ∨ b > b) ≤ P(a > a) + P(b > b) .

Through χ2 concentration guarantees (Laurent and Massart, 2000, Lem. 1), we get

P(∥ξ∥2 > d · Nε) ≤
ε

8
,

where Nε was previously defined in eq. (11). Also, since ξ is Gaussian, ⟨ξ,∇2ϕ(x)−1/2∇f(x)⟩ is a
mean zero, sub-Gaussian random variable with variance parameter ∥∇f(x)∥2∇2ϕ(x)−1 . This implies
that for any x ∈ K,

Pξ∼N (0,Id)(⟨ξ,∇
2ϕ(x)−

1/2∇f(x)⟩ > t) ≤ exp

(
− t2

2∥∇f(x)∥2∇2ϕ(x)−1

)
≤ exp

(
− t2

2β2

)
where the final inequality is due to the fact that f is β-relatively Lipschitz with respect to ϕ. There-
fore,

Pξ∼N (0,Id)(⟨ξ,∇
2ϕ(x)−

1/2∇f(x)⟩ > β · Iε) ≤
ε

8
,
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where Iε was previously defined in eq. (11). Therefore, with probability at least 1− ε
4 ,

∥∇ϕ(x)−∇ϕ(z)∥2∇2ϕ(x)−1 ≤ h2 · ∥∇f(x)∥2∇2ϕ(x)−1 + 2h · d · Nε + 2
√
2h
√
h · β · Iε

≤ h2 · β2 + 2h · d · Nε + 2
√
2h
√
h · β · Iε .

We hence pick the event E to be

E
def
=

{
∥∇ϕ(x)−∇ϕ(z)∥∇2ϕ(x)−1 ≤

√
h2 · β2 + 2h · d · Nε + 2

√
2h
√
h · β · Iε

}
.

Using the simple algebraic fact that
√
a+ b+ c ≤

√
a+
√
b+
√
c, and from the choice of h in the

lemma it can be verified that

h ≤ 1

10 · β · α
; h ≤ 1

200 · d · Nε · α2
; h ≤ 1

50 · I2/3ε · α4/3 · β2/3
,

and we are assured that ∥∇ϕ(x)−∇ϕ(z)∥∇2ϕ(x)−1 ≤ 3
10·α as required.

D.3.2.2. Lower bound on the TAi quantities In this part, we condition on the event E which im-
plies that ∥∇ϕ(z)−∇ϕ(x)∥∇2ϕ(x)−1 ≤ 3

10·α to obtain lower bounds onA(x, z) defined previously.
We do so by giving lower bounds for each of the TAi quantities individually defined in eq. (13).

In this part of the proof, we will make use of the identity

∇2ϕ∗(∇ϕ(x)) = ∇2ϕ(x)−1 ∀ x ∈ K . (14)

This can be derived by differentiating the identity∇ϕ∗(∇ϕ(x)) = x by the invertibility of∇ϕ(x).

TA1 : We use the shorthand notation vx,z = ∇ϕ(x)−∇ϕ(z) for convenience.

TA1 =
1

4h

(
∥vx,z∥2∇2ϕ(x)−1 − ∥vx,z∥2∇2ϕ(z)−1

)
(i)
=

1

4h

(
∥vx,z∥2∇2ϕ∗(∇ϕ(x)) − ∥vx,z∥

2
∇2ϕ∗(∇ϕ(z))

)
(ii)

≥ 1

4h

(
∥vx,z∥2∇2ϕ∗(∇ϕ(x)) −

∥vx,z∥2∇2ϕ∗(∇ϕ(x))

(1− α · ∥vx,z∥∇2ϕ∗(∇ϕ(x)))
2

)

=
1

h · α2
·
(α · ∥vx,z∥∇2ϕ∗(∇ϕ(x)))

2

4
·

(
1− 1

(1− α · ∥vx,z∥∇2ϕ∗(∇ϕ(x)))
2

)
(iii)

≥ −3α

2h
· ∥vx,z∥3∇2ϕ∗(∇ϕ(x)) .

Step (i) uses eq. (14). Step (ii) uses the fact that ϕ∗ is self-concordant with parameter
α from Proposition 21(3), and the result of Proposition 21(1) to change the metric from
∇2ϕ∗(∇ϕ(z)) to ∇2ϕ∗(∇ϕ(x)) since ∥vx,z∥∇2ϕ∗(∇ϕ(x)) < 1/α. Step (iii) uses an algebraic
lemma Lemma 23.
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TA2 : We can use eq. (14) and the product property of determinants to rewrite TA2 as follows.

TA2 =
3

2
log det∇2ϕ(z)−1∇2ϕ(x)

=
3

2
log det∇2ϕ∗(∇ϕ(x))−1/2 ∇2ϕ∗(∇ϕ(z))∇2ϕ∗(∇ϕ(x))−1/2

=
3

2

d∑
i=1

log λi(M
∗)

where M∗ = ∇2ϕ∗(∇ϕ(x))−1/2∇2ϕ∗(∇ϕ(z))∇2ϕ∗(∇ϕ(x))−1/2, and {λi(M∗)} is the se-
quence of its eigenvalues. These eigenvalues lie in an interval due to ϕ∗ being self-concordant,
and the associated Hessian ordering as given in Proposition 21(1,3) courtesy of ∥∇ϕ(x) −
∇ϕ(z)∥∇2ϕ∗(∇ϕ(x)) < 1/α as guaranteed by E. This yields

λi(M
∗) ≥ (1− α · ∥∇ϕ(x)−∇ϕ(z)∥∇2ϕ∗(∇ϕ(x)))

2 ,

and we use this to obtain the lower bound

TA2 ≥ 3d · log(1− α · ∥∇ϕ(x)−∇ϕ(z)∥∇2ϕ∗(∇ϕ(x)))

≥ −9d

2
· α · ∥∇ϕ(x)−∇ϕ(z)∥∇2ϕ∗(∇ϕ(x)) .

The final inequality is due to Lemma 24.

TA3 + TA4 : Let ψ = f ◦ ∇ϕ∗ : Rd → R. Then,

Dψ(x̄; z̄) = ψ(x̄)− ψ(z̄)− ⟨∇ψ(z̄), x̄− z̄⟩
= ψ(x̄)− ψ(z̄)− ⟨∇2ϕ∗(z̄)∇f(∇ϕ∗(z̄)), x̄− z̄⟩ .

The Bregman commutator ζψ : Rd × Rd → R of ψ (Wibisono et al., 2022) is defined as

ζψ(x̄, z̄) =
1

2
(Dψ(x̄; z̄)−Dψ(z̄; x̄)) .

Substituting x̄ = ∇ϕ(x) and z̄ = ∇ϕ(z) gives

Dψ(∇ϕ(x);∇ϕ(z)) = f(x)− f(z)− ⟨∇f(z),∇ϕ(x)−∇ϕ(z)⟩∇2ϕ(z)−1 = TA3

Dψ(∇ϕ(z);∇ϕ(x)) = f(z)− f(x)− ⟨∇f(x),∇ϕ(z)−∇ϕ(x)⟩∇2ϕ(x)−1 = −TA4 .

Consequently, the sum of TA3 and TA4 is

TA3 + TA4 =
1

2
(Dψ(∇ϕ(x);∇ϕ(z))−Dψ(∇ϕ(z);∇ϕ(x))) = ζψ(∇ϕ(x),∇ϕ(z)) .

For convenience, we use the shorthand notation x̄ and z̄ for ∇ϕ(x) and ∇ϕ(z) respectively.
Define pt = z̄ + t(x̄− z̄) for t ∈ [0, 1]. We work with the following identity from Wibisono
et al. (2022, Eq. 15)

ζψ(x̄, z̄) =
1

2

∫ 1

0
(1− 2t)∇2ψ(pt)[x̄− z̄, x̄− z̄]dt .
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The Hessian of ψ is

∇2ψ(pt) = ∇3ϕ∗(pt)[∇f(∇ϕ∗(pt))] +∇2ϕ∗(pt)∇2f(∇ϕ∗(pt))∇2ϕ∗(pt)

= ∇3ϕ∗(pt)[∇f(∇ϕ∗(pt))] +∇2ϕ(∇ϕ∗(pt))−1∇2f(∇ϕ∗(pt))∇2ϕ(∇ϕ∗(pt))−1

Consequently,

|ζψ(x̄, z̄)| ≤
1

2

∫ 1

0
|1− 2t| · |∇3ϕ∗(pt)[x̄− z̄, x̄− z̄,∇f(∇ϕ∗(pt))]|dt︸ ︷︷ ︸

I1

+
1

2

∫ 1

0
|1− 2t| · |⟨x̄− z̄,∇2ϕ(∇ϕ∗(pt))−1∇2f(∇ϕ∗(pt))∇2ϕ(∇ϕ∗(pt))−1[x̄− z̄]⟩|dt︸ ︷︷ ︸

I2

.

We can bound I1 and I2 using properties of ϕ, f and the fact that x̄ = ∇ϕ(x), z̄ = ∇ϕ(z).
From Proposition 21(3), we know that ϕ∗ is self-concordant with parameter α. This implies

I1 ≤
∫ 1

0
|1− 2t|

(
2α · ∥x̄− z̄∥2∇2ϕ∗(pt)

· ∥∇f(∇ϕ∗(pt))∥∇2ϕ∗(pt)

)
dt

≤
∫ 1

0
|1− 2t|

(
2α · ∥x̄− z̄∥2∇2ϕ∗(pt)

· β
)
dt

The last inequality uses the fact that f is β-relatively Lipschitz with respect to ϕ and by
writing∇2ϕ∗(pt) = ∇2ϕ(∇ϕ∗(pt))−1 from eq. (14).

Since f is λ-relatively smooth with respect to ϕ, we have for any w ∈ K,

∇2f(w) ⪯ λ · ∇2ϕ(w)⇔ ∇2ϕ(w)−
1/2∇2f(w)∇2ϕ(w)−

1/2 ⪯ λ · I .

With this, we can bound I2 as

I2 ≤
∫ 1

0
|1− 2t| · λ · |⟨∇2ϕ(∇ϕ∗(pt))−

1/2(x̄− z̄),∇2ϕ(∇ϕ∗(pt))−
1/2(x̄− z̄)⟩|dt

=

∫ 1

0
|1− 2t| · λ · ∥x̄− z̄∥2∇2ϕ∗(pt)

dt .

Collecting the bounds,

|ζψ(x̄, z̄)| ≤
(
α · β +

λ

2

)
·
∫ 1

0
|1− 2t| · ∥x̄− z̄∥2∇2ϕ∗(pt)

dt

(i)

≤
(
α · β +

λ

2

)
·
∫ 1

0
|1− 2t| ·

∥x̄− z̄∥2∇2ϕ∗(x̄)

(1− α · (1− t)∥x̄− z̄∥∇2ϕ∗(x̄))
2
dt

(ii)

≤
(
α · β +

λ

2

)
· ∥x̄− z̄∥2∇2ϕ∗(x̄) ·

∫ 1

0

100 · |1− 2t|
(7 + 3t)2

dt

≤
(
α · β +

λ

2

)
· ∥∇ϕ(x)−∇ϕ(z)∥2∇2ϕ∗(∇ϕ(x)) .
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Recall that ∥x̄− z̄∥∇2ϕ∗(x̄) < 1/α and ∥pt − x̄∥∇2ϕ∗(x̄) = (1− t)∥z̄ − z̄∥∇2ϕ∗(x̄) < 1/α when
t ∈ [0, 1]. In Step (i), we use this fact to use Proposition 21(1) to get

∇2ϕ∗(pt) ⪯
1

(1− α · (1− t)∥x̄− z̄∥∇2ϕ∗(x̄))
2
· ∇2ϕ∗(x̄)

Step (ii) uses the fact that ∥x̄− z̄∥∇2ϕ∗(x̄) ≤ 3/10·α and that (1−x)−2 is increasing for x < 1.
The final inequality is an upper bound on the integral which can be computed as a closed form
expression with value ≈ 0.73. This gives us the final bound

|ζψ(∇ϕ(x),∇ϕ(z))| ≤ γ · ∥∇ϕ(x)−∇ϕ(z)∥2∇2ϕ(x)−1 ,

where γ = λ
2 + α · β, which implies

TA3 + TA4 ≥ −γ · ∥∇ϕ(x)−∇ϕ(z)∥2∇2ϕ(x)−1 .

TA5 : Since f is β-relatively Lipschitz with respect to ϕ, this can be simply bounded from below as

TA5 ≥ −
h · β2

4
.

For convenience, we will use the shorthand notation ℓx,z to denote ∥∇ϕ(x) − ∇ϕ(z)∥∇2ϕ(x)−1 .
Collating these lower bounds, we get the net lower bound on A(x, z) as

A(x, z) ≥ −3ᾱ

2h
· ℓ3x,z −

9d · ᾱ
2
· ℓx,z − γ · ℓ2x,z −

h · β2

4
.

D.3.2.3. Choosing t in the conditional probability quantity Under the event E, we can substi-
tute the upper bound on ℓx,z in the lower bound for A(x, z).
This gives us

A(x, z) ≥ −3α

2h
· (h2 · β2 + 2h · d · Nε + 2

√
2h
√
h · β · Iε)

3/2

− 9d · α
2
· (h2 · β2 + 2h · d · Nε + 2

√
2h
√
h · β · Iε)

1/2

− γ · (h2 · β2 + 2h · d · Nε + 2
√
2h
√
h · β · Iε)−

h · β2

4

= −3α ·
√
h

2
(h · β2 + 2d · Nε + 2

√
2h · β · Iε)

3/2

− 9
√
h · α
2

(h · d2 · β2 + 2d3 · Nε + 2
√
2h · β · Iε)

1/2

− γ · h · (h · β2 + 2d · Nε + 2
√
2
√
h · β · Iε)−

h · β2

4
.

Define the following constants.

C(1)
ε =

( ε
24

)2/3
; C(2)

ε =
( ε
72

)2
; C(3)

ε =
ε

16

C(i,1)
ε =

C
(i)
ε

3
; C(i,2)

ε =
C

(i)
ε

6 · Nε
; C(i,3)

ε =
C

(i)
ε

6
√
2 · Iε

∀ i ∈ [3] .
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When ε < 1, note that all of these constants are strictly less than 1, since Nε ≥ 1 and Iε ≥ 1. With
this we define some limits on h.

C(1)
max(ε) = min

{(
C(1,1)
ε

)3/4
· 1

β3/2
· 1√

α
,
(
C(1,2)
ε

)3
· 1

α2
· 1
d3

,
(
C(1,3)
ε

)6/5
· 1

α4/5
· 1

β6/5

}
,

C(2)
max(ε) = min

{(
C(2,1)
ε

)1/2
· 1
d
· 1
α
· 1
β
,
(
C(2,2)
ε

)
· 1

α2
· 1
d3

,
(
C(2,3)
ε

)2/3
· 1

β2/3
· 1

α4/3

}
,

C(3)
max(ε) = min

{
(C(3,1)

ε )
1/2 · 1

β
· 1
√
γ
, (C(3,2)

ε ) · 1
d
· 1
γ
, (C(3,3)

ε ) · 1

β2/3
· 1

γ2/3

}
,

C(4)
max(ε) =

ε

4 · β2
.

When h ≤ min{C(1)
max(ε), C

(2)
max(ε), C

(3)
max(ε), C

(4)
max(ε)}, it can be verified that

3α ·
√
h

2
(h · β2 + 2d · Nε + 2

√
2h · β · Iε)

3/2 ≤ ε

16

9
√
h · α
2

(h · d2 · β2 + 2d3 · Nε + 2
√
2h · β · Iε)

1/2 ≤ ε

16

γ · h · (h · β2 + 2d · Nε + 2
√
2
√
h · β · Iε) ≤

ε

16
h · β2

4
≤ ε

16

and consequently,
A(x, z) ≥ −ε

4
.

It can be verified that when h ≤ bmax(ε; d, α, β, λ) as defined in eq. (7), with Ci(ε) defined in
eq. (12) that when h ≤ bmax(ε), h ≤ min

{
C

(1)
max(ε), C

(2)
max(ε), C

(3)
max(ε), C

(4)
max(ε)

}
. bmax(ε) is a

condensed version where we have used the facts

• β
√
γ ≥ β3/2√α,

• dγ ≥ dαβ,

• if γ ≥ β2, then β2/3γ2/3 ≥ β√γ ≥ β2, and when γ ≤ β2, then β2/3γ2/3 ≤ β√γ ≤ β2, and

• if α ≥ β, then α4/3β2/3 ≥ α4/5β6/5 ≥ β2, and when α ≤ β, then α4/3β2/3 ≤ α4/5β6/5 ≤ β2.

to reduce the cases.

This implies that when t = e−ε/4 which is less than 1,

Pz∼Px

[
π(z)pz(x)

π(x)px(z)
≥ t

∣∣∣∣ E] = 1 .

To conclude the proof, from part D.3.2.1, we have that Pz∼Pz(E) ≥ 1 − ε
4 . From part D.3.2.3,

setting t = e−ε/4 ensures that when conditioning on E, Pz∼Px [exp(A(x, z)) ≥ t | E] = 1. This
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finally results in

Ez∼Px

[
min

{
1,
π(z)pz(x)

π(x)px(z)

}]
≥ t Pz∼Px

[
π(z)pz(x)

π(x)px(z)
≥ t

∣∣∣∣ E] · Pz∼Px [E]

= exp(−ε/4) · (1− ε/4) ≥ (1− ε/4)2 ≥ 1− ε/2

and recalling the form of dTV(Tx,Px), we get the bound

dTV(Tx,Px) ≤
ε

2
.

D.4. Proofs of corollaries in Section 4

In this section, we provide the proofs for the corollaries in Section 4.

D.4.1. PROOFS OF COROLLARY 7

Proof We begin with the following fact, as stated in Nesterov (2018, Ex. 5.1.1(4)). Let P ∈ Rd×d
and P ⪰ 0, q ∈ Rd, r ∈ R. Then, x 7→ − log(r + q⊤x + x⊤Px) is a self-concordant function
with parameter 1. For Polytope(A, b), the log-barrier is the sum of m such functions where r = bi,
q = −ai and P = 0 for i ∈ [m]. For Ellipsoids({(ci,Mi)}mi=1), the log-barrier is the sum of m such
functions as well, where r = 1 − ∥ci∥2Mi

, q = 2Mici, P = Mi for i ∈ [m]. By Nesterov (2018,
Thm. 5.1.1), this is a self-concordant function with parameter 1 as well.

For uniform sampling, since f is a constant function, ∇f(x) = 0 for x ∈ int(K). Hence, µ = λ =
β = 0 in assumptions (A2) and (A3). For assumption (A4), Lemmas 10 and 11 states that ν = m
for K = Polytope(A, b), and ν = 2m for K = Ellipsoids({(ci,Mi)}mi=1). Substituting these values
for the parameters in the assumptions in the mixing time bound for the (weakly) convex case in
Theorem 6 recovers the statements of the lemmas.

D.4.2. PROOF OF COROLLARY 8

Proof The simplexK is a special polytope, and since ϕ is the log-barrier ofK, the self-concordance
parameter is 1, as previously discussed in Section D.4.1.

We have the following explicit expression for the gradient of f and Hessians of ϕ and f .

∇f(x) =
[
−a1
x1

+
ad+1

1− 1⊤x
, · · · , ad

xd
+

ad+1

1− 1⊤x

]
∇2f(x) = diag

(
a1
x21

, · · · , ad
x2d

)
+

ad+1

(1− 1⊤x)
21d×d ,

∇2ϕ(x) = diag

(
1

x21
, · · · , , 1

x2d

)
+

1

(1− 1⊤x)
21d×d .
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The smallest λ such that λ · ∇2ϕ(x)−∇2f(x) ⪰ 0 is amax. The largest µ such that ∇2f(x)− µ ·
∇2ϕ(x) ⪰ 0 is amin. Consequently, f is amax-relatively smooth and amin-relatively convex with
respect to ϕ.

From the expressions above, for any v ∈ Rd,

⟨∇f(x), v⟩ = −
d∑
i=1

aivi
xi

+
ad+1

1− 1⊤x
·
d∑
i=1

vi , ⟨v,∇2ϕ(x)v⟩ =
d∑
i=1

v2i
x2i

+
1

(1− 1⊤x)2
·

(
d∑
i=1

vi

)2

.

From Lemma 25 with zi ← vi
xi

,wi ← vi, and c← 1
1−1⊤x

, we have the inequality for any x ∈ int(K)

⟨∇f(x), v⟩2 ≤ ∥a∥2 · ⟨v,∇2ϕ(x)v⟩ ⇔ ⟨∇f(x),∇2ϕ(x)−1∇f(x)⟩ ≤ ∥a∥2 ,

which shows that f is ∥a∥-relatively Lipschitz with respect to ϕ.

The constant γ = amax
2 + ∥a∥ is at most 3∥a∥

2 . Since ai > 0 for all i, we instantiate the µ > 0 case
of Theorem 6 to get the mixing time guarantee

O

(
1

amin
·max

{
d3, d · ∥a∥, ∥a∥2/3, ∥a∥3/2, ∥a∥2

}
· log

(√
M

δ

))
(15)

When ∥a∥ ≥ 1, ∥a∥2 dominates ∥a∥3/2 and ∥a∥2/3, thus recovering the statement of the lemma.

D.5. Proofs of other technical lemmas

D.5.1. PROOF OF LEMMA 11

Proof The log-barrier of this set is defined by

ϕ(x) = −
m∑
i=1

log(1− ∥x− ci∥2Mi
) .

The Hessian of ϕ is given by

∇2ϕ(x) =

m∑
i=1

2Mi(1− ∥x− ci∥2Mi
) + 4Mi(x− ci)(x− ci)⊤Mi

(1− ∥x− ci∥2Mi
)2

.

For any y ∈ Eϕx (
√
r),

∥y − x∥2∇2ϕ(x) ≤ r ⇔
m∑
i=1

2∥y − x∥2Mi
(1− ∥x− ci∥2Mi

) + 4⟨y − x, x− ci⟩2Mi

(1− ∥x− ci∥2Mi
)2

≤ r . (16)

Let Si be the ellipsoid defined by the pair (ci,Mi). To show that ϕ is a symmetric barrier over
K = Ellipsoids({(ci,Mi)}mi=1), we need to show that there exists r > 0, such that for all x ∈ int(K),

Eϕx (1) ⊆ K ∩ (2x−K) ⊆ Eϕx (r) . (17)
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We begin by giving an equivalent algebraic statement for y ∈ K∩(2x−K). Note thatK∩(2x−K) =⋂m
i=1 {Si ∩ (2x− Si)}.

For any i ∈ [m], let y ∈ Si ∩ (2x− Si) which is equivalent to y ∈ Si ∧ (2x− y) ∈ Si.

y ∈ Si ⇔ ∥y − ci∥2Mi
≤ 1

⇔ ∥y − x+ x− ci∥2Mi
≤ 1

⇔ ∥y − x∥2Mi
+ ∥x− ci∥2 + 2⟨y − x, x− ci⟩Mi ≤ 1

⇔ 2⟨y − x, x− ci⟩Mi ≤ 1− ∥x− ci∥2Mi
− ∥y − x∥2Mi

.

2x− y ∈ Si ⇔ ∥2x− y − ci∥2Mi
≤ 1

⇔ ∥x− ci + x− y∥2Mi
≤ 1

⇔ ∥x− ci∥2Mi
+ ∥y − x∥2Mi

+ 2⟨x− ci, x− y⟩Mi ≤ 1

⇔ −2⟨y − x, x− ci⟩Mi ≤ 1− ∥x− ci∥2Mi
− ∥y − x∥2Mi

.

Therefore, y ∈ Si ∩ (2x− Si) if and only if

2 |⟨y − x, x− ci⟩Mi | ≤ 1− ∥x− ci∥2Mi
− ∥y − x∥2Mi

.

Squaring both sides, and moving terms around we have that y ∈ K ∩ (2x−K) if and only if

2(1− ∥x− ci∥2Mi
)∥y − x∥2Mi

+ 4⟨y − x, x− ci⟩2Mi

(1− ∥x− ci∥2Mi
)2︸ ︷︷ ︸

ai

≤ 1 +
∥y − x∥4Mi

(1− ∥x− ci∥2Mi
)2︸ ︷︷ ︸

bi

∀ i ∈ [m] .

By the definition as stated in eq. (16), we have following equivalence

y ∈ Eϕx (1)⇒ y ∈ K ∩ (2x−K) ⇔
m∑
i=1

ai ≤ 1⇒ ai ≤ bi ∀ i ∈ [m]

Suppose there exists i ∈ [m] such that ai > bi, then ai > 1 since bi ≥ 1. By definition, ai ≥ 0 for all
i ∈ [m], and this in conjuction with the assumption implies that

∑m
i=1 ai > 1. By contraposition,

this is equivalent to stating that
∑m

i=1 ai ≤ 1 implies ai ≤ bi for all i ∈ [m]. This proves that
Eϕx (1) ⊆ K ∩ (2x−K) as y ∈ Eϕx (1) was chosen arbitrarily.

We now show the second statement in the containment chain (eq. (17)). If y ∈ Si ∩ (2x − Si) for
some i ∈ [m],

∥y − x∥2Mi
= ∥y − 2x+ ci + x− ci∥2Mi

= ∥2x− y − ci∥2Mi
+ ∥x− ci∥2Mi

− 2⟨2x− y − ci, x− ci⟩Mi

(a)

≤ 1 + ∥x− ci∥2Mi
− 2⟨x− ci + x− y, x− ci⟩Mi

= 1− ∥x− ci∥2Mi
+ 2⟨y − x, x− ci⟩Mi

(b)

≤ 1− ∥x− ci∥2Mi
+ 1− ∥x− ci∥2Mi

− ∥y − x∥2Mi

≤ 2− 2∥x− ci∥2Mi
− ∥y − x∥2Mi
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Step (a) uses the fact that y ∈ 2x − Si, and step (b) uses the equivalence for y ∈ Si shown above.
This concludes that if y ∈ K ∩ (2x−K), ∥y − x∥2Mi

≤ 1− ∥x∥2Mi
for all i ∈ [m].

We can use the above assertion to bound the bi quantities by 2. In summary, if y ∈ K ∩ (2x − K),
then ai ≤ bi ≤ 2 for all i ∈ [m]. Note that this implies

∑m
i=1 ai ≤ 2m, which is equivalent to

stating that if y ∈ K∩ (2x−K), then y ∈ Eϕx (
√
2m). Due to y being arbitrary, we have shown that

K ∩ (2x−K) ⊆ Eϕx (
√
2m), thus completing the proof.

Appendix E. Miscellaneous algebraic lemmas

Lemma 22 Let f : (0,∞)→ (0,∞) be defined as f(x) = x− 1− log(x). Then for all x > 0,

f(x) ≤ (x− 1)2

x
.

Proof We begin with an algebraic manipulation.

g(x) = f(x)− (x− 1)2

x

= x− 1− log(x)− (x− 1)2

x

=
x2 − x− (x− 1)2

x
− log(x)

=
x− 1

x
− log(x).

The function g(x) = x−1
x − log(x) has derivative g′(x) = (1−x)

x2
. The only solution to g′(x) = 0

for x > 0 is x = 1. Moreover, g′′(x) = − 2
x3

+ 1
x2

, and g′′(1) = −1 < 0. This implies that g(x)
attains its maximum at x = 1, and this maximum value is 1 − 1 − log(0) = 0. As a result of the
calculation above, for any x > 0, f(x)− (x−1)2

x ≤ max
x>0

g(x) = 0, which concludes the proof.

Lemma 23 Let t ∈ [0, 0.5]. Then,

t2

4

(
1− 1

(1− t)2

)
≥ −3

2
t3

Proof We begin with the quantity

t2

4

(
1− 1

(1− t)2

)
+

3

2
t3 =

t3(6t2 − 11t+ 4)

4(1− t)2
=
t3(3t− 4)(2t− 1)

4(1− t)2
.

When t ∈ [0, 0.5], t3, (1− t)2 ≥ 0, and (3t− 4), (2t− 1) ≤ 0. This implies that

t3(3t− 4)(2t− 1)

4(1− t)2
≥ 0⇔ t2

4

(
1− 1

(1− t)2

)
+

3

2
t3 ≥ 0 ,

which completes the proof.
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Lemma 24 Let t ∈ [0, 0.5]. Then,

log(1− t) ≥ −3

2
t

Proof Consider the function f(t) = log(1 − t) + 3
2 t. The second derivative of f is f ′′(t) =

− 1
(1−t)2 . Note that f ′′(t) < 0 for t ∈ [0, 0.5], which implies that f is strictly concave in [0, 0.5].

Consequently, the minimum of f restricted to [0, 0.5] is attained at either 0 or 0.5. Hence, for any
t ∈ [0, 0.5],

f(t) ≥ min{f(0), f(0.5)} = min{0, 0.75 + log(0.5)} = 0 .

Lemma 25 Let a ∈ Rd+1. Then, for any w, z ∈ Rd, c ∈ R,(
−

d∑
i=1

aizi + c · ad+1 ·
d∑
i=1

wi

)2

≤ ∥a∥2 ·

 d∑
i=1

z2i + c2 ·

{
d∑
i=1

wi

}2


Proof Construct two vectors of length d+ 1 as shown below.

A = [−a1, · · · ,−ad, ad+1] ; B =

[
z1, · · · , zd, c ·

d∑
i=1

wi

]
.

The LHS of the inequality in the statement is (A⊤B)2. Using the Cauchy-Schwarz inequality,

(A⊤B)2 ≤ ∥A∥2∥B∥2 = ∥a∥2 ·

 d∑
i=1

z2i + c2 ·

{
d∑
i=1

wi

}2


thus obtaining the statement of the lemma.
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