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Abstract
We show strong (and surprisingly simple) lower bounds for weakly learning intersections of half-
spaces in the improper setting. Strikingly little is known about this problem. For instance, it is
not even known if there is a polynomial-time algorithm for learning the intersection of only two
halfspaces. On the other hand, lower bounds based on well-established assumptions (such as ap-
proximating worst-case lattice problems or variants of Feige’s 3SAT hypothesis) are only known (or
are implied by existing results) for the intersection of super-logarithmically many halfspaces Kli-
vans and Sherstov (2009, 2006); Daniely and Shalev-Shwartz (2016). With intersections of fewer
halfspaces being only ruled out under less standard assumptions Daniely and Vardi (2021) (such as
the existence of local pseudo-random generators with large stretch). We significantly narrow this
gap by showing that even learning ω(log logN) halfspaces in dimension N takes super-polynomial
time under standard assumptions on worst-case lattice problems (namely that SVP and SIVP are
hard to approximate within polynomial factors). Further, we give unconditional hardness results
in the statistical query framework. Specifically, we show that for any k (even constant), learning
k halfspaces in dimension N requires accuracy N−Ω(k), or exponentially many queries – in par-
ticular ruling out SQ algorithms with polynomial accuracy for ω(1) halfspaces. To the best of our
knowledge this is the first unconditional hardness result for learning a super-constant number of
halfspaces.

Our lower bounds are obtained in a unified way via a novel connection we make between inter-
sections of halfspaces and the so-called parallel pancakes distribution Diakonikolas et al. (2017b);
Bubeck et al. (2019); Bruna et al. (2021) that has been at the heart of many lower bound construc-
tions in (robust) high-dimensional statistics in the past few years.
Keywords: intersections of halfspaces, weak learning, cryptographic hardness

1. Introduction

This work studies the computational complexity of weakly learning intersections of halfspaces in the
PAC model Valiant (1984). A halfspace hw : RN → {±1}, or linear threshold function (short LTF),
is a function x 7→ sign(⟨x,w⟩) for some unit vector w ∈ RN . A fundamental question is to what
extent we can predict the output of hw on a fresh example, when given random example-label-pairs
(x, hw(x)) (where x can follow an arbitrary distribution). This problem is very well-understood
and known to be solvable in time polynomial in the dimension and the inverse of the desired accu-
racy Maass and Turán (1994). On the other hand, surprisingly little is known when considering only
slightly more complex functions such as a function of a small number of halfspaces. This holds true,
even if the functions are simple functions, such as the AND function. Note that the AND function
of several halfspaces corresponds to their intersection since for (x, y) it holds that y = 1 if and only
if x is classified as positive by all halfspaces.

This class is particularly appealing since, depending on the number of halfspaces, it interpo-
lates naturally between very simple (a single halfspace) and very complex boolean functions (such
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as polytopes with many facets). Studying the performance of efficient algorithms in this setting,
parametrized by the number of halfspaces, can thus serve as a benchmark of how complex func-
tions we could hope to learn. Formally, the problem is defined as follows:

Definition 1 Let k,N ∈ N. A distribution D over RN × {±1} is an intersection of k halfspaces,
if it can be described as follows: Let w1, . . . , wk ∈ RN be unit vectors and for i ∈ [k] let hwi =
sign(⟨wi, x⟩). Let Dx be an arbitrary distribution over RN . A sample (x, y) from D is produced by
first drawing x ∼ Dx and then setting y = 1 if and only if hwi(x) = 1 for all i.

For brevity, we will sometimes write ”learning k halfspaces” when we mean ”learning the intersec-
tion of k halfspaces”.

We measure the performance of an algorithm as follows: For any function f : RN → {±1}, we
define the misclassification error with respect to a distribution D over RN × {±1} as errD(f) :=
P(x,y)∼D(f(x) ̸= y). We say an algorithm weakly learns D, if given i.i.d. samples from D, it
outputs a function f̂ such that errD(f̂) ⩽ 1

2 − 1
poly(N) , for some polynomial. Intuitively, this

means the algorithm does slightly better than randomly guessing the label y. This paper studies to
what extent we can hope to weakly learn the intersection of few (with respect to the dimension)
halfspaces.

We remark that we do not restrict our algorithm to output an intersection of k (or more) halfs-
paces, but allow that it returns an arbitrary boolean function. This setting is called improper learn-
ing. Whereas the setting in which the hypothesis needs to be of the same (or a slightly larger)
family, is referred to as (semi-)proper learning. Proving lower bounds against improper learners
has proven to be significantly more difficult than against proper learners. In particular, while it is
known how to show NP-hardness (under randomized reductions) of properly learning many natural
classes of functions Feldman (2006); Feldman et al. (2006); Guruswami and Raghavendra (2006);
Gopalan et al. (2010), there are inherent barriers for showing such reductions in the improper set-
ting Applebaum et al. (2008). In fact, improper learners are known to be strictly more powerful. For
instance, there are concept classes for which it is known that it is NP-hard to find a proper learner,
but efficient improper learners exist Valiant (1984); Pitt and Valiant (1988).1

Previous hardness results Indeed, in the proper setting it is known that it is NP-hard to learn the
intersection of two halfspaces, even if the learner is allowed to output a function that is an inter-
section of any constant number of halfspaces Alekhnovich et al. (2004). Whereas in the improper
setting, despite extensive work on this topic Klivans et al. (2004a,b, 2008, 2009); Vempala (2010);
Sherstov (2010, 2021), it is not even known whether there are polynomial-time algorithms for (im-
properly) learning the intersection of two halfspaces unless we make additional assumption about
the marginal distribution Dx. Nor is there any evidence of hardness2.

Due to the dearth of algorithmic results, researchers have started to look for evidence of hard-
ness. Most of these are reduction-based, while a few are unconditional but restricted to the statistical
query (SQ) model. The first result being the seminal work of Klivans and Sherstov (2009) showing
that for any ε > 0, weakly learning N ε halfspaces3 is not possible in polynomial time, assuming
hardness of certain worst-case lattice problems that form the basis of a large branch of cryptography

1. The class being 3-Term DNFs that are known to be efficiently learnable via 3-CNFs
2. Except for some structural observations Sherstov (2010, 2021). We will come back to this later.
3. This was later strengthened to logC(N) for some constant C > 2 Klivans and Sherstov (2006). See section 1.1 for a

more detailed discussion.
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(specifically, approximating SVP and SIVP up to polynomial factors, see theorems 2 and 3 and the
end of this section for precise definitions and a discussion, we also refer to Peikert et al. (2016)). This
was slightly strengthened in Daniely and Shalev-Shwartz (2016) to showing that learning ω(logN)
halfspaces is hard assuming a widely believed variant of Feige’s hypothesis about refuting random
3SAT instances Feige (2002).

Going beyond this, researchers had to resort to less standard assumptions to show reduction-
based hardness of even fewer halfspaces. In particular, Daniely and Vardi (2021) showed that as-
suming the existence of so-called local pseudo-random generators with polynomial stretch, learning
even ω(1) halfspaces is hard – assuming that a specific candidate function actually satisfies these
properties, they are able to show that learning k halfspaces takes time at least nΩ(k). While this
indeed gives some evidence of hardness, we believe verifying these predictions based on more
standard assumptions or via unconditional lower bounds in restricted model of computation is an
important line of work. Yet, proving such strong, or even fine-grained results, under more standard
assumptions, such as approximating worst-case lattice problems or (variants of) Feige’s hypothe-
sis, has remained elusive. In our work, we make significant progress in this direction, by showing
that learning even ω(log logN) halfspaces is hard under standard assumptions about approximating
SVP and SIVP similar to Klivans and Sherstov (2009).

In terms of unconditional lower bounds, Klivans and Sherstov (2007) showed that (roughly
speaking), restricted to the SQ model, learning k halfspaces takes time at least NΩ(k/ log logN), rul-
ing out efficient SQ algorithms learning intersections of ω(log logN) halfspaces. As a by-product
of our results, we will give an improved SQ lower bound (via a different hard instance than Klivans
and Sherstov (2007)), showing that learning k halfspaces needs precision at least N−Ω(k). Note
that this rules out efficient SQ algorithms for learning ω(1) halfspaces, but also gives a fine-grained
hardness result for learning k = O(1) halfspaces.

Hardness assumption, SQ model and main results We will next state the precise hardness as-
sumption we make. We remark that we do not expect the reader to be familiar with lattices or these
problems and such familiarity is not necessary in order to understand and appreciate the remainder
of this paper. Our reductions will start from a different learning problem that can be stated in el-
ementary terms (see section 2). For more background on lattices and these problems, we refer to
Peikert et al. (2016). An n-dimensional lattice L is defined to be a discrete additive subgroup of
Rn. It can be fully specified by a basis B ∈ Rn×n as L = BZn. We will only consider the case in
which B is full-rank. For 1 ⩽ i ⩽ n, consider

λi (L) := inf {r > 0 | dim (Span (L ∩Br(0)) ⩾ i)} .

We can now define GapSVP and SIVP.

Problem 2 (Gap Shortest Vector Problem (GapSVP)) Let α = poly(n) be arbitrary. Given an
n-dimensional lattice L and d > 0 such that either (a) λ1 (L) ⩽ d or (b) λ1 (L) > α · d, decide
whether (a) or (b) holds.

Problem 3 (Shortest Independent Vector Problem (SIVP)) Let α = poly(n) be arbitrary.
Given an n-dimensional lattice L output a set of linearly independent lattice points of length at
most α · λn (L).

We make the following assumption

3



TIEGEL

Assumption 4 There is no quantum algorithm that runs in time 2o(n) and uses only 2o(n) samples
that solves either problem 2 or problem 3.

All known (quantum) algorithms for problem 2 and problem 3 require time 2Ω(n). Further, a falsifi-
cation of the above assumption would be considered a major breakthrough in cryptography (cf. Peik-
ert et al. (2016) and references therein for more context).

Similarly, we give some necessary background on the SQ model. In particular, SQ algorithms
only have access to the distributions via query functions ϕ : RN × {±1} → [−1, 1]. Upon making
a query ϕ, they receive as an answer a value in [ED ϕ(x, y) − τ,ED ϕ(x, y) + τ ]. τ is called the
accuracy or precision of the query. The query function can be arbitrary and outside of making
these queries, the algorithms can perform arbitrary computation. When comparing to sample-based
algorithms, typically the number of queries is taken as a proxy for run-time and 1/τ2 as a proxy for
the number of samples – since this many samples are needed to estimate the expectation of a query
from samples up to accuracy τ .

Our reduction-based hardness result is as follows

Theorem 5 (See theorem 12 for full version) Let N, k ∈ N such that k ⩽ O(
√
N). Under as-

sumption 4, there is no T = N
o(

k
log k+log logN )-time algorithm using O(T ) samples that learns the

intersection of k halfspaces up to error better than 1
2 − 1

Ω(T ) .

It is insightful to explicitly compute the time lower bound for specific values of k. First, note that
this rules out polynomial-time algorithms for weakly learning ω(log logN) halfspaces. A few other
examples are as follows: For any 0 < ε ⩽ 1

2 , not necessarily constant, learning k = N ε halfspaces
takes time at least exp(Ω(N ε · logN

ε logN+log logN )) In particular, taking ε to be an absolute constant,

we obtain that learning N ε halfspaces takes time at least exp(Ω(N ε)). Taking ε = log logN
logN , we

obtain that learning logN halfspaces takes time exp(Ω( log2 N
log logN )). Finally, for ε = ω( log log logNlogN ),

we recover that learning k = ω(log logN) halfspaces takes time at least exp(ω(logN)) = Nω(1).
Finally, under the more conservative assumption that there is no algorithm for theorems 2 and 3
running in time 2Ω(n1−δ) for any constant δ > 0, we are still able to rule out weakly learning
ω(logδ(N)) halfspaces. See section 1.1 to a more detailed comparison with prior work.

Our SQ hardness results is as follows:

Theorem 6 Let k,N ∈ N such that k ⩽ Nγ for a sufficiently small absolute constant γ. Any SQ
algorithms using queries of accuracy τ = N−Ω(k) that learns the intersection of k halfspaces over
RN up to error better than 1

2 − 4τ must make at least 2N
Ω(1)

queries.

Note that this shows that even weakly learning ω(1) halfspaces requires super-polynomial precision
in the SQ model or exponentially many queries. Similarly, it shows that the fine-grained complexity
of learning k halfspaces scales as NΩ(k). We remark that we prioritized clarity and did not attempt
to optimize any constants, neither in the condition that k ⩽ Nγ nor in the exponent of the accuracy
or the number of queries.

Future work We remark that both our lower bound instance can be solved in time NO(k) since
they can be represented as a degree-O(k) polynomial threshold function (see section 2 for all details)
– and thus can be learned in time NO(k) via linear programming Maass and Turán (1994). This
suggests that we should look for instances that cannot be represented as low-degree polynomial
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threshold functions. This approach seems particularly motivated since it is known that, at least
when the input comes from the boolean hypercube, there exists an intersection of even 2 halfspaces
that cannot be represented by degree-o(n) polynomial threshold functions Sherstov (2010, 2021).

1.1. More on Previous Results

We elaborate a bit more on the connection between our work and previous hardness results below.
The work closest to us is Klivans and Sherstov (2009) (and the companion work Klivans and

Sherstov (2006)). Their hardness results are ultimately also based on the hardness of theorems 2
and 3. However, their hardness result follows by showing that intersections of halfspaces can encode
a public-key encryption system due to Regev Regev (2009) known to be secure assuming hardness
of these lattice problems. Thus, a learning algorithm could break the crypto-system and hence fal-
sify theorems 2 and 3. While we start from the same assumptions, we give a more direct reduction,
completely bypassing the need to introduce any public-key encryption schemes. This more direct
reduction is what enables our improved SQ lower bounds.

On a quantitative level, Klivans and Sherstov (2009) shows that for any absolute constant ε > 0
a poly(N)-time algorithm for learning k = N ε halfspaces in dimension N would yield a poly(n)-
time algorithm for theorems 2 and 3 in dimension n. In particular, their results are implied by
a weaker version of theorem 4 in which we only assume that there is no poly(n)-time algorithm
for theorems 2 and 34. In Klivans and Sherstov (2006), the same authors observed that their reduc-
tion implies stronger lower bounds under quantitatively stronger assumptions on theorems 2 and 3
(closer to our theorem 4). Pushed to the limit, their result yields that theorem 4 implies that learning
ω(logN) halfspaces in dimension N takes super-polynomial time, matching the result of Daniely
and Shalev-Shwartz (2016) under a different assumption – we remark that this is not formally stated
in Klivans and Sherstov (2006) but follows immediately from their techniques. In particular, allow-
ing ε to be sub-constant, their techniques can be used to show that theorem 4 implies that learning
N ε halfspaces takes time exp(Ω(N ε)) (see the discussion at the end of section 2 for a more detailed
argument and technical comparison to our work). This should be compared with our lower bound
exp(Ω(N ε logN

log logN )) for ε ⩽ log logN
logN (and similar for larger ε). The latter is significantly larger and

in particular allows to obtain hardness results of exponentially fewer halfspaces (ω(log logN)).
We strongly believe that our techniques also allow for a trade-off of the following form: To

rule out polynomial-time algorithms for learning more halfspaces, but under quantitatively weaker
assumptions. We choose not to make this explicit for clarity of exposition and since already a
2o(n)-time algorithm for either of theorems 2 and 3 would be a major breakthrough.

Along a different direction, Tiegel (2023); Diakonikolas et al. (2022, 2023) show lower bounds
for learning a single halfspaces in various error models under assumption 4.

2. Technical Overview

Relation to parallel pancakes and SQ lower bound Our lower bounds are based on a novel con-
nection we make between the so-called ”parallel pancakes” distribution Diakonikolas et al. (2017a);
Bubeck et al. (2019); Bruna et al. (2021) and intersections of halfspaces. On a high level, the former

4. More specifically, they show that is true even when setting α = Õ(n1.5). We strongly believe that this is also true
for our reduction, but did not attempt to make this explicit for clarity. theorems 2 and 3 are believed to be hard for
any α = poly(n).
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is a mixture of few Gaussians, that is hard to distinguish from the standard Gaussian distribution.
It (or versions thereof) has played a pivotal role in obtaining computational hardness results for
learning theory problems. Yet, the connection to intersections of halfspaces had not been observed
before. Similar ideas, without any reference to parallel pancakes, were implicitly used in Klivans
and Sherstov (2009). By making this connection explicit and expanding on it, we are able to ob-
tain improved lower bounds in both the SQ model and under assumption 4. More specifically, our
connection allows us to leverage that (variants of this) distribution are known to be hard to learn
in the SQ model and based on assumption 4. Fleshing out all details and satisfying all distribution
requirements exactly will take some additional work.

We start by describing one version of the parallel pancakes distribution and showing our SQ
lower bound (theorem 6). Unfortunately, this connection alone is not enough to establish our
reduction-based result (theorem 5) as well. The reason being that the known hardness results for
parallel pancakes under assumption 4 are quantitatively weaker than those known under SQ – and in
particular would by themselves only rule out efficient algorithms for learning ω(logN) halfspaces.
Towards the end of this section, we will show how to show a hardness result for ω(log logN)
halfspaces using a modified construction.

It is known Bubeck et al. (2019) (see also Diakonikolas et al. (2017a)) that there are two one-
dimensional distributions A,B satisfying the following properties (see appendix A for all details):

1. A and B are mixtures of k Gaussians.

2. There exists two unions of k disjoint intervals SA and SB , such that only a negligible fraction
of the probability mass of A (resp. B) lies outside SA (resp. SB).

3. The intervals in SA ∪ SB .

4. Both A and B match k moments with N(0, 1).

Consider now the following distribution DA,B over RN × {±1}: First, pick a uniformly random
unit vector w, and let DA (resp. DB) be the distribution over RN that is A (resp. B) along w and a
standard Gaussian in the complement. Then, set DA,B = 1

2(DA,+1) + 1
2(DB,−1). Using results

from Bubeck et al. (2019); Diakonikolas and Kane (2022) it is not hard to deduce that DA,B is hard
to distinguish from N(0, IdN ) × Be(12) in the SQ model. In particular, this task either requires
queries of accuracy better than N−Ω(k) (suggesting that we need at least NΩ(k) samples) or 2N

Ω(1)

queries. (We give a full argument for our variant of this distribution in appendix A.) Reviewer 2
asked for an explanation in words what the distribution DA,B (cf. the first paragraph on Page 6, also
see Figure 1) in our lower bound instance is. We offer some intuition on DA,B: This distribution
corresponds to a mixture of two related instances of a labelled version of the parallel pancakes
distribution alluded to earlier. In particular, for (x, y) ∼ DA,B , if y = +1, x follows the standard
parallel pancakes distribution and if y = −1, x follows a ”shifted” parallel pancakes distribution in
which the pancakes are shifted along the hidden direction such that they are (mostly) disjoint from
the pancakes for y = +1. See figure 1 for an illustration.

Modifying the instance to obtain an intersection of degree-2 PTFs Our SQ lower bound fol-
lows from the simple but powerful observation that a slight variant of this distribution can be real-
ized as an intersection of k degree-2 polynomial threshold functions (short PTFs). Note that this is
enough to show our hardness result. Indeed, recall that we aim to show that learning k halfspaces
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Figure 1: (a) shows how to capture the parallel pancakes distribution using degree-2 PTFs and (b)
shows how to do the same using higher-degree PTFs (degree-4 in this case).

in dimension N takes time NΩ(k). For this it is sufficient to show that learning the intersection of k
degree-2 PTFs in dimension N takes time at least NΩ(k) since we can represent these as intersec-
tions of k halfspaces over an O(N2)-dimensional space. We can absorb the quadratic blow-up in
the dimension in the Ω(·)-notation.

Note that a priori DA,B cannot be realized as such an intersection: Since the density of both A
and B are positive on all of R, there exists a region in which the label can be both + and -1 with
some small probability. Since our model is noiseless, this should not be possible. Fortunately, these
regions only make up a small fraction of the total probability mass and we can get rid of them by
truncating the mixture components. Indeed, let Ã, B̃ be obtained by conditioning A (resp. B) to
lie in SA (resp. SB) and let DÃ,B̃ be obtained analogously as before (replacing A and B by Ã and
B̃). In appendix A we show that DÃ,B̃ enjoys the same hardness guarantees in the SQ model as
DA,B , i.e, that this distribution is still hard to distinguish from N(0, IdN ) × Be(12) in the relevant
parameter regime. This follows by showing that the first k moments of both Ã and B̃ still match
those of N(0, 1) up to small error (N−Ω(k)) and their χ2-divergence with N(0, 1) is not too large
(2O(k) logN ) – this uses results based on Diakonikolas and Kane (2022).

To see that DÃ,B̃ is an intersection of k degree-2 PTFs, note the following: By construction,
for a sample (x, y) ∼ DÃ,B̃ , y = 1 if and only if ⟨x,w⟩ ∈ SA. Further y = −1 if and only
if ⟨x,w⟩ ∈ SB . Thus, for every interval I ⊆ SB , consider the polynomial pI : R → R that
is symmetric around the mid-point of B, is negative on I , and has its roots at half the distance
between the end of I and the next interval in SA. Note that pI is negative on I and positive on all
other intervals in both SA and SB . The final choice of degree-2 PTFs is then p̃I : RN → R such that
p̃I(x) = pI(⟨x,w⟩). By construction, if ⟨x,w⟩ ∈ SA, p̃I(x) ⩾ 0 for all I and if ⟨x,w⟩ ∈ SB there
exists p̃I such that p̃I(x) < 0. It follows that D corresponds to the intersection of the p̃I . Since SB

contains k intervals, this yields the claim. See Figure 1 (a) for an illustration.
To solve the distinguishing problem, we can run our weak learner on our input distribution and

with one additional query compute the misclassification error of the produced hypothesis. Since in
the null case the label y is independent of x, this should be 1/2. While it should be bounded away
from 1/2 under planted by assumption on our weak learner. We can thus solve the distinguishing
problem.

7



TIEGEL

Lower bound based on assumption 4 ”Parallel Pancakes”-type distribution are also known to
be hard to distinguish from a standard Gaussian under assumption 4. In particular, using results
from Bruna et al. (2021); Gupte et al. (2022) one could show that a similar distribution, that also
has k components, takes time roughly at least 2Ω(k) to distinguish from a standard Gaussian. Unfor-
tunately, using this, we could only hope to rule out learning intersections of ω(logN) halfspaces,
which is exponentially worse than ω(log logN). In order to obtain our improved lower bound, we
make use of the following observation: Instead of showing that intersections of degree-2 PTFs are
hard to learn, we can also show that degree-d PTFs are hard to learn for d > 2. Note that this
introduces a fundamental tradeoff: The larger we choose d, the smaller the number of halfspaces
becomes but the blow-up in the dimension is exponential in d. Luckily for us, there is still a choice
of d that rules out learning ω(log logN) halfspaces.

Tiegel (2023) (building on Bruna et al. (2021)) showed the following (see section 4 for all
details5): There are two one-dimensional distributions A,B satisfying

1. A,B are mixtures of infinitely many (truncated) Gaussians.

2. There exists two unions of infinitely many disjoint intervals SA, SB , such that A (resp. B) is
supported on SA (resp. SB).

3. The intervals in SA ∪ SB are disjoint and ”interlacing” in the sense that they alternate.

4. If there is an algorithm distinguishing DA,B from N(0, Idn)×Be(12) using 2o(n) samples and
running in time 2o(n), then assumption 4 is false.

In what follows we will denote the dimension of DA,B by n. We will denote the dimension of the
halfspaces by N (which will roughly be nd). Our first observation is that we can restrict to the
2n+1 most central intervals in A and B respectively. It is not hard to show that the resulting DA,B

is 2−Ω(n)-close to the original one in total variation distance. Thus, even when seeing 2o(n) samples
from this distribution, the respective product distributions are still 2−Ω(n) close in total variation,
and hence, the associated distinguishing problem is just as hard. We can hence assume that SA, SB

contain only 2n+ 1 intervals.
Let d = 2n+1

k +1 and for simplicity assume this is an even integer. By a similar construction as
for the SQ lower bound, DA,B can be realized as an intersection of k degree-d PTFs – this time each
PTF traces out d−1 intervals in SB , instead of just 1. See Figure 1 (b) for an illustration. These can
be realized as an intersection of k halfspaces in dimension N = Θ(nd). Recall that we want to rule

out algorithms weakly learning the intersections of halfspaces that run in time N
o(

k
log k+log logN ).

We claim that such an algorithm can distinguish DA,B from N(0, Idn) × Be(()12). In particular,

since logN = Θ(d · log n) = Θ(nk · log n) an algorithm running in time N
o(

k
log k+log logN ) runs in

time 2o(n). Indeed,

N
o
(

k
(log k+log logN)

)
= exp

(
o

(
k · logN

log k + log logN

))
= exp

(
o

(
n · log n

log k + log n− log k + log log n

))
5. Tiegel (2023) used a construction based on these distributions to show that learning a single halfspace in the agnostic

model is hard under assumption 4. Note that this is different from our setting as we do not allow noise in the labels.
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= 2o(n) .

Thus, to solve the distinguishing problem we can use a similar reduction as in the SQ model: Run
the learner on the first half of the input samples and compute the empirical misclassification error
on the second. Again, under null this should be very close to 1/2 whereas under planted it should be
bounded away from 1/2.

Comparison to Klivans and Sherstov (2009) The work Klivans and Sherstov (2009) shows that
O(n) degree-2 PTFs can encode the decryption function of a crypto-sytem by Regev Regev (2009).
Under assumption 4 breaking this crypto-system requires time at least 2Ω(n). Using a similar ar-
gument as above, they deduce that learning O(

√
N) halfspaces in dimension N takes time at least

2Ω(
√
N) – where the

√
N comes from the quadratic blow-up in the dimension. Further, they argue

the following: For any ε > 0, by padding all vectors with 0, we can artificially blow-up the dimen-

sion to N = n
1
ε . The number of halfspaces is then k = N ε (over the N -dimensional space) and the

learning task requires time at least 2Ω(n) = exp(N ε) = exp(k). It follows that learning ω(logN)
halfspaces in dimension N takes time at least Nω(1).

Note that this simple padding argument cannot go beyond ω(logN) halfspaces, intuitively, the
padding strategy does not exploit the additional space available in higher dimensions. On the other
hand, our argument based on higher-degree PTFs shows that exploiting this is indeed possible.
Further, our arguments completely bypass the need to introduce any crypto-systems. In fact, it is
not clear how the construction based on Regev’s crypto-system would yield unconditional lower
bounds in the SQ model.

3. Preliminaries

Notation We denote R⩾0 = [0,∞) and R>0 = (0,∞). For a set S, we denote by U(S) the
uniform distribution over S. We define the Total Variation Distance between two measures P and
Q as

TVD(P,Q) = sup
A

|P (A)−Q(A)| .

Let n be some parameter. For the problem of distinguishing two distributions D0
n and D1

n we
define the advantage of an algorithm A as∣∣Px∼D0

n
(A(x) = 0)− Px∼D1

n
(A(x) = 0)

∣∣ .
We say that an algorithm has non-negligible advantage if it has advantage Ω(n−c) for some constant
c > 0.

Let p ∈ [0, 1/2]. We denote by Be(p) the distribution that is equal to +1 with probability p and
equal to -1 with probability 1− p.

Let X be some set and D be a distribution over X × {−1,+1}. Further, let h : X → {−1,+1}
be a binary hypothesis. We denote the misclassification error of h as

errD (h) = P(x,y)∼D (h(x) ̸= y) .

Most of the time the distribution D will be clear from context and we will omit the subscript. We
denote by Dx the marginal distribution of D over X . If the domain of Dx is Rn, we say an algorithm
weakly learns D, if it outputs a binary hypothesis ĥ such that errD(ĥ) ⩽ 1

2−
1

poly(n) for some choice
of poly(n).

9



TIEGEL

Gaussian distributions We denote the standard n-dimensional Gaussian distribution by N(0, In).
If the dimension is clear from context, we sometimes drop the subscript of the identity matrix. For
s > 0, we denote by ρs : Rn → R+ the function

ρs(x) = exp(−π∥x/s∥2) .

If s = 1, we omit the subscript. Note that ρs/sn is equal to the probability density function of the
n-dimensional Gaussian distribution with mean 0 and covariance matrix s2/(2π) · In. In particular,
it holds that ∫

Rn

ρs(x) dx = sn .

We define ρs(x ; c) = ρs(x− c) and for α > 0 we define

ραs (x ; c) =

{
1
Z · ρs(x ; c) , if ∥x− c∥ ⩽ α ,

0 , otherwise,

where

Z =

∫
∥x−c∥⩽α ρs(x ; c) dx∫

R ρs(x ; c) dx
.

For a lattice L ⊆ Rn and s > 0 we define the discrete Gaussian distribution DL,s with width s
as having support L and probability mass proportional to ρs. Further, for a discrete set S, we define
ρs (S) =

∑
x∈S ρs (x).

Various versions of Continuous LWE

Definition 7 (CLWE Distribution) Let w ∈ Rn be a unit vector and β, γ > 0. Define the dis-
tribution Cw,β,γ over Rn × [0, 1) as follows. Draw y ∼ N(0, 1

2π · In), e ∼ N(0, β2/(2π)) and
let

z = γ · ⟨y, w⟩+ e mod 1 .

Note that the density of this distribution is given by

p(y, z) =
1

β
· ρ (y) ·

∑
k∈Z

ρβ (z + k − γ⟨w, y⟩) .

Further, let m ∈ N. We denote by CLWE(m, γ, β) the distribution obtained by first drawing
w ∼ U(Sn−1) and then drawing m independent samples from Cw,γ,β .

Definition 8 (Homogeneous CLWE (hCLWE) Distribution) Let w ∈ Rn be a unit vector, c ∈
[0, 1), and β, γ > 0. Let πw⊥(y) be the projection of y onto the space orthogonal to w. Define the
distribution Hw,β,γ,c over Rn as having density at y proportional to

∑
k∈Z

ρ√
β2+γ2(k ; c) · ρ (πw⊥(y)) · ρ

β/
√

β2+γ2

(
⟨w, y⟩ ; γ

β2 + γ2
(k − c)

)
. (3.1)

Further, let m ∈ N. We denote by HCLWE(m, γ, β, c) the distribution obtained by first draw-
ing w ∼ U(Sn−1) and then drawing m independent samples from Hw,γ,β,c.

10
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Intuitively, one can think of the Hw,γ,β,c distribution as Cw,γ,β conditioned on z = c.

Definition 9 (Truncated hCLWE Distribution) Let w ∈ Rn be a unit vector, c ∈ [0, 1), β, γ > 0

and α = 1
10 · γ

γ2+β2 . Define the distribution NH
(n)
w,β,γ,c over Rn as having density proportional to

n∑
k=−n

ρ√
β2+γ2(k ; c) · ρ (πw⊥(y)) · ρα

β/
√

β2+γ2

(
⟨w, y⟩ ; γ

β2 + γ2
(k − c)

)
. (3.2)

The superscript refers to the range of the summation.
Further, let m ∈ N and S be a distribution over unit vectors in Rn. We denote by

NHCLWE(m, γ, β, c) the distribution obtained by first drawing w ∼ U(Sn−1) and then draw-
ing m independent samples from NHw,γ,β,c.

Note that this is the same as the hCLWE distribution but with the individual components of
the mixture truncated in the hidden direction and restricting to the middle 2n + 1 components.
α is chosen such that the components become non-overlapping but the resulting distribution has
small total variation distance to the corresponding non-truncated hCLWE distribution. Although
this is strictly speaking not necessary to prove our result, we will see that having non-overlapping
components will simplify our analysis.

We make the following hardness assumption about the CLWE distribution

Assumption 10 Let n,m ∈ N and

γ ⩾ 2
√
n , β =

1

poly (n)
.

Further, let δ < 1 be arbitrary and m = 2n
δ
. There is no 2n

δ
-time distinguisher between

CLWE(m, γ, β) and N
(
0, 1

2π · In
)m × U ([0, 1))m

with non-negligible advantage.

Note that by (Bruna et al., 2021, Corollary 3.2) this is implied by assuming theorem 4.

Hermite polynomials and moment-matching distributions We will also use the following facts
about one-dimensional distributions matching moments with N(0, 1).

Fact 11 (Bubeck et al. (2019)) For every k ∈ N greater or equal to 2, there exist two discrete A
and B supported on at most k points such that

• A and B match at least 2k − 1 moments with N(0, 1),

• The points in the union of the supports of A and B are pairwise at distance at least Ω(1/
√
k).

Further, they are all contained in the interval [−C
√
k,C

√
k] for some sufficiently large ab-

solute constant C > 0.

The support of A and B corresponds to the roots of the k-th and (k− 1)-th normalized probabilist’s
Hermite polynomials.

11
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4. Hardness Under Assumption 4

In this section, we will prove a slightly more general version of theorem 5. We remark that we will
not directly work with theorems 2 and 3 but rather with the continuous LWE problem introduced
in Bruna et al. (2021).

Theorem 12 Let 0 ⩽ δ < 1. Let k,N ∈ N such that k ⩽ O(
√
N). Assume there is

an algorithm that learns the intersection of k ⩽ O(N) halfspaces in dimension N in time

T = N
o

(
k1−δ

(log k+log logN)1−δ·logδ N

)
up to error better than 1

2 − 1
Ω(T ) , then there is an algorithm

that solves CLWE in dimension n in time 2o(n
1−δ). Furthermore, every halfspace in the hard in-

stance has a margin of Ω( 1
N ·

√
k·logN )

We will use the following two facts which are a straightforward extensions of facts in Tiegel
(2023). We will prove them in appendix B.2.

Fact 13 (Adaptation of Theorem 15 in Tiegel (2023)) Let n,m ∈ N with 2o(n) = m > n, and
let γ, β, ε ∈ R>0 such that 0 ⩽ β ⩽ γ, β = 1

poly(n) . Assume that there is no (T +poly(n,m))-time
distinguisher between

CLWE(m, γ, β) and
(
N
(
0, 1

2π · In
)
× U ([0, 1))

)⊗m

with advantage ε. Let m′ = m
poly(n) . Then there is no T -time distingiusher between

1

2
·
(
NH

(n)
w,β,γ,0,+1

)
+

1

2
·
(
NH

(n)

w,β,γ,
1
2

,−1

)
and N

(
0, 1

2π · In
)
× Be

(
1

2

)
with advantage ε− negl(n) that uses at most m′ samples.

Further, we will use the following fact about the supports of the mixture of homogeneous CLWE
distributions. Its proof is contained in the proof of Lemma 11 in Tiegel (2023):

Fact 14 Let S(0), S(1) be the support of NH(n)
w,β,γ,0 and NH

(n)

w,β,γ,
1
2

respectively. Let α = 1
10 ·

γ
γ2+β2

and for k ∈ N, let µ(0)
k = γ

γ2+β2k, µ
(1/2)
k = γ

γ2+β2 (k − 1
2) then

S(0) =

n⋃
k=−n

{
x ∈ Rn

∣∣∣ ⟨x,w⟩ ∈ [µ
(0)
k − α, µ

(0)
k + α]

}
,

S(1) =

n⋃
k=−n

{
x ∈ Rn

∣∣∣ ⟨x,w⟩ ∈ [µ
(1/2)
k − α, µ

(1/2)
k + α]

}
.

Further, S(0) and S(1) are disjoint and at distance at least 1
5 · γ

γ2+β2 .

Proof [Proof of theorem 12] Let d, k ∈ N and 0 ⩽ δ < 1 (it might be instructive to think of
δ = 0 first). For simplicity assume that 2n + 1 is divisible by d and let k = 2n+1

d . Let m ⩽

N
o

(
k1−δ

(log k+log logN)1−δ logδ N

)
and τ ⩾ 5√

m
. We will choose N such that m ⩽ 2o(n

1−δ). It follows
by theorem 13, that if there is an algorithm that can distinguish between

D(p) =
1

2
·
(
NH

(n)
w,β,γ,0,+1

)
+

1

2
·
(
NH

(n)
w,β,γ,1/2,−1

)
and D(n) = N

(
0, 1

2π In
)
× Be

(
1
2

)
12
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with probability at least 2/3 in time 2o(n
1−δ) and using at most 2o(n

1−δ) samples, then there also is
an algorithm that solves CLWE with probability at least, say, 0.6 in time 2o(n

1−δ) and using at most
2o(n

1−δ) samples. We will show that a learning algorithm would imply the former.

The reduction Suppose we are given m samples ((xi, yi))mi=1 ∈ Rn × {−1,+1} from either of
the two distributions. Our reduction does the following: Let N =

∑2d
j=0(n + 1)j = Θ(n2d). We

apply the Veronese mapping to the xi, obtaining ((x̃i, yi))
m
i=1 ∈ RN × {−1,+1}, where x̃i =

((1, xi)
α)|α|⩽2d. For simplicity, assume that m is even. We run our learning algorithm on the first

m/2 samples to obtain a function f̂ : RN → {+1,−1}. Let

êrr (f) =
2

m

m∑
i=m/2

1
(
f̂(x′i) ̸= yi

)
.

If
∣∣∣êrr (f)− 1

2

∣∣∣ > τ
2 we output planted and else we output null.

First assuming that the learner runs in time N
o
(

k
log k+log logN

)
, notice that the procedure de-

scribed above runs in the same time – the reduction only add an overhead of NO(1). We claim that
this total time is equal to 2o(n

1−δ). Indeed, using that logN = Θ(d · log n) = Θ(nk · log n), we
obtain

N
o

(
k1−δ

(log k+log logN)1−δ logδ N

)
= exp

(
o

((
k · logN

log k + log logN

)1−δ
))

= exp

(
o

((
n · log n

log k + log n− log k + log log n

)1−δ
))

= 2o(n
1−δ) .

To argue that it successfully distinguishes between D(p) and D(n), we proceed in two parts. If the
input comes from D(n), yi ∼ Be(12) and is independent of x′i, hence êrr (f) will be close to 1

2 . If
the input comes from D(p), we will show that the samples input to our learning algorithm can be
realized as the intersection of k halfspaces – we will assume this for now in the next paragraph.
Hence, since we assume access to a weak learner, êrr (f) will be sufficiently smaller than 1

2 .
Indeed, under both null and planted the random variables 1 (f(x′i) ̸= ỹi) are i.i.d. Bernoulli with

some expectation pn, pp ∈ [0, 1] respectively. Assume (xi, yi) ∼ D(n) = N
(
0, 1

2π In
)
× Be(12).

Since (x̃i, yi) = (g(xi), yi) for a deterministic function g, it follows that yi is independent from
x̃i. Since clearly, yi ∼ Be(12) it follows that pn = 1

2 . By assumption, pp ⩽ 1
2 − τ is the success

probability of our learning algorithm. It follows by Hoeffding’s Inequality Hoeffding (1994) and
since τ ⩾ 5√

m
that in either case (i.e., for p = pn or p = pp) it holds that

P
(∣∣∣êrr (f)− p

∣∣∣ ⩾ τ
3

)
⩽ 2 exp

(
−m

9 τ
2
)
⩽ 2 exp (−2.5) ⩽

1

3
.

Hence, under the null distribution we correctly output null with probability at least 1/3. Similarly,
since under the planted distribution with probability at least 1/3∣∣∣∣êrr (f)− 1

2

∣∣∣∣ ⩾ (1

2
− pp

)
− τ

3
>

τ

2

13
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we correctly output planted with the same probability.

The planted distribution is an intersection of k halfspaces Next, assume

(xi, yi) ∼ D(p) =
1

2
·
(
NH

(n)
w,β,γ,0,+1

)
+

1

2
·
(
NH

(n)
w,β,γ,1/2,−1

)
.

We argue that D(p) can be realized as an intersection of k degree-d polynomial threshold functions.
That is, we show that there exists polynomials p1, . . . , pn : Rn → R of degree at most d, such that
for all (x, y) ∼ D(p) it holds that y = 1 if and only if pj(x) ⩾ 0 for all j = 1, . . . , k. Note
that this directly implies that the transformed samples (x̃, y) we feed to our learning algorithm
can be realized as an intersection of k halfspaces. In particular, the halfspaces correspond to the
linearizations of p1, . . . , pk.

Recall that w is the hidden direction in the planted distribution. All polynomials pj will be of
the form pj(x) = p̃j(⟨x,w⟩) for one-dimensional polynomials p̃1, . . . , p̃k. On a high level, these
will trace out the support of the positive and negative examples. Indeed, let α = 1

10 · γ
γ2+β2 and for

k = −n, . . . , n let µ(0)
k = γ

γ2+β2k, µ
(1/2)
k = γ

γ2+β2 (k − 1
2). Define

J+
ℓ = [µ

(0)
ℓ − α, µ

(0)
ℓ + α] , J−

ℓ = [µ
(1/2)
ℓ − α, µ

(1/2)
ℓ + α] .

Recall that k = 2n+1
d . Let p̃j be a degree-2d polynomial that is negative on

J−
−n+(j−1)·d, . . . , J

−
−n+j·d−1, positive on J+

−n+(j−1)·d, . . . , J
+
−n+j·d−1 and positive starting some

distance away from the left and right-most ”negative” interval. Let its root be at the midpoints
between consecutive intervals and the left-most root at the same distance to the left-most interval.
Note that by construction, the following two properties hold (the first property also uses that all p̃j
are positive after their last root)

1. If z ∈ J+
ℓ for some ℓ, then p̃j(z) ⩾ 0 for all j ∈ [k],

2. If z ∈ J−
ℓ for some ℓ, then there exists j∗ ∈ [k] such that p̃j∗(z) < 0.

Recall from theorem 14 that y = 1 implies that ⟨x,w⟩ ∈ ∪n
ℓ=−nJ

+
ℓ and y = −1 implies that

⟨x,w⟩ ∈ ∪n
ℓ=−nJ

−
ℓ . Hence, the two properties above imply that y = 1 if and only if pj(x) ⩾ 0 for

all j ∈ [k].
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Appendix A. SQ Hardness

In this section, we will prove our SQ lower bound (theorem 6).

Theorem 15 Let β ∈ (0, 12) be an absolute constant and k,N ∈ N be such that 2 ⩽ k ⩽ Nγ

for a sufficiently small absolute constant γ. Every SQ algorithm that uses queries of accuracy
ρ = N−Ω(k) and learns intersections of k halfspaces in dimension N up to error better than 1/2−4ρ

needs at least 2N
Ω(1)

queries.

To favor clarity of exposition and since in our eyes the ”small k” regime is the most interesting one,
we have not tried to optimize constants, i.e., γ. We will show the theorem above by constructing
a distribution over (x, y) ∈ RN × {−1,+1} that (a) is an intersection of k halfspaces and (b) the
conditional distribution of x given y = −1 and y = +1 respectively (nearly) matches k moments
with the standard Gaussian.

In particular, our hard instance will follow the NGCA framework and will be similar to the
construction of Bubeck et al. (2019) – in their distribution however, the labels are not without noise.
So we will need to slightly modify it. That is, the distribution conditioned on y = +1 and y = −1
will be equal to the standard Gaussian distribution except in one direction (the same direction in
both cases), and equal to a distribution that nearly matches k moment with N(0, 1) along said
direction. We start by describing the distribution along this direction: From theorem 11 we know
that there exists discrete distributions A,B supported on at most k points both matching 2k − 1
moments with N(0, 1) and such that all points in the union of their supports are at distance at least
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Ω(1/
√
k). Let Ã, B̃ be the distributions that are obtained from A,B via the following process –

we only describe it for A. First, let A′ be the distribution obtained as follows: Let δ > 0. Draw
X ∼ A and Z ∼ N(0, 1) independently. Output

√
1− δ ·X + δ · Z. Note that A′ is a mixture of

at most k Gaussians. Second, truncate each component of A′ at distance τ from its mean. Later we
will choose δ = 1

k2 logN
and τ = c ·

√
δ · k logN (for a small enough absolute constant c > 0) Our

family of hard instances D can be described as follows:

1. Draw w ∼ Sn−1 uniformly at random.

2. Let DA
w be the product distribution that is A along w and a standard Gaussian in the comple-

ment (and the same for DB
w ).

3. Set D = 1
2 · (DA

w ,+1) + 1
2 · (DB

w ,−1).

We will use the notation above throughout the rest of this section.
We will use the following theorem to show that D is in fact hard to learn in the SQ model: It

is an instantiation of results from Diakonikolas and Kane (2022) (and a slight refinement of Nasser
and Tiegel (2022) already implicit in the first work). See appendix B for full details how this follows
from their theorems.

Theorem 16 Let β ∈ (0, 12) be an absolute constant and β′ < β. Let k,N ∈ N be such that k ⩽
Nγ for a sufficiently small absolute constant γ. Let A,B be two one-dimensional distributions that
match k moments with N(0, 1) up to error N−Ω(k) and such that χ2(A,N(0, 1)), χ2(A,N(0, 1)) ⩽
2O(k) logN . Let the family of distributions D be as above. Then any SQ algorithm with accuracy
ρ = N−Ω(k) that learns D up to error 1

2 − 4ρ needs at least 2N
Ω(1)

queries.

We can now proceed to prove theorem 15:
Proof [Proof of theorem 15] Let A′, B′, Ã, B̃ be as above. As mentioned before, our proof proceeds
in two steps: First, we show that D corresponds to an intersection of k degree-2 polynomial thresh-
old functions and second, we will appeal to theorem 16 to show that D is hard to learn. Just as in
the proof of theorem 12 this will imply the claim by applying the Veronese mapping. Note that the
blow-up in the dimension is only quadratic and thus can be absorbed in the Ω(·)- and O(·)-notation
in our theorem statement. We first set parameters, let c > 0 be a sufficiently small absolute constant,
we set

δ =
1

k2 logN
and τ = c ·

√
δk logN =

c√
k
.

The hard instance is an intersection of k degree-2 PTFs Recall that in A′ (resp. B′) the mixture
components have variance δ and in Ã (resp. B̃) we truncate them at distance τ from their means.
In particular, let SA, SB ⊆ R be the collection of intervals of length 2τ around the means of the
components of A′ and B′. Since by theorem 11 the means of the components (of both A′ and B′

together) are at least Ω( 1√
k
) apart, we can choose c in the definition of τ small enough such that

the intervals in SA ∪ SB are disjoint and at distance Ω( 1√
k
). Note that by construction, SA and SB

contain at most k intervals
The proof is analogous to theorem 12 with the only difference that we will only use degree-2

polynomials. Indeed, by construction, for a sample (x, y) ∼ D, y = 1 if and only if ⟨x,w⟩ ∈ SA.
Further y = −1 if and only if ⟨x,w⟩ ∈ SB . Thus, for every interval I ⊆ SB , consider the
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polynomial pI : R → R that is symmetric around the mid-point of B, is negative on I , and has its
roots at half the distance between the end of I and the next interval in SA. Note that pI is negative
on I and positive on all other intervals. The final choice of degree-2 PTFs is then p̃I : RN → R such
that p̃I(x) = pI(⟨x,w⟩). By construction, if ⟨x,w⟩ ∈ SA, p̃I(x) ⩾ 0 for all I and if ⟨x,w⟩ ∈ SB

there exists p̃I such that p̃I(x) < 0. It follows that D corresponds to the intersection of the p̃I .

Set-up for SQ lower bound and χ2-divergence Note that in order to prove theorem 15 it is now
enough to verify that D satisfies the conditions of theorem 16. Since the conditions on N and k are
assumed to be true, it only remains to verify the following

1. Ã and B̃ match k moments with N(0, 1) up to error N−Ω(k),

2. χ2(A,N(0, 1)) and χ2(B,N(0, 1)) are at most 2O(k) logN .

We will verify the properties above only for Ã, B̃ is completely analogous. Then theorem 15 is
implied by theorem 16.

We start with the χ2-divergence. Let SA be as in the previous paragraphs. Note that Ã is the
distribution A′ conditioned on lying in SA. In particular, it follows that pÃ(x) = 1 (x ∈ SA) ·

pA′ (x)
PX∼A′ (X∈SA) . By standard concentration bounds for the Gaussian distribution, it follows that

PX∼A′(X ̸∈ SA) ⩽ exp(−Ω( τ
2

δ )) and hence also that PX∼A′(X ∈ SA) ⩾ 1− exp(−Ω( τ
2

δ )) ⩾
1
2 .

Denote the pdf of N(0, 1) by G. From (Diakonikolas et al., 2017b, Lemma 4.6), we now that
χ2(A′, N(0, 1)) ⩽ 2O(k)/

√
δ. It follows that

χ2(Ã,N(0, 1)) + 1 =

∫ ∞

−∞

pÃ(x)
2

G(x)
dx =

1

PX∼A′ (X ∈ SA)
2 ·
∫
SA

pA′(x)2

G(x)
dx

⩽ 4 ·
∫ ∞

−∞

pA′(x)2

G(x)
dx ⩽ 4χ2

(
A′, N(0, 1)

)
+ 4

⩽
2O(k)

√
δ

.

Recalling that δ = 1
k2 logN

we obtain that χ2(Ã,N(0, 1)) ⩽ 2O(k) logN .

Moment matching By theorem 11 A matches 2k − 1 moments exactly with N(0, 1). We claim
A′ does too: Indeed, for every integer 0 ⩽ ℓ ⩽ 2k − 1 we have (in the following X,Z,Z ′ are all
independent)

E
X′∼A′

(X ′)ℓ = E
X∼A,Z∼N(0,1)

(√
1− δ ·X + δ · Z

)ℓ
=

ℓ∑
r=0

(
ℓ

r

)
E

X∼A
(1− δ)r/2 ·Xr E

Z∼N(0,1)
δℓ−r · Zℓ−r

=

ℓ∑
r=0

(
ℓ

r

)
E

Z′∼N(0,1)
(1− δ)r/2 ·Xr E

Z∼N(0,1)
δℓ−r · Zℓ−r

= E
Z′∼N(0,1),Z∼N(0,1)

(√
1− δ · Z ′ + δ · Z

)ℓ
= EZ∼N(0,1)Z

ℓ ,
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We next show that the moments of Ã are close to the moments of A′. We start with some
observations: First, note that by construction PÃ(X ̸∈ S) = 0. Second, let C ′ > 0 be a large enough
constant, such that all means are at least 2τ away from the boundary of the interval [−C ′√k,C ′√k].
Note that the density of Ã is 0 outside this interval by construction. Let µk be the mean of the right-
most component, by theorem 11 µk = O(

√
k). Choose C ′ such that C ′√k−µk ⩾ τ . Since τ = c√

k

for some constant c, such a choice of C ′ > 0 exists. Note that

PX∼A′

(
|X| ⩾ C ′√k

)
⩽ O(k) · PX∼N(µk,δ)

(
X ⩾ C ′√k

)
⩽ O(k) · exp

−

(
µk − C ′√k

)2
2δ

 = exp

(
−Ω

(
τ2

δ

))
,

where we used that τ2

δ = Ω(k logN) ≫ log k. Lastly, we note that the total variation distance
between A′ and Ã is at most exp(−Ω( τ

2

δ )):∥∥pA′ − pÃ
∥∥
1
=

∫ ∞

−∞

∣∣pA′(x)− pÃ(x)
∣∣ dx

=

∫
S

(
1

PX∼A′(X ∈ S)
− 1

)
· pA′(x) dx+

∫
Sc

pA′(x) dx

=

∫
S

PX∼A′(X ̸∈ S)

PX∼A′(X ∈ S)
· pA′(x) dx+ PX∼A′(X ̸∈ S) ⩽ 3 · PX∼A′(X ̸∈ S)

= exp

(
−Ω

(
τ2

δ

))
.

Using the above observations, we start our moment calculations. Let 0 ⩽ ℓ ⩽ k, then∣∣∣∣ E
N(0,1)

Xℓ − Ẽ
A
Xℓ

∣∣∣∣ = ∣∣∣∣EA′
Xℓ − Ẽ

A
Xℓ

∣∣∣∣ = ∣∣∣∣∫ ∞

−∞
xℓ(pA′(x)− pÃ(x)) dx

∣∣∣∣
⩽

∣∣∣∣∣
∫ ∞

C′
√
k
xℓpA′(x) dx+

∫ −C′√k

−∞
xℓpA′(x) dx

∣∣∣∣∣+
∣∣∣∣∣
∫ C′√k

−C′
√
k
xℓ(pA′(x)− pÃ(x)) dx

∣∣∣∣∣
For simplicity, assume that 1.5k is an integer. Recall that A′ matches 2k − 1 ⩾ 1.5k moments
with N(0, 1). For the first absolute value, we can deduce using Hölder’s Inequality with q = 3

2 and
p = 3, that∫ ∞

C′
√
k
xℓpA′(x) dx+

∫ −C′√k

−∞
xℓpA′(x) dx = E

A′
Xℓ 1

{
|X| ⩾ C ′√k

}
⩽

(
E
A′
X1.5ℓ

)2
3 (

PX∼A′

(
|X| ⩾ C ′√k

))1
3

⩽

(
E

N(0,1)
X1.5k

)2
3 (

PX∼A′

(
|X| ⩾ C ′√k

))1
3

⩽ (2k)k · exp
(
−Ω

(
τ2

δ

))
,
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where we also used that the k-th moment of N(0, 1) can be upper bounded as kk/2. Since τ2

δ =
Ω(k logN) and k log(2k) ⩽ 2γ · k logN for a sufficiently small constant γ, it follows that this
integral is at most exp(−Ω( τ

2

δ )). Using the total variation bound, we can bound the second absolute
value:∣∣∣∣∣

∫ C′√k

−C′
√
k
xℓ(pA′(x)− pÃ(x)) dx

∣∣∣∣∣ ⩽ (C ′√k
)ℓ

∥pA′ − pÃ∥ ⩽ (C ′√k)k exp

(
−Ω

(
τ2

δ

))
= exp

(
−Ω

(
τ2

δ

))
.

Combining the two above displays and using that τ2

δ = Ω(k logN), we obtain that∣∣∣∣ E
N(0,1)

Xℓ − Ẽ
A
Xℓ

∣∣∣∣ ⩽ exp

(
−Ω

(
τ2

δ

))
⩽ N−Ω(k) .

Appendix B. Missing Lemmas

B.1. Missing Lemmas for SQ-Hardness

We will formally argue how theorem 16 follows from the results in Diakonikolas and Kane (2022);
Nasser and Tiegel (2022). We start by restating Lemma 4.3 of Nasser and Tiegel (2022). We
remark that this proof follows almost verbatim the proof of Diakonikolas and Kane (2022), but
makes certain things more explicit which will be useful for us. The distribution DA,B,p

v with p = 1
2

in their lemma corresponds to our D. They denote the dimension by m instead of N . We use our
notation in the restatement below.

Lemma 17 (Lemma 4.3 of Nasser and Tiegel (2022)) Let k ∈ N and ν, ρ, c > 0. Let A,B be
probability distributions on R such that their first k moments agree with the first k moments of
N(0, 1) up to error at most ν and such that χ2(A,N(0, 1)) and χ2(B,N(0, 1)) are finite. Denote
α := χ2(A,N(0, 1)) + χ2(B,N(0, 1)) and assume that ν2 + α · ck ⩽ ρ. Then, any SQ algorithm
which, given access to samples from D, outputs a hypothesis h : RN → {−1,+1} such that

errD(h) <
1

2
− 4

√
ρ ,

must either make queries of accuracy better than 2
√
ρ or make at least 2c

2·Ω(N) · (ρ/α) queries.

The proof of theorem 16 follows mostly by setting parameters:
Proof By assumption, we have ν = N−Ω(k) and α = 2O(k) logN . Let 0 < β < 1

2 be a small
enough absolute constant and c = N−β such that

α · ck = 2O(k) log(N) ·N−βk ⩽ 1
2ρ .

Then,
ν2 + α · ck ⩽ N−β′k = ρ .
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Thus, by Lemma 4.3 any SQ algorithm that learns to up to error 1
2 − 4τ for τ =

√
ρ must either

make queries of accuracy 2τ or must make at least

exp
(
N−2β · Ω(N)− Ω(k logN)

)
· 2

−O(k)

logN
= exp

(
Ω(N1−2β)− Ω(k logN)

)
queries. Since k ⩽ Nγ for a sufficiently small γ, the above is at least exp

(
Ω(N1−2β)

)
=

exp(NΩ(1)).
Since we assumed that our SQ algorithm can make queries of accuracy Nβ′k) > 2τ , it follows

that it needs at least 2Ω(
√
N) queries.

We remark that we make the assumption that our SQ algorithm can make queries of accuracy
N−Ω(k) for the following reason: Lemma 4.3 of Nasser and Tiegel (2022) uses a reduction from
an associated testing problem to learning, we believe this reduction needs at least one query of this
high accuracy to work (the same applies to Diakonikolas and Kane (2022)). Such an assumption is
not necessary to show hardness for the associated testing problem – which we believe still captures
the essence of the learning problem.

Lemma 18 Let n ∈ N, ε > 0 and distributions D0
n and D1

n be such that there exists no T -time
distinguisher with advatage at least ε between D0

n and D1
n. Further, let D1′

n be a third distribution
such that TVD(D1

n, D
1′
n ) = negl(n). Then there exists no T -time distingiusher with advantage at

least ε− negl(n) between D0
n and D1′

n .

Proof Suppose there exists a distinguisher A between D0
n and D1′

n with advantage at least ε −
negl(n). Using this distinguisher to distinguish between D0

n and D1
n gives advantage∣∣Px∼D0

n
(A(x) = 0)− Px∼D1

n
(A(x) = 0)

∣∣ ⩾ ∣∣∣Px∼D0
n
(A(x) = 0)− Px∼D1′

n
(A(x) = 0)

∣∣∣+ negl(n) ⩾ ε

which is a contradiction.

B.2. Missing Lemmas for Cryptographic Hardness

In this section, we will prove fact 13 restated below.

Fact 19 (Restatement of fact 13) Let n,m ∈ N with 2o(n) = m > n, and let γ, β, ε ∈ R>0 such
that 0 ⩽ β ⩽ γ, β = 1

poly(n) . Assume that there is no (T +poly(n,m))-time distinguisher between

CLWE(m, γ, β) and
(
N
(
0, 1

2π · In
)
× U ([0, 1))

)⊗m

with advantage ε. Let m′ = m
poly(n) . Then there is no T -time distingiusher between

1

2
·
(
NH

(n)
w,β,γ,0,+1

)
+

1

2
·
(
NH

(n)

w,β,γ,
1
2

,−1

)
and N

(
0, 1

2π · In
)
× Be

(
1

2

)
with advantage ε− negl(n) that uses at most m′ samples.
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Proof From (Tiegel, 2023, Theorem 15) we know that the conclusion is true for

1

2
·
(
NH

(∞)
w,β,γ,0,+1

)
+

1

2
·
(
NH

(∞)

w,β,γ,
1
2

,−1

)
and N

(
0, 1

2π · In
)
× Be

(
1

2

)
.

Our lemma follows by noting that the total variation distance between 1
2 ·
(
NH

(∞)
w,β,γ,0,+1

)
+ 1

2 ·(
NH

(∞)

w,β,γ,
1
2

,−1

)
and 1

2 ·
(
NH

(n)
w,β,γ,0,+1

)
+ 1

2 ·
(
NH

(n)

w,β,γ,
1
2

,−1

)
is at most 2Θ(−n), even when

considering their m-fold product for m = 2o(n). We can then imply theorem 18. By triangle
inequality, it is enough to show that NH(∞)

w,β,γ,0 and NH
(n)
w,β,γ,0 and NH

(∞)

w,β,γ,
1
2

and NH
(n)

w,β,γ,
1
2

satisfy

this. Without loss of generality consider NH(∞)
w,β,γ,0 and NH

(n)
w,β,γ,0. Note that we can couple these

two distributions as follows: We first draw a sample X from NH
(∞)
w,β,γ,0 if X comes from the central

2n + 1 components we set X ′ = X , else, we resample X ′ independently from NH
(∞)
w,β,γ,0 until it

does. We output (X,X ′). The marginals are correct by construction. Thus, the TVD is at most
the probability that the first draw of X does not come from the central 2n + 1 components. This
probability is at most∑

|ℓ|>n ρ
√

β2+γ2(ℓ)∑∞
ℓ=−∞ ρ√

β2+γ2(ℓ)
=

∑
|ℓ|>n exp

(
−πℓ2/(β2 + γ2)

)∑∞
ℓ=−∞ exp (−πℓ2/(β2 + γ2))

⩽
∑
|ℓ|>n

exp
(
−πℓ2/(β2 + γ2)

)
⩽
∑
|ℓ|>n

exp

(
−2ℓ2

n

)
⩽ exp

(
− n

10

)
.
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