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Abstract
Reinforcement Learning (RL) has shown great empirical success in various application domains.
The theoretical aspects of the problem have been extensively studied over past decades, particularly
under tabular and linear Markov Decision Process structures. Recently, non-linear function approx-
imation using kernel-based prediction has gained traction. This approach is particularly interesting
as it naturally extends the linear structure, and helps explain the behavior of neural-network-based
models at their infinite width limit. The analytical results however do not adequately address the
performance guarantees for this case. We will highlight this open problem, overview existing par-
tial results, and discuss related challenges.
Keywords: Kernel methods, reinforcement learning, order optimal performance guarantees

1. Introduction

The analytical study of Reinforcement Learning (RL) faces a natural progression in the complexity
of the Markov Decision Process (MDP) structure: Tabular → Linear → Kernel-based → Neural-
network-based. Kernel-based models serve as natural intermediary between well-studied linear
models and the less understood neural-network-based models (having the neural tangent kernel the-
ory in mind; see, e.g., the discussions in Yang et al., 2020). Kernel-based models provide a rich
representation capacity for nonlinear function approximation in RL, while still lending themselves
to theoretical analysis, and have gained traction in recent years. However, some fundamental prob-
lems still remain open.

For a sharp and clear presentation of our open problem, we focus on an episodic MDP within an
online framework under the regret performance measure. However, similar problems can be raised
in other settings, including infinite horizon discounted or undiscounted MDPs within an online
or offline framework. We specifically ask: Is it possible to design order-optimal or, at the very
least, no-regret learning algorithms under reasonable assumptions on an MDP with a kernel-based
structure? In this paper, we will formally present this open problem, provide an overview of existing
work, and discuss some of the challenges involved.

2. Episodic MDP

An episodic MDP can be described by the tuple M = (S,A, H, P, r), where S and A are the state
and action spaces, the integer H is the length of each episode, r = {rh}Hh=1 are the reward functions
and P = {Ph}Hh=1 are the transition probability distributions. We use the notation Z = S × A to
denote the state-action space. For each h ∈ [H], rh : Z → [0, 1] is the reward function at step
h, which is supposed to be deterministic and known for simplicity, and Ph(·|s, a) is the unknown
transition probability distribution on S for the next state from state-action pair (s, a).
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A policy π = {πh}Hh=1, at each step h, determines the (possibly random) action πh : S → A
taken by the agent at state s. At the beginning of each episode t = 1, 2, · · · , the environment picks
an arbitrary state s1,t. The agent determines a policy πt = {πh,t}Hh=1. Then, at each step h ∈ [H],
the agent observes the state sh,t ∈ S, and picks an action ah,t = πh,t(sh,t). The new state sh+1,t

then is drawn from the transition distribution Ph(·|sh,t, ah,t). The episode ends when the agent
receives the final reward rH(sH,t, aH,t). We are interested in maximizing the expected total reward
in the episode, starting at step h, i.e., the value function, defined as:

V π
h (s) = E

[
H∑

h′=h

rh′(sh′ , ah′)

∣∣∣∣sh = s

]
, ∀s ∈ S, h ∈ [H], (1)

where the expectation is taken with respect to the randomness in the trajectory {(sh, ah)}Hh=1 ob-
tained by the policy π. It can be shown that under mild assumptions (e.g., continuity of Ph, com-
pactness of Z , and boundedness of r) there exists an optimal policy π⋆ which attains the maximum
possible value of V π

h (s) at every step and at every state (e.g., see, Puterman, 2014). We use the
notation V ⋆

h (s) = maxπ V
π
h (s), ∀s ∈ S, h ∈ [H]. By definition V π⋆

h = V ⋆
h . The performance of a

learning algorithm {πt}t∈[T ] is measured in terms of the total loss in the value function, referred to
as regret, denoted by R(T ) in the following definition:

R(T ) =

T∑
t=1

(V ⋆
1 (s1,t)− V πt

1 (s1,t)). (2)

A learning algorithm with sublinear regret in T is often referred to as a no-regret algorithm, since
the average regret over T tends toward zero as T increases. This implies that the value of the policy
executed by the learning algorithm converges to that of the optimal policy over episodes.

For a value function V : S → R, and a conditional distribution P (s|z), s ∈ S, z ∈ Z , we
define the notation [PV ](z) = Es∼P (·|z)[V (s)]. The state-action value function Qπ

h : Z → [0, H] is

defined as follows: Qπ
h(s, a) = Eπ

[∑H
h′=h rh′(sh′ , ah′)

∣∣∣∣sh = s, ah = a

]
, where the expectation

is taken with respect to the randomness in the trajectory {(sh, ah)}Hh=1 obtained by the policy π.
The Bellman equation associated with a policy π then is represented as: Qπ

h(s, a) = rh(s, a) +
[PhV

π
h+1](s, a), V

π
h (s) = maxa∈AQπ

h(s, a), V
π
H+1 ≡ 0.

3. Kernel-Based Modelling

Various structural complexities for MDPs have been considered, including the tabular model with
small finite S and A, where regret bounds of Õ(

√
|S||A|H3T ) have been shown (see, e.g., Jin

et al., 2018). In the linear setting, the transition probability model Ph is assumed to be representable
using a linear feature mapping (Jin et al., 2020):

Ph(·|s, a) = θh(·)ϕ(s, a), ∀s ∈ S, a ∈ A,

where θh(·) ∈ Rd are unknown measures over S, and ϕ : S × A → R is a d-dimensional fea-
ture map. This representation enables the use of linear function approximation for the expected
value function [PhV ] and facilitates the design of a policy based on an optimistic modification of
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Least-Squares Value Iteration (LSVI) that achieves a regret bound of Õ(
√
d3H3T ), scaling with the

dimension d of the feature map ϕ, rather than the size of S and A.
A natural extension of the linear model is the kernel-based model, which is a linear model in the

(possibly infinite-dimensional) feature space of a positive definite kernel. This approach provides
rich representation capacity for nonlinear function approximation using kernel-ridge regression.
An intuitive explanation of this approach can be provided by using Mercer’s theorem. Let k :
Z × Z → R be a known positive definite kernel. By Mercer’s theorem, k can be expressed as
k(z, z′) =

∑∞
m=1 λmφm(z)φm(z′), where λm > 0 and φm : Z → R are the eigenvalues and

eigenfeatures corresponding to k, respectively. Additionally, the space defined by these functions is
referred to as the reproducing kernel Hilbert space (RKHS) corresponding to k:

Hk =

{
f : f =

∞∑
m=1

θmλ
1
2
mφm(z), ∥θ∥ < ∞

}
,

where ∥θ∥ is the ℓ2 norm of the weights θm. The RKHS norm of f is defined as ∥f∥Hk
= ∥θ∥. I.e.,

Hk is the class of linear functions in the feature space of {λ
1
2
mφm}∞m=1.

Analogous to the linear model, the following assumption is made for kernel-based models, with
the linear model as a special case when using a linear kernel.

Assumption 1 Let Hk be the RKHS corresponding to a positive definite kernel k : Z × Z → R.
We assume, ∀h ∈ [H], ∀s′ ∈ S, Ph(s

′|·) ∈ Hk and ∥Ph(s
′|·)∥Hk

≤ u, for some constant u > 0.

The target function of interest here is f = [PV ] for some unknown transition probability distribu-
tion P satisfying Assumption 1, and some value function V : S → R. For a dataset of n transitions
{(zi, s′i)}ni=1, where s′i ∼ P (·|zi), we have the following prediction and uncertainty estimate, re-
spectively, for f , utilizing kernel-ridge regression:

f̂n(z) = k⊤
n (z)(Kn + ρI)−1vn, and σ2

n(z) = k⊤
n (z)(Kn + ρI)−1kn(z), (3)

where kn = [k(z, z1), k(z, z2), · · · , k(z, zn)], Kn = [k(zi, zj)]
n
i,j=1 is the kernel matrix, ρ > 0 is

a free parameter, I is the identity matrix of dimensions n, and vn = [V (s′1), V (s′2), · · · , V (s′n)] is
the vector of observations. Note that Es′∼P (·|z)[V (s′)] = f(z) by definition; thus, V (s′i) are noisy
realizations of f(zi).

4. Open Problem

The question we ask is as follows: Consider the episodic MDP setting described in Section 2. Under
Assumption 1, (a) Can a no-regret learning algorithm be designed? (b) What is the minimum regret
growth rate with T (and also H)? And, can a learning algorithm be designed to achieve order-
optimal (or near-optimal) regret performance, closely aligning with the established lower bound?

5. Existing Results and Challenges

Recall the kernel ridge prediction f̂n and the uncertainty estimate σn given in Equation (3). Con-
fidence intervals based on these statistics are important building blocks in the analysis of func-
tion approximation in RL using kernel-based models. For a fixed f ∈ Hk, with ∥f∥Hk

≤ cf ,
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for some constant cf > 0, assuming σ-sub-Gaussian observation noise, several confidence in-
tervals of the form |f(z) − f̂n(z)| ≤ βn(δ)σn(s), at a 1 − δ confidence level are established,
where the confidence interval width multiplier βn(δ) depends on δ, n, σ, and the kernel k (Abbasi-
Yadkori, 2013; Chowdhury and Gopalan, 2017; Vakili et al., 2021; Whitehouse et al., 2024). In
particular, in an offline setting where the observation points zi are predetermined and indepen-
dent of the observation noise, the confidence interval for a fixed z ∈ Z is given by βn(δ) =

cf+
σ√
ρ

√
2 log(1δ ) (Vakili et al., 2021). In an online setting, such as RL and bandits, where the obser-

vation points are adaptively selected based on prior observations, the application of self-normalized
confidence bounds for vector-valued martingales (Abbasi-Yadkori, 2013) to the kernel setting re-

sults in a confidence interval with βn(δ) = cf + σ√
ρ

√
2 log(1δ ) + γ(n) (Whitehouse et al., 2024),

where γ(n) = supz1,··· ,zn∈Z
1
2 log det(I + ρ−1Kn) represents the maximum information gain, a

kernel specific complexity term that intuitively reflects the effective dimension of the kernel model.
In the RL setting, function approximation is typically applied to fh,n = [PhVh,n], with proxies

Vh,n : S → R for the value function—usually an upper confidence bound on the value function.
Due to the Markovian nature of the temporal dynamics, these functions are not prefixed, making the
previously mentioned confidence intervals inapplicable. This necessitates further considerations,
leading to an increased βn(δ). We here overview the most important approaches addressing this
issue and the corresponding eventual regret bounds.

In Yang et al. (2020), the authors adopt a rigorous approach, considering the class of all proxy
value functions that appear throughout their optimistic LSVI algorithm:

V = {V : ∀(s, a) ∈ Z, V (s) = max
a∈A

min{H,Q(s, a)}, Q(z) = Q0(z) + bσn(z)},

where ∥Q0∥Hk
≤ c, for some c > 0, and b ∈ [0, B], Q0 represents possible predictions and σn

represents possible uncertainty estimates derived from a set of n observations using kernel ridge
regression. They proceed by bounding the ϵ-covering number of V . Specifically, they establish a
bound on N (V, ϵ), the minimum number of functions needed to cover V up to an ϵ error in ℓ∞
norm. Using this technique, they derive a confidence interval that is applicable to all V ∈ V and

the corresponding f = [PV ], with βn(δ) = O(cf +
√
log(1δ ) + γ(n) + logN (V, 1

n)) for a choice

of ϵ = O( 1n). This leads to a regret bound of Õ(βT (δ)H
2
√
Tγ(T )), which does not ensure no-

regret performance when βT (δ) grows at least as fast as
√
T , a case common with several kernels

of interest, including the Metérn and neural tangent kernels.
Chowdhury and Oliveira (2023) make a strong assumption, referred to as optimistic closure,

that ∀V ∈ V, ∥V ∥Hk
≤ cv, for some cv > 0. Utilizing kernel mean embedding, they prove a tighter

confidence interval with βn(δ) = Õ(cf + σ√
ρ

√
log(1δ ) + γ(n)). This improved bound potentially

leads to no-regret guarantees using techniques from bandits (see, Whitehouse et al., 2024). However,
the optimistic closure assumption seems unrealistic. One potential solution to rigorously obtain no-
regret guarantees involves relaxing the optimistic closure assumption in their work.

A related problem is kernel bandits (also known as Bayesian optimization), a spacial case with
|S| = 1, H = 1, where no-regret guarantees are established for Upper Confidence Bound type
algorithms (Whitehouse et al., 2024), and more sophisticated algorithms that perform sample or
domain partitioning have been shown to achieve order-optimal regret bounds (see, e.g., Valko et al.,
2013; Salgia et al., 2021; Li and Scarlett, 2022). While the ideas in these works are insightful, their
applicability to general MDPs is unclear.
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