
Proceedings of Machine Learning Research vol 247:1–75, 2024 37th Annual Conference on Learning Theory

Pruning is Optimal for Learning Sparse Features in High-Dimensions

Nuri Mert Vural VURAL@CS.TORONTO.EDU
Department of Computer Science at University of Toronto, and Vector Institute

Murat A. Erdogdu ERDOGDU@CS.TORONTO.EDU

Department of Computer Science, and of Statistical Sciences at University of Toronto, and Vector Institute

Editors: Shipra Agrawal and Aaron Roth

Abstract
While it is commonly observed in practice that pruning networks to a certain level of sparsity can
improve the quality of the features, a theoretical explanation of this phenomenon remains elusive.
In this work, we investigate this by demonstrating that a broad class of statistical models can be
optimally learned using pruned neural networks trained with gradient descent, in high-dimensions.

We consider learning both single-index and multi-index models of the form y = σ∗(V ⊤x) +
ϵ, where σ∗ is a degree-p polynomial, and V ∈ Rd×r with r ≪ d, is the matrix containing
relevant model directions. We assume that V satisfies a certain ℓq-sparsity condition for matrices
and show that pruning neural networks proportional to the sparsity level of V improves their sample
complexity compared to unpruned networks. Furthermore, we establish Correlational Statistical
Query (CSQ) lower bounds in this setting, which take the sparsity level of V into account. We
show that if the sparsity level of V exceeds a certain threshold, training pruned networks with a
gradient descent algorithm achieves the sample complexity suggested by the CSQ lower bound.
In the same scenario, however, our results imply that basis-independent methods such as models
trained via standard gradient descent initialized with rotationally invariant random weights can
provably achieve only suboptimal sample complexity.

1. Introduction

Neural network pruning, a technique aimed at reducing the number of weights by selectively re-
moving certain connections or neurons, has attracted significant attention in recent years as a means
to improve efficiency and scalability in deep learning (LeCun et al., 1989; Hassibi and Stork, 1992;
Han et al., 2015; Frankle and Carbin, 2019). Beyond the computational advantages offered by
pruning, empirical observations demonstrate that this method can also substantially improve the
generalization performance of neural networks (Bartoldson et al., 2020; Jin et al., 2022).

Deep learning has challenged the classical learning theory and demonstrated that overparameter-
ization will oftentimes improve generalization. In stark contrast, however, pruning overparametrized
networks is also known to improve generalization, as observed in many empirical studies (LeCun
et al., 1989; Hassibi and Stork, 1992; Bartoldson et al., 2020; Jin et al., 2022). In this context, our
understanding of the effect of pruning remains elusive. As such, we focus on the following question:

Does pruning improve the quality of trained features in neural networks?

We answer this question in the affirmative. Indeed, we show that when the statistical model satisfies
a certain sparsity condition, pruned neural networks trained with gradient descent can achieve opti-
mal sample complexity, and learn significantly more efficiently compared to unpruned networks.

© 2024 N.M. Vural & M.A. Erdogdu.

VURAL ERDOGDU

Feature learning in neural networks has been the focus of many recent works. A key char-
acteristic in these models is their ability to learn low-dimensional latent features (Yehudai and
Shamir, 2019; Ghorbani et al., 2020; Mousavi-Hosseini et al., 2023a). An apt scenario for studying
this capability is the task of learning multi-index models (Damian et al., 2022; Mousavi-Hosseini
et al., 2023a), where the response y ∈ R depends on the input x ∈ Rd via the relationship
y = σ∗(V ⊤x) + ϵ. Here, σ∗ : Rr → R is the non-linear link function, and the matrix V ∈ Rd×r
contains the relevant model directions. Our main focus is the regime where there are few relevant
directions when compared to the ambient input dimension, i.e. r ≪ d. In the special case r = 1,
this model also covers the single-index setting, which has been studied extensively; see e.g. Ba
et al. (2022); Mousavi-Hosseini et al. (2023a); Arous et al. (2021); Damian et al. (2023) and the
references therein. In the simplified single-index case, the sample complexity of learning the model
direction is determined by the information exponent k⋆ of the link function σ∗, which is defined as
the smallest order nonzero Hermite coefficient of σ∗. Arous et al. (2021) proved that SGD learns
the direction in n ≥ O(d1∨k

⋆−1) samples, which is also tight for this algorithm. This, however,
does not meet the corresponding Correlational Statistical Query (CSQ) lower bound in this setting
which, roughly states that n ≥ Ω(dk

⋆/2) samples are necessary. Recently, Damian et al. (2023)
showed that smoothing the loss landscape can close this gap and attain the CSQ lower bound.

It is important to highlight that the aforementioned studies consider single- or multi-index set-
tings in their full generality, without any structural assumptions on the model directions. In practice,
however, high-dimensional data often exhibits low-dimensional structures; thus, sparsity is a natural
property to consider. It is reasonable to expect that with this additional structure, the correspond-
ing CSQ lower bound would become smaller. However, it remains unclear whether the previously
considered training methods can still achieve this lower bound in the sparse setting.

In this paper, we introduce the concept of soft sparsity for the model directions V and derive a
CSQ lower bound that depends on this sparsity level, which is always smaller than the lower bound
in the general multi-index setting that only considers the worst-case sparsity scenario. Next, we
demonstrate that pruned neural networks trained with a gradient-based method can achieve the opti-
mal sample complexity suggested by this CSQ lower bound. Since the additional sparsity structure
reduces the lower bound, basis-independent training methods such as gradient descent initialized
with a symmetric distribution have provably suboptimal sample complexity; this implies a separa-
tion between pruning-based and existing training methods. We summarize our contributions below.

– We consider learning multi-index models of the form y = σ∗(V ⊤x) + ϵ where the model
directions V ∈ Rd×r satisfy a certain soft sparsity. In Theorem 2, we prove a Correlational
Statistical Query (CSQ) lower bound for this model, which also takes the inherent sparsity into
account. The lower bound depends only on the sparsity level beyond a certain threshold. In this
regime, our result shows that basis-independent training methods are always suboptimal.

– In the single-index case where r = 1, we prove that pruning the neural network with a sparsity
level proportional to that of the model direction leads to a better sample complexity after training.
Specifically, we consider polynomial link functions and show in Theorem 4 that the sample
complexity achieved after pruning is optimal in the sense that, training after pruning can achieve
the complexity suggested by the CSQ lower bound for any information exponent k⋆ ≥ 1.

– Finally, we consider the multi-index case with r > 1. Under an additional assumption implying
that the information exponent is k⋆ = 2, we prove in Theorem 5 that, pruned network trained
with gradient descent can achieve the corresponding CSQ lower bound in this setting as well.

2

LEARNING SPARSE FEATURES WITH PRUNING

1.1. Related Work
Pruning and generalization. Pruning techniques have a rich history, spanning from classical
methods that prune weights based on connectivity metrics like the Jacobian/Hessian (LeCun et al.,
1989; Hassibi and Stork, 1992), to more recent approaches relying on weight magnitude (Han et al.,
2015; Wen et al., 2016; Molchanov et al., 2017). Notably, iterative magnitude pruning, proposed
by Han et al. (2015) demonstrated remarkable success in deep neural networks, sparking a surge in
pruning research (Zhu and Gupta, 2018; Frankle et al., 2020; Gale et al., 2019; Liu et al., 2019).

Numerous studies demonstrate the beneficial effects of pruning on generalization (LeCun et al.,
1989; Frankle and Carbin, 2019; Barsbey et al., 2021). Prior research treats pruning as an additional
regularization technique, which requires weights to exhibit small norm (Giles and Omlin, 1994),
achieve flat minima (Bartoldson et al., 2020), or enhance robustness to outliers (Jin et al., 2022).
However, these studies are predominantly empirical and lack a theoretical foundation. Among
the theoretical works, only Yang et al. (2023) examines random pruning within a specific statistical
model. Our work extends their framework to encompass general polynomial link functions and data-
dependent pruning algorithms, complementing generalization bounds with guarantees of optimality.
Lottery tickets and sparsity. Recent work has observed that overparameterized neural networks
contain subsets, referred to as “winning tickets”, which can achieve comparable performance to the
original network when trained independently (Frankle and Carbin, 2019). This phenomenon, known
as the Lottery Ticket Hypothesis (LTH), has been extensively studied in the literature (Frankle et al.,
2020; Gale et al., 2019; Chen et al., 2020; Zhou et al., 2019). Several recent works have focused on
investigating the theoretical conditions for the existence of such subnetworks (Malach et al., 2020;
Orseau et al., 2020) and the fundamental limitations of identifying them (Kumar et al., 2024). Our
study takes a different approach by examining the training dynamics and generalization within the
context of pruning. While previous works primarily focus on identifying subnetworks as predicted
by the LTH, our research delves into the interplay between generalization and pruning methods.
Non-linear feature learning with neural networks. Recent theoretical studies have examined two
scaling regimes in neural networks. In the “lazy” regime (Chizat et al., 2019), parameters remain
largely unchanged from initialization, resembling kernel methods (Jacot et al., 2018; Du et al., 2019;
Allen-Zhu et al.; Oymak and Soltanolkotabi, 2020). However, deep learning’s superiority over
kernel models suggests they can go beyond this regime (Yehudai and Shamir, 2019; Ghorbani et al.,
2020; Geiger et al., 2019). In contrast, the “mean-field” regime, where gradient descent converges
to Wasserstein gradient flow, enables feature learning (Chizat et al., 2019; Mei et al., 2019; Chizat,
2022), but primarily applies to infinitely wide networks. Our paper explores a different setting,
allowing for arbitrary-width neural networks without excessive overparameterization, while still
employing mean-field scaling for weight initialization.
Feature learning with multiple-index teacher models. Learning an unknown low-dimensional
function from data is fundamental in statistics (Li and Duan, 1989). Recent research in learning
theory has considered this problem, aiming to demonstrate that neural networks can learn useful
feature representations and outperform kernel methods (Ghorbani et al., 2020; Damian et al., 2022;
Abbe et al., 2023). In particular, Abbe et al. (2022) investigates the necessary and sufficient condi-
tions for learning with linear sample complexity in the mean-field limit, focusing on inputs confined
to the hypercube. Closer to our setting are the recent works Damian et al. (2022); Mousavi-Hosseini
et al. (2023a) which demonstrate a clear separation between NNs and kernel methods, leveraging
the effect of representation learning. More recently, Dandi et al. (2024) shows that mini-batch SGD
with finite number steps can learn a certain class of link functions with linear sample complexity.

3

VURAL ERDOGDU

Our work operates within a similar framework, incorporating an additional sparsity condition on
relevant model directions. However, our analysis differs from previous work in two main aspects.
First, our pruning results are constructive; we develop an explicit algorithm to establish the sample
complexity of the pruned network trained via gradient descent. Second, pruning introduces a new
dependency between weights and data, requiring an intricate analysis of gradient descent dynamics.

2. Preliminaries

Notations. Let [n] := {1, · · · , n}. We use ⟨·, ·⟩ and ∥·∥2 to denote the Euclidean inner product and
the norm, respectively. For matrices, ∥·∥2 denotes the usual operator norm. For a matrix A ∈ Rm×n,
Ai∗ and A∗j denote the ith row and jth column of A, respectively. Sd−1 is the d-dimensional unit
sphere. We use {e1, · · · , ed} to denote the standard basis vectors in Rd. We use O(·) and Ω(·) to
suppress constants in upper and lower bounds. We use Õ(·) to suppress poly-logarithmic terms in
d in upper bounds. We use od(·) to denote vanishing terms as d→∞. We use f ∈ Θ(g) to denote
Ω (g) ≤ f ≤ O (g). For a vector x ∈ Rd, we use supp(x) := {i ∈ [d] : xi ̸= 0}. For a subset
J ⊆ [d], we use x|J ∈ Rd to denote the restriction of the vector x on J , i.e., the coordinate indices
that are not in J are set to be 0. For matrices, A|J denotes the matrix A with everything but the
rows indexed by the elements in J set to 0. Finally, x|top(M) denote the vector x with everything
except M largest entries in magnitude set to 0.

Statistical model. For a link function σ∗ : Rr → R, we consider the multi-index model

y = σ∗(V ⊤x) + ϵ with x ∼ N (0, Id)

where x ∈ Rd is the input, ϵ is a zero-mean noise with O(1) sub-Gaussian norm and V ∈ Rd×r
is an orthonormal matrix, i.e, V ⊤V = Ir. We assume that σ∗ is a polynomial of degree p, and
it is normalized to satisfy Ez∼N (0,Ir)[σ

∗(z)] = 0 and Ez∼N (0,Ir)

[
σ∗(z)2

]
= 1. We consider the

low-dimensional setting r ≪ d which, in the extreme case r = 1, covers single-index models. We
are mainly interested in models where V exhibits sparsity; we use the following matrix norm:

∥V ∥2,q :=
∥∥(∥V1∗∥2, · · · , ∥Vd∗∥2

)∥∥
q

where q ∈ [0, 2),

where Vi∗ denotes the ith row of V .1 This is simply the usual ℓq norm of the vector with entries
ℓ2 norm of rows of V . Since V ⊤V = Ir, assuming that ∥V ∥2,q is small constrains the model
complexity significantly. Indeed, when q = 0, ∥·∥2,q counts the number of non-zero rows, serving
as a measure of sparsity in high-dimensional settings. In the case q ∈ (0, 2), small ∥·∥2,q norm
allows all rows to potentially contain non-zero values, provided their ℓ2 norms are all relatively
small. When we have ∥V ∥q2,q ≤ Rq for some Rq, we adopt a terminology from Raskutti et al.
(2011) and refer to Rq as the soft sparsity level. Notably, the particular choice ∥·∥2,q is motivated by
its coordinate-independent property, as ∥V U∥2,q = ∥V ∥2,q for any orthonormal matrix U ∈ Rr×r.

Two-layer Neural Networks. Denoting the ReLU activation with ϕ(t) = max{t, 0}, we consider
learning with two-layer neural networks of the form

ŷ(x; (a,W , b)) =

2m∑
j=1

ajϕ(⟨Wj∗,x⟩+ bj) = ⟨a, ϕ (Wx+ b)⟩ ,

1. To be precise, ∥·∥2,q is not a norm when q < 1.

4

LEARNING SPARSE FEATURES WITH PRUNING

where W = {Wj∗}2mj=1 is the 2m × d matrix whose rows are denoted with Wj∗, a = {aj}2mj=1 is
the second layer weights, b = {bj}2mj=1 is the biases. Note that ϕ(·) is applied element-wise in the
second equality. We define the population and the empirical risks respectively as

R((a,W, b))=
1

2
E
[
(ŷ(x; (a,W, b))− y)2

]
, Rn((a,W, b))=

1

2n

n∑
i=1

(ŷ(xi; (a,W, b))− yi)
2

where the expectation above is over the data distribution.
Our training procedure consists of three-steps: (i) we first prune the network for dimension

reduction, then (ii) we take a gradient descent iteration with a large step-size to train W , and finally
(iii) we train the second layer weights a. We will provide the details of the algorithm, in particular
the pruning step in Section 4. Similar to the previous works, e.g. Chizat et al. (2019); Damian et al.
(2022); Dandi et al. (2023), we use symmetric initialization so that ŷ(x, (a(0),W (0), b(0))) = 0;
we assume that the network has a width of 2m such that

a
(0)
j = −a(0)2m−j , W

(0)
j∗ = W

(0)
(2m−j)∗ ∈ Sd−1, b

(0)
j = b

(0)
2m−j , for j ∈ [m]. (2.1)

Particularly, we will use the following initialization for the second-layer weights and the biases,

a
(0)
j ∼ Unif{−1, 1}, and b

(0)
j ∼ N (0, 1), j ∈ [m]. (2.2)

Initialization of W (0) will depend on the pruning algorithm and be detailed later. Note that due to
(2.1), the gradient of Rn with respect to Wj∗ at initialization can be written as follows:

∇Wj∗Rn((a,W , b)) =
−aj
n

n∑
i=1

yixiϕ
′ (⟨Wj∗,xi⟩+ bj) .

We simplify the notation to∇jRn((a,w, b)) whenever Wi∗ = w for all i.
Characteristics of the link function σ∗ plays an important role in the complexity of learning.

Indeed, recent works showed that the term in the Hermite expansion of σ∗ with the smallest degree
determines the sample complexity (Arous et al., 2021; Abbe et al., 2023). In line of these works,
we also rely on Hermite expansions, for which we define the Hermite polynomials as follows.

Definition 1 (Hermite Polynomials) The kth Hermite polynomial Hek : R → R is the degree k
polynomial defined by

Hek(t) = (−1)ket2/2 dk

dtk
e−t

2/2.

3. Limitations of Basis Independent Methods: CSQ Lower Bounds

In this section, we explore the fundamental barriers under the soft sparsity structure we assume on
the statistical model. Specifically, we establish a lower bound for Correlational Statistical Query
(CSQ) methods within our framework. We note that the CSQ methods encompasses a wide class of
algorithms under the squared error loss. We consider the function class

Fr,k :=

x→ 1√
rk!

r∑
j=1

Hek(⟨V∗j ,x⟩)
∣∣∣ V ∈ Rd×r, V ⊤V = Ir, ∥V ∥q2,q ≤ r

q
2dα(1−

q
2)

 (3.1)

5

VURAL ERDOGDU

where α ∈ (0, 1), Hek denotes the kth Hermite polynomial (see Definition 1), and for q = 0,
we use the convention ∥V ∥02,0 := ∥V ∥2,0. We remark that the constraint V ⊤V = Ir directly
implies r ≤ ∥V ∥q2,q ≤ rq/2d1−q/2. Therefore, Fr,k covers all possible sparsity levels by varying
the parameter α. We have the following result on the query complexity of CSQ methods.

Theorem 2 ConsiderFr,k with some q ∈ [0, 2) and α ∈ (0, 1). For a sufficiently large d depending
on (r, k, q, α), any CSQ algorithm for Fr,k that guarantees error ε = Ω(1) requires either queries

of accuracy τ = Õ
(
d−(α∧

1
2)

k
2
)

or super-polynomially many queries in d.

Using the heuristic τ ≈ 1√
n

as in Damian et al. (2022), Theorem 2 implies that n ≥ Ω
(
d(α∧

1
2)k
)

samples are necessary to learn a function in Fr,k unless the algorithm makes super-polynomial
queries in d. This recovers the existing lower bound Ω

(
dk/2

)
given in Damian et al. (2022); Abbe

et al. (2023), when the constraint is sufficiently large, i.e., α > 1
2 . Conversely, when the soft sparsity

level is sufficiently small, i.e., α ≤ 1
2 , we observe that the complexity lower bound reads Ω

(
dαk
)
.

Remarkably, in Section 5, we prove that a pruned neural network trained with gradient descent can
indeed attain this lower bound; thus, it achieves optimal sample complexity in this sense.

We note that ∥V ∥q2,q can be as small as r; thus, the CSQ lower bound in this regime can be
significantly smaller than the unconstrained version Ω

(
dk/2

)
. On the other hand, methods that are

independent of the underlying basis, such as gradient descent with symmetric initialization, cannot
exploit the additional structure. As a result, these methods are constrained by the sample complexity
lower bound of Ω

(
dk/2

)
in the worst case. Finally, it is worth emphasizing that CSQ lower bounds

do not directly apply to algorithms like SGD or one-step gradient descent due to non-adversarial
noise. Nevertheless, under the square loss, queries of these algorithms fall under the correlational
regime, thus the fundamental barrier CSQ lower bounds provide is frequently referred to when
assessing the optimality of these methods; see e.g. Damian et al. (2022, 2023); Abbe et al. (2023).

4. Training Procedure: Pruning as Dimension Reduction

In this section, we outline the pruning procedure and how it effectively reduces the dimensionality
of the learning problem, leading to the optimal sample complexity suggested by Theorem 2.

Intuition. To gain intuition, we start with the population dynamics and consider a simplified single-
index setting to demonstrate the resulting dimension reduction. Let

σ∗(⟨v,x⟩) = He2(⟨v,x⟩) with v =
(
d−

1
4 , · · · , d−

1
4 , 0, 0, · · · , 0

)
,

where the direction v is sparse, i.e. ∥v∥0 =
√
d≪ d. Moreover, for clarity, let us fix the output layer

weights to a
(0)
j = 1 and biases to b

(0)
j = 0 and consider the population gradient at initialization. To

see why comparing gradients performs dimension reduction, we write

∇jR((a(0), ei, b
(0))) = −E

[
σ∗(⟨v,x⟩)ϕ′(⟨ei,x⟩)x

]
= −

√
2
π ⟨v, ei⟩v + 1√

2π
⟨v, ei⟩2 ei (4.1)

where ei is the ith standard basis and constants are due to the Hermite coefficients of the ReLU
activation ϕ(·). Thus, we have

∥∇jR((a(0), ei, b
(0)))∥22 = 2

πv
2
i +O(d−1).

6

LEARNING SPARSE FEATURES WITH PRUNING

Algorithm 1 PruneNetwork
Inputs: (i) Data: D := {(xi, yi)}ni=1 (ii) Network width:1 m ∈ N (iii) Sparsity level: M ∈ [d]
(iv) Shrinkage constant: c ∈ (0, 1)

1: Let ẽi be as in (4.2), and initialize a(0) and b(0) as in (2.1)-(2.2)
2: Let ∇̃jR±

n (ẽi) := ∇jR±
n

(
(a(0), ẽi, b

(0))
)
|top(M) and ∥∇̃R±

n (ẽi)∥2F =
∑2m

j=1∥∇̃jR±
n (ẽi)∥22

3: J = supp(∇̃jR−
n (ẽi)) for some j ∈ [m] with b

(0)
j ≥ 0 if one exists, otherwise J = ∅.

4: Sort ∥∇̃R+
n (ẽj1)∥2 ≥ ∥∇̃R+

n (ẽj2)∥2 ≥ · · · ≥ ∥∇̃R+
n (ẽjd)∥2 and J ← J ∪ {j1, · · · , jM}

5: Sort ∥∇̃R−
n (ẽk1)∥2 ≥ ∥∇̃R−

n (ẽk2)∥2 ≥ · · · ≥ ∥∇̃R−
n (ẽkd)∥2 and J ← J ∪ {k1, · · · , kM}

6: Return: J

Since the entries of V scale with d−1/4 in high dimensions, comparing the norm of gradients is
equivalent to comparing the magnitude of each entry vi. Hence, non-zero coordinates of V can
be picked up by pruning, which is effectively reducing the dimension of the problem from d to the
sparsity level

√
d in this example.

Algorithm 1 essentially extends the basic intuition above to general link functions σ∗ and em-
pirical gradients. However, such an extension requires us to handle two technical difficulties due to
the bias in the Hermite expansion of the population gradient. In Section 6, we illustrate how each
step in Algorithm 1 is designed to avoid those difficulties using the following arguments:

– (Data augmentation) We augment the feature vectors with an independent non-informative
random variable, i.e., x′ ← (x, z)T where z ∼ N (0, 1) and independent of x. For notational
convenience, we assume that the augmented features x′ (henceforth referred to as x) is d-
dimensional. Since the last entry of the feature vector is non-informative, we can assume
Vd∗ = 0, without loss of generality.

– (Shifted standard basis) We compare the magnitudes of the gradients initialized at

ẽj :=

{
cej +

√
1− c2ed, j ∈ [d− 1]

ed j = d.
(4.2)

Here, standard basis vectors are shifted by a factor of c ∈ (0, 1) to make sure that the extra
terms vanish (see Line 1 in Algorithm 1).

– (Even-odd decomposition) We consider the even and odd components of the activation sep-
arately, i.e., ϕ±(t; b) = (ϕ(t + b) ± ϕ(−t + b))/2, and evaluate the gradient with these
components (Line 2 in Algorithm 1)

∇jR±
n ((a

(0), ẽi, b
(0))) :=

1

2

[
∇jRn((a

(0), ẽi, b
(0))±∇jRn((a

(0),−ẽi, b(0))
]
.

Pruning Algorithm 1. The pruning algorithm is based on comparing gradient magnitudes at ini-
tialization to perform dimension reduction. The challenge lies in utilizing empirical gradients. To
estimate the gradient magnitudes, we consider pruned empirical gradients , i.e., ∇̃jR±

n (ẽi) :=
∇jR±

n

(
(a(0), ẽi, b

(0))
)
|top(M) (Line 2). Improving on the sample mean estimator, which requires

7

VURAL ERDOGDU

Algorithm 2 Gradient-based Training
Inputs: (i) Data: D := {(xi, yi)}ni=1 (ii) Learning rate: ηt > 0 (iii) Weight Decay: λt > 0
(iv) Network width:1 m ∈ N (v) Pruning Level: M ∈ [d] (vi) Shrinkage constant: c ∈ (0, 1)

1: J ← PruneNetwork(D,m,M, c)
2: Re-initialize a(0) and b(0) as in as in (2.1)-(2.2), and

W
(0)
j∗ ∼ Sd−1

J , and W
(0)
j∗ = W

(0)
(2m−j+1)∗, j ∈ [m].

3: Train the first layer weights: For j ∈ [2m]

W
(1)
j∗ = W

(0)
j∗ − η1

(
∇Wj∗Rn

(
(a(0),W

(0)
j∗ , b(0))

) ∣∣
J + λ1W

(0)
j∗

)
.

4: Re-initialize biases: For j ∈ [m], let b(1)j ∼ N (0, 1) and b
(1)
j = b

(1)
2m−j+1.

5: Train the second layer weights:

a(t+1) = a(t) − ηt

(
∇aRn((a

(t),W (1), b(1))) + λta
(t)
)
, t ≥ 2.

6: Return: ŷ(x; (a(T),W (1), b(1))) =
〈
a(T), ϕ(W (1)x+ b(1))

〉

O(d) samples, pruned sample mean requires sample complexity of Õ(dα) by leveraging the sparsity
of population gradient, hence providing the desired sample complexity for the algorithm.

Having computed the empirical gradients, we proceed by evaluating and sorting the gradients
(Lines 4 and 5). We keep the connections with larger gradient magnitude while pruning the remain-
ing small entries.

Training Algorithm 2. After pruning the neural network, we perform a gradient-based training
procedure. Let Sd−1

J ∼ Unif
{
x ∈ Sd−1

∣∣ xj = 0 for j ∈ [d] \ J
}

denote the uniform distribution
on the set of unit vectors supported on J . The algorithm symmetrically re-initializes the neural
network weights randomly restricted to J , i.e.,

W
(0)
j∗ ∼ Sd−1

J and W
(0)
j∗ = W

(0)
(2m−j+1)∗.

We consider a slightly modified version of the one-step gradient descent update used in recent
works Damian et al. (2022); Ba et al. (2022, 2023), namely, we perform a gradient step restricted on
setJ (Line 3). Here, since both W (0) and∇WRn

(
(a(0),W (0), b(0))

)
|J are supported onJ , W (1)

is also supported on J . Finally, after training the first layer weights W (0), we again symmetrically
re-initialize the biases and train the second-layer weights using gradient descent (Lines 4 and 5).

We note that Algorithm 2 as stated can be used to learn both single-index and multi-index
models, and falls under the correlational query algorithms discussed in Section 3. However, in the
multi-index setting, the algorithm needs a slight modification, which we detail in Section 5.2.

1. Note that the actual width of the network is 2m due to symmetric initialization.

8

LEARNING SPARSE FEATURES WITH PRUNING

5. Main Results

In this section, we present learning guarantees on Algorithm 2 when the data is generated from
either a single-index or a multi-index model. We focus on single-index models first.

5.1. Learning Sparse Single-index Models with Pruning

In what follows, we define a complexity measure for the link function to be learned.

Definition 3 (Information exponent) For the link function σ∗, we let σ∗ :=
∑p

k=0
γk
k!Hek be its

Hermite expansion. The information exponent of σ∗, which we denote by k⋆, is the index of the first
non-zero Hermite coefficient of σ∗, i.e., k⋆ := inf{k ≥ 1 | γk ̸= 0}.

Intuitively, information exponent measures the magnitude of information contained in the gradient
at initialization, and larger k⋆ implies increased gradient descent complexity (Arous et al., 2021).
The main result in the single-index setting relies on the above definition, and is given below.

Theorem 4 Let ∥V ∥q2,q = Θ
(
d(1−

q
2)α
)
, for some q ∈ [0, 2) and α ∈ (0, 1). For any ε > 0,

consider Algorithm 2 with m = Θ(dε), c = 1
log d ,

η1 = Õ
(
M

k⋆−1
2

)
, λ1 =

1

η1
, ηt =

1

Õ(m) + λt
, λt = Õ(m), t ≥ 2, and T = Õ(1).

For every ℓ ∈ N, there exists a constant dℓ,ε, depending on ℓ and ε, such that for d ≥ dℓ,ε, if

n = Õ
(
dαk

⋆
)

and M = Õ
(
dα
)
,

then, Algorithm 2 guarantees that with probability at least 1− d−ℓ

E
[(
ŷ(x; (a(T),W (1), b(1)))− y

)2]− E[ϵ2] ≤ Õ

(
1

m
+

√
M

n

)
+ od(1).

We observe that for any constraint level, the sample complexity in Theorem 4 reduces to
Õ(dαk

⋆
) for α ∈ (0, 1), which improves upon the existing O

(
dk

⋆)
guarantees for gradient-based

algorithms (Bietti et al., 2022; Mousavi-Hosseini et al., 2023b). Moreover, in the case α ≤ 1/2,
the upper bound matches with the CSQ lower bound in Theorem 2. Finally, we observe that for the
generalization error to be small, the width m and particularly the ambient dimension d need to be
both sufficiently large; thus, the right hand side of the bound vanishes only in high-dimensions.

5.2. Learning Sparse Multi-index Models with Pruning

In this section, we consider multi-index models, i.e., the case r > 1. We consider Algorithm 2 with
two minor modifications, following a similar construction to Damian et al. (2022) adapted to our
pruning framework. Right after the pruning step, between Lines 1 and 2, we subtract an estimate

9

VURAL ERDOGDU

of the first Hermite component from the response variable. We add this term back at the output, in
Line 6. These modifications are given as follows.

1.5: yi ← yi − ⟨µ̂|J ,xi⟩ , i ∈ [n] where µ̂ :=
1

n

n∑
i=1

yixi,

6: Return: ŷ(x; (a(T),W (1), b(1))) = ⟨µ̂|J ,x⟩+
〈
a(T), ϕ(W (1)x+ b(1))

〉
.

We will refer to the modified algorithm as Algorithm 2+.
The following condition on the link function, referred to as non-degeneracy in Damian et al.

(2022), is helpful in the analysis.

Assumption 1 The link function σ∗ : Rr → R satisfies that E[σ∗(z)zz⊤] ∈ Rr×r is full rank.

Under this assumption, σ∗ has information exponent2 k⋆ = 2. Therefore, this condition is signif-
icantly more restrictive than the assumptions in the single-index case. This is, however, expected
since recovering the entire principal subspace spanned by the model directions, i.e., the column
space of V , is significantly more challenging than recovering a single direction. Under this condi-
tion, we state the main result of the multi-index setting.

Theorem 5 Suppose that Assumption 1 holds. Let ∥V ∥q2,q = Θ
(
d(1−

q
2)α
)
, for some q ∈ [0, 2) and

α ∈ (0, 1). For any ε > 0, consider Algorithm 2+ with m = Θ(dε), c = 1
log d ,

η1 = Õ (M) , λ1 =
1

η1
, ηt =

1

Õ(m) + λt
, λt = Õ(m), t ≥ 2, and T = Õ(1).

For every ℓ ∈ N, there exists a constant dℓ,ε, depending on ℓ and ε, such that for d ≥ dℓ,ε, if

n = Õ
(
d2α
)

and M = Õ
(
dα
)
,

then, Algorithm 2+ guarantees that with probability at least 1− d−ℓ

E
[(
ŷ(x; (a(T),W (1), b(1)))− y

)2]− E[ϵ2] ≤ Õ

(
1

m
+

√
M

n

)
+ od(1).

The above result states that the improvement in sample-complexity due to pruning extends to
the multi-index setting as well. As in the single-index case, for all sparsity levels, gradient descent
followed by pruning requires Õ(d2α), for the soft sparsity level Θ(d(1−q/2)α) and α ∈ (0, 1), which
improves over the existing Õ(d2) bound shown in Damian et al. (2022). It is worth noting that
the bound in Damian et al. (2022) does not meet the CSQ lower bound in their setting. This gap,
however, was later closed in Damian et al. (2023) via smoothing the loss. With the additional
soft sparsity condition in Theorem 5, even smoothing will achieve suboptimal sample complexity

2. In Definition 3 , the information exponent is defined for r = 1. Similar to an argument by Abbe et al. (2023), we can
generalize our definition to encompass multi-index settings by considering the degree of the lowest order Hermite
components in σ∗. With this, Assumption 1 leads to an information exponent k⋆ = 2 in the worst-case scenario,
encompassing situations where the first Hermite component does not exist.

10

LEARNING SPARSE FEATURES WITH PRUNING

guarantee since the corresponding CSQ lower bound in this regime becomes smaller. Nevertheless,
observing that the function class in (3.1) satisfies Assumption 1 for r > 1 and k = 2, our lower
bound in Theorem 2 implies that the above result is tight in this sense, for α ≤ 1/2.

For the generalization error to be small in Theorem 5, we require the width m to be large.
More crucially, this bound is small only in high-dimensions where the ambient dimension is large.
Therefore, pruned neural networks learn useful representations via gradient descent, and achieves
optimal sample complexity in the above sense in high-dimensions, also in the multi-index setting.

6. Technicalities Around Pruning

First Technical Difficulty. A technical difficulty arises due to the bias introduced by the first-order
Hermite components. To illustrate a pathological case for this problem, we consider two models,
one with and one without the first-order Hermite component:

y = 1√
2
He2(⟨v1,x⟩) + 1√

2
He2(⟨v2,x⟩)︸ ︷︷ ︸

no first-order Hermite component

and y̌ = y + ⟨v,x⟩︸ ︷︷ ︸
first-order

Hermite component

(6.1)

where we choose v1 = e1, v2 = e2, v = −1√
π
(e1 + e2). Here, the second model, y̌, includes an

additional first-order Hermite term to illustrate its effect.
For the first model, we can derive the population gradient in (4.1) as follows:

∇jR((a(0), ei, b
(0))) = −E

[
yϕ′(⟨ei,x⟩)x

]
= −1

2
√
π


e1 i = 1

e2 i = 2

0 i > 2,

(6.2)

For the second model, denoted by∇jŘ, the population gradient is given by:

∇jŘ((a(0), ei, b
(0))) = −E

[
y̌ϕ′(⟨ẽi,x⟩)x

]
= −E

[
⟨v,x⟩ϕ′(⟨ei,x⟩)x

]︸ ︷︷ ︸
due to the additional

first-order Hermite term

−E
[
yϕ′(⟨ei,x⟩)x

]︸ ︷︷ ︸
=(6.2)

= 1
2
√
π


e2 i = 1

e1 i = 2

e1 + e2 i > 2.

(6.3)

We notice that in the first model, comparing the gradient magnitudes would recover the support,
whereas in the second model the gradients evaluated at the support of v1 and v2 (i = 1, 2) have
smaller norms than other cases (see Appendix A for the details).

The issue described above arises from the presence of the first-order Hermite term in (6.3). To
address this, we consider the even and odd components of the activation separately, as detailed in
Section 4. This decomposition allows us to separate the first-order Hermite term from the higher-
order terms in the Hermite expansion through even-odd decomposition, and eliminate the problem-
atic bias of the first-order term illustrated in (6.2)-(6.3).

Second Technical Difficulty. The second technical difficulty arises due to the presence of magni-
tude mismatch within the entries of V . To illustrate, let us consider the following case: For a small

11

VURAL ERDOGDU

0 < ε≪ d−1/2 and constants γ2 and γ4 specified later, let

σ∗(⟨v,x⟩) = γ2√
2
He2(⟨v,x⟩)+

γ4√
4!
He4(⟨v,x⟩)

with v =
(√

1− (
√
d− 1)ε2, ε, · · · , ε︸ ︷︷ ︸√

d− 1 many

, 0, 0, · · · , 0
)

(6.4)

where v is sparse, i.e. ∥v∥0 =
√
d≪ d, and the first entry of v is significantly larger than the rest.

The population gradient in this case is given by

∇jR((a(0), ei, b
(0))) = −E

[
σ∗(⟨v,x⟩)ϕ′(⟨ei,x⟩)x

]
= −v

(√
2γ2γ̃2vi +

2γ4γ̃4√
6

v3
i

)
︸ ︷︷ ︸

informative term

− ei

(
γ̃4γ2√

2
v2
i +

γ̃6γ4√
4!

v4
i

)
︸ ︷︷ ︸

extra term

, (6.5)

where γ̃i denotes the ith Hermite coefficients of the ReLU activation ϕ(·). The informative term
contains the information about the direction v while the extra term appears due to the properties
of Hermite polynomials. Here, a very large vi might cause extra terms to be comparable to the
informative terms, leading to cancellation. As detailed in Appendix A, we can find (γ2, γ4, ε) such
that for i = 1 (corresponding to largest entry in V), the informative and extra terms cancel each
other in (6.6), i.e., informative term ≈ −extra term, making the algorithm require exponentially
many samples to find the largest entry.

On the other hand, we observe that if vi’s vanish with d in (6.6), the informative term would
dominate since it scales with O(vi) whereas the extra term scales with O(v2

i). To make sure that
is the case in the presence of very large entries in V , we use data augmentation and compare the
magnitude of gradients evaluated at a shifted standard basis, as detailed in Section 4. Note that in
this case,

∇jR((a(0), ẽi, b
(0))) = −E

[
σ∗(⟨v,x⟩)ϕ′(⟨ẽi,x⟩)x

]
= − cv

(√
2γ2γ̃2vi + c2

2γ4γ̃4√
6

v3
i

)
︸ ︷︷ ︸

informative term

− c2ei

(
γ̃4γ2√
2!

v2
i + c2

γ̃6γ4√
4!

v4
i

)
︸ ︷︷ ︸

extra term

, (6.6)

where a sufficiently small c > 0 ensures that the informative term dominates the right-hand side.

7. Discussion

We studied how pruning impacts the sample complexity of learning single and multi-index models.
Our results show that pruning the network to a sparsity level proportional to the soft sparsity of
relevant model directions significantly improves sample complexity. Moreover, we supported our
results with a sparsity-aware CSQ lower bound which revealed that if the sparsity level exceeds
a certain threshold, the sample complexity of training a pruned network cannot be improved in
general. Conversely, the gap between our lower bound and the CSQ lower bound for the general
dense case suggests that basis-independent methods, such as gradient descent initialized with a
rotationally independent distribution, cannot achieve the sample complexity of the pruned network.

We outline a few limitations of our current work and discuss directions for future research.

12

LEARNING SPARSE FEATURES WITH PRUNING

– In our work, we considered training network weights with a single gradient step. However,
recent research suggests that using multiple gradient descent steps in the multi-index setting
yields improved sample complexity compared to single-step algorithms Abbe et al. (2023);
Dandi et al. (2024). Therefore, considering pruning with a multi-step gradient descent algo-
rithm can provide a more complete picture. Particularly, investigating pruning in the context
of incremental (or curriculum) learning presents an interesting direction for future research.

– In the gradient-based algorithm, we considered a somewhat unconventional initialization, lever-
aging the symmetry it introduces. It would be interesting to examine cases where we train a
network with multiple neurons starting from a more standard initialization. This analysis is
challenging due to the interactions between the neurons.

– The results presented in this paper are based on the assumption that the input distribution
follows an isotropic Gaussian distribution. Recent works Mousavi-Hosseini et al. (2023b); Ba
et al. (2023) showed that there is an intricate interplay between the model and the important
covariance directions, and the overall performance of neural networks is governed by their
interplay. Studying the effect of pruning in this regime and also extending our results to other
distributions (Roy et al., 2021), for example via zero-biased transformations (Goldstein and
Reinert, 1997; Goldstein and Wei, 2019), is a topic for future research.

Acknowledgements

We would like to thank Berivan Isik and Alireza Mousavi-Hosseini for their helpful discussions and
draft feedback. MAE was partially supported by NSERC Grant [2019-06167], CIFAR AI Chairs
program, and CIFAR AI Catalyst grant.

References

Emmanuel Abbe, Enric Boix Adserà, and Theodor Misiakiewicz. The merged-staircase property:
a necessary and nearly sufficient condition for SGD learning of sparse functions on two-layer
neural networks. In Conference on Learning Theory, 2-5 July 2022, London, UK, volume 178 of
Proceedings of Machine Learning Research, pages 4782–4887. PMLR, 2022.

Emmanuel Abbe, Enric Boix Adserà, and Theodor Misiakiewicz. Sgd learning on neural networks:
leap complexity and saddle-to-saddle dynamics. In Proceedings of Thirty Sixth Conference on
Learning Theory, volume 195 of Proceedings of Machine Learning Research, pages 2552–2623.
PMLR, 12–15 Jul 2023.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In Proceedings of the 36th International Conference on Machine Learning,
ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97 of Proceedings of Ma-
chine Learning Research, pages 242–252. PMLR.

Gerard Ben Arous, Reza Gheissari, and Aukosh Jagannath. Online stochastic gradient descent on
non-convex losses from high-dimensional inference. The Journal of Machine Learning Research,
22(1):4788–4838, 2021.

13

VURAL ERDOGDU

Jimmy Ba, Murat A Erdogdu, Taiji Suzuki, Zhichao Wang, Denny Wu, and Greg Yang. High-
dimensional asymptotics of feature learning: How one gradient step improves the representation.
In Advances in Neural Information Processing Systems, volume 35, pages 37932–37946. Curran
Associates, Inc., 2022.

Jimmy Ba, Murat A. Erdogdu, Taiji Suzuki, Zhichao Wang, and Denny Wu. Learning in the pres-
ence of low-dimensional structure: A spiked random matrix perspective. In Advances in Neural
Information Processing Systems 36: Annual Conference on Neural Information Processing Sys-
tems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023, 2023.

Melih Barsbey, Milad Sefidgaran, Murat A. Erdogdu, Gaël Richard, and Umut Simsekli. Heavy
tails in SGD and compressibility of overparametrized neural networks. In Advances in Neural In-
formation Processing Systems 34: Annual Conference on Neural Information Processing Systems
2021, NeurIPS 2021, December 6-14, 2021, virtual, pages 29364–29378, 2021.

Brian R. Bartoldson, Ari S. Morcos, Adrian Barbu, and Gordon Erlebacher. The generalization-
stability tradeoff in neural network pruning. In Advances in Neural Information Processing Sys-
tems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual, 2020.

Alberto Bietti, Joan Bruna, Clayton Sanford, and Min Jae Song. Learning single-index models with
shallow neural networks. In Advances in Neural Information Processing Systems 35: Annual
Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA,
USA, November 28 - December 9, 2022, 2022.

Sébastien Bubeck. Convex optimization: Algorithms and complexity, 2015.

Anthony Carbery and James Wright. Distributional and l-q norm inequalities for polynomials over
convex bodies in r-n. Mathematical Research Letters, 8:233–248, 2001.

Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Zhangyang Wang, and
Michael Carbin. The lottery ticket hypothesis for pre-trained BERT networks. In Advances in
Neural Information Processing Systems 33: Annual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

Lénaı̈c Chizat. Mean-field langevin dynamics : Exponential convergence and annealing. Trans.
Mach. Learn. Res., 2022.

Lénaı̈c Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable program-
ming. In Advances in Neural Information Processing Systems, volume 32. Curran Associates,
Inc., 2019.

Alex Damian, Eshaan Nichani, Rong Ge, and Jason D Lee. Smoothing the landscape boosts the
signal for sgd: Optimal sample complexity for learning single index models. In Advances in
Neural Information Processing Systems, volume 36, pages 752–784. Curran Associates, Inc.,
2023.

Alexandru Damian, Jason Lee, and Mahdi Soltanolkotabi. Neural networks can learn represen-
tations with gradient descent. In Proceedings of Thirty Fifth Conference on Learning Theory,

14

LEARNING SPARSE FEATURES WITH PRUNING

volume 178 of Proceedings of Machine Learning Research, pages 5413–5452. PMLR, 02–05 Jul
2022.

Yatin Dandi, Florent Krzakala, Bruno Loureiro, Luca Pesce, and Ludovic Stephan. How two-layer
neural networks learn, one (giant) step at a time, 2023.

Yatin Dandi, Emanuele Troiani, Luca Arnaboldi, Luca Pesce, Lenka Zdeborová, and Florent Krza-
kala. The benefits of reusing batches for gradient descent in two-layer networks: Breaking the
curse of information and leap exponents. CoRR, abs/2402.03220, 2024. doi: 10.48550/ARXIV.
2402.03220.

Simon S. Du, Xiyu Zhai, Barnabás Póczos, and Aarti Singh. Gradient descent provably optimizes
over-parameterized neural networks. In 7th International Conference on Learning Representa-
tions, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.

Murat Erdogdu, Mohsen Bayati, and Lee H Dicker. Scalable approximations for generalized linear
problems. Journal of Machine Learning Research, 20(7):1–45, 2019.

Murat A Erdogdu. Newton-stein method: a second order method for glms via stein’s lemma. In
Proceedings of Advances in Neural Information Processing Systems, pages 1216–1224, 2015.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable
neural networks. In 7th International Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear mode con-
nectivity and the lottery ticket hypothesis. In Proceedings of the 37th International Conference
on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pages 3259–
3269. PMLR, 13–18 Jul 2020.

Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks. ArXiv,
abs/1902.09574, 2019.

Mario Geiger, Stefano Spigler, Arthur Jacot, and Matthieu Wyart. Disentangling feature and lazy
learning in deep neural networks: an empirical study. CoRR, abs/1906.08034, 2019.

Behrooz Ghorbani, Song Mei, Theodor Misiakiewicz, and Andrea Montanari. When do neural
networks outperform kernel methods? In Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual, 2020.

C. Lee Giles and Christian W. Omlin. Pruning recurrent neural networks for improved generaliza-
tion performance. IEEE Trans. Neural Networks, 5(5):848–851, 1994.

Larry Goldstein and Gesine Reinert. Stein’s method and the zero bias transformation with appli-
cation to simple random sampling. The Annals of Applied Probability, 7(4), November 1997.
ISSN 1050-5164. doi: 10.1214/aoap/1043862419. URL http://dx.doi.org/10.1214/
aoap/1043862419.

15

http://dx.doi.org/10.1214/aoap/1043862419
http://dx.doi.org/10.1214/aoap/1043862419

VURAL ERDOGDU

Larry Goldstein and Xiaohan Wei. Non-gaussian observations in nonlinear compressed sensing via
stein discrepancies. Information and Inference: A Journal of the IMA, 8(1):125–159, 2019.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. In Advances in Neural Information Processing Systems, volume 28.
Curran Associates, Inc., 2015.

Babak Hassibi and David Stork. Second order derivatives for network pruning: Optimal brain
surgeon. In Advances in Neural Information Processing Systems, volume 5. Morgan-Kaufmann,
1992.

Arthur Jacot, Clément Hongler, and Franck Gabriel. Neural tangent kernel: Convergence and gen-
eralization in neural networks. In Advances in Neural Information Processing Systems 31: An-
nual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8,
2018, Montréal, Canada, pages 8580–8589, 2018.

Tian Jin, Michael Carbin, Daniel M. Roy, Jonathan Frankle, and Gintare Karolina Dziugaite. Prun-
ing’s effect on generalization through the lens of training and regularization. In Advances in
Neural Information Processing Systems 35: Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9, 2022,
2022.

Tanishq Kumar, Kevin Luo, and Mark Sellke. No free prune: Information-theoretic barriers to
pruning at initialization. CoRR, abs/2402.01089, 2024.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. In D. Touretzky, editor, Advances
in Neural Information Processing Systems, volume 2. Morgan-Kaufmann, 1989.

Ker-Chau Li and Naihua Duan. Regression analysis under link violation. Annals of Statistics, 17:
1009–1052, 1989.

Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. Rethinking the value of
network pruning. In 7th International Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.

Eran Malach, Gilad Yehudai, Shai Shalev-Shwartz, and Ohad Shamir. Proving the lottery ticket
hypothesis: Pruning is all you need. In Proceedings of the 37th International Conference on
Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of
Machine Learning Research, pages 6682–6691. PMLR, 2020.

Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Mean-field theory of two-layers neural
networks: dimension-free bounds and kernel limit. In Conference on Learning Theory, COLT
2019, 25-28 June 2019, Phoenix, AZ, USA, volume 99 of Proceedings of Machine Learning
Research, pages 2388–2464. PMLR, 2019.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional
neural networks for resource efficient inference. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings.
OpenReview.net, 2017.

16

LEARNING SPARSE FEATURES WITH PRUNING

Alireza Mousavi-Hosseini, Sejun Park, Manuela Girotti, Ioannis Mitliagkas, and Murat A. Erdogdu.
Neural networks efficiently learn low-dimensional representations with SGD. In The Eleventh
International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5,
2023. OpenReview.net, 2023a.

Alireza Mousavi-Hosseini, Denny Wu, Taiji Suzuki, and Murat A Erdogdu. Gradient-based fea-
ture learning under structured data. In Advances in Neural Information Processing Systems,
volume 36, pages 71449–71485. Curran Associates, Inc., 2023b.

Laurent Orseau, Marcus Hutter, and Omar Rivasplata. Logarithmic pruning is all you need. In Ad-
vances in Neural Information Processing Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

Samet Oymak and Mahdi Soltanolkotabi. Toward moderate overparameterization: Global conver-
gence guarantees for training shallow neural networks. IEEE J. Sel. Areas Inf. Theory, 1(1):
84–105, 2020.

Iosif Pinelis. Optimum Bounds for the Distributions of Martingales in Banach Spaces. The Annals
of Probability, 22(4):1679 – 1706, 1994. doi: 10.1214/aop/1176988477.

Garvesh Raskutti, Martin J Wainwright, and Bin Yu. Minimax rates of estimation for high-
dimensional linear regression over q-balls. IEEE transactions on information theory, 57(10):
6976–6994, 2011.

Abhishek Roy, Krishnakumar Balasubramanian, and Murat A Erdogdu. On empirical risk min-
imization with dependent and heavy-tailed data. Advances in Neural Information Processing
Systems, 34:8913–8926, 2021.

Terence Tao. Topics in random matrix theory. 2012.

Roman Vershynin. Introduction to the non-asymptotic analysis of random matrices. In Compressed
Sensing, 2010.

Roman Vershynin. High-Dimensional Probability: An Introduction with Applications in Data Sci-
ence. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press,
2018.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in
deep neural networks. In Advances in Neural Information Processing Systems, volume 29. Curran
Associates, Inc., 2016.

Hongru Yang, Yingbin Liang, Xiaojie Guo, Lingfei Wu, and Zhangyang Wang. Theoretical char-
acterization of how neural network pruning affects its generalization, 2023. URL https:
//openreview.net/forum?id=dn6_PK73hAY.

Gilad Yehudai and Ohad Shamir. On the power and limitations of random features for understanding
neural networks. In Advances in Neural Information Processing Systems 32: Annual Conference
on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancou-
ver, BC, Canada, pages 6594–6604, 2019.

17

https://openreview.net/forum?id=dn6_PK73hAY
https://openreview.net/forum?id=dn6_PK73hAY

VURAL ERDOGDU

Hattie Zhou, Janice Lan, Rosanne Liu, and Jason Yosinski. Deconstructing lottery tickets: Zeros,
signs, and the supermask. In Advances in Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14,
2019, Vancouver, BC, Canada, pages 3592–3602, 2019.

Michael Zhu and Suyog Gupta. To prune, or not to prune: Exploring the efficacy of pruning for
model compression. In 6th International Conference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018, Workshop Track Proceedings. OpenReview.net,
2018.

18

LEARNING SPARSE FEATURES WITH PRUNING

Contents

1 Introduction 1
1.1 Related Work . 3

2 Preliminaries 4

3 Limitations of Basis Independent Methods: CSQ Lower Bounds 5

4 Training Procedure: Pruning as Dimension Reduction 6

5 Main Results 9
5.1 Learning Sparse Single-index Models with Pruning 9
5.2 Learning Sparse Multi-index Models with Pruning 9

6 Technicalities Around Pruning 11

7 Discussion 12

A Further Discussion for Section 4 20

B Preliminaries for Proofs 21

C Hermite Expansion in the Multi-Index Setting 21
C.1 Background on Tensors . 21

C.1.1 Auxiliary Tensor Results . 22
C.2 Hermite Expansion of the Population Gradient . 24
C.3 Bounding the Higher Order Terms in the Hermite Expansion 26
C.4 Bounding ℓq Norm of the Higher-Order Terms . 27

D Concentration Bound for Empirical Gradients 28
D.1 VC Dimension of {· → ϕ′(⟨w, ·⟩+ b); (w, b) ∈ Sd−1

M × R} 30
D.2 Concentration for Yθ . 30
D.3 Concentration for Σθ . 33
D.4 Concentration for Tθ . 36
D.5 Concentration Bound for the Empirical Gradient in the Single-Index Setting 36
D.6 Concentration Bound for the Empirical Gradient in the Multi-Index Setting 38

E Guarantee for PruneNetwork 39
E.1 Auxiliary Results . 40

E.1.1 Concentration for γk . 43
E.2 Main Results . 44

F Feature Learning 48
F.1 Additional Notation and Terminology . 48
F.2 Auxiliary Results . 48

F.2.1 Lemmas for Moments . 51

19

VURAL ERDOGDU

F.3 Approximation of the target . 52
F.4 Empirical Approximation . 54
F.5 Concentration Bound for a Desirable Event . 57
F.6 Main Result . 62

G Lower bounds for CSQ methods 64
G.1 Lemmas for Lower Bounds . 66

G.1.1 Preliminaries . 66
G.1.2 Lemmas for Lower Bounds . 67

H Miscellaneous 69
H.1 Laurent-Massart Lemma and Its Corollaries . 69
H.2 Lemmas for Bounding Polynomials of Gaussian Random Vectors 71
H.3 Magnitude Pruning . 72
H.4 Elementary Results . 73
H.5 Lemmas for Feature Learning . 73

Appendix A. Further Discussion for Section 4

In this section, we detail the examples discussed in Section 4. Recall that ϕ is the ReLU activation
with the Hermite expansion ϕ =

∑
k≥0

γ̃k
k!Hek . Notably, the coefficients are γ̃1 = 1

2 , γ̃2 = 1√
2π

, ,

γ̃3 = 0, γ̃4 = −1√
2π

, and γ̃6 =
3√
2π

(see (C.5) with b = 0).

First, we consider the setting in (6.1). In this case, for w ∈ Sd−1, we have

E
[
yϕ′(⟨w,x⟩)x

]
=
√
2γ̃2 ⟨v1,w⟩v1 +

√
2γ̃2 ⟨v2,w⟩v2 + γ̃4√

2
(⟨w,v1⟩2 + ⟨w,v2⟩2)w

= 1√
π
⟨e1,w⟩ e1 + 1√

π
⟨e2,w⟩ e2 − 1

2
√
π

(
⟨w, e1⟩2 + ⟨w, e2⟩2

)
w, (A.1)

using an argument by Erdogdu et al. (2019) and

E
[
y̌ϕ′(⟨w,x⟩)x

]
= γ̃1v + E

[
yϕ′(⟨w,x⟩)x

]
= −1

2
√
π
(e1 + e2) + E

[
yϕ′(⟨w,x⟩)x

]
, (A.2)

where we used the defined values in (6.1). From (A.1)-(A.2), we deduce

E
[
yϕ′(⟨ei,x⟩)x

]
= 1

2
√
π


e1 i = 1

e2 i = 2

0 i > 2,

and E
[
y̌ϕ′(⟨ei,x⟩)x

]
= −1

2
√
π


e2 i = 1

e1 i = 2

e1 + e2 i > 2,

confirming (6.2) and (6.3).
For (6.4), let us consider γ2 = 1, γ4 = 2

√
3, and ε = e−d. Using (6.6), we can show that the

population gradient in this case satisfies:

∥E
[
yϕ′(⟨ei,x⟩)x

]
∥2 =


O
(
d

1
4 e−d

)
, i = 1

O(e−d), i = 2, · · · ,
√
d

0, i >
√
d.

We note that in this case, an exponentially large sample size in d is required to differentiate between
i = 1 then i = d using empirical gradients.

20

LEARNING SPARSE FEATURES WITH PRUNING

Appendix B. Preliminaries for Proofs

Additional Notation: Unless otherwise stated, Z follows the standard Gaussian distribution with
a dimension depending on the context. We let Cσ∗ := E[∥∇σ∗(Z)∥22]1/2. We use Sd−1

M to denote
the M -sparse d-dimensional unit vectors, i.e., Sd−1

M := {x ∈ Sd−1 | ∥x∥0 ≤ M}. For a matrix
A ∈ Rd1×d2 , σ1(A) ≥ σ2(A) ≥ · · · ≥ σd1∧d2(A) denotes the singular values of A. For J1 ⊆ [d1]
and J2 ⊆ [d2], we let A|J1 , A|J1×J2

∈ Rd1×d2 such that

(A|J1
)ij =

{
Aij i ∈ J1
0 otherwise.

and (A|J1×J2
)ij =

{
Aij i ∈ J1 and j ∈ J2
0 otherwise.

In the following, C,K > 0 are constants that might take different values in different statements.
For reader’s convenience, we track on which variable they depend. For a set E,

1E(x) :=

{
1 x ∈ E

0 otherwise

We use D := {(xi, yi)}ni=1 to denote the dataset.
Additional Definitions: For notational simplicity, we assume that

|σ∗(z)| ≤ C1(1 + ∥z∥22)C2 for some C1 > 0, C2 ≥
1

2
.

We note that since σ∗ is a polynomial this assumption will always hold. Furthermore, in the proof,
we particularly consider the model

y := σ∗(V ⊤x) +
√
∆ϵ, (B.1)

where ∆ > 0 and ϵ has sub-Gaussian tails, i.e., P [|ϵ| > t] ≤ 2e−t
2
.

We recall that ϕ(t) = max{0, t} denotes the ReLU activation. To be precise, we define the
initialization considered in Algorithm 2 mathematically as follows:

W
(0)
j∗ =

(∑
i∈J

W 2
ji

)−1

(Wj111∈J , · · · ,Wjd1d∈J) (INIT)

where J is the output of PruneNetwork (see Algorithm 1), W ∈ Rm×d, Wij ∼iid N (0, 1), and
W is independent of D. As for definition (B.1), in the multi-index setting, we use

E[σ∗(z)zz⊤] := D ∈ Rr×r and E[σ∗(V ⊤x)xx⊤] = V DV ⊤ := H, (DEF-H)

which follows from the second order Stein’s lemma (Erdogdu, 2015). Without loss of generality,
we assume D is diagonal.

Appendix C. Hermite Expansion in the Multi-Index Setting

C.1. Background on Tensors

In the following, we will use the tensor representation of multivariate Hermite polynomials. There-
fore, we introduce some new notation to work with tensors: We denote tensors with boldface

21

VURAL ERDOGDU

uppercase letters, (e.g. T). Unless specified, we assume that tensors take a value from an ab-
stract inner product space, denoted with H, with an inner product, of ⟨·, ·⟩H. For a k-tensor
Tk : (Rd)⊗k → H and an index tuple (i1, · · · , ik) ∈ [d]k, we use Tk|i1···ik := Tk[ei1 , ei2 , · · · , eik],
where {ei}i∈[d] is the standard basis for Rd. We define the inner product and Frobenius norm for
k-tensors Tk, T̃k : (Rd)⊗k → H as〈

Tk, T̃k

〉
:=

∑
(i1,··· ,ik)∈[d]k

〈
Tk|i1···ik , T̃k|i1···ik

〉
H

and ∥Tk∥F :=
√
⟨Tk,Tk⟩. (C.1)

We use sym(·) to denote symmetrization operator, i.e.,

sym(Tk)[ei1 , ei2 , · · · , eik] =
1

k!

∑
τ∈Sk

Tk[eτ(i1), eτ(i2), · · · , eτ(ik)] (C.2)

where Sk is the set of permutations for [k]. We say a tensor is symmetric if Tk = sym(Tk). For
a vector u ∈ Rd, u⊗k : (Rd)⊗k → R is a symmetric k-tensor defined as u⊗k[v1, · · · ,vk] =∏k
i=1 ⟨u,vi⟩.

C.1.1. AUXILIARY TENSOR RESULTS

In this part, we present some useful tensor related result that we will use in the following.

Proposition 6 Let Tk : (Rd)⊗k → H be a symmetric k-tensor. For any k-tensor T̃k, we have〈
T̃k,Tk

〉
=
〈
sym(T̃k),Tk

〉
.

Proof We have〈
T̃k,Tk

〉 (a)

=
∑

(i1,··· ,ik)∈[d]k

1

k!

∑
τ∈Sk

〈
T̃k|i1···ik ,Tk[eτ(i1), · · · , eτ(ik)]

〉
(b)

=
∑

(i1,··· ,ik)∈[d]k

1

k!

∑
τ∈Sk

〈
T̃k|τ(i1)···τ(ik),Tk[ei1 , · · · , eik]

〉
=
〈
sym(T̃k),Tk

〉
,

where (a) follows since Tk is symmetric, and (b) follows by changing the indexing.

Lemma 7 Let Tj+k : (Rd)⊗(j+k) → R be a symmetric tensor. We define ∇jTj+k : (Rd)⊗k →
(Rd)⊗j as

∇jTj+k[ei1 , · · · , eik]|ik+1···ik+j
:= Tj+k[ei1 , · · · , eik , eik+1

, · · · , eik+j
]. (C.3)

We have ∇jTj+k is symmetric and ∥∇jTj+k∥F = ∥Tj+k∥F .

Proof Both statements follow from definitions in (C.1) and (C.2).

Lemma 8 For A ∈ Rd×r and Tk : (Rr)⊗k → R, let T̂k : (Rd)⊗k → R such that T̂k[u1, · · · ,uk] =
Tk[A

⊤u1, · · · ,A⊤uk]. Then, ∥T̂k∥F ≥ σkr (A)∥Tk∥F .

22

LEARNING SPARSE FEATURES WITH PRUNING

Proof Let singular value decomposition of A be A := UΣL⊤, where U ∈ Rd×r and L ∈ Rr×r
are orthonormal vectors and Σii = σi(A) for i ∈ [r]. First, we observe that for any v ∈ Rd such
that v ⊥ col(U), A⊤v = 0. Since Frobenius norm of a tensor is independent of the choice of basis,
we can write that

∥T̂k∥2F =
∑

i1,··· ,ik∈[r]k
T̃k [U∗i1 , · · · ,U∗ik]

2 .

Hence, by definition

∥T̂k∥2F =
∑

i1,··· ,ik∈[r]k
Tk [σi1(A)L∗i1 , · · · , σik(A)L∗ik]

2
(a)

≥ σ2k
r (A)

∑
i1,··· ,ik∈[r]k

Tk [L∗i1 , · · · ,L∗ik]
2

= σ2k
r (A)∥Tk∥2F ,

where we use the multi-linear property of tensors in (a).

Lemmas for Hermite Tensors

Definition 9 (Hermite Tensors) We define the Hermite tensor with a degree of k as Hek : Rd →
(Rd)⊗k as

Hek(x)|i1,··· ,ik := e
∥x∥22

2 (−1)k ∂k

∂xi1 · · · ∂xik

(
e

−∥x∥22
2

)
.

We use the following facts about Hermite tensors in our proofs.

Lemma 10 For any orthonormal basis {b1, · · · , bd} and x ∈ Rd, we have

⟨Hek(x), bi1 ⊗ · · · ⊗ bid⟩ = Hej1
(⟨b1,x⟩) · · ·Hejd

(⟨bd,x⟩),

where jl is the number of occurrences of l ∈ [d] in (i1, · · · , ik), i.e., jl = 1i1=l + · · ·+ 1ik=l.

Proof If {b1, · · · , bd} is the standard basis, the statement follows from Definition 9. To extend
it for any orthonormal basis, let B denote the matrix with columns {b1, · · · , bd}, let h(x) :=
exp

(
−∥x∥22/2

)
and let ∇kh(x) : (Rd)⊗k → R represent the kth derivative of h. We want to prove

that for any (i1, · · · , ik) ∈ [d]k, ∇kh(x)[Bei1 , · · · ,Beik]
(∗)
= ∇kh(B⊤x)[ei1 , · · · , eik], which

will prove the statement. We will use proof by induction. We observe that (∗) holds for k = 1. For
k > 1, by assuming (∗) holds for k − 1, we have

∇kh(x)[Bei1 , · · · ,Beik] = lim
t→0

(
∇k−1h(x+ tBeik)−∇k−1h(x)

)
[Bei1 , · · · ,Beik−1

]

t

= lim
t→0

(
∇k−1h(B⊤x+ teik)−∇k−1h(B⊤x)

)
[ei1 , · · · , eik−1

]

t

= ∇kh(B⊤x)[ei1 , · · · , eik].

23

VURAL ERDOGDU

Corollary 11 Let V ∈ Rd×r be an orthonormal matrix and Tk : (Rr)⊗k → R be a symmetric k-
tensor, and H

(r)
ek and H

(d)
ek denote k-degree Hermite tensor defined on Rr and Rd respectively. For

T̃k[ei1 , · · · , eik] := Tk[V
⊤ei1 , · · · ,V ⊤eik], we have

〈
Tk,H

(r)
ek (V ⊤x)

〉
=
〈
T̃k,H

(d)
ek (x)

〉
.

Proof It immediately follows from Lemma 10.

Lemma 12 We have Hek(0) = (−i)kEw∼N (0,Id)

[
w⊗k], where i =

√
−1. Consequently, we

have Ew∼N (0,Id)

[
w⊗2k

]
= (2k − 1)!!sym(I⊗k

d).

Proof See (Tao, 2012, Eqs. 2.159 and 2.160) and (Damian et al., 2022, Lemma 22).

C.2. Hermite Expansion of the Population Gradient

For a symmetric (k + 1)-tensor Tk+1 : (Rr)⊗k+1 → R, we define a k-tensor ∇Tk+1 : (Rr)⊗k →
Rr as in (C.3) with j = 1. For the following, we use the following notation: For b ∈ R,

ϕ(·+ b) :=
∑
k≥0

γ̃k(b)

k!
Hek and σ∗ :=

∑
k≥0

1

k!
⟨Tk,Hek⟩ ,

where γ̃k(b) ∈ R and Tk is a symmetric k-tensor for k ∈ N. The main statement of this part is
given below.

Proposition 13 For an orthonormal matrix V ∈ Rd×r and w ∈ Sd−1, we have

Ex[σ
∗(V ⊤x)ϕ′(⟨w,x⟩+b)x] = V

∑
k≥0

γ̃k+1(b)
k! ∇Tk+1

[
(V ⊤w)⊗k

]
+w

∑
k≥0

γ̃k+2(b)
k! Tk

[
(V ⊤w)⊗k

]
(C.4)

and

γ̃k(b) =

1− Φ(−b), k = 1

e
−b2

2√
2π

Hek−2
(−b), k ≥ 2

(C.5)

where Φ(b) is the CDF of the standard Gaussian distribution.

To prove Proposition 13, we will need two lemmas.

Lemma 14 For w ∈ Rd and k ∈ N, let Tk := k sym(el ⊗w⊗k−1). For i1, · · · , ik ∈ [d], we have
Tk|i1···ik = jlw

j1
1 × · · · ×wjl−1

l × · · · ×wjd
d , where jl = 1i1=l + · · ·+ 1ik=l.

Proof We have Tk
(∗)
= el⊗w⊗k−1+w⊗ el⊗w⊗k−2+w⊗2⊗ el⊗w⊗k−3+ · · ·+w⊗k−1⊗ el.

Without loss of generality, we can assume jl > 0 and i1, · · · , ijl = l (since for jl = 0, the statement
is true). The statement follows from (∗) since in the right-hand side only jl terms will be nonzero
and the other terms will be equal to w⊗k−1|i2,··· ,ik = wj1

1 × · · · ×wjl−1
l × · · · ×wjd

d .

24

LEARNING SPARSE FEATURES WITH PRUNING

Lemma 15 For w ∈ Sd−1, l ∈ [d] and k ∈ N, we have E [ϕ′(⟨w,x⟩+ b)xlHek(x)] = γ̃k+2(b)wlw
⊗k+

γ̃k(b)k sym(el ⊗w⊗k−1).

Proof We recall that Hek(x)|i1···ik = Hej1
(x1) · · ·Hejd

(xd), where jl = 1i1=l+ · · ·+1ik=l. The
for any fixed (i1, · · · , ik) ∈ [d]k,

E
[
ϕ′(⟨w,x⟩+ b)xlHek(x)|i1···ik

]
= E

[
ϕ′(⟨w,x⟩+ b)Hej1

(x1) · · ·Hejl+1(xl) · · ·Hejd
(xd)

]
+ jlE

[
ϕ′(⟨w,x⟩+ b)Hej1

(x1) · · ·Hejl−1(xl) · · ·Hejd
(xd)

]
= γ̃k+2(b)w

j1
1 · · ·w

jl+1
i · · ·wjd

d +γ̃k(b)jlw
j1
1 · · ·w

jl−1
i · · ·wjd

d

= γ̃k+2(b)wlw
⊗k|i1···ik + γ̃k(b)k sym(el ⊗w⊗k−1)|i1···ik ,

where we use Lemma 14 in the last line.

Proof [Proof of Proposition 13] We fix l ∈ [d]. Since E[ϕ(Z)4] <∞, we have

E[σ∗(V ⊤x)ϕ′(⟨w,x⟩+ b)xl] =

∞∑
k=0

1

k!
E
[〈

Tk,Hek(V
⊤x)

〉
ϕ′(⟨w,x⟩+ b)xl

]
=

∞∑
k=0

1

k!

〈
T̃k,E

[
Hek(x)ϕ

′(⟨w,x⟩+ b)xl
]〉

, (C.6)

where T̃k is defined in Corollary 11. For a fixed k ∈ N, we have〈
T̃k,E

[
Hek(x)ϕ

′(⟨w,x⟩+ b)xl
]〉(a)

= γ̃k+2(b)wl

〈
T̃k,w

⊗k
〉
+ γ̃k(b)k

〈
T̃k, el ⊗w⊗k−1

〉
= γ̃k+2(b)wlTk

[
(V ⊤w)⊗k

]
+γ̃k(b)k V ⊤

l∗ ∇Tk

[
(V ⊤w)⊗k−1

]
,

(C.7)

where (a) follows by Proposition 6 since T̃k symmetric. (C.4) follows from (C.6) and (C.7). For
(C.5), see (Ba et al., 2023, Lemma 15).

Corollary 16 Let ϕ±(t, ; b) :=
ϕ(t+b)±ϕ(−t+b)

2 . We have

E[σ∗(V ⊤x)ϕ′
+(⟨w,x⟩;b)x]=V

∑
k≥1
k odd

γ̃k+1(b)
k! ∇Tk+1

[
(V ⊤w)⊗k

]
+w

∑
k≥0

k even

γ̃k+2(b)
k! Tk

[
(V ⊤w)⊗k

]

E[σ∗(V ⊤x)ϕ′
−(⟨w,x⟩;b)x]=V

∑
k≥0

k even

γ̃k+1(b)
k! ∇Tk+1

[
(V ⊤w)⊗k

]
+w

∑
k≥1
k odd

γ̃k+2(b)
k! Tk

[
(V ⊤w)⊗k

]

Proof We observe that ϕ+(· + b) =
∑

k≥0
k even

γ̃k(b)
k! Hek and ϕ−(· + b) =

∑
k≥0
k odd

γ̃k(b)
k! Hek . By the

argument in (C.6) and (C.7), the statement follows.

25

VURAL ERDOGDU

C.3. Bounding the Higher Order Terms in the Hermite Expansion

Proposition 17 For N ∈ N ∪ {−1, 0}, w ∈ Sd−1 and b ∈ R, let

ζN := E
[
σ∗(V ⊤x)ϕ′(⟨w,x⟩+ b)x

]
− V

N∑
k=0

γ̃k+1(b)

k!
∇Tk+1

[
(V ⊤w)⊗k

]
−w

N∑
k=0

γ̃k+2(b)

k!
Tk

[
(V ⊤w)⊗k

]
.

We have

∥ζN∥2 ≤ (1 +
√
N + 2)Cσ∗

{
∥V ⊤w∥N+1

2

1−∥V ⊤w∥2 ∥V ⊤w∥2 > 0 or N ≥ 0

1 otherwise.

Proof [Proof of Proposition 17] By Proposition 13, we know that

ζN = V
∑

k≥N+1

γ̃k+1(b)

k!
∇Tk+1

[
(V ⊤w)⊗k

]
+w

∑
k≥N+1

γ̃k+2(b)

k!
Tk

[
(V ⊤w)⊗k

]
.

Therefore,

∥ζN∥2
(a)

=

∥∥∥∥∥∥
∑

k≥N+1

γ̃k+1(b)

k!
∇Tk+1

[
(V ⊤w)⊗k

]∥∥∥∥∥∥
2

+

∣∣∣∣∣∣
∑

k≥N+1

γ̃k+2(b)

k!
Tk

[
(V ⊤w)⊗k

]∣∣∣∣∣∣ (C.8)

(b)

≤

 ∑
k≥N+1

γ̃2
k+1(b)

∥∥V ⊤w
∥∥2k
2

k!

 1
2
 ∑

k≥N+1

1

k!

∥∥∥∥∥∇Tk+1

[(
V ⊤w

∥V ⊤w∥2

)⊗k
]∥∥∥∥∥

2

2

 1
2

+

 ∑
k≥N+1

γ̃2
k+2(b)

∥∥V ⊤w
∥∥2k
2

k!

 1
2
 ∑

k≥N+1

1

k!
Tk

[(
V ⊤w

∥V ⊤w∥2

)⊗k
]2 1

2

(c)

≤
(∑

k≥N+1

γ̃2
k+1(b)

∥∥V ⊤w
∥∥2k
2

k!

) 1
2

E[∥∇σ∗(z)∥22]
1
2+

(∑
k≥N+1

γ̃2
k+2(b)

∥∥V ⊤w
∥∥2k
2

k!

) 1
2

E[σ∗(z)22]
1
2

(C.9)

where we use that V is orthonormal and w is a unit vector in (a), the multi-linear property of
tensors and Cauchy-Schwartz inequality for (b), and Parseval’s identity for (c). We observe that for
∥V ⊤w∥2 > 0 or N ≥ 0

∑
k≥N+1

γ̃2
k+1(b)

∥∥V ⊤w
∥∥2k
2

k!
≤
(

sup
k≥N+1

γ̃2
k+1(b)

k!

) ∑
k≥N+1

∥∥V ⊤w
∥∥2k
2
≤ ∥V

⊤w∥2(N+1)
2

1− ∥V ⊤w∥22
(C.10)

and

∑
k≥N+1

γ̃2
k+2(b)

∥∥V ⊤w
∥∥2k
2

k!
≤
(

sup
k≥N+1

γ̃2
k+2(b)

(k + 1)!

) ∑
k≥N+1

(k + 1)
∥∥V ⊤w

∥∥2k
2
≤ (N + 2)∥V ⊤w∥2(N+1)

(1− ∥V ⊤w∥2)2

(C.11)

26

LEARNING SPARSE FEATURES WITH PRUNING

where we used
∑

k≥0

γ̃2k+1(b)

k! = E[ϕ′(Z + b)] ≤ 1 and the sum formula for
∑

k≥k⋆ kz
k+1. Since

E[σ∗(z)22] ≤ E[∥∇σ∗(z)∥22]1/2 = Cσ∗ and ∥V ⊤w∥2 ≤ 1, we have

(C.9) ≤ (1 +
√
N + 2)Cσ∗

∥V ⊤w∥N+1

1− ∥V ⊤w∥2
. (C.12)

For ∥V ⊤w∥2 > 0 or N ≥ 0 do not hold, we observe that the right-hand-side of both (C.10)- (C.11)
is 1. Therefore, by the argument in (C.12), the statement follows in this case too.

Corollary 18 Let ϕ± be the functions introduced in Corollary 16. For For N ∈ N ∪ {−1, 0},
w ∈ Sd−1 and b ∈ R, let

ζ+N := E
[
σ∗(V ⊤x)ϕ′

+(⟨w,x⟩; b)x
]

− V
N∑
k=0
k odd

γ̃k+1(b)
k! ∇Tk+1

[
(V ⊤w)⊗k

]
−w

N∑
k=0

k even

γ̃k+2(b)
k! Tk

[
(V ⊤w)⊗k

]
,

ζ−N := E
[
σ∗(V ⊤x)ϕ′

−(⟨w,x⟩; b)x
]

− V
N∑
k=0

k even

γ̃k+1(b)
k! ∇Tk+1

[
(V ⊤w)⊗k

]
−w

N∑
k=0
k odd

γ̃k+2(b)
k! Tk

[
(V ⊤w)⊗k

]
.

We have

∥ζ±N∥2 ≤ (1 +
√
N + 2)Cσ∗

{
∥V ⊤w∥N+1

2

1−∥V ⊤w∥2 ∥V ⊤w∥2 > 0 or N ≥ 0

1 otherwise

Proof The statement follows from E[ϕ′
±(Z + b)2] ≤ 1 and Proposition 17 (see (C.10) and (C.11)).

C.4. Bounding ℓq Norm of the Higher-Order Terms

Proposition 19 By using the notation of Proposition 17 and Corollary 18, for w ∈ Sd−1, N ∈
N ∪ {−1, 0} and q ∈ [0, 2), we have

∥ζN∥qq ∨ ∥ζ±N∥qq ≤ 2(q−1)∨0Cq
σ∗

[
∥V ∥q2,q + (N + 2)

q
2 ∥w∥qq

]{(∥V ⊤w∥N+1
2

1−∥V ⊤w∥2
2

)q
∥V ⊤w∥2>0 or N≥0

1 otherwise.

27

VURAL ERDOGDU

Proof By Propositions 13 and 72, if ∥V ⊤w∥2 > 0 or N ≥ 0 hold, we have

∥ζN∥qq
(a)

≤2(q−1)∨0

∥V ∥q2,q
∥∥∥∥∥∥
∑

k≥N+1

γ̃k+1(b)
k! ∇Tk+1

[
(V ⊤w)⊗k

]∥∥∥∥∥∥
q

2

+∥w∥qq

∣∣∣∣∣∣
∑

k≥N+1

γ̃k+2(b)
k! Tk

[
(V ⊤w)⊗k

]∣∣∣∣∣∣
q

(b)

≤ 2(q−1)∨0∥V ∥q2,qC
q
σ∗

(
∥V ⊤w∥N+1

2

1− ∥V ⊤w∥22

)q

+ 2(q−1)∨0∥w∥qqC
q
σ∗

(√
N + 2∥V ⊤w∥N+1

2

1− ∥V ⊤w∥22

)q

= 2(q−1)∨0Cq
σ∗

(
∥V ⊤w∥N+1

2

1− ∥V ⊤w∥22

)q [
∥V ∥q2,q + (N + 2)

q
2 ∥w∥qq

]
,

where (a) follows ∥V u∥qq ≤ ∥V ∥q2,q∥u∥
q
2 and (b) follows the steps in (C.8)- (C.11). For ∥ζ±N∥

q
q,

the same argument applies. if neither ∥V ⊤w∥2 > 0 nor N ≥ 0 hold, since we can replace√
N+2∥V ⊤w∥N+1

2

1−∥V ⊤w∥22
in (b) with 1, the statement follows in this case as well.

Appendix D. Concentration Bound for Empirical Gradients

In this part, we derive a concentration bound for the empirical gradient

g(w, b) :=
1

n

n∑
i=1

(yi − ⟨µ̂|J ,xi⟩)xiϕ′ (⟨w,xi⟩+ b) , (D.1)

where µ̂ = 0 in the single index setting and µ̂ = 1
n

∑n
j=1 yjxj in the multi index setting. In the

following, to avoid repetitions, we will consider (D.1) with ϕ(t) ∈ {t,ReLU(t)} and particularly
with µ̂ = 1

n

∑n
j=1 yjxj . Our proof will give us a bound for the µ̂ = 0 case as well.

To handle dependencies between {(xi, yi)}ni=1 and J , we will consider the following process:
For θ := (w, b) ∈ Sd−1

M × R,

Tθ := g(θ)− E(x,y) [yxϕ
′(⟨w,x⟩+ b)]

=
1

n

n∑
i=1

ỹixiϕ
′(⟨w,xi⟩+ b)− E(x,y) [yxϕ

′(⟨w,x⟩+ b)] ,

where (x, y) is a generic data point that is independent of {(xi, yi)}ni=1 and

ỹi = yi − ⟨µ̂|J ,xi⟩ and y = y − ⟨E[yx]|J ,x⟩ . (D.2)

We particularly derive a concentration bound for

sup
J⊆[d]
|J |=M ′

sup
w∈Sd−1

M
b∈R

∥Tθ|J ∥2, (D.3)

28

LEARNING SPARSE FEATURES WITH PRUNING

where M,M ′ ∈ [d], and the restriction sets in (D.2) and (D.3), i.e., J , are the same. We observe
that for a fixed (w, b) ∈ Sd−1

M × R,

Tθ =

(
1

n

n∑
i=1

yixiϕ
′(⟨w,xi⟩+ b)− E [yxϕ′(⟨w,x⟩+ b)]

)

−
(
1

n

n∑
i=1

⟨E[yx]|J ,xi⟩xiϕ
′(⟨w,xi⟩+ b)− E(x,y) [⟨E[yx]|J ,x⟩xϕ′(⟨w,x⟩+ b)]

)

−
(
1

n

n∑
i=1

⟨(µ̂− E[yx])|J ,xi⟩xiϕ
′(⟨w,xi⟩+ b)− E [⟨(µ̂− E[yx])|J ,x⟩xϕ′(⟨w,x⟩+ b)]

)
− E

[
ϕ′(⟨w,x⟩+ b)xx⊤] (µ̂− E[yx])|J .

Let

Yθ :=
1

n

n∑
i=1

yixiϕ
′(⟨w,xi⟩+ b)− E(x,y)

[
yxϕ′(⟨w,x⟩+ b)

]
,

Σθ :=
1

n

n∑
i=1

ϕ′(⟨w,xi⟩+ b)xix
⊤
i − Ex

[
ϕ′(⟨w,x⟩+ b)xx⊤

]
.

Then, we can write

Tθ|J =Yθ|J −Σθ|J×JE[yx]|J −
(
Σθ|J×J + E

[
ϕ′(⟨w,x⟩+ b)xx⊤

]
|J×J

)
(µ̂− E[yx])|J .

(D.4)

In the following, we derive concentration bounds for Yθ and Σθ, which will lead us a bound for
(D.4). Our proof technique relies on the use of Radamacher averages with an extension of the
symmetrization lemma for the moment-generating function, which is presented as follows:

Lemma 20 Let X1, · · · ,Xn ∈ Rd be independent random vectors and let {εi}i∈[n] be iid Radamacher
random variables, independent of {Xi}i∈[n]. For ℓ : Rd×Sd−1

M ×R, λ > 0 and h(t) ∈ {t, exp(t)},
we have

E

h
 sup

w∈Sd−1
M

b∈R

λ

n

n∑
i=1

ℓ(Xi, (w, b))− E[ℓ(X, (w, b))]


 ≤ E

 sup
w∈Sd−1

M
b∈R

h

(
2λ

n

n∑
i=1

εiℓ(Xi, (w, b))

) .

Proof Let Z := supw,b
1
n

∑n
i=1 ℓ(Xi, (w, b))−E[ℓ(X, (w, b))]. By using Jensen’s inequality, one

can show that for any convex and nondecreasing function h,

E[h(Z)] ≤ E

[
sup
w,b

h

(
2

n

n∑
i=1

εiℓ (Xi, (w, b))

)]
.

Since t→ h(λt), where h(t) ∈ {t, exp(t)} and λ > 0, is convex and nondecreasing, the statement
follows.

29

VURAL ERDOGDU

D.1. VC Dimension of {· → ϕ′(⟨w, ·⟩+ b); (w, b) ∈ Sd−1
M × R}

Let FM := {· → ϕ′(⟨w, ·⟩ + b) | (w, b) ∈ Sd−1
M × R}. We want to bound the VC dimension of

FM .

Proposition 21 Let V C(FM) = d∗. We have M ≤ d∗ ≤ 6M log
(
ed
M

)
.

Proof Let F (d) := {· → ϕ′(⟨w, ·⟩ + b) | (w, b) ∈ Sd−1 × R} and s(F (d), n) be the shattering
coefficient of F (d). Since V C(F (d)) = d+ 1, we have M + 1 ≤ d∗ ≤ d+ 1.

To improve the upper bound, we observe that Sd−1
M has

(
d
M

)
different possible support, hence,

we have s(FM , n) ≤
(
d
M

)
S(F (M), n). Then, by definition of VC dimension,

s(FM , d∗) = 2d
∗ ≤

(
d

M

)
s(F (M), d∗)

(a)

≤
(

d

M

)
s(F (M), d+ 1)

(b)

≤
(

d

M

)(
e(d+ 1)

(M + 1)

)(M+1)

(c)

≤
(
ed

M

)2M+1

.

where we use d∗ ≤ d+ 1 in (a), Sauer’s lemma in (b), and
(
d
M

)
≤
(
ed
M

)M
and (d+ 1)/(M + 1) ≤

d/M in (c). By observing that ed
∗/2 ≤ 2d

∗
and 4M +2 ≤ 6M , we obtain the upper bound as well.

Corollary 22 Let n ≥ d∗. For any x1, · · · ,xn ∈ Rd, there exists Qx ⊂ Sd−1
M × R and π :

Sd−1
M × R → Qx with |Qx| ≤

(
en
d∗

)d∗ such that for any (w, b) ∈ Sd−1
M × R, ϕ′(⟨w,xi⟩ + b) =

ϕ′(⟨π((w, b)), (xi, 1)⟩) for i = 1, · · · , n.

Proof By Sauer’s lemma, the image of Φ((w, b)) :=
(
ϕ′(⟨w,x1⟩ + b), · · · , ϕ′(⟨w,xn⟩ + b)

)
,

(w, b) ∈ Sd−1
M × R, has at most (en/d∗)d

∗
elements. We can define Qx by mapping each (w, b) ∈

Sd−1
M × R to a fixed (w′, b′) such that Φ((w, b)) = Φ((w′, b′)).

D.2. Concentration for Yθ

In this section, we derive a concentration bound for

sup
J⊆[d]
|J |=M ′

sup
w∈Sd−1

M
b∈R

∥Yθ|J ∥2,

We will prove our bound in two steps. First, we will prove a bound for the truncated version Yθ. In
its following, we will extend that result by bounding the bias introduced by truncation.

Concentration of the truncated process: For some R > 0 and v ∈ Sd−1 and θ = (w, b) ∈
Sd−1
M × R, we let

Ỹθ,v :=
1

n

n∑
i=1

yi1|yi|≤R ⟨v,xi⟩ϕ
′(⟨w,xi⟩+ b)− E

[
y1|y|≤R ⟨v,x⟩ϕ′(⟨w,x⟩+ b)

]
.

30

LEARNING SPARSE FEATURES WITH PRUNING

Lemma 23 For ϕ(t) ∈ {t,ReLU(t)}, n ≥ d∗ and t ≥ 0, we have

P

 sup
θ∈Sd−1

M ×R
Ỹθ,v ≥ 8Rmax{t, t2}

 ≤ (en
d∗

)d∗
exp

(
−nt2

)
.

Proof In the following, we will use that |ϕ′| ≤ 1 and V C(FM) ≤ d∗, where d∗ is defined in
Proposition 21. We note that both hold for ϕ(t) ∈ {t,ReLU(t)}. Let

ℓ ((x, ϵ), (w, b)) := y1|y|≤R ⟨v,x⟩ϕ′(⟨w,x⟩+ b) and Z̃ := sup
θ∈Sd−1

M ×R
Ỹθ,v.

By Lemma 20, for λ > 0, we have that

E
[
exp

(
λZ̃
)]
≤ E

 sup
w∈Sd−1

M
b∈R

exp

(
2λ

n

n∑
i=1

εiℓ ((xi, ϵi), (w, b))

) .

Let’s focus on the empirical complexity. We have

Eε

[
sup

w∈Sd−1
M

b∈R

exp

(
2λ

n

n∑
i=1

εiℓ ((xi, ϵi), (w, b))

)]

(a)

= Eε

[
sup

(w,b)∈Qx

exp

(
2λ

n

n∑
i=1

εiℓ ((xi, ϵi), (w, b))

)]

≤
∑

(w,b)∈Qx

Eε

[
exp

(
2λ

n

n∑
i=1

εiℓ ((xi, ϵi), (w, b))

)]
(b)

=
∑

(w,b)∈Qx

n∏
i=1

Eε

[
exp

(
2λ

n
εiℓ ((xi, ϵi), (w, b))

)]
(D.5)

where (a) follows from Corollary 22 and (b) follows from the independence of εi. By using the
moment generating function for Radamacher random variables, Lemma 73 and Corollary 22, we
have for λ ∈

[
0, n

4R

]
,

(D.5) ≤
∑

(w,b)∈Qx

n∏
i=1

exp

(
4λ2

n2
ℓ ((xi, ϵi), (w, b))2

)
≤

∑
(w,b)∈Qx

n∏
i=1

exp

(
8λ2R2

n2

)

≤
(en
d∗

)d∗
exp

(
8λ2R2

n

)
.

By Chernoff bound, the statement follows.

31

VURAL ERDOGDU

Concentration of Yθ

Lemma 24 Let ϕ(t) ∈ {t,ReLU(t)}, d ≥ 4M and M ′ ≤ 2M , and

n ≥ 24M log2
(
24dn

M

)
and M ≥ log(2/δ).

We have for δ ∈ (0, 1],

P

 sup
J⊆[d]
|J |=M ′

sup
w∈Sd−1

M
b∈R

∥Yθ|J ∥2 ≥ K logC2 (6n/δ)

√
M log2

(
24dn
M

)
n

 ≤ δ,

where K is a constant depending on (C1, C2, r,∆).

Proof Let Ỹθ := 1
n

∑n
i=1 yi1|yi|≤Rxiϕ

′(⟨w,xi⟩+ b)− E
[
y1|y|≤Rxiϕ

′(⟨w,x⟩+ b)
]
, where R =

C1(r + 2)C2(e log(6n/δ))C2 +
√

∆
e (e log(6n/δ))

1
2 . We observe that

sup
J⊆[d]

|J |=M ′

sup
w∈Sd−1

M
b∈R

∥Yθ|J ∥2 ≤ sup
J⊆[d]

|J |=M ′

sup
w∈Sd−1

M
b∈R

∥∥∥Ỹθ|J
∥∥∥
2︸ ︷︷ ︸

:=S1

+ sup
w∈Sd−1

M
b∈R

∥∥∥∥∥ 1n
n∑

i=1

yi1|yi|>Rxiϕ
′(⟨w,xi⟩+ b)

∥∥∥∥∥
2︸ ︷︷ ︸

:=S2

+ sup
w∈Sd−1

M
b∈R

∥∥E [y1|y|>Rxϕ
′(⟨w,x⟩+ b)

]∥∥
2

︸ ︷︷ ︸
:=S3

.

For K =

(
C4
1 (4C2)

4C2(r + 2)4C2 + 2∆2

) 1
4

, we have

P

[
sup
J⊆[d]

|J |=M ′

sup
w∈Sd−1

M
b∈R

∥Yθ|J ∥2 ≥ 16Rmax{t, t2}+ 4K
√

δ
6n

]
(a)

≤ P
[
S1 ≥ 16Rmax{t, t2}

]
+ P

[
S2 ≥

(
4− 6

3
4

)
K
√

δ
6n

]
(b)

≤ P
[
S1 ≥ 16Rmax{t, t2}

]
+ δ

2

where (a) follows from Proposition 68 (since 4 > 6
3
4), and (b) from Proposition 67.

Next, we need to establish a high probability bound via covering argument. Let N 1/2
M ′ be the

minimal 1/2-cover of Sd−1
M ′ . We have

S1 = sup
w∈Sd−1

M
b∈R

sup
v∈Sd−1

M′

〈
v, Ỹθ

〉
≤ 2 sup

w∈Sd−1
M

b∈R

sup
v∈N 1/2

M′

〈
v, Ỹθ

〉
, (D.6)

32

LEARNING SPARSE FEATURES WITH PRUNING

where Ỹθ,v is introduced in Lemma 23. Therefore, by (D.6), we have

P
[
S1 ≥ 16Rmax{t, t2}

]
≤
∑

v∈N 1/2

M′

P

[
sup

w∈Sd−1
M

b∈R

Ỹθ,v ≥ 8Rmax{t, t2}
]
(a)

≤
(

d

M ′

)
5M

′
(en
d∗

)d∗

e−nt2

where (a) follows from Corollary 71. Therefore, we have

P

[
sup
J⊆[d]

|J |=M ′

sup
w∈Sd−1

M
b∈R

∥Yθ|J ∥2 ≥ 16Rmax{t, t2}+ 4K

√
δ

6n

]
≤ δ

2
+

(
d

M ′

)
5M

′
(en
d∗

)d∗

e−nt2 . (D.7)

We note that

R ≤ (C1(r + 2)C2eC2 +
√
∆e) logC2(6n/δ).

Moreover, for d ≥ 4M and M ′ ≤ 2M, we have(
d

M ′

)
5M

′
(en
d∗

)d∗
≤
(

d

2M

)
52M

(en
M

)6M log(ed
M) (a)

≤
(
5ed

2M

)2M (en
M

)6M log(ed
M)

≤
(
5e2nd

2M

)6M log(ed
M)

where (a) follows from
(
d
M

)
≤
(
ed
M

)M
. Therefore,

log

[(
d

M ′

)
5M

′
(en
d∗

)d∗]
≤ 6M log

(
ed

M

)
log

(
5e2nd

2M

)
≤ 6M log2

(
24nd

M

)
. (D.8)

By using (D.8) and (D.7) with t =

√
6M log2(24nd

M)
n +

√
log(2/δ)

n ∈ [0, 1] and u = e log(6n/δ),
we obtain the statement.

D.3. Concentration for Σθ

In this part, we are interested in deriving a concentration bound for

sup
J⊆[d]
|J |=M ′

sup
w∈Sd−1

M
b∈R

∥Σθ|J×J∥2.

For a fixed (w, b) ∈ Sd−1
M × R, by using the Rayleigh quotient formula, we can write that

sup
J⊆[d]
|J |=M ′

∥Σθ|J×J∥2 = sup
J⊆[d]
|J |=M ′

sup
v∈Sd−1

|⟨v,Σθ|J×Jv⟩| = sup
v∈Sd−1

M′

|⟨v,Σθv⟩|.

Let N 1/4
M ′ be the minimal 1/4-cover of Sd−1

M ′ . It is easy to check that for v ∈ N 1/4
M ′ , we have

sup
v∈Sd−1

M′

|⟨v,Σθv⟩| ≤ 2 sup
v∈N 1/4

M′

|⟨v,Σθv⟩|.

33

VURAL ERDOGDU

Therefore, we have

sup
J⊆[d]
|J |=M ′

sup
w∈Sd−1

M
b∈R

∥Σθ|J×J∥2 ≤ sup
v∈N 1/4

M′

2 sup
w∈Sd−1

M
b∈R

|⟨v,Σθv⟩|. (D.9)

Since we already have a bound for the size of N 1/4
M ′ , we first derive a concentration bound for

supw,b|⟨v,Σθv⟩| for a fixed v ∈ Sd−1
M ′ .

Concentration for supw,b|⟨v,Σθv⟩|

Lemma 25 For ϕ(t) ∈ {t,ReLU(t)}, M,∈ [d], and for a fixed v ∈ Sd−1 and n ≥ d∗, we have
that for t ≥ 0,

P

[
sup

w∈Sd−1
M

b∈R

|⟨v,Σθv⟩| ≥ 8
√
2max{t, t2}

]
≤ 2

(en
d∗

)d∗
exp

(
−nt2

)
.

Proof We observe that

⟨v,Σθv⟩ =
1

n

n∑
i=1

ϕ′(⟨w,xi⟩+ b) ⟨v,xi⟩2 − E
[
ϕ′(⟨w,x⟩+ b) ⟨v,x⟩2

]
.

For

Z := sup
w∈Sd−1

M
b∈R

1

n

n∑
i=1

ϕ′(⟨w,xi⟩+ b) ⟨v,xi⟩2 − E
[
ϕ′(⟨w,x⟩+ b) ⟨v,x⟩2

]

by using Lemma 20, we can write that for λ ≥ 0,

E [exp(λZ)] ≤ E

[
sup

w∈Sd−1
M

b∈R

exp

(
2λ

n

n∑
i=1

εiϕ
′(⟨w,xi⟩+ b) ⟨v,xi⟩2

)]
.

Let’s look at the empirical complexity. We have

Eε

[
sup

w∈Sd−1
M

b∈R

exp

(
2λ

n

n∑
i=1

εiϕ
′(⟨w,xi⟩+ b) ⟨v,xi⟩2

)]

(a)

= Eε

[
sup

(w,b)∈Qx

exp

(
2λ

n

n∑
i=1

εiϕ
′(⟨w,xi⟩+ b) ⟨v,xi⟩2

)]

≤
∑

(w,b)∈Qx

Eε

[
exp

(
2λ

n

n∑
i=1

εiϕ
′(⟨w,xi⟩+ b) ⟨v,xi⟩2

)]
(b)

=
∑

(w,b)∈Qx

n∏
i=1

Eε

[
exp

(
2λ

n
εiϕ

′(⟨w,xi⟩+ b) ⟨v,xi⟩2
)]

, (D.10)

34

LEARNING SPARSE FEATURES WITH PRUNING

where (a) follows from Corollary 22 and (b) follows by independence. Let cosh(t) := et+e−t

2 . We
observe that for a fixed i ∈ [n],

Eε
[
exp

(
2λ
n εiϕ

′(⟨w,xi⟩+ b) ⟨v,xi⟩2
)]

=cosh
(
2λ
n |ϕ

′(⟨w,xi⟩+ b)| ⟨v,xi⟩2
)

≤cosh
(
2λ
n ⟨v,xi⟩

2
)

(D.11)

where we use |ϕ′| ≤ 1 and that cosh is increasing on t ≥ 0. Therefore by (D.10) and (D.11), for
λ ∈

[
0, n/4

√
2
]

E [exp(λZ)] ≤
∑

(w,b)∈Qx

n∏
i=1

E
[
cosh

(
2λ

n
⟨v,xi⟩2

)]
≤
(en
d∗

)d∗
exp

(
16λ2

n

)
,

where we used Lemma 73 and Corollary 22. By Chernoff’s bound, the statement follows.

Concentration for Σθ

The next statement provides a concentration bound for (D.9).

Lemma 26 For ϕ(t) ∈ {t,ReLU(t)}, M,M ′ ∈ [d], and for d ≥ 4M and M ′ ≤ 2M,

n ≥ 24M log2
(
35dn

M

)
and M ≥ log(2/δ),

we have for δ ∈ (0, 1],

P

 sup
J⊆[d]
|J |=M ′

sup
w∈Sd−1

M
b∈R

∥Σθ|J×J∥2 ≥ K

√
M log2

(
35dn
M

)
n

 ≤ δ,

where K is a universal positive constant.

Proof By using (D.9) and Lemma 25, we can write that for n ≥ d∗

P

 sup
J⊆[d]

|J |=M ′

sup
w∈Sd−1

M
b∈R

∥Σθ|J×J∥2 ≥ 16
√
2max{t, t2}

≤∑
v∈N 1/4

M′

P

[
sup

w∈Sd−1
M

b∈R

|⟨v,Σθv⟩| ≥ 8
√
2max{t, t2}

]

(a)

≤ 2

(
d

M ′

)
9M

′
(en
d∗

)d∗

exp
(
−nt2

)
. (D.12)

where (a) follows from Corollary 71. We note that n ≥ 24M log2
(
35dn
M

)
≥ 6M log

(
ed
M

)
≥ d∗ by

Proposition 21. Moreover, for d ≥ 4M and M ′ ≤ 2M, we have(
d

M ′

)
9M

′
(en
d∗

)d∗

≤
(

d

2M

)
92M(en)6M log(ed

M) ≤
(
9ed

2M

)2M

(en)6M log(ed
M)≤

(
9e2nd

2M

)6M log(ed
M)

35

VURAL ERDOGDU

where the second inequality follows from
(
d
M

)
≤
(
ed
M

)M
. Therefore,

log

[(
d

M ′

)
9M

′
(
6n

d∗

)d∗]
≤ 6M log

(
ed

M

)
log

(
9e2nd

2M

)
≤ 6M log2

(
35nd

M

)
. (D.13)

By using (D.13) and (D.12) with t =

√
6M log2(35nd

M)
n +

√
log(2/δ)

n ∈ [0, 1], we obtain the statement.

D.4. Concentration for Tθ

By (D.4) and ∥E[ϕ′(⟨w,x⟩+ b)xx⊤]∥2 ≤ 1, we have

∥Tθ|J ∥2 ≤ ∥Yθ|J ∥2 + ∥Σθ|J×J∥2∥E[yx]∥2 + (∥Σθ|J×J∥2 + 1) ∥(µ̂− E[yx])|J ∥2.

We have the following statement.

Lemma 27 For ϕ(t) ∈ {t,ReLU(t)}, M,M ′ ∈ [d], for d ≥ 4M , M ′ ≤ 2M

n ≥ 24M log2
(
35dn

M

)
and M ≥ log(6/δ),

we have that for δ ∈ (0, 1]

P

[
sup
J⊆[d]
|J |=M ′

sup
w∈Sd−1

M
b∈R

∥Tθ|J ∥2 ≥ K logC2 (18n/δ)

√
M log2

(
35dn
M

)
n

]
≤ δ,

where K is a positive constant depending on (C1, C2, r,∆).

Proof We note that Lemma 24 applies to ϕ(t) ∈ {t,ReLU(t)}. Therefore, by Lemma 24 for
ϕ(t) = |t|, and ϕ(t) = ReLU(t), and Lemma 26, we have the statement.

D.5. Concentration Bound for the Empirical Gradient in the Single-Index Setting

In this part, since r = 1, for clarity, we use the following notation: σ∗ =
∑

k≥k⋆
γk
k!Hek and

y = σ∗(⟨v,x⟩) +
√
∆ϵ.

Proposition 28 We consider (D.1) with µ̂ = 0 and ϕ(t) ∈ {t,ReLU(t)}. Let j ∈ [2m] be a fixed
index and J be any function of {(xi, yi)}ni=1 such that |J | ≤M almost surely. For d ≥ 4M ,

n ≥ 24M log2
(
24dn

M

)
and M ≥ 24(1 + log(4/δ)),

the intersection of the following events holds with at least probability 1− δ,∥∥∥∥g (W (0)
j∗ , b

)∣∣∣
J
− γk⋆ γ̃k⋆ (b)

(k⋆−1)!

〈
v,W

(0)
j∗

〉k⋆−1

v|J
∥∥∥∥
2

≤K

(√
M log2(24dn

M) log2C2(12n
δ)

n
+
(

1+log(4/δ)

M

) k⋆

2

)

36

LEARNING SPARSE FEATURES WITH PRUNING

∥∥∥∥g (W (0)
j∗ , b

)∣∣∣
J

∥∥∥∥
2

≤ K

 |γk⋆ γ̃k⋆ (b)|
(k⋆−1)!

(
1+log(4/δ)

M

) k⋆−1
2

+

√
M log2

(
24dn
M

)
log2C2

(
12n
δ

)
n

 .

where K > 0 is a constant depending on (C1, C2, k
⋆,∆, Cσ∗).

Proof We first observe that by Proposition 13,

E(x,y)

[
yxϕ′

(〈
W

(0)
j∗ , x

〉
+ b
)]∣∣∣

J

= v|J
∑

k≥k⋆−1

γk+1γ̃k+1(b)
k!

〈
v,W

(0)
j∗

〉k
+W

(0)
j∗

∑
k≥k⋆

γkγ̃k+2(b)
k!

〈
v,W

(0)
j∗

〉k
.

Therefore, we have∥∥∥ g (W (0)
j∗ , b

)∣∣∣
J
−γk⋆ γ̃k⋆(b)

(k⋆ − 1)!

〈
v,W

(0)
j∗

〉k⋆−1

v|J
∥∥∥
2

≤
∥∥∥∥g (W (0)

j∗ , b
)∣∣∣

J
− E(x,y)

[
yxϕ′

(〈
W

(0)
j∗ , x

〉
+ b
)]∣∣∣

J

∥∥∥∥
2

+ ∥ζk⋆−1∥

≤ sup
J⊆[d]
|J |=M

sup
w∈Sd−1

M
b∈R

∥Yθ|J ∥2 + (1 +
√
k⋆ + 1)Cσ∗

∣∣∣〈v,W (0)
j∗

〉∣∣∣k⋆

1−
〈
v,W

(0)
j∗

〉2
where ζk⋆−1 is the higher order terms in the Hermite expansion defined in Proposition 17 and we

use Proposition 17 in the third line line.
To bound the second term, we recall that W (0)

j∗ =
Wj∗|J

∥Wj∗|J ∥2 where Wj∗ ∼ N (0, Id) and it is
independent of {(xi, yi)}ni=1. Since J is independent of Wj∗, without loss of generality, we can
fix a J with |J | = M . By using Corollaries 57 and 58, the intersection of (i)

∑
i∈J W 2

ij ≥ M
2 ,

(ii) ⟨v,Wj∗|J ⟩2 ≤ 3(1 + log(4/δ)) holds with probability at least 1− δ/2. Within that event, for
M ≥ 24(1 + log(4/δ)), we have

(1 +
√
k⋆ + 1)Cσ∗

∣∣∣〈v,W (0)
j∗

〉∣∣∣k⋆

1−
〈
v,W

(0)
j∗

〉2 ≤ 6
k⋆+1

2 Cσ∗(1 +
√
k⋆ + 1)

(
(1 + log(4/δ))

M

) k⋆

2

.(D.14)

Then, by Lemma 24, the first item in the statement follows. For the second item, by using the event
used for (D.14), we have∥∥∥∥g (W (0)

j∗ , b
)∣∣∣

J

∥∥∥∥
2

≤
∥∥∥∥g (W (0)

j∗ , b
)∣∣∣

J
− γk⋆ γ̃k⋆ (b)

(k⋆−1)!

〈
v,W

(0)
j∗

〉k⋆−1
v|J

∥∥∥∥
2

+ |γk⋆ γ̃k⋆ (b)|
(k⋆−1)!

(
6(1+log(4/δ))

M

)k⋆−1
2
.

By using the first item in the statement, the second item also follows.

37

VURAL ERDOGDU

D.6. Concentration Bound for the Empirical Gradient in the Multi-Index Setting

We first derive the Hermite expansion of E(x,y) [yxϕ
′(⟨w,x⟩+ b)] (see (D.2) for its definition).

Lemma 29 We recall that ϕ(· + b) :=
∑

k≥0
γ̃k(b)
k! Hek and σ∗ :=

∑
k≥0

1
k! ⟨Tk,Hek⟩. For any

J ⊆ [d] and any w ∈ Sd−1 supported on J , we have

E(x,y)

[
yxϕ′ (⟨w,x⟩+ b)

]∣∣
J = γ̃2(b)H|J×Jw + V |J

∑
k≥2

γ̃k+1(b)
k! ∇Tk+1

[
(V ⊤w)⊗k

]
+w

∑
k≥2

γ̃k+2(b)
k! Tk

[
(V ⊤w)⊗k

]
,

where H is defined in (DEF-H).

Proof We first observe that E[yx] = E[σ∗(V ⊤x)x] = V E[σ∗(z)z] and E[yx]|J = V |JE[σ∗(z)z].
By Proposition 13, we have

E(x,y) [yxϕ
′ (⟨w,x⟩+ b)]

(a)

= γ̃1(b)V |J cE[σ∗(z)z] + γ̃3(b)ww⊤V |J cE[σ∗(z)z] + γ̃2(b)Hw

+ V
∑
k≥2

γ̃k+1(b)

k!
∇Tk+1

[
(V ⊤w)⊗k

]
+w

∑
k≥2

γ̃k+2(b)

k!
Tk

[
(V ⊤w)⊗k

]
(D.15)

where (a) holds since ∇T1 = E[σ∗(z)z], V ∇T2

[
(V ⊤w)⊗1

]
= Hw, T0 = 0, T1

[
(V ⊤w)⊗1

]
=

⟨w,V E[σ∗(z)z]⟩. Since w⊤V |J cE[σ∗(z)z] = 0, we have

(D.15) = γ̃2(b)Hw + γ̃1(b)V |J cE[σ∗(z)z]

+ V
∑
k≥2

γ̃k+1(b)

k!
∇Tk+1

[
(V ⊤w)⊗k

]
+w

∑
k≥2

γ̃k+2(b)

k!
Tk

[
(V ⊤w)⊗k

]
.

Since w is supported on J , the statement follows.

Proposition 30 We consider (D.1) with µ̂ =
∑n

i=1 yixi and ϕ(t) ∈ {t,ReLU(t)}. Let j ∈ [m]
be a fixed index and J be any function of {(xi, yi)}ni=1 such that |J | ≤ M almost surely. For
d ≥ 4M ,

n ≥ 24M log2
(
35dn

M

)
and M ≥ 24(r + log(12/δ)),

the intersection the following events hold with at least probability 1− δ,∥∥∥∥g (W (0)
j∗ , b

)∣∣∣
J
− γ̃2(b)H|J×JW

(0)
j∗

∥∥∥∥
2

≤ K

√M log2
(
35dn
M

)
log2C2

(
18n
δ

)
n + (r+log(4/δ))

M


∥∥∥∥g (W (0)

j∗ , b
)∣∣∣

J

∥∥∥∥ ≤ K

|γ̃2(b)|√ r+log(4/δ)
M +

√
M log2

(
35dn
M

)
log2C2(18n

δ)
n

 .

38

LEARNING SPARSE FEATURES WITH PRUNING

where K > 0 is a constant depending on (C1, C2, r,∆, Cσ∗).

Proof We have that∥∥∥∥g (W (0)
j∗ , b

)∣∣∣
J
− γ̃2(b)H|J×JW

(0)
j∗

∥∥∥∥
2

≤
∥∥∥∥g (W (0)

j∗ , b
)∣∣∣

J
− E

[
yxϕ′

(〈
W

(0)
j∗ ,x

〉
+ b
)]∣∣∣

J

∥∥∥∥
2

+

∥∥∥∥E [yxϕ′
(〈

W
(0)
j∗ ,x

〉
+ b
)]∣∣∣

J
− γ̃2(b)H|J×JW

(0)
j∗

∥∥∥∥
2

(a)

≤ sup
J⊆[d]
|J |=M

sup
w∈Sd−1

M
b∈R

∥Tθ|J ∥2 + ∥ζ1|J ∥2

(b)

≤ sup
J⊆[d]
|J |=M

sup
w∈Sd−1

M
b∈R

∥Tθ|J ∥2 + 2
√
3Cσ∗

∥V ⊤W
(0)
j∗ ∥22

1− ∥V ⊤W
(0)
j∗ ∥22

.

where we used Lemma 29 in (a) and Proposition 17 in (b).
We will first bound the second term. We recall that W (0)

j∗ =
Wj∗|J

∥Wj∗|J ∥2 where Wj∗ ∼ N (0, Id)

and it is independent of {(xi, yi)}ni=1. SinceJ is independent of Wj∗, without loss of generality, we
can fix a J with |J | = M . By using Corollaries 57 and 58, the intersection of (i)

∑
i∈J W 2

ij ≥ M
2 ,

(ii) ∥V ⊤Wj∗|J ∥22 ≤ 3(r+ log(4/δ)) holds with probability at least 1− δ/2. Within that event, for
M ≥ 24(r + log(12/δ)), we have

2
√
3Cσ∗

∥V ⊤W
(0)
j∗ ∥22

1− ∥V ⊤W
(0)
j∗ ∥22

≤ 16
√
3Cσ∗

(r + log(4/δ))

M
. (D.16)

Therefore, by Lemma 27, the first item follows. For the second item, we observe that∥∥∥∥g (W (0)
j∗ , b

)∣∣∣
J

∥∥∥∥
2

≤ γ̃2(b)
∥∥∥H|J×JW

(0)
j∗

∥∥∥
2
+

∥∥∥∥g (W (0)
j∗ , b

)∣∣∣
J
− γ̃2(b)H|J×JW

(0)
j∗

∥∥∥∥
2

We have that

∥H|J×JW
(0)
j∗ ∥2 ≤ γ̃2(b)

∥∥∥V ⊤W
(0)
j∗

∥∥∥
2∥∥∥W (0)

j∗ |J
∥∥∥
2

≤ γ̃2(b)

√
6(r + log(4/δ))

M
.

where we used σ1(H) ≤ 1 in the first step, and the event used for (D.16). Hence by the first part of
the statement, the second item also follows.

Appendix E. Guarantee for PruneNetwork

We recall the following notation: For a, b ∈ R2m and W ∈ R2m×d,

R±
n (a, ẽl, b) :=

1

2n

n∑
i=1

(
yi − ŷ± (xi; (a, ẽl, b))

)
ŷ± (x; (a, ẽl, b)) :=

2m∑
j=1

aj

(
ϕ(⟨ẽl,x⟩+bj)±ϕ(−⟨ẽl,x⟩+bj)

2

)
︸ ︷︷ ︸

ϕ±(⟨ẽl,x⟩;bj)

39

VURAL ERDOGDU

and the gradients of the empirical/population risks are

∇jR±
n (a, ẽl, b) =

−aj
n

n∑
i=1

(
yi − ŷ± (xi; (a, ẽl, b))

)
ϕ′
±(⟨ẽl,xi⟩ ; bj)xi

∇jR±(a, ẽl, b) = −ajE(x,y)

[(
y − ŷ± (x; (a, ẽl, b))

)
ϕ′
± (⟨ẽl,x⟩ ; bj)x

]
.

Finally, we recall that

∥∇Rn(a, ẽl, b)∥2F =
m∑
j=1

∥∇jRn(a, ẽl, b)∥22 and ∥∇R±
n (a, ẽl, b)∥2F =

m∑
j=1

∥∇jR±
n (a, ẽl, b)∥22.

E.1. Auxiliary Results

We have the following statement:

Proposition 31 Let γ2k :=
1
m

∑m
j=1 γ̃

2
k(b

(0)
j). For any J ⊆ [d], we have

1. For the single-index setting and k⋆ > 1,(γk⋆ |γk⋆ |
(k⋆ − 1)!

) 2
k⋆−1

− 8

(
c
√
2Cσ∗

1− c2

) 2
k⋆−1

 ∥v|J c∥22 ≤
m

−1
k⋆−1

c2

∑
i∈J c

∥∇R±(a(0), ẽi, b
(0))∥

2
k⋆−1

F .

where the statement with∇R+ holds for even k⋆, and∇R− holds for odd k⋆.

2. For the multi-index setting, we have[
γ22σ

2
r (H)− 16

(
cCσ∗

1− c2

)2
]
∥V |J c∥2F ≤

m−1

c2

∑
i∈J c

∥∇R+(a(0), ẽi, b
(0))∥2F .

Proof We first observe that by (2.1), we have ŷ±
(
x; (a(0), ẽi, b

(0))
)
= 0. Therefore,

∇jR±(a(0), ẽi, b
(0)) = −a(0)j E(x,y)

[
σ∗(V ⊤x)ϕ′

±(⟨ẽi,x⟩ ; b
(0)
j)x

]
. (E.1)

Moreover, we observe that by (2.1), γ2k =
1
m

∑m
j=1 γ̃

2
k(b

(0)
j).

1. We will prove this item only for even k⋆ > 1. The proof for the odd case is identical when (+)
signs are replaced with (−). We have

(γ̃k⋆(b(0)j)γk⋆

(k⋆ − 1)!
(cvi)

k⋆−1
)2

(a)

≤ 2

∥∥∥∥∥E(x,y)

[
σ∗(⟨v,x⟩)ϕ′

+(⟨ẽl,x⟩ ; b
(0)
j)x

]
−

γ̃k⋆(b
(0)
j)γk⋆ ⟨v, ẽi⟩k

⋆−1

(k⋆ − 1)!
v

∥∥∥∥∥
2

2

+ 2
∥∥∥∇jR+(a(0), ẽi, b

(0))
∥∥∥2
2

(b)

≤ 2(1 +
√
k⋆ + 1)2C2

σ∗
c2k

⋆ |vi|2k
⋆

(1− c2)2
+ 2
∥∥∥∇jR−(a(0), ẽi, b

(0))
∥∥∥2
2

40

LEARNING SPARSE FEATURES WITH PRUNING

where (a) follows from (E.1), (b) follows from Corollary 18. By summing each side over j ∈
[2m] and dividing by 1/2m, we get(

γk⋆γk⋆

(k⋆ − 1)!
ck

⋆−1vk
⋆−1
i

)2

≤ 2(1 +
√
k⋆ + 1)2C2

σ∗
c2k

⋆ |vi|2k
⋆

(1− c2)2
+

2

2m

∥∥∥∇R+(a(0), ẽi, b
(0))
∥∥∥2
F
.

By taking 1
(k⋆−1) th power of each sides, we get(
γk⋆ |γk⋆ |
(k⋆ − 1)!

) 2
k⋆−1

c2v2
i

(a)

≤ 2
1

k⋆−1 (1 +
√
k⋆ + 1)

2
k⋆−1

(
Cσ∗

c|vi|
1− c2

) 2
k⋆−1

c2v2
i

+m
−1

k⋆−1

∥∥∥∇R+(a(0), ẽi, b
(0))
∥∥∥ 2

k⋆−1

F

(b)

≤ 2
1

k⋆−1 8

(
Cσ∗

c

1− c2

) 2
k⋆−1

c2v2
i

+m
−1

k⋆−1

∥∥∥∇R+(a(0), ẽi, b
(0))
∥∥∥ 2

k⋆−1

F
.

where (a) follows from Proposition 72 and (b) holds since |vi| ≤ 1 and (1 +
√
k⋆ + 1)

2
k⋆−1 is

decreasing for k⋆ ≥ 2. Then, we get[(
γk⋆ |γk⋆ |
(k⋆ − 1)!

) 2
k⋆−1

− 2
1

k⋆−1 8

(
Cσ∗

c

1− c2

) 2
k⋆−1

]
v2
i ≤

m
−1

k⋆−1

c2

∥∥∥∇R+(a(0), ẽi, b
(0))
∥∥∥ 2

k⋆−1

F
.

By summing each sides over i ∈ J c, we have the statement.

2. By observing that cHi∗ = Hẽi, we have

∥γ̃2(b(0)j)cHi∗∥22
(a)

≤ 2
∥∥∥E(x,y)

[
σ∗(V ⊤x)ϕ′

+(⟨ẽi,x⟩ ; b
(0)
j)x

]
− γ̃2(b

(0)
j)Hẽi

∥∥∥2
2
+ 2
∥∥∥∇jR+(a(0), ẽi, b

(0))
∥∥∥2
2

(b)

≤ 16C2
σ∗

(
c

1− c2

)2

c2∥Vi∗∥22 + 2
∥∥∥∇jR+(a(0), ẽi, b

(0))
∥∥∥2
2
.

where (a) follows from (E.1), and (b) holds since Corollary 18 and ∥Vi∗∥2 ≤ 1. By summing
each side over j ∈ [2m] and dividing by 1/2m, we get

γ22c
2∥Hi∗∥22 ≤ 16C2

σ∗

(
c

1− c2

)2

c2∥Vi∗∥22 + 2(2m)−1
∥∥∥∇R+(a(0), ẽi, b

(0))
∥∥∥2
F
.

Therefore, we have[
γ22σ

2
r (H)− 16C2

σ∗

(
c

1− c2

)2
]
∥Vi∗∥22 ≤

m−1

c2

∥∥∥∇R+(a(0), ẽi, b
(0))
∥∥∥2
F
.

By summing each sides over i ∈ J c, we have the statement.

41

VURAL ERDOGDU

Proposition 32 For this statement, by abusing the notation, we use 00 = 1. Let

R̃±
i :=

1

2m

2m∑
j=1

∥∇̃jR±
n (a

(0), ẽi, b
(0))−∇jR±(a(0), ẽi, b

(0))∥22,

where ∇̃jR±
n (a

(0), ẽi, b
(0)) := ∇jR±

n (a
(0), ẽi, b

(0))|top(M),

M̃ := M log2
(
35nd

M

)
and Cq := 8q(2− q)

2−q
q .

For d ≥ 4M , n ≥ 24M̃ and M ≥ log(2/δ), each of the following items holds with probability at
least 1− δ:

1. For the single-index setting with k⋆ ≥ 1, we have

max
i∈[d]

R̃±
i ≤


KM̃ log2C2

(
12nd
δ

)
n

q = 0,M ≥ ∥v∥0 + 2

KM̃ log2C2
(
12nd
δ

)
n

+
Cq

(
c(k

⋆−1)Cσ∗

1−c2

)2
|vi|2(k

⋆−1)
[
∥v∥2q ∨ k⋆2

2
q

]
M

2
q−1

q ∈ (0, 2).

2. For the multi-index setting, we have

max
i∈[d]

R̃±
i ≤


KM̃ log2C2

(
12nd
δ

)
n

q = 0,M ≥ ∥V ∥2,0 + 2

KM̃ log2C2
(
12nd
δ

)
n

+
Cq

(
Cσ∗

1−c2

)2
(c∥Vi∗∥2)1±1

[
∥V ∥22,q ∨ 2

2
q+1
]

M
2
q−1

q ∈ (0, 2).

Here, K is a positive constant depending on (C1, C2, r,∆).

Proof By Lemma 69, we have

∥∇̃jR±
n (a

(0), ẽi, b
(0))−∇jR±(a(0), ẽi, b

(0))∥22

≤ 5 sup
J⊆[d]

|J |=2M

∥∥∥(∇jR±
n (a

(0), ẽi, b
(0))−∇jR±(a(0), ẽi, b

(0))
)∣∣J ∥∥∥2

2

+ 4∥∇jR±(a(0), ẽi, b
(0))−∇jR±(a(0), ẽi, b

(0))|top(M)∥22. (E.2)

For any J ⊆ [d] with |J | = 2M , by using Jensen’s inequality, we can show that∥∥∥(∇jR±
n (a

(0), ẽi, b
(0))−∇jR±(a(0), ẽi, b

(0))
)∣∣J ∥∥∥2

2
≤ sup

J⊆[d]
|J |=2M

sup
w∈Sd−1

M
b∈R

∥Yθ|J ∥22. (E.3)

42

LEARNING SPARSE FEATURES WITH PRUNING

By (E.2) and (E.3), we have for any i ∈ [d],

R̃±
i ≤ 5 sup

J⊆[d]
|J|=2M

sup
w∈Sd−1

M
b∈R

∥Yθ|J ∥22

+
4

2m

2m∑
j=1

∥∥∥∥E [σ∗(V ⊤x)ϕ′
±(⟨ẽi,x⟩ ; b(0)j)x

]
− E

[
σ∗(V ⊤x)ϕ′

±(⟨ẽi,x⟩ ; b(0)j)x
]∣∣∣

top(M)

∥∥∥∥2
2

.

If q = 0 and M ≥ ∥V ∥2,0 + 2, the statement follows for each item by Proposition 19. For q > 0,
we have the following:

1. We consider k⋆ ≥ 1 and even. We have

R̃±
i

(a)

≤ 5 sup
J⊆[d]

|J|=2M

sup
w∈Sd−1

M
b∈R

∥Yθ|J ∥22

+
2q
(
1− q

2

) 2−q
q M

−2
q +1

2m

2m∑
j=1

∥∥∥E(x,y)

[
σ∗(V ⊤x)ϕ′

±(⟨ẽi,x⟩ ; b(0)j)x
]∥∥∥2

q

(b)

≤ 5 sup
J⊆[d]

|J|=2M

sup
w∈Sd−1

M
b∈R

∥Yθ|J ∥22

+ 2q
(
1− q

2

) 2−q
q

M
−2
q +14

(q−1)
q ∨02

2
q−1∨0

(
ck

⋆−1Cσ∗ |vi|k
⋆−1

1− c2

)2 [
∥V ∥22,q + k⋆∥ẽl∥2q

]
≤ 5 sup

J⊆[d]
|J|=2M

sup
w∈Sd−1

M
b∈R

∥Yθ|J ∥22 + CqM
−2
q +1

(
ck

⋆−1Cσ∗ |vi|k
⋆−1

1− c2

)2 [
∥V ∥22,q ∨ k⋆2

2
q

]

where we used Lemma 70 for (a), and Proposition 19 with N = k⋆ − 2 and Proposition 72 for
(b). By using Lemma 24 with δ

2d (for i ∈ [d] and (±) cases), we have the result.

2. By using k⋆ = 1 for (−) and k⋆ = 2 for (+) in the proof of first item, one can prove this item as
well.

E.1.1. CONCENTRATION FOR γk

Proposition 33 Let m = Θ(dε) where ε > 0 is a small constant, Zi ∼iid N (0, 1) for i ∈ [m], and
let γ̃k(·) be as in (C.5). For any u ∈ N, we have with probability at least 1− d−u

1

m

m∑
i=1

γ̃k(Zi)
2 ≥ ck(k − 1)!

for d larger than a constant depending on (k, u, ε).

43

VURAL ERDOGDU

Proof For p ≥ 1, by Jensen’s inequality, we have E[|γ̃2k(Z) − E[γ̃2k(Z)]|p]1/p ≤ 2E[γ̃2pk (Z)]1/p.
For k ≥ 2,

2E[γ̃2pk (Z)]1/p =
2

2π
E[e−pZ

2
H2p
ek−2

(Z)]1/p ≤ 1

π
E[H2p

ek−2
(Z)]1/p

(a)

≤ (2p− 1)k−2

π
(k − 2)!,

where we use Lemma 63 for (a). Therefore, if Ym :=
∑m

i=1 γ̃k(Zi)
2 − E[γ̃2k(Z)] and Kp :=

(2p−1)k−2

π (k − 2)!, by Lemma 49, we have

E[Y 2p
m]1/2p ≤ C

[√
pK2

√
m+ pm1/2pKp

]
⇒P

[∣∣∣∣ 1mYm

∣∣∣∣ ≥ eC

(√
pK2

m
+

pm1/2pKp

m

)]
≤ e−p.

By using p = u log d and hiding all of the constants with k in Ck, we have for k ≥ 1

P

[∣∣∣∣ 1mYm

∣∣∣∣ ≥ Ck

√
(u log d)(k−1)∨1

m

]
≤ du.

Therefore, with probability 1− du, we have

1

m

m∑
i=1

γ̃k(Zi)
2 ≥ E[γ̃k(Z)2]− Ck

√
(u log d)2(k−1)∨1

m

(a)

≥ 1

2
E[γ̃k(Z)2].

where for (a), we assume that d is larger than a constant depending on (k, u, ε). Since E[γ̃k(Z)2] ≥
ck(k − 1)!, where ck is some k-dependent constant, the statement follows.

E.2. Main Results

Lemma 34 (Single-Index Setting) Consider the single index setting. For u ∈ N and a small
constant ε > 0, let

m = Θ(dε), d ≥ d(γk⋆ , k
⋆, u, ε) ∨ 4M and c ≤ 1

log d
,

and ρ1, ρ2 ≥ 1, where d(γk⋆ , k
⋆, u, ε) is a constant depending on (γk⋆ , k

⋆, u, ε). There exists a
constant K > 0 that depends on (C1, C2,∆, k⋆, Cσ∗) such that if

n ≥
KMk⋆ log2

(
35nd
M

)
log2C2

(
18ndu+1

) (
ρ1 log

ρ2 d
)k⋆

c2(k⋆−1)

M ≥ log(4ndu) ∨


(∥v∥0 + 2) q = 0

(2− q)
[(
∥v∥2q ∨ k⋆2

2
q

)
q
2 (ρ1 log

ρ2 d)k
⋆
] q

2−q
q ∈ (0, 2)

(E.4)

with probability at least 1− 4d−u, Algorithm 1 returns J ⊆ [d] such that

∥v|J c∥22 ≤ K
γ
−(2

k⋆−1
∧2)

k⋆

ρ1 log
ρ2 d

.

44

LEARNING SPARSE FEATURES WITH PRUNING

Proof We choose any u ∈ N. We consider the intersection of the following events:

C.1 There exists j ∈ [m] such that b(0)j ≥ 0.

C.2 sup J⊆[d]
|J |=2M

supw∈Sd−1
M

b∈R
∥Yθ|J ∥22 ≤

KM̃ log2C2 (6ndu)
n

C.3 Proposition 32 holds with δ = d−u.

C.4 Proposition 33 holds with δ = d−u.

It is easy to verify that the intersection of (C.1)-(C.4) holds with probability at least 1− 4d−u when
d is larger than a constant depending on (k⋆, u, ϵ). We consider k⋆ = 1 and k⋆ > 1 cases separately.
For k⋆ = 1, let J̃ be the set of indices added in Line 3. For j ∈ [m] with b

(0)
j ≥ 0, we have∥∥∥∥12γ1v|J c

∥∥∥∥2
2

(a)

≤
∥∥∥γ̃1(b(0)j)γ1v|J̃ c

∥∥∥2
2

(b)

= ∥∇jR−(a(0), ẽd, b
(0))−∇jR−(a(0), ẽd, b

(0))|J̃ ∥
2
2

(c)

≤ ∥∇jR−(a(0), ẽd, b
(0))− ∇̃jR−

n (ẽd)∥22 (E.5)

where we use J ⊇ J̃ and b
(0)
j ≥ 0 (see (C.5)) in (a), ∇jR−(a(0), ẽd, b

(0)) = −a(0)j γ̃1(b
(0)
j)γ1v

(since Vd∗ = 0) in (b), and that
∥∥x|J̃ c

∥∥
2
≤ ∥x − y|J̃ ∥2 in (c). By using (C.3) with k⋆ = 1, we

have

(E.5) ≤


KM̃ log2C2 (12nd1+u)

n
q = 0,M ≥ ∥v∥0 + 2

KM̃ log2C2 (12nd1+u)

n
+ CqC

2
σ∗

(
1

1−c2

)2 [
∥v∥2q ∨ 2

2
q

]
M

2
q−1

q ∈ (0, 2).

By (E.4), the statement follows for k⋆ = 1.
For k⋆ > 1 and even , we assume d is high enough that

c ≤ 1

4
and

(γk⋆ |γk⋆ |
(k⋆ − 1)!

) 2
k⋆−1

− 8

(√
2c

1− c2

) 2
k⋆−1

C
2

k⋆−1

σ∗

 ≥ (1

2
ck⋆γ

2
k⋆

) 1
k⋆−1

, (E.6)

where ck⋆ is the constant in Proposition 33. Let

u := 1/
√
2m (∥∇R+(a(0), ẽ1, b

(0))∥F , · · · , ∥∇R+(a(0), ẽd, b
(0))∥F)

ũ := 1/
√
2m (∥∇̃R+(ẽ1)∥F , ∥∇̃R+(ẽ2)∥F , · · · , ∥∇̃R+(ẽd)∥F). (E.7)

In the following, we will first bound
∑

j∈J c u
2

k⋆−1

j , and then use Proposition 31 with (E.6) to prove
our statement. Let J̃ be the set of indices added on Line 4. By using Lemma 69, we can write∑

j∈J c

u
2

k⋆−1

j ≤ ∥u− u|J̃ ∥
2

k⋆−1
2

k⋆−1

≤ ∥u− ũ|top(M)∥
2

k⋆−1
2

k⋆−1

(E.8)

≤ 4∥u− u|top(M)∥
2

k⋆−1
2

k⋆−1

+ 5 sup
I⊆[d]

|I|=2M

∑
i∈I
|ui − ũi|

2
k⋆−1 . (E.9)

45

VURAL ERDOGDU

Moreover, by Corollary 18 (with N = k⋆ − 2) and c ≤ 1/4,

u
2

k⋆−1

i =
∥∥∥(1/√2m)∇R+(a(0), ẽi, b

(0))
∥∥∥ 2

k⋆−1

F
≤ (1 +

√
k⋆)

2
k⋆−1C

2
k⋆−1

σ∗
c2

(1− c2)
2

k⋆−1

|vi|2

≤ 12C
2

k⋆−1

σ∗ c2|vi|2, (E.10)

where we use that (1 +
√
k⋆)

2
k⋆−1 is non-increasing for k⋆ ≥ 2 in the last step. By Lemma 70, we

have

∥u− u|top(M)∥
2

k⋆−1
2

k⋆−1

≤ 12c2C
2

k⋆−1

σ∗ ∥v − v|top(M)∥22 ≤ 12c2C
2

k⋆−1

σ∗


0 q = 0,M ≥ ∥v∥0 + 2(
1− q

2

) 2−q
q q

2
∥v∥2q

M
2
q−1

q ∈ (0, 2)

≤ 12c2C
2

k⋆−1

σ∗

ρ1 log
ρ2 d

, (E.11)

where we used (E.4). Moreover, we have

sup
I⊆[d]

|I|=2M

∑
i∈I
|ui − ũi|

2
k⋆−1 ≤ sup

I⊆[d]
|I|=2M

∑
i∈I

(2m)
−1

k⋆−1 ∥∇̃R+
n (ẽi)−∇R+(a(0), ẽi, b

(0))∥
2

k⋆−1

F , (E.12)

where by (C.3), we have

∀i ∈ [d]; (2m)−1∥∇̃R+
n (ẽi)−∇R+(a(0), ẽi, b

(0))∥2F

≤


KM̃ log2C2 (12nd1+u)

n
q = 0,M ≥ ∥v∥0 + 2

KM̃ log2
(
35nd
M

)
log2C2 (12nd1+u)

n
+

Cq
C2

σ∗c
2(k⋆−1)

(1−c2)2
|vi|2(k

⋆−1)
[
∥v∥2q ∨ k⋆2

2
q

]
M

2
q−1

q ∈ (0, 2).

(E.13)

Therefore, by (E.4), we have (E.12) ≤ c2K̃
ρ1 log

ρ2 d , where K̃ depends on (C1, C2,∆, k⋆, Cσ∗). By
(E.9) and (E.11), the statement follows.

Lemma 35 (Multi-Index Setting) Consider the multi-index setting. For u ∈ N and a small con-
stant ε > 0, let

m = Θ(dε), d ≥ d(σr(H), u, ε) ∨ 4M and c ≤ 1

log d
,

and ρ1, ρ2 ≥ 1. There exists a constant K > 0 that depends on (C1, C2,∆, r, Cσ∗) such that if

n ≥
KM2 log2

(
35nd
M

)
log2C2

(
18ndu+1

) (
ρ1 log

ρ2 d
)

c2

M ≥ log(4ndu) ∨

(∥V ∥2,0 + 2) q = 0

(2− q)
[(
∥V ∥22,q ∨ 2

2
q
+1
)
q
2 (ρ1 log

ρ2 d)
] q

2−q
q ∈ (0, 2)

(E.14)

46

LEARNING SPARSE FEATURES WITH PRUNING

with probability at least 1− 4d−u, Algorithm 1 returns J ⊆ [d] such that

∥E[yx]|J c∥22 ∨ ∥V |J c∥2F ≤
Kσ−2

r (H)

ρ1 log
ρ2 d

.

Proof We will follow the same arguments in the proof of Lemma 34. We choose any u ∈ N. We
consider the intersection of (C.1)-(C.4) above, which holds with probability at least 1− 4d−u.
For ∥E[yx]|J c∥22, let J̃ be the set of indices added in Line 3. For j ∈ [m] with b

(0)
j ≥ 0, we have

∥∥∥∥12E[yx]|J c

∥∥∥∥2
2

(a)

≤
∥∥∥γ̃1(b(0)j)E[yx]|J̃ c

∥∥∥2
2

(b)

= ∥∇jR
−(a(0), ẽd, b

(0))−∇jR
−(a(0), ẽd, b

(0))|J̃ ∥22,

(E.15)

where we use J ⊇ J̃ and b
(0)
j ≥ 0 in (a) (see (C.5)), ∇jR−(a(0), ẽd, b

(0)) = −a(0)j γ̃1(b
(0)
j)γ1v

(since Vd∗ = 0) in (b). By (C.3), we have

(E.15) ≤


KM̃ log2C2

(
12nd1+u

)
n

q = 0,M ≥ ∥V ∥2,0 + 2

KM̃ log2C2
(
12nd1+u

)
n

+ CqC
2
σ∗

(
1

1−c2

)2 [
∥V ∥22,q ∨ 2

2
q

]
M

2
q
−1

q ∈ (0, 2).

By (E.14), the statement follows for ∥E[yx]|J c∥22.

For ∥V |J c∥2F , we assume d is high enough that

c ≤ 1

4
and

[
γ22σ

2
r (H)− 16

(
c

1− c2

)2

C2
σ∗

]
≥ 1

2
c2σ

2
r (H). (E.16)

where c2 is the constant in Proposition 33 for k = 2. Let u and ũ be the vectors defined in (E.7) and
let J̃ be the set of indices added on Line 4. By following the arguments in (E.8)-(E.9) with k⋆ = 2,
we can write ∑

j∈J c

u2
j ≤ 4∥u− u|top(M)∥22 + 5 sup

I⊆[d]
|I|=2M

∑
i∈I
|ui − ũi|2

For v := (∥V1∗∥2, · · · , ∥Vd∗∥2), by following the arguments in (E.10) and (E.11), we can write that

∥u− u|top(M)∥22 ≤ 12c2C2
σ∗∥v − v|top(M)∥22 ≤ 12c2C2

σ∗


0 q = 0,M ≥ ∥V ∥2,0 + 2(
1− q

2

) 2−q
q q

2∥V ∥
2
2,q

M
2
q
−1

q ∈ (0, 2)

≤ 6c2C2
σ∗

ρ1 log
ρ2 d

.

47

VURAL ERDOGDU

Moreover, by following the arguments in (E.12) and (E.13), we can show that

sup
I⊆[d]

|I|=2M

∑
i∈I

|ui − ũi|2

≤


KM2 log2

(
35nd
M

)
log2C2(12nd1+u)

n
q = 0,M ≥ ∥V ∥2,0 + 2

KM2 log2
(
35nd
M

)
log2C2(12nd1+u)

n
+

rCq
C2

σ∗c
2

1−c2

[
∥V ∥22,q ∨ 2

2
q+1
]

M(2
q−1)

q ∈ (0, 2)

≤ 2c2

ρ1 log
ρ2 d

+
32rC2

σ∗c2

ρ1 log
ρ2 d

(E.17)

By the arguments between (E.16)-(E.17), the statement follows.

Appendix F. Feature Learning

F.1. Additional Notation and Terminology

In the following, we will use SI for the single-index setting and MI for the multi-index setting. In
the following, we assume |J | ≤ M and ignore the constants. For SI, we consider a polynomial
link function σ∗ : R → R such that σ∗(t) =

∑
k≤p ckt

k. For MI, we consider a polynomial link

function σ∗ : Rr → R and σ̃∗(z) = σ∗(z)− ⟨E[yx], z⟩ =
∑

k≤p

〈
T̃k, z

⊗k
〉

.
Henceforth, w ∼ N (0, Id) is a random vector independent of the remaining random variable

unless otherwise stated. Let wJ := w|J
∥w|J ∥2 . Let vec(T) denotes the vectorized version of the tensor

T and

sJ :=

{
⟨v,wJ ⟩k

⋆−1 SI
DV ⊤wJ MI

zk(sJ) :=


0 sJ = 0

ckEw[s
2k
J]−1skJ SI and sJ ̸= 0〈

vec(T̃k),E
[
vec(s⊗kJ)vec(s⊗kJ)⊤

]+
vec(s⊗kJ)

〉
MI and sJ ̸= 0

where A+ denotes the pseudoinverse of A. We will use

β(b
(0)
l) :=

γk⋆ γ̃k⋆ (b
(0)
l)

(k⋆−1)! SI

γ̃2(b
(0)
l) MI

and N τ :=

N∑
l=1

1|β(b(0)l)|≥τ ,

where τ will be specified later.

F.2. Auxiliary Results

Lemma 36 ((Damian et al., 2022, Lemma 9) with explicit constants) Let a ∼ Unif({−1, 1}) and
b ∼ N (0, 1). Then for any k ≥ 0, there exists vk(a, b) such that for |x| ≤ 1,

E [vk(a, b)ϕ(at+ b)] = tk and sup
a,b
|vk(a, b)| ≤ 6

√
2(k + 1)2.

48

LEARNING SPARSE FEATURES WITH PRUNING

Proof By following the constants in (Damian et al., 2022, Lemma 9), we have the statement.

Lemma 37 ((Damian et al., 2022, Lemma 21) with explicit constants) Let σ∗ : Rr → R be a
polynomial of degree-p such that E[σ∗(z)2] ≤ 1. There exists symmetric T̃0, · · · , T̃p such that

σ∗(z) =
∑p

k=0

〈
T̃k, z

⊗k
〉

where

∥T̃k∥2F ≤
2ek

k!
(e
√
r)⌊

p−k
2 ⌋.

Consequently, we have
∑p

k=0∥T̃k∥F (k + 1)2 ≤ C(e
√
r)

p
4 , where C > 0 is a universal constant.

Proof Let σ∗(z) =
∑p

j=0
1
j! ⟨Tj ,Hek⟩. Then,

T̃kk! = ∇kσ∗(0) =

p−k∑
j=0

1

j!
∇kTj+k[Hek(0)]

(a)

=

p−k∑
j=0
j even

(−1)j/2(j − 1)!!

j!
∇kTj+k[sym(I

⊗ j
2

r)]

where (a) follows by Lemma 12 and since ∇kTj+k is symmetric by Lemma 7. Therefore,

∥T̃kk!∥F
(a)

≤
p−k∑
j=0
j even

(j − 1)!!

j!
∥Tj+k∥F ∥sym(I

⊗ j
2

r)∥F
(b)

≤
p−k∑
j=0
j even

(j − 1)!!

j!
r

j
4 ∥Tj+k∥F .

where (a) follows Cauchy-Schwartz inequality and Lemma 7, and (b) follows (Damian et al., 2023,
Lemma 3). Therefore,

∥T̃kk!∥2F
(a)

≤
p−k∑
j=0
j even

∥Tj+k∥2F
(j + k)!

p∑
j=0
j even

(
(j − 1)!!

j!

)2

r
j
2 (j + k)!

(b)

≤
p−k∑
j=0
j even

(
(j − 1)!!

j!

)2

r
j
2 (j + k)!

(c)

≤ k!

p−k∑
j=0
j even

(
j + k

k

)
r

j
2 . (F.1)

where (a) follows from Cauchy-Schwartz inequality, (b) follows E[σ∗(z)2] ≤ 1, and (c) follows
(j − 1)!!2 ≤ j!. Therefore,

(F.1)
(a)

≤ k!ek
p−k∑
j=0
j even

(e2r)
j
2 = k!ek

⌊ p−k
2 ⌋∑
j=0

(e
√
r)j

(b)

≤ 2k!ek(e
√
r)⌊

p−k
2 ⌋.

where (a) follows
(
j+k
k

)
≤ ej+k. For the second part of the statement, let supk≥0

2ek(k+1)4

k! = C <
∞ (as k! grows faster than ek(k + 1)4). We have

p∑
k=0

∥T̃k∥F (k + 1)2 ≤
p∑

k=0

(
2ek(k + 1)4

k!

)1/2

(e
√
r)

p−k
4 ≤ C1/2

p∑
k=0

(e
√
r)

p−k
4 ≤ C̃(e

√
r)

p
4 .

49

VURAL ERDOGDU

Proposition 38 We consider MI (i.e., sJ = DV ⊤wJ). For k ∈ N and d ≥ 2k, we have

inf
Tk:(Rr)⊗k→R
Tk is symmetric

∥Tk∥F=1

〈
vec(Tk),Ew[vec(s

⊗k
J)vec(s⊗kJ)⊤]vec(Tk)

〉
≥ k!

σ2k
r (V |JD)

E
[
∥w|J ∥2k2

] .

Proof Let Tk : (Rr)⊗k → R be a symmetric tensor with ∥Tk∥2F = 1 . We have〈
vec(Tk),E[vec(s⊗kJ)vec(s⊗kJ)⊤]vec(Tk)

〉
= E

[
∥w|J ∥2k2

]−1
E
[〈

Tk, (DV ⊤w|J)⊗k
〉2]

,

(F.2)

where we use that w/∥w∥2 and ∥w∥2 are independent. Let T̂k : (Rd)⊗k → R such that

T̂k[u1, · · · ,uk] = Tk[DV |⊤Ju1, · · · ,DV |⊤Juk].

By using Lemma 8 and (Damian et al., 2022, Lemma 23), we have (F.2) ≥ k!∥T̂k∥2FE
[
∥w|J ∥2k2

]−1 ≥
k!σ2k

r (V |JD)E
[
∥w|J ∥2k2

]−1.

Lemma 39 There exists τ > 0 (that depends on (k⋆, γk⋆) for SI and universal for MI) such that
for b ∼ N (0, 1), we have

P [|β(b)| ≥ τ] ≥ 2

3
and P

[
N τ

N
≥ 1

3

]
≥ 1− exp

(
−2N

9

)
.

Proof In the following, we will prove an anti-concentration result for γ̃k(b), k ∈ N. Note that by
scaling the k = k⋆ case with |γk⋆ |, the statement can be extended to SI. MI immediately follows
from the k = 2 case.
For k = 1, since γ̃k(b) ∼ Unif[0, 1], if we take τ = 1/3, we have the first statement. For k = 2,

since γ̃k(b) =
e
−b2

2√
2π

, if we choose τ = 1
e
√
2π

, we have

P [γ̃k(b) ≥ τ] = P
[
|b| ≤

√
2
] (a)

≥ 1− 1

e
√
2
≥ 2

3
.

where we use P[|b| ≥ t] ≤ e−t2/2

t for (a). For k ≥ 3, we have

|γ̃k(b)|≤
1/(e2

√
2π)

(2C)k−2

(
ε

k − 2

)k−2√
(k − 2)!⇒ |b| ≥ 2 OR |Hek−2

(−b)|≤
(

ε/2C

(k − 2)

)k−2√
(k − 2)!,

where C is the constant appeared in (Carbery and Wright, 2001, Theorem 8). Therefore, if we
choose

τ =
1/(e2

√
2π)

(2C)k−2

(
ε

k − 2

)k−2
√
(k − 2)!

(k − 1)!
,

50

LEARNING SPARSE FEATURES WITH PRUNING

by (Carbery and Wright, 2001, Theorem 8), we have

P [|γ̃k(b)| ≤ τ] ≤ P [|b| ≥ 2] + P

[
H2
ek−2

(−b) ≤ 1

C2k−4

(
ε

2k − 4

)2k−4

(k − 2)!

]
≤ 1

2e2
+ ε.

By choosing ε = 1
6 , we have the first part of the statement for k ≥ 3 as well. The second part

follows from Hoeffding’s inequality and the result in first part.

F.2.1. LEMMAS FOR MOMENTS

Lemma 40 For any event E,

SI :
∣∣∣Ew

[
zk(wJ)s

k
J ⟨v,xi⟩

k
1E

]∣∣∣ ≤ |ck|9k(k⋆−1)|⟨v,xi⟩|kP[E]1/2

MI :
∣∣∣∣Ew

[
zk(wJ)

〈
sJ ,V

⊤xi

〉k
1E

]∣∣∣∣ ≤ 2k

(4k)1/4
σk1 (V |JD)

σkr (V |JD)
∥T̃k∥F ∥V ⊤xi∥k2P[E]1/4.

Proof For SI:

∣∣∣Ew

[
zk(wJ)s

k
J ⟨v,xi⟩k 1E

]∣∣∣ (a)

≤ |ck||⟨v,xi⟩|kEw

[(
s2k

J

Ew[s2k
J]

)2
]1/2

P[E]1/2

(b)

≤ |ck||⟨v,xi⟩|k9k(k
⋆−1)P[E]1/2,

where we used Cauchy-Schwartz inequality for (a) and Lemma 63 for (b).
For MI: By using Cauchy-Schwartz inequality,

Ew

[
zk(wJ)

〈
sJ ,V

⊤xi

〉k
1E

]
≤ Ew

[
z2k(wJ)

]1/2 E [〈sJ ,V
⊤xi

〉4k]1/4
P[E]1/4. (F.3)

We have

E
[〈

sJ ,V
⊤xi

〉4k]1/4
= ∥(Hxi)|J ∥4k2 (4k − 1)!!E

[
∥w|J ∥4k2

]−1

≤ σ4k
1 (V |JD)∥V ⊤xi∥4k2 (4k − 1)!!Ew

[
∥w|J ∥4k2

]−1
, (F.4)

where we used (Hxi)|J = V |JDV ⊤xi in the last step. Moreover, we have

Ew

[
z2k(wJ)

]
= Ew

[〈
vec(T̃k),E

[
vec(s⊗k

J)vec(s⊗k
J)⊤

]+
vec(s⊗k

J)
〉〈

vec(s⊗k
J),E

[
vec(s⊗k

J)vec(s⊗k
J)⊤

]+
vec(T̃k)

〉]

=
〈
vec(T̃k),E

[
vec(s⊗k

J)vec(s⊗k
J)⊤

]+
vec(T̃k)

〉
≤

E
[
∥w|J ∥2k2

]
k!σ2k

r (V |JD)
(F.5)

51

VURAL ERDOGDU

where we used Proposition 38 in the last line. By using (F.4) and (F.5), we have

(F.3) ≤
(
(4k − 1)!!

k!k!

)1/4
σk
1 (V |JD)

σk
r (V |JD)

∥V ⊤xi∥k2P[E]1/4 ≤ 2k

(4k)1/4
σk
1 (V |JD)

σk
r (V |JD)

∥V ⊤xi∥k2P[E]1/4,

where we use Stirling’s formula in the last step.

F.3. Approximation of the target

We define

h(w, a(0), b(1), b
(0)
l) :=

p∑
k=0

vk(a
(0), b(1))

ηkβk(b
(0)
l)

zk(sJ)1E ,

where

E≡


|sJ | ≤ 1

ητ
AND ∥v|J c∥22≤ 1

4
AND |β(b(0)l)| ≥ τ AND max

i∈[n]
η|β(b(0)l)sJ ⟨v,xi⟩|≤1 SI

∥sJ∥2 ≤ 1
ητ

AND ∥V |J c∥2F ≤ 1
4

AND |β(b(0)l)|≥τ AND max
i∈[n]

η|β(b(0)l)
〈
sJ ,V

⊤xi

〉
|≤1 MI

Lemma 41 Let us have iid {b(0)l }l∈[N]. We assume that: For SI, M ≥ 2p(k⋆ − 1), N τ > 0 and
∥v|J c∥22 ≤ 1

4 . For MI, M ≥ 2p, N τ > 0 and ∥V |J c∥2F ≤
1
4 . Then, there exists a constant Ck⋆ > 0

depending on k⋆, and a universal constant C̃ > 0 such that the following holds:

For SI:

(i)

∣∣∣∣∣E(w,a(0),b(1))

[
1

N τ

N∑
l=1

h(w, a(0), b(1), b
(0)
l)ϕ

(
a(0)ηβ

(
b
(0)
l

)
sJ ⟨v,xi⟩+ b(1)

)]
−σ∗(⟨v,xi⟩)

∣∣∣∣∣
≤ Ck⋆e

p
4

(
max
k≤p
|⟨v,xi⟩|k

)
Pw

[
|sJ | ≥

1

ητ
OR max

i∈[n]
|sJ ⟨v,xi⟩| >

1

ηk⋆

] 1
2

(F.6)

(ii) |h(w, a(0), b(1), b(0))| ≤ C̃e
p
4 max
k≤p

Mk(k⋆−1)

η2kτ2k
. (F.7)

For MI:

(i)

∣∣∣∣∣E(w,a(0),b(1))

[
1

N τ

N∑
l=1

h(w, a(0), b(1), b
(0)
l)ϕ

(
a(0)ηβ

(
b
(0)
l

) 〈
sJ ,V

⊤xi

〉
+ b(1)

)]
−σ̃∗(V ⊤xi)

∣∣∣∣∣
≤ Ck⋆(e

√
r)

p
4

(
σ1(V |JD)

σr(V |JD)

)p(
max
k≤p
∥V ⊤xi∥k2

)
Pw

[
∥sJ∥2 ≥

1

ητ
OR max

i∈[n]

∣∣〈sJ ,V
⊤xi

〉∣∣ > 1

η

] 1
4

(F.8)

(ii) |h(w, a(0), b(1), b(0))| ≤ C̃(e
√
r)

p
4 max

k≤p

Mk

η2kτ 2kσ2k
r (D)

. (F.9)

52

LEARNING SPARSE FEATURES WITH PRUNING

Proof We start with SI. Fix an k ≤ p and l ∈ [N]. We have

E(w,a(0),b(1))

[
1

N τ

N∑
l=1

h(w, a(0), b(1), b
(0)
l)ϕ

(
a(0)ηβ

(
b
(0)
l

)
sJ ⟨v,xi⟩+ b(1)

)]
(a)

= 1|β(b(0)l)|≥τEw

[
1Ezk(sJ)s

k
J ⟨v,xi⟩

k
]

(F.10)

(b)

= 1|β(b(0)l)|≥τ

(
ck ⟨v,xi⟩k − Ew

[
1Eczk(sJ)s

k
J ⟨v,xi⟩

k
])

where we use Lemma 36 in (a) and the definition of zk and ∥v|J ∥22 > 0 in (b). Therefore, we have∣∣∣∣∣E(w,a(0),b(1))

[
1

N τ

N∑
l=1

h(w, a(0), b(1), b
(0)
l)ϕ

(
a(0)ηβ

(
b
(0)
l

)
sJ ⟨v,xi⟩ − b(1)

)]
− σ∗(⟨v,xi⟩)

∣∣∣∣∣
≤

∣∣∣∣∣
p∑

k=0

N∑
l=1

1|β(b(0)l)|≥τ

N τ
Ew

[
1Eczk(sJ)s

k
J ⟨v,xi⟩

k
]∣∣∣∣∣

(a)

≤
(
max
k≤p
|⟨v,xi⟩|k

)
P[Ec]1/2

p∑
k=0

|ck|9k(k
⋆−1)

where we use Lemma 40 for (a). By Lemma 37, we have

p∑
k=0

|ck|9k(k
⋆−1)

(a)

≤
p∑

k=0

√
29kk

⋆

√
k!

e
p−k
4 ≤ Ce

92k
⋆

2 e
p
4 . (F.11)

where (a) follows 9 ≥
√
e. By observing that |β(b(0)l)| ≤ k⋆ and Ec ⇒ maxi∈[n]|sJ ⟨v,xi⟩| >

1
ηk⋆ OR |sJ | ≥ 1

ητ , we have (F.6). For (F.7), by Lemma 36, we have

|vk(a(0), b(1))|
ηkβk(b(0))

≤ 6
√
2(k + 1)2

ηkτk
. (F.12)

Moreover,

|zk(sJ)|1E
(a)

≤ |ck|
ηkτk

1

Ew [s2kJ]

(b)

≤ |ck|
ηkτk

4k(k
⋆−1)Mk(k⋆−1)(

2k(k⋆ − 1)
)
!!

(c)

≤ e2|ck|
ηkτk

Mk(k⋆−1),

where we use E ⇒ |sJ | ≤ 1
ητ for (a), ∥v|J c∥22 ≤ 1

4 and M ≥ 2p(k⋆−1) for (b), and 4k(k
⋆−1)(

2k(k⋆−1)
)
!!
=

2k(k
⋆−1)(

k(k⋆−1)
)
!
≤ e2 for (c). Therefore,

|h(w, a(0), b(1), b(0))| ≤
p∑

k=0

Mk(k⋆−1)

η2kτ2k
6e2
√
2(k + 1)2|ck|

(a)

≤ C̃e
p
4 max
k≤p

Mk(k⋆−1)

η2kτ2k
,

53

VURAL ERDOGDU

where we used Lemma 37 for (a). For MI, by adjusting the arguments between (F.10)-(F.11) by
using the bounds for MI proven above, we can obtain (F.8). For (F.9), we observe that

|zk(sJ)|1E

(a)

≤ ∥sJ∥k2
∥∥∥E [vec(s⊗k

J)vec(s⊗k
J)⊤

]+
vec(T̃k)

∥∥∥
2
1E

(b)

≤ 1

ηkτk

E
[
∥w|J ∥2k2

]
k!σ2k

r (V |JD)
∥T̃k∥F1E

(c)

≤ e4

ηkτk

Mk

σ2k
r (D)

∥T̃k∥F1E

where we used Cauchy Schwartz inequality for (a), Proposition 38 and E ⇒ ∥sJ∥2 ≤ 1
ητ for (b),

and E ⇒ ∥V |J c∥F ≤ 1
2 , M ≥ 2p, and 4k

k! ≤ e4 for (c). By (F.12) and Lemma 37, we have

|h(w, a(0), b(1), b(0))| ≤
∑
k≤p

Mk6
√
2e4(k + 1)2

η2kτ2kσ2k
r (D)

∥T̃k∥F ≤ C̃(e
√
r)

p
4 max
k≤p

Mk

η2kτ2kσ2k
r (D)

.

F.4. Empirical Approximation

For the following theorem, we introduce:

∥X∥ψ2
:= inf

{
t > 0 | E(w,a(0),b(1))

[
exp

(
X2

t2

)]
≤ 2

}
.

For the following, let us assume that we have i.i.d. {(wj , a
(0)
j , b

(1)
j , b

(0)
j)}j∈[m] and for B,N ∈

N, let m = B · N . We will double index parameters as wjl = w(j−1)N+l, j ∈ [B] and l ∈ [N].
Recall that

h(w, a(0), b(1), b
(0)
l) :=

p∑
k=0

vk(a
(0), b(1))

ηkβk(b
(0)
l)

zk(sJ)1E

We let

Yjl :=


h(wjl, a

(0)
jl , b

(1)
jl , b

(0)
jl)ϕ

(
a
(0)
jl ηβ

(
b
(0)
jl

) 〈
v,

wjl|J
∥wjl|J ∥2

〉k⋆−1
⟨v,xi⟩+ b

(1)
jl

)
SI

h(wjl, a
(0)
jl , b

(1)
jl , b

(0)
jl)ϕ

(
a
(0)
jl ηβ

(
b
(0)
jl

) 〈
DV ⊤ wjl|J

∥wjl|J ∥2 ,V
⊤xi

〉
+ b

(1)
jl

)
MI

Moreover let Yj := 1
Nτ

∑N
l=1 Yjl and N τ

j :=
∑N

l=1 1|β(b(0)jl)|≥τ . We have the following statement:

Lemma 42 We assume that: For SI, M ≥ 2p(k⋆ − 1), and N τ
j > N/3. For MI: M ≥ 2p, and

N τ
j > N/3. Then, there exists a universal constant C̃ > 0 such that

∥Yj − E(w,a(0),b(1))[Yj]∥ψ2 ≤ C̃


e
p
4√
N
maxk≤p

Mk(k⋆−1)

η2kτ2k
SI

(e
√
r)

p
4√

N
maxk≤p

Mk

η2kτ2kσ2k
r (D)

MI.

54

LEARNING SPARSE FEATURES WITH PRUNING

Proof For both SI and MI, there exists a universal C > 0 such that we have

∥∥∥Yj − E(w,a(0),b(1))[Yj]
∥∥∥2
ψ2

=

∥∥∥∥∥ 1

N τ

N∑
l=1

Yjl − E(w,a(0),b(1))[Yjl]

∥∥∥∥∥
2

ψ2

≤ C
N∑
l=1

∥Yjl∥2ψ2
. (F.13)

Since ϕ(t)2 ≤ t2, for SI, we have

∥Yjl∥ψ2 ≤

∥∥∥∥∥h(wjl, a
(0)
jl , b

(1)
jl , b

(0)
jl)

(
a
(0)
jl ηβ

(
b
(0)
jl

)〈
v,

wjl|J
∥wjl|J ∥2

〉k⋆−1

⟨v,xi⟩+ b
(1)
jl

)∥∥∥∥∥
ψ2

(a)

≤ C̃e
p
4 max
k≤p

Mk(k⋆−1)

η2kτ2k
,

where (a) follows by the definition of E and ∥b(1)jl ∥ψ2 ≤ 3. For MI, we have

∥Yjl∥ψ2

(a)

=

∥∥∥∥h(wjl, a
(0)
jl , b

(1)
jl , b

(0)
jl)ϕ

(
a
(0)
jl ηβ

(
b
(0)
jl

)〈
DV ⊤ wjl|J

∥wjl|J ∥2
,V ⊤xi

〉
+ b

(1)
jl

)∥∥∥∥
ψ2

(b)

≤ C̃(e
√
r)

p
4 max
k≤p

Mk

η2kτ2kσ2k
r (D)

,

where (a) follows from ϕ(t)2 ≤ t2, (b) follows by the definition of E and ∥b(1)∥ψ2 ≤ 3. By (F.13)
and N τ

j > N/3, the statement follows.

Let poly(·) a polynomial respectively, depending on (p, k⋆, γk⋆) for SI, and (p, r, σ1(D)/σr(D))
for MI, which will be defined later (see (F.14)). We define the following event:

Ẽ ≡


∣∣∣ 1B∑B

j=1 Yj − σ∗(⟨v,xi⟩)
∣∣∣ ≥ poly[logn,log du] log

1
2 (2n

δ)√
m

+ 1
n SI∣∣∣ 1B∑B

j=1 Yj − σ̃∗(V ⊤xi)
∣∣∣ ≥ poly[logn,log du] log

1
2 (2n

δ)√
m

+ 1
n MI

Lemma 43 There exists a constant C > 0 depending on (k⋆, γk⋆) for SI and r for MI such that if
we have

For SI:

1. maxi∈[n]|⟨v,xi⟩| ≤
√
3
√
1 + log(4ndu).

2. η = 1
C

1

τ
√

1+log(4ndu)

(
M

1+log(P)

) k⋆−1
2

where P = n2 [C (1 + log (4ndu))]p.

3. M ≥ 2p(k⋆ − 1) ∨ 16 log (P)

4. ∥v|J c∥22 ≤ 1/4

5. N τ
j ≥ N/3 for all j ∈ [B]

For MI:

1. maxi∈[n]∥V ⊤xi∥ ≤
√
3
√
r + log(4ndu).

2. η = 1
C

1

τσ1(D)
√
r+log(4ndu)

(
M

r+log(P)

) 1
2

where P = n4 [C (r + log (4ndu))]2p.

3. M ≥ 2p ∨ 16 log (P)

4. ∥V |J c∥2F ≤ 1/4

5. N τ
j ≥ N/3 for all j ∈ [B]

55

VURAL ERDOGDU

then, the following holds:

– maxk≤p
e
p
4Mk(k⋆−1)

η2kτ2k

≤C2pe
p
4 (1 + log(4ndu))p(1 + log(P))p(k

⋆−1)

– P(w,a(0),b(1))[Ẽ] ≤ δ

– maxk≤p
(e
√
r)

p
4Mk

η2kτ2kσ2k
r (D)

≤C2p(e
√
r)

p
4

(
σ1(D)
σr(D)

)2p
(r+log(4ndu))p(1+

log(P))p

– P(w,a(0),b(1))[Ẽ] ≤ δ

Proof For SI, we have

max
k≤p

e
p
4Mk(k⋆−1)

η2kτ2k
= e

p
4

(
max
k≤p

Ck(1 + log(4ndu))k(1 + log(P))k(k
⋆−1)

)
= C2pe

p
4 (1 + log(4ndu))p(1 + log(P))p

For MI, we have

(e
√
r)

p
4

(
max
k≤p

Mk

η2kτ 2kσ2k
r (D)

)
= (e
√
r)

p
4

(
σ1(D)

σr(D)

)2p (
max
k≤p

C2k(r + log(4ndu))k(1 + log(P))k
)

= C2p(e
√
r)

p
4

(
σ1(D)

σr(D)

)2p

(r + log(4ndu))p(r + log(P))p

Let

poly(log n, log du) ≥

Cpe
p
4 (1 + log(4ndu))p(1 + log(P))p SI

Cp(e
√
r)

p
4

(
σ1(D)
σr(D)

)2p
(r + log(4ndu))p(1 + log(P))p MI.

(F.14)

By Lemma 42, for both SI and MI, we have

P(w,a(0),b(1))

[∣∣∣∣∣∣ 1B
B∑
j=1

Yj − E(w,a(0),b(1)) [Yj]

∣∣∣∣∣∣ ≥ poly(log n, log du)

√
log(2/δ)

m︸ ︷︷ ︸
:=A1

]
≤ δ.

By Lemma 41, we have

SI :
∣∣E(w,a(1),b(1)) [Yj]− σ∗(⟨v,xi⟩)

∣∣
≤ Ck⋆e

p
4

(
max
k≤p
|⟨v,xi⟩|k2

)
Pw

[
|sJ | ≥

1

ητ
OR max

i∈[n]
|sJ ⟨v,xi⟩| >

1

ηk⋆

] 1
2

︸ ︷︷ ︸
:=A2

MI :
∣∣E(w,a(0),b(1)) [Yj]− σ̃∗(V ⊤xi)

∣∣
≤ Ck⋆(e

√
r)

p
4

(
σ1(V |JD)

σr(V |JD)

)p(
max
k≤p
∥V ⊤xi∥k2

)
Pw

[
∥sJ∥2 ≥

1

ητ
ORmax

i∈[n]

∣∣〈sJ ,V
⊤xi

〉∣∣ > 1

η

] 1
4

︸ ︷︷ ︸
:=A2

56

LEARNING SPARSE FEATURES WITH PRUNING

Therefore, for both SI and MI, we have

P(w,a(0),b(1))

∣∣∣∣∣∣ 1B
B∑
j=1

Yj − σ̃∗(V ⊤xi)

∣∣∣∣∣∣ ≥ A1 +A2

 ≤ δ

For SI, by Lemmas 59 and 60, we have

P
[
|sJ | ≥

1

ητ

]
(a)

≤ 2

P
and P

[
max
i∈[n]
|⟨v,xi⟩||sJ | ≥

1

ηk⋆

]
(b)

≤ 2

P
,

where we choose C ≥ 1 ∨ k⋆
√
3

τ 6
k⋆−1

2 for (a) and (b). Therefore, by choosing C ≥ 3
√
e(2Ck⋆)

2/p,
we have

A2 ≤ 2Ck⋆e
p
4

(√
3
√

1 + log(4ndu)
)p 1√

P
≤ 1

n
.

For MI, the same argument with its corresponding bounds applies.

F.5. Concentration Bound for a Desirable Event

Corollary 44 We fix u ∈ N. For any ε > 0, if

m = Θ(dε), d ≥ O(M) and c =
1

log d
,

n and M are chosen as in Lemmas 34 and 35 for SI and MI respectively, and

η =
1

τC


1√

1+log(4ndu)

(
M

1+log(P)

) k⋆−1
2 SI

1/σ1(H)√
r+log(4ndu)

(
M

r+log(P)

)
MI

where P =

{
n2 [C (1 + log (4ndu))]p , SI
n4 [C (r + log (4ndu))]2p , MI

(F.15)

and C is the constant appeared in Lemma 43, we have with probability at least 1− (16 + 6m)d−u,
the intersection of the

C.1 maxj∈[2m]∥W
(1)
j∗ ∥2 ≤ Õ(1)

C.2 ∥µ̂|J ∥2 ≤ 1 +O
(

1√
M

)
C.3 ∥b(1)∥22 ≤ 4m and ∥b(1)∥44 ≤ 6m and ∥b(1)∥∞ ≤ Õ(1)

C.4 There exists â ∈ R2m such that

∥â∥22 ≤

O
(
(1+log(4ndu))2p(1+log(P))2p(k

⋆−1)

m

)
SI

O
(
(r+log(4ndu))2p(r+log(P))2p

m

)
MI,

and

57

VURAL ERDOGDU

C.5 1
n

∑n
i=1

(
yi − ŷ(xi; (â,W

(1), b(1)))
)2 ≤ ∆E[ϵ2] + Õ

(
1
m + 1√

n
+ 1

M

)
+

O
(
1+log(4ndu))2p(1+log(P))2p(k

⋆−1)

ρ1 log
ρ2 d

)
SI

O
(
r+log(4ndu))2p(r+log(P))2p

ρ1 log
ρ2 d

)
MI

where O suppresses constants, and Õ suppresses constants and Poly [log n, log d] depending on the
problem parameters 3.

Let τ > 0 be the values defined in Lemma 39, N = ⌊
√
m⌋, and let

âj :=
h(Wj∗, a

(0)
j , b

(0)
j , b

(1)
j)

BN τ
j

.

Moreover let

ỹi :=


∑2m

j=1 âjϕ

(
a
(0)
j

〈
v,W

(0)
j∗

〉k⋆−1
⟨v,xi⟩ − b

(1)
j

)
SI

⟨µ̂|J ,xi⟩+
∑2m

j=1 âjϕ
(
a
(0)
j ηβ(b

(0)
j)

〈
HW

(0)
j∗ ,xi

〉
− b

(1)
j

)
MI

ŷi :=

{〈
â, ϕ(W (1)xi + b(1))

〉
SI

⟨µ̂|J ,xi⟩+
〈
â, ϕ(W (1)xi + b(1))

〉
MI.

We consider the intersection of the following events:

E.1 N τ
j ≥ N/3 for all j ∈ [B]

E.2 For SI Proposition 28, for MI Proposition 30 holds for all j ∈ [2m] with δ = d−u

E.3 For SI: ∥v|J c∥22 ≤ O
(

1
ρ1 log

ρ2 d

)
. For MI: ∥E[yx]|J c∥22 ∨ ∥V |J c∥22 ≤ O

(
1

ρ1 log
ρ2 d

)
.

E.4 We have

max
i∈[n]
|⟨v,xi⟩| ≤

√
3
√

1 + log(4ndu) and max
i∈[n]
∥V ⊤xi∥2 ≤

√
3
√
r + log(4ndu),

for SI and MI respectively.

E.5 ∥â∥22 ≤

O
(
(1+log(4ndu))2p(1+log(P))2p(k

⋆−1)

m

)
SI

O
(
(r+log(4ndu))2p(r+log(P))2p

m

)
MI,

E.6 1
n

∑n
i=1 (ỹi − ŷi)

2 ≤ Õ
(

1
M

)
+

O
(
(1+log(4ndu))2p(1+log(P))2p(k

⋆−1)

ρ1 log
ρ2 d

)
SI

O
(
(r+log(4ndu))2p(r+log(P))2p−1

ρ1 log
ρ2 d

)
MI,

E.7 For MI: 1
n

∑n
i=1(⟨E[yx],xi⟩ − ⟨µ̂|J ,xi⟩)2 ≤ O

(
1

ρ1 log
ρ2 d +

1
M

)
3. Specifically, (k⋆, γk⋆ , u, p, ε, α, C1, C2, Cσ∗ ,∆) for SI, (σ1(H), σr(H), u, p, ε, α, C1, C2, Cσ∗ , r,∆) for MI.

58

LEARNING SPARSE FEATURES WITH PRUNING

Lemma 45 With the choice of parameters in Corollary 44, the intersection of (E.1)-(E.7) holds
with probability at least 1− (11 + 4m)d−u.

Proof Since N = ⌊
√
m⌋, by using Lemma 39 and union bound, we can show that (E.1) holds with

probability at least 1−Θ(dε/2) exp
(
−Θ(dε/2)

)
≥ 1− du for large enough d depending on (u, ε).

Since with a sufficiently large constant factor, M satisfies the condition in Propositions 28 and 30,
we have (E.2) holds with probability at least 1 − 2md−u. By Lemmas 34, 35 and the choice of
parameters, we can show that (E.3) holds with probability at least 1 − 4d−u. By Corollary 58 we
have that (E.4) holds with probability at least 1− d−u.
For (E.5), by Lemmas 41 and 43, we have

|âj | ≤

O
(
N
Nτ

j

C̃
m maxk≤p

Mk(k⋆−1)

η2kτ2k

)
, SI

O
(
N
Nτ

j

C̃
m maxk≤p

Mk

η2kτ2kσ2k
r (H)

)
, MI

≤

O
(
(1+log(4ndu))p(1+log(P))p(k

⋆−1)

m

)
, SI

O
(
(r+log(4ndu))p(r+log(P))p

m

)
MI

Hence, (E.5) follows. For the following, we additionally consider the intersection of the following
events:

Ẽ.1 Lemma 24 holds for ϕ(t) = t with δ = d−u.

Ẽ.2 Lemma 26 holds for ϕ(t) = t with δ = d−u.

Ẽ.3 Lemma 60 holds for all W (0)
j∗ , j ∈ [2m], with δ = d−u.

Ẽ.4 For SI, Lemma 61 holds for A =
{

v|J c

∥v|J c∥2 , |J | ≤M
}

with δ = d−u.

Ẽ.5 For MI, Lemma 61 holds for A =
{

E[yx]|J c

∥E[yx]|J c∥2
, |J | ≤M

}
and conditioned on W (see

(INIT)), holds for A =

{
H|J c×JW

(0)
j∗∥∥∥H|J c×JW
(0)
j∗

∥∥∥
2

, |J | ≤M

}
each with δ = d−u.

Note that the intersection of the given events holds with probability at least 1 − 5d−u − 2md−u.
For (E.6), we observe that W (1)

j∗ = ηa
(0)
j g(W

(0)
j∗ , b

(0)
j)|J , where g is defined in (D.1). By Cauchy-

Schwartz and triangle inequalities, we have

1

n

n∑
i=1

(ỹi − ŷi)
2

≤ 2η2∥â∥22



∑2m
j=1

1
n

∑n
i=1

(〈
g(W

(0)
j∗ , b

(0)
j)|J − β(b

(0)
j)

〈
v,W

(0)
j∗

〉k⋆−1

v|J ,xi

〉)2

SI

+
∑2m

j=1
1
n

∑n
i=1

(
β(b

(0)
j)

〈
v,W

(0)
j∗

〉k⋆−1

⟨v|J c ,xi⟩
)2

∑2m
j=1

1
n

∑n
i=1

(〈
g(W

(0)
j∗ , b

(0)
j)|J − β(b

(0)
j)H|J×JW

(0)
j∗ ,xi

〉)2
MI

+
∑2m

j=1
1
n

∑n
i=1

(
β(b

(0)
j)

〈
H|Jc×JW

(0)
j∗ ,xi

〉)2
(F.16)

59

VURAL ERDOGDU

Hence,

(F.16)
(a)

≤ 4mη2∥â∥22



O

(
M log2(24dn

M) log2C2 (12ndu)

n +
(
1+log(4du)

M

)k⋆)
SI

+O
(
(1+log(4ndu))2p(1+log(P))2p(k

⋆−1)

ρ1 log
ρ2 d

)
O

(
M log2(35dn

M) log2C2 (18ndu)

n +
(
r+log(4du)

M

)2)
MI

+O
(
(r+log(4ndu))2p(r+log(P))2p

ρ1 log
ρ2 d

)
(b)

≤ Õ
(

1
M

)
+

O
(
(1+log(4ndu))2p(1+log(P))2p(k

⋆−1)

ρ1 log
ρ2 d

)
SI

O
(
(r+log(4ndu))2p(r+log(P))2p−1

ρ1 log
ρ2 d

)
MI,

where we use (E.2), and (Ẽ.2)-(Ẽ.5) for (a) and (E.5) and (F.15) for (b). Lastly,

1

n

n∑
i=1

(⟨E[yx],xi⟩ − ⟨µ̂|J ,xi⟩)2 ≤ 2

∥∥∥∥∥ 1n
n∑

i=1

xix
⊤
i |J×J

∥∥∥∥∥
2

∥(µ̂− E[yx])|J ∥22 +
2

n

n∑
i=1

⟨E[yx]|J c ,xi⟩2

(a)

≤ O

(
M log2

(
24dn
M

)
log2C

2

(6ndu)

n
+ ∥E[yx]|J c∥22

)
,

where we used (Ẽ.1)- (Ẽ.2) for (a). By (E.3), (E.7) follows.

Proof [Proof of Corollary 44] We assume the intersection of (E.1)-(E.7) and (Ẽ.1)- (Ẽ.5) holds. By
recalling that W (1)

j∗ = a
(0)
j ηg

(
W

(0)
j∗ , b

(0)
j

)
, we have

∥W (1)
j∗ ∥2=η

∥∥∥g (W (0)
j∗ , b

(0)
j

)∥∥∥
2

(a)

= η


O

((
1+log(4du)

M

) k⋆−1
2

+

√
M log2(24dn

M) log2C2 (12ndu)

n

)
SI

O

((
r+log(4du)

M

) 1
2

+

√
M log2(35dn

M) log2C2 (18ndu)

n

)
MI

≤ Õ(1),

where we use (E.2) in (a).
For (C.2), for SI µ̂ = 0, therefore, the statement is trivial in this case. For MI, by (Ẽ.1), we can

write

∥µ̂|J ∥ ≤ ∥(µ̂− E[yx])|J ∥2 + ∥E[yx]|J ∥2
(a)

≤ 1 +O

√M log2
(
24dn
M

)
log2C2 (6ndu)

n


where (a) follows since ∥E[yx]∥2 ≤ 1.

For (C.3), by using Lemma 56, we have with probability 1− d−u, for d is large enough

∥b(1)∥22 ≤ 2m+ 2
√
2m log du + 2 log du ≤ 3m.

60

LEARNING SPARSE FEATURES WITH PRUNING

Moreover, by Lemma 63, we observe that E
[(

1
2m

∑2m
j=1 b

4
j − 3

)p]1/p
≤ p2E[b81]√

m
. Therefore, with

probability 1− d−u, for d is large enough

1

2m

2m∑
j=1

b4j − 3 ≤ e log2 duE[b81]√
m

⇒ ∥b(1)∥44 ≤ 7m

Moreover, by using standard Gaussian concentration with union bound, we have with probability
1− 2md−u, ∥b(1)∥∞ ≤

√
log(du). (C.4) directly follows from (E.5).

For (C.5) in SI, we have

1

n

n∑
i=1

(yi − ŷ(xi; (â,W
(1), b(1))))2 ≤ 1

n

n∑
i=1

(σ∗(⟨v,xi⟩)− ŷi)
2 +

√
∆

n

n∑
i=1

(σ∗(⟨v,xi⟩)− ŷi)ϵi

+
∆

n

n∑
i=1

ϵ2i

By using δ = d−u in Lemma 43 and (E.6), we have with probability at least 1− d−u

1

n

n∑
i=1

(σ∗(⟨v,xi⟩)− ŷi)
2 ≤ 2

n

n∑
i=1

(σ∗(⟨v,xi⟩)− ỹi)
2 +

2

n

n∑
i=1

(ỹi − ŷi)
2

≤ Õ

(
1

m
+

1

n
+

1

M

)
+O

(
(1+log(4ndu))2p(1+log(P))2p(k

⋆−1)

ρ1 log
ρ2 d

)
.

Since ϵi has 1-Subgaussian norm, we have with probability at least 1− 2d−u,

√
∆

n

n∑
i=1

(σ∗(⟨v,xi⟩)− ỹi)ϵi ≤
√

∆ log(2du)

n

(
1

n

n∑
i=1

(σ∗(⟨v,xi⟩)− ŷi)
2

)1/2

1

n

n∑
i=1

ϵ2i − Eϵ2i ≤ Õ

(
1√
n

)
. (F.17)

Therefore, (C.5) follows for SI. For MI,

1

n

n∑
i=1

(yi − ŷ(xi; (â,W
(1), b(1))))2 ≤ 1

n

n∑
i=1

(σ∗(V ⊤xi)− ŷi)
2 +

√
∆

n

n∑
i=1

(σ∗(V ⊤xi)− ŷi)ϵi

+
∆

n

n∑
i=1

ϵ2i

We observe that

(σ∗(V ⊤xi)− ŷi)
2 ≤ 2(σ∗(V ⊤xi)− ỹi)

2 + 2(ỹi − ŷi)
2

≤ 4

σ̃∗(V ⊤xi)−
2m∑
j=1

âjϕ
(
a
(0)
j ηβ(b

(0)
j)

〈
HW

(0)
j∗ ,xi

〉
− b

(1)
j

)2

+ 4 (⟨E[yx],xi⟩ − ⟨µ̂|J ,xi⟩)2 + 2(ỹi − ŷi)
2

61

VURAL ERDOGDU

Therefore, by using δ = d−u in Lemma 43 and by (E.6) and (E.7), we have with probability 1−d−u

1

n

n∑
i=1

(σ∗(V ⊤xi)− ŷi)
2 ≤ O

(
(r + log(4ndu))2p (r + log(P))2p

ρ1 log
ρ2 d

)
+ Õ

(
1

m
+

1

M
+

1

n

)
.

By the same argument in (F.17), (C.5) holds for MI as well.

F.6. Main Result

Theorem 46 (Restatement of Theorems 4 and 5) Under the parameter choice given in Corollary
44, for λt =

m
ρ1 log

ρ2 d , ηt = 1
Õ(m)+λ

and T = Õ (ρ1 log
ρ2 d) , Algorithm 2 guarantees that with

probability at least 1− (18 + 6m)d−u, we have

E(x,y)

[(
y − ŷ(x; (a(T),W (1), b(1)))

)2]
≤ ∆E[ϵ2] + Õ

 1

m
+

1

M
+

√
M log

(
35d
M

)
n


+

O
(
1+log(4ndu))2p(1+log(P))2p(k

⋆−1)

ρ1 log
ρ2 d

)
SI

O
(
r+log(4ndu))2p(r+log(P))2p

ρ1 log
ρ2 d

)
MI

where O suppresses constants, and Õ suppresses constants and Poly [log n, log d] depending on the
problem parameters.

Proof In the following, we assume that (C.1)-(C.5) in Corollary 44 hold. We will prove the state-
ment for SI and will sketch the proof for MI, since the arguments are the same except a few minor
steps. Recall that Rn((a,W , b)) = 1

2n

∑n
i=1 (yi − ⟨a, ϕ(Wxi + b)⟩)2. We consider

a∗ := min
a∈R2m

Rn((a,W
(1), b(1))) + λ

∥a∥22
2

where λ =
m

ρ1 log
ρ2 d

. (F.18)

We observe that

λ∥a∗∥22
2

≤ Rn((â,W
(1), b(1))) + λ

∥â∥22
2
⇒

∥a∗∥22 ≤
2

λ
Rn((â,W

(1), b(1))) + ∥â∥22 ≤ O

(
(1 + log(4ndu))2p (1 + log(P))2p(k

⋆−1)

m

)
,

(F.19)

and

Rn((a
∗,W (1)b(1))) ≤ Rn((â,W

(1), b(1))) + λ
∥â∥22
2
⇒

Rn((a
∗,W (1), b(1))) ≤ ∆E[ϵ2] +O

(
(1+log(4ndu))2p(1+log(P))2p(k

⋆−1)

ρ1 log
ρ2 d

)
+ Õ

(
1

m
+

1√
n
+

1

M

)
(F.20)

62

LEARNING SPARSE FEATURES WITH PRUNING

Moreover, we observe that

∇2
aRn((a,W

(1), b(1))) = λI2m +
1

n

n∑
i=1

ϕ(W (1)xi + b(1))ϕ(W (1)xi + b(1))⊤

⇒ ∥∇2
aRn((a,W

(1), b(1)))∥2 ≤ λ+
1

n

n∑
i=1

∥∥∥ϕ(W (1)xi + b(1))
∥∥∥2
2

We have

1

n

n∑
i=1

∥∥∥ϕ(W (1)xi + b(1))
∥∥∥2
2
≤ 1

n

n∑
i=1

∥∥∥W (1)xi + b(1)
∥∥∥2
2

≤ 2
2m∑
j=1

∥W (1)
j∗ ∥

2
2

∥∥∥∥∥ 1n
n∑
i=1

xix
⊤
i |J×J

∥∥∥∥∥
2

+ 2
2m∑
j=1

(b
(1)
j)2

(a)

≤ Õ(m).

where we use (C.1) and (C.3) for (a) .
Therefore, (F.18) is a λ-strongly convex and

(
Õ(m) + λ

)
- smooth problem. By using ηt =

1
Õ(m)+λ

, we can approximate to a∗ by 1
nm in T = Õ(ρ1 log

ρ2 d) log(nm) = Õ(ρ1 log
ρ2 d) iteration

of gradient descent, i.e., ∥a(T) − a∗∥22 ≤ 1
nm (Bubeck, 2015, Theorem 3.10). We have

E(x,y)

[(
y − ŷ(x; (a(T),W (1), b(1)))

)2]
≤ E(x,y)

[(
y − ŷ(x; (a∗,W (1), b(1)))

)2]
+ 2E

[(
y−ŷ(x; (a∗,W (1), b(1)))

)2] 1
2

Ex

[(̂
y(x; (a∗,W (1), b(1)))−ŷ(x; (a(T),W (1), b(1)))

)2] 1
2

+ Ex

[(
ŷ(x; (a∗,W (1), b(1)))− ŷ(x; (a(T),W (1), b(1)))

)2]
. (F.21)

For the last term,

Ex

[(
ŷ(x; (a∗,W (1), b(1)))− ŷ(x; (a(T),W (1),b(1)))

)2]
≤ ∥a∗ − a(T)∥22Ex

[∥∥∥ϕ(W (1)x+ b(1))
∥∥∥2
2

]
≤ ∥a∗ − a(T)∥22

2m∑
j=1

∥W (1)
j∗ ∥22 + (b

(1)
j)2

≤ Õ (1/n) .

For the first term, for C > 0 and the event EC ≡
∣∣σ∗(V ⊤x)− ŷ(x; (a∗,W (1), b(1)))

∣∣ > C, we
have

E(x,y)

[(
y − ŷ(x; (a∗,W (1), b(1)))

)2]
≤ E

[(
y − ŷ(x; (a∗,W (1), b(1)))

)2
∧ C2

]
+ E

[(
y − ŷ(x; (a∗,W (1), b(1)))

)2
1EC

]
.

63

VURAL ERDOGDU

Here,

E(x,y)

[(
y − ŷ(x; (a∗,W (1), b(1)))

)2
1EC

]
≤
(
E[y4]1/4 + E[ŷ(x; (a∗,W (1), b(1)))4]

1
4

)2
Px

[
|σ∗(V ⊤x)− ŷ(x; (a∗,W (1), b(1)))| > C

] 1
2

≤ Õ(1)Px

[
|σ∗(V ⊤x)− ŷ(x; (a∗,W (1), b(1)))| > C

] 1
2
, (F.22)

where we use Lemma 75, and ∥a∗∥22 ≤ Õ(1/m), ∥b(1)∥22 ≤ 4m, and ∥W (1)
j∗ ∥2 ≤ Õ(1) in the last

line. By choosing

C :=∥a∗∥2
√
∥b(1)∥22 + ∥W (1)∥2F + (∥a∗∥2∥W (1)∥F)

√
2 log(4n)+3C1(2e log 6n)

C2 ≤ Õ (1) ,

by Lemma 76, we have (F.22) ≤ Õ (1/
√
n). On the other hand, by (F.19) and (F.20), we have with

probability at least 1− d−u,

E(x,y)

[(
y − ŷ(x; (a∗,W (1)b(1)))

)2
∧ C2

]

≤ ∆E[ϵ2] +O

(
(1 + log(4ndu))2p (1 + log(P))2p(k

⋆−1)

ρ1 log
ρ2 d

)
+ Õ

 1

m
+

1

M
+

√
M log

(
6d
M

)
n

 .

(F.23)

By (F.21)-(F.23), the statement follows for SI.
For MI, we observe that the setting is identical except that here we have µ̂|J . By observing that

∥µ̂|J ∥2 ≤ Õ(1) (by (C.2) in Corollary 44), we can adjust the steps between (F.21)-(F.23) to prove
the statement for MI.

Appendix G. Lower bounds for CSQ methods

Correlational Statistical Query (CSQ) algorithms are a family learners that can access data using
queries h : Rd → R with Ex[h(x)

2] ≤ 1 and returns E(x,y)[h(x)y] within an error margin τ . In our
setting, since y = σ∗(V ⊤x) +

√
∆ϵ, where ϵ is independent zero-mean noise, the query returns a

value in Ex[h(x)σ
∗(V ⊤x)]+ [−τ,+τ]. An instance of a CSQ algorithm is gradient descent on the

population square loss with added noise in the gradients. In this part, we give a lower bound on the
CSQ complexity of learning a function in

Fr,k :=

x→ 1√
rk!

r∑
j=1

Hek(⟨V∗j ,x⟩) | V ∈ Rd×r, V ⊤V = Ir, ∥V ∥q2,q ≤ r
q
2dα(1−

q
2)

 ,

when x ∼ N (0, Id). Here, Hek denotes the kth Hermite polynomial (see Definition 1), and we use
the convention ∥V ∥02,0 := ∥V ∥2,0.

For notational convenience, in the following, “d is large enough” means that d ≥ d∗(r, q, α, k),
where d∗(r, q, α, k) is a constant depending on the problem parameters (r, q, α, k). Without loss

64

LEARNING SPARSE FEATURES WITH PRUNING

of generality, we can assume all d∗’s are the same since if not, we can take their maximum. We
will use ≳, ≲, and Ω(·), to suppress constants depending on (r, q, α, k) in inequalities and lower
bounds. We will use Õ(·) to suppress the aforementioned constants and the logarithmic terms in d
in upper bounds.4 The main theorem of this section is as follows:

Theorem 47 (Restatement of Theorem 2) Consider Fr,k with some q ∈ [0, 2) and α ∈ (0, 1).
If d is large enough, any CSQ algorithm for Fr,k that guarantees error ε = Ω(1) requires either

queries of accuracy, i.e., τ = Õ
(
d(α∧

1
2)

−k
2

)
or super-polynomially many queries in d.

To prove our lower bound, we will use the argument in (Damian et al., 2022, Lemma 2), for
which we need to create a large family of functions with a small average correlation. With the
following lemma, we construct such a function class.

Lemma 48 Let q ∈ [0, 2), α ∈ (0, 1), r ∈ N. When d is large enough, for any c, k ≥ 1, we can
find a set of orthonormal matrices V ⊆ Rd×r such that

– |V| ≳ exp (Ω(dα)) ∧ crdk,

– maxV ∈V∥V ∥q2,q ≤ r
q
2dα(1−

q
2),

– maxV (1),V (2)∈V
V (1) ̸=V (2)

1
r

∑r
i,j=1

∣∣∣〈V (1)
∗i ,V

(2)
∗j

〉∣∣∣k ≲ logk(cdk)

d
k(α∧ 1

2)
.

Proof Let d̃ =
⌊
d
r

⌋
and s =

⌊
2dα

3
2

2−q r

⌋
. When d is large enough, d̃2 ≥ s ≥ 64. Hence, by Corollary

55, we can find a set U ⊆ Sd̃−1 such that

– |U| ≥ 1
3 min{e

s
16 , crkd̃k} ≥ 1

6 min

{
exp

[
dα/16

3
2

2−q r

]
, cdk

}
, where the second inequality holds

when d is large enough.

– maxx∈U∥x∥qq ≤ r
q
2 dα(1−

q
2)

r ,

– maxx,y∈U
x̸=y
|⟨x,y⟩| ≤ 8Ce log(crkd̃k)

min{
√
d̃,s}
≤ 16Ce3

2
2−q r log(cdk)

min{d1/2,dα} , where the second inequality

holds when d is large enough.

Hence, we can partition U into r equally sized mutually exclusive sets, and for using a vector
from each set, we can form a set of orthonormal matrices V ⊂ Rd×r such that

– |V| ≥ 1
(6r)r min

{
exp

[
dα/16

3
2

2−q

]
, crdrk

}
.

– maxV ∈V∥V ∥q2,q ≤ r
q
2dα(1−

q
2),

– maxV (1),V (2)∈V
V (1) ̸=V (2)

1
r

∑r
i,j=1

∣∣∣〈V (1)
∗i ,V

(2)
∗j

〉∣∣∣k ≤ (16rCe)k3
2k
2−q logk(cdk)

min{dk/2,dαk} .

4. Here, one might be concerned by the possibility of trivial bounds when q = 0. Although, our notation does not
exclude such problematic cases, we will use our notation for the sake of readability as such problematic cases do not
appear in our proof.

65

VURAL ERDOGDU

PROOF OF THEOREM 47

Proof [Proof of Theorem 47] Let Q represents the number of queries. We consider polynomial
queries, i.e., Q ≤ dC for some C ∈ N. Let hek := 1√

k!
Hek be the normalized kth Hermite

polynomial. By Lemma 48, we can construct the following function class which is a subset of Fr,k:

Fq :=

 1√
r

r∑
j=1

hek(⟨V∗j ,x⟩)
∣∣ V ∈ V

 and x ∼ N (0, Id),

where ∥V ∥q2,q ≤ r
q
2dα(1−

q
2
), for α ∈ (0, 1), |V| ≥ Ω

(
exp (Ω(dα)) ∧ dCdk

)
, where we used

c = dC . We observe that for any different f, f̃ ∈ V , we have

E[f(x)2] = 1 and E[f(x)f̃(x)] ≤ ε ≲
logk(d)

dk(α∧
1
2)

Therefore, by (Damian et al., 2022, Lemma 2), to get a population loss E[(f(x)−f∗(x))2] ≤ 2−2ε

τ2 ≲
dC

exp (Ω(dα)) ∧ dCrdk
+

logk(d)

dk(α∧
1
2)

≲
logk(d)

dk(α∧
1
2)

(G.1)

where we use dCr+k ≤ exp(Ω(dα)) for d is large enough in the first line. We observe that for d
large enough, ε ≤ 1. By taking the square root of both sides in (G.1), we obtain the statement.

G.1. Lemmas for Lower Bounds

G.1.1. PRELIMINARIES

In this section, we will use Rosenthal-Buckholder inequality and Chernoff-Hoeffding bound given
as follows.

Lemma 49 ((Pinelis, 1994, Theorem 5.2) (and see (Damian et al., 2023, Lemma 22)))
Let {Yi}ni=0 be a martingale with martingale difference sequence {Xi}ni=1 where Xi = Yi − Yi−1.
Let

⟨Yn⟩ =
n∑
i=1

E[|Xi|2|Fi−1]

denote the predictable quadratic variation. Then, there exists an absolute constant C such that for
all p ≥ 2

∥Yn∥p ≤ C

[
√
p∥⟨Yn⟩1/2∥p + pn1/pmax

i
∥Xi∥p

]
.

Lemma 50 (Chernoff-Hoeffding Bound) Let X1, · · · , Xn ∼iid Ber(p), where p ∈ (0, 12] We
have

P

[∣∣∣∣∣ 1n
n∑
i=1

(Xi − p)

∣∣∣∣∣ ≥ p

2

]
≤ 2 exp

(
−pn
16

)
.

66

LEARNING SPARSE FEATURES WITH PRUNING

G.1.2. LEMMAS FOR LOWER BOUNDS

For the following, we define a probability distribution Ps, parametrized by s ∈ [d], as follows: For
x := (x1, · · · ,xd)⊤,

x ∼ Ps if xi ∼iid


1√
s

wp s
2d

−1√
s

wp s
2d

0 wp 1− s
d

, for i = 1, · · · , d.

Lemma 51 Let x,y ∼iid Ps. For s ∈ [d] and p ≥ 2, we have

P

[
|⟨x,y⟩| ≥ Ce

(√
p

d
+

p√
d

(
s2

d

) 1
p
− 1

2

)]
≤ e−p. (G.2)

Proof For any i ∈ [d], note that E[xi] = 0 and E [|xi|p] = s
ds

−p/2,. Therefore, by independence,
we have E [|xiyi|p] = s2−p/d2. By following the notation in Lemma 49, we let Y0 := 0 and Yd :=∑d

i=1 xiyi, where Xi = Yi − Yi−1 = xiyi. We have ∥Xi∥p = E [|xiyi|p]1/p = s2/p−1d−2/p, and
by the independence of x and y, ⟨Yd⟩ = 1/d. Hence, by Lemma 49, for p ≥ 2,

∥Yd∥p ≤ C

[√
p

d
+

p√
d

(
s2

d

) 1
p
− 1

2

]
.

The statement follows by Markov’s inequality.

Corollary 52 By Lemma 51, for s ∈ [d] and p ≥ 2, we have

P
[
|⟨x,y⟩| ≥ 2Ce

p

min{
√
d, s}

]
≤ e−p.

Proof The statement immediately follows from (G.2).

Lemma 53 Let x ∼ Ps. For d ≥ 2s, we have P
[∣∣∥x∥0 − s

∣∣ ≥ s
2

]
≤ 2e

−s
16 .

Proof Note that 1xi ̸=0 ∼ Ber(sd) and ∥x∥0 =
∑d

i=1 1xi ̸=0. Since d ≥ 2s, by using Lemma 50,
we have

P

[∣∣∣∣∣1d
d∑
i=1

(
1xi ̸=0 −

s

d

)∣∣∣∣∣ ≥ s

2d

]
≤ 2e

−s
16 ,

which is equivalent to the statement.

67

VURAL ERDOGDU

Lemma 54 Fix any q ∈ [0, 2). For any s ≤ d
2 , let x(1), · · · ,x(n) ∼iid Ps. For any c, k ≥ 1, we let

ε := 8Ce
log(cdk)

min{
√
d, s}

.

For s ≥ 5, we have

P

max
i∈[n]

∥∥∥∥∥ x(i)

∥x(i)∥2

∥∥∥∥∥
q

q

≤ 3
(
s
2

) 2−q
2 AND max

i,j∈[n]
i ̸=j

∣∣∣∣∣
〈

x(i)

∥x(i)∥2
,

x(j)

∥x(j)∥2

〉∣∣∣∣∣ ≤ ε

 ≥ 1− 2ne
−s
16 − n2

c2d2k
.

Proof We observe that

max
i∈[n]

|∥x(i)∥0 − s| ≤ s

2
AND max

i,j∈[n]
i ̸=j

∣∣∣〈x(i),x(j)
〉∣∣∣ ≤ ε

2
(G.3)

⇒ max
i∈[n]

|∥x(i)∥0 − s| ≤ s

2
AND max

i,j∈[n]
i ̸=j

∣∣∣∣∣
〈

x(i)

∥x(i)∥2
,

x(j)

∥x(j)∥2

〉∣∣∣∣∣ ≤ ε

⇒ max
i∈[n]

∥∥∥∥∥ x(i)

∥x(i)∥2

∥∥∥∥∥
q

q

≤ 2
q
2
−13s

2−q
2 AND max

i,j∈[n]
i ̸=j

∣∣∣∣∣
〈

x(i)

∥x(i)∥2
,

x(j)

∥x(j)∥2

〉∣∣∣∣∣ ≤ ε

where the second line holds since ∥x(i)∥0 ≥ s/2 implies ∥x(i)∥22 ≥ 1/2 and the last statement holds
since 3s/2 ≥ ∥x(i)∥0 ≥ s/2 implies ∥x(i)∥2 ≥ 1/

√
2 and ∥x(i)∥qq ≤ 3

2s
2−q
2 . In the following, we

will lower bound (G.3). Since d ≥ 2s, by Lemma 53, we have

P
[
max
i∈[n]
|∥x(i)∥0 − s| > s

2

]
≤
∑
i∈[n]

P
[
|∥x(i)∥0 − s| ≥ s

2

]
≤ 2n exp

(
−s
16

)
. (G.4)

Moreover, for any i ̸= j ∈ [n],

P
[∣∣∣〈x(i),x(j)

〉∣∣∣ ≥ ε

2

]
= P

[∣∣∣〈x(i),x(j)
〉∣∣∣ ≥ 4Ce

log(cdk)

min{
√
d, s}

]
≤ 1

c2d2k
.

where the last step follows Corollary 52, since for s ≥ 5, we have d ≥ 10 and log(cdk) ≥ 2 for
c, k ≥ 1. Therefore,

P

max
i,j∈[n]
i ̸=j

∣∣∣〈x(i),x(j)
〉∣∣∣ > ε

2

 ≤ n2

c2d2k
. (G.5)

By lower bounding (G.3) with (G.4) and (G.5), we obtain the result.

Corollary 55 For any q ∈ [0, 2) and 64 ≤ s ≤ d
2 and k, c ≥ 1, there exists a set U ⊆ Sd−1 such

that

68

LEARNING SPARSE FEATURES WITH PRUNING

– |U| ≥ 1
3 min{e

s
16 , cdk},

– maxx∈U∥x∥qq ≤ 3
(
s
2

) 2−q
2 ,

– maxx,y∈U
x̸=y
|⟨x,y⟩| ≤ ε, where ε is defined in Lemma 54.

Proof Consider Lemma 54 with q ∈ [0, 2), 5 ≤ s ≤ d
2 , k, c ≥ 1, and n = ⌈13 min{e

s
16 , cdk}⌉. We

observe that the probability of the event in Lemma 54 is nonzero. Hence, there exists such U as a
subset of the normalized versions of the support of Ps.

Appendix H. Miscellaneous

H.1. Laurent-Massart Lemma and Its Corollaries

Lemma 56 (Laurent-Massart Lemma) Let X be a chi-square with N degrees of freedom. For
any t > 0,

(i) P
[
X −N ≥ 2

√
Nt+ 2t

]
≤ e−t and (ii) P

[
X −N ≤ −2

√
Nt
]
≤ e−t.

Corollary 57 Let w ∼ N (0, Id). For d ≥ 16 log(1/δ), we have with probability at least 1 − δ,
∥w∥22 ≥ d

2 .

Proof By Lemma 56, with probability at least 1 − δ, for d ≥ 16 log(1/δ), ∥w∥22 =
∑d

i=1w
2
i ≥

d− 2
√

d log(1/δ) ≥ d
2 .

Corollary 58 For r ≤ d1 ∧ d2, let A ∈ Rd1×d2 be a rank-r matrix. For w ∼ N (0, Id2), we have

P
[
∥Aw∥22 ≥ 3∥A∥22(r + log(1/δ))

]
≤ δ.

Proof Since A is rank-r, by using SVD, we can write that A = UΣL⊤ where U ∈ Rd1×r
and L ∈ Rd2×r are orthonormal, Σ ∈ Rr×r is diagonal. For w̃ := L⊤w, we have ∥Ax∥22 =d

∥Σw̃∥22 ≤ ∥A∥22∥w̃∥22. By using Lemma 56, we have with probability at least 1− δ, ∥A∥22∥w̃∥22 ≤
∥A∥22(r + 2

√
r log(1/δ) + 2 log(1/δ)). By observing that

(
r + 2

√
r log(3/δ) + 2 log(3/δ)

)
≤

3(r + log(3/δ)), we prove the statement.

Lemma 59 Suppose we have {c1, · · · , cr} ⊂ R and an orthonormal {v1, · · · ,vr} ⊂ Rd. For
k ∈ N and δ ∈ (0, 1], if maxi∈[n]∥V ⊤xi∥2 ≤ CD and M ≥ 16 log(2/δ) hold, then

Pw

[
max
i∈[n]

∣∣∣∣∣
r∑

l=1

cl ⟨vl,xi⟩ ⟨vl,wJ ⟩k−1

∣∣∣∣∣ > CD max
l≤r
|cl|
(
6 (r + log(2/δ))

M

) k−1
2

∣∣∣∣∣ {(xi, yi)}ni=1

]
≤ δ.

69

VURAL ERDOGDU

Proof By assumption, we have

max
i∈[n]

∣∣∣∣∣
r∑
l=1

cl ⟨vl,xi⟩ ⟨vl,wJ ⟩k−1

∣∣∣∣∣ (a)≤ CD max
l≤r
|cl|

(
r∑
l=1

⟨vl,wJ ⟩2
) (k−1)

2

. (H.1)

where (a) follows that ∥v∥p ≥ ∥v∥q for 1 ≤ p ≤ q ≤ ∞. On the other hand, by Corollaries 57 and
58, we have with probability at least 1− δ,

r∑
l=1

⟨vl,wJ ⟩2 =
r∑
l=1

⟨vl|J ,w⟩2

∥w|J ∥22
≤ 3(r + log(2/δ))

M/2
=

6(r + log(2/δ))

M
. (H.2)

Lemma 60 We have for δ ∈ (0, 1] and M ≥ 16 log(2/δ),

Pw

(r∑
l=1

c2l ⟨vl,wJ ⟩2(k−1)

) 1
2

> 6
k−1
2 max

l≤r
|cl|
(
r + log(2/δ)

M

) k−1
2

 ≤ δ.

Proof We have
(∑r

l=1 c
2
l ⟨vl,wJ ⟩2(k−1)

) 1
2 ≤ maxl≤r|cl|

(∑r
l=1 ⟨vl,wJ ⟩2(k−1)

) 1
2 . The state-

ment follows the argument in (H.1) and (H.2).

Lemma 61 Let A ⊂ Rd1×d such that for any A ∈ A, ∥A∥2 ≤ 1 and rank(A) ≤ r. For
x1, · · · ,xn ∼iid N (0, Id), we have with probability 1− δ,

sup
A∈A

∥∥∥∥∥ 1n
n∑
i=1

Axix
⊤
i A

⊤ −AA⊤

∥∥∥∥∥
2

≤
√

r

n
+

√
2 log(2/δ)

n
+

√
2 log|A|

n

Proof Let’s fix a A ∈ A. By SVD, we can write A = UΣL⊤, where U ,L ∈ Rd×r are orthonor-
mal and Σ ∈ Rr×r is diagonal. For x̃i := L⊤xi, since ∥A∥2 = 1, we have∥∥∥∥∥ 1n

n∑
i=1

Axix
⊤
i A

⊤ −AA⊤

∥∥∥∥∥
2

≤

∥∥∥∥∥ 1
n

n∑
i=1

x̃ix̃
⊤
i − Ir

∥∥∥∥∥
2

.

By (Vershynin, 2010, Corollary 5.35), for a fixed J ∈ H, we have with probability at least 1 − δ,∥∥ 1
n

∑n
i=1 x̃ix̃

⊤
i − Ir

∥∥
2
≤
√

r
n +

√
2 log(2/δ)

n . By union bound and that
√
a+ b ≤

√
a +
√
b for

a, b > 0, the statement follows.

70

LEARNING SPARSE FEATURES WITH PRUNING

H.2. Lemmas for Bounding Polynomials of Gaussian Random Vectors

Lemma 62 (Moments of Gaussian Vector) For x ∼ N (0, Id), we have E[∥x∥2k2] = d(d +
2) · · · (d+ 2k − 2). For d ≥ 2k, we have E[∥x∥2k2]−1 ≥ 2−kd−k.

Lemma 63 (Hypercontractivity) Let Pk : Rd → R be a polynomial of degree-k. For q ≥ 2, we
have Ex∼N (0,Id) [Pk(x)

q]1/q ≤ (q − 1)k/2Ex∼N (0,Id)

[
Pk(x)

2
]1/2

.

In the following, we will state some consequences of Lemmas 62 and 63.

Corollary 64 For z ∼ N (0, Ir) and p ≥ 2, E[(1 + ∥z∥22)p]
1
p ≤ (p− 1)(r + 2).

Proof By Lemma 62 and 63, E[(1 + ∥z∥22)p]
1
p ≤ (p− 1)E[(1 + ∥z∥2)2]

1
2 ≤ (p− 1)(r + 2).

Proposition 65 For z ∼ N (0, Ir) and C > 0, P
[
(1 + ∥z∥22)C ≥ uC(r + 2)C

]
≤ exp

(−u
e

)
, for

u ≥ 2e.

Proof By Corollary 64, we have for p ≥ 2 that P
[
(1 + ∥z∥22)C ≥ uC(r + 2)C

]
≤ ppu−p. By

using p∗ = u
e and u ≥ 2e, we have the statement.

Corollary 66 By Proposition 65, Pz∼N (0,Ir)

[
|σ∗(z)| ≥ C1u

C2(r + 2)C2
]
≤ exp

(−u
e

)
, for u ≥

2e.

Proposition 67 We have for u ≥ 2e, P
[
|y| ≥ C1(r + 2)C2uC2 +

√
∆/eu

1
2

]
≤ 3 exp

(−u
e

)
.

Proof By |y| ≤ |σ∗(V ⊤x)|+
√
∆|ϵ|, Corollary 66, P [|ϵ| > t] ≤ 2e−t

2
, the statement follows.

Proposition 68 For R = C1(r + 2)C2uC2 +
√

∆/eu
1
2 and u ≥ 2e, we have

sup
w,v∈Sd−1

b∈R

∣∣E [y1|y|>R ⟨v,x⟩ϕ′(⟨w,x⟩+ b)
]∣∣ ≤ 6

3
4 exp

(−u
2e

)(
C4
1 (4C2)

4C2(r + 2)4C2 + 2∆2

) 1
4

.

Proof Choose arbitrary w,v ∈ Sd−1 and b ∈ R. By using Cauchy-Schwartz inequality, we have∣∣E [y1|y|>R ⟨u,x⟩ϕ′(⟨w,x⟩+ b)
]∣∣ ≤ P [|y| ≥ R]

1
2 E[y4]

1
4E[|⟨u,x⟩ϕ′(⟨w,x⟩+ b)|4]

1
4

≤ 3
3
4 exp

(
−u
2e

)
E[y4]

1
4 , (H.3)

where we use |ϕ′| ≤ 1 and Proposition 67 in (H.3). We observe that

E[y4] ≤ 23(E
[
(σ∗(V ⊤x)4

]
+∆2E

[
ϵ4
]
)

(a)

≤ 23(E
[
(σ∗(V ⊤x)4

]
+ 2∆2)

(b)

≤ 23
(
C4
1 (4C2)

4C2(r + 2)4C2 + 2∆2
)
. (H.4)

where (a) follows from the tail inequality for ϵ, and (b) follows from Corollary 64 since C2 ≥ 1/2.
By using (H.4) in (H.3) , we have the statement.

71

VURAL ERDOGDU

H.3. Magnitude Pruning

Lemma 69 For u ∈ Rd, let Iu denotes the index set that includes the largest M entries of u and
let u|top(M) denote the vector u with everything except M largest coefficients set 0. For any v ∈ Rd
and q ∈ (0, 2], we have

(4(q−1)∨0 + 1)
∑

i∈Iu∪Iv

|ui − vi|q ≥ ∥u|top(M) − v∥qq − 4(q−1)∨0∥v − v|top(M)∥qq.

Proof Without loss of generality, we can assume |v1| ≥ |v2| ≥ |v3| · · · ≥ |vd|. We have

∥u|top(M) − v∥qq =
∑

i∈Iu∩[M]

|ui − vi|q +
∑

i∈Iu−[M]

|ui − vi|q +
∑

i∈[M]−Iu

|vi|q +
∑

i∈[d]−(Iu∪[M])

|vi|q. (H.5)

If Iu = [M], the statement follows by Proposition 72. Therefore, suppose Iu ̸= [M]. Let [M] −
Iu := {j1, · · · , jκ} and Iu − [M] := {l1, · · · , lκ}. For some ι = 1, · · · , κ, we get

|vjι |q = |vjι ± ujι |q
(a)

≤ 2(q−1)∨0|vjι − ujι |q + 2(q−1)∨0|ulι |q

(b)

≤ 2(q−1)∨0|vjι − ujι |q + 4(q−1)∨0|vlι − ulι |q + 4(q−1)∨0|vlι |q, (H.6)

where in (a), we use Proposition 72 and |ujι | ≤ |ulι |, jι ∈ Iu, and Proposition 72 for (b). By using
(H.6) for ι = 1, · · · , κ, we get

(H.5)
(a)

≤
∑

i∈Iu∩[M]

|ui − vi|q + (4(q−1)∨0 + 1)
∑

i∈Iu−[M]

|ui − vi|q

+ 2(q−1)∨0
∑

i∈[M]−Iu

|ui − vi|q + 4(q−1)∨0
∑

i∈[d]−[M]

|vi|q

≤ (4(q−1)∨0 + 1)
∑

i∈Iu∪[M]

|ui − vi|q + 4(q−1)∨0
∑

i∈[d]−[M]

|vi|q, (H.7)

where (a) follows (Iu − [M]) ∪ ([d]− (Iu ∪ [M])) = [d]− [M]. By (H.7), the statement follows.

Lemma 70 Let q ∈ (0, 2) and v ∈ Rd. We have
∥∥v − v|top(M)

∥∥
2
≤
((

1− q
2

) 2−q
q q

2

)1/2
∥v∥qM

−1
q
+ 1

2 ,
for M = 1, 2, · · · , d.

Proof Without loss of generality, we assume |v1| ≥ |v2| ≥ · · · ≥ |vd|. Then, we have∥∥v − v|top(M)
∥∥2
2
=

d∑
i=M+1

v2
i ≤ |vM+1|2−q

d∑
i=M+1

|vi|q. (H.8)

Let
∑d

i=M+1|vi|q = r and
∑d

i=1|vi|q = R. Then, we have

R− r =

M∑
i=1

|vi|q ≥M |vM+1|q ⇒ |vM+1|2−q ≤ (R− r)
2−q
q M

− 2−q
q

⇒ (H.8) ≤ (R− r)
2−q
q rM

− 2−q
q .

The statement follows from maxr∈[0,R](R− r)
2−q
q r ≤

(
1− q

2

) 2−q
q q

2R
2
q .

72

LEARNING SPARSE FEATURES WITH PRUNING

H.4. Elementary Results

Corollary 71 For any M ∈ [d] and ϵ > 0, let N ϵ
M ⊆ Sd−1

M be the minimal ϵ-cover. We have
|N ϵ

M | ≤
(
d
M

) (
1 + 2

ϵ

)M .

Proof By (Vershynin, 2018, Corollary 4.2.13), we know that the minimal ϵ-cover of the unit sphere,
i.e.,N ϵ ⊆ Sd−1, satisfies |N ϵ| ≤ (1 + 2/ϵ)d. Then, by choosing M subsets of Sd−1 and taking the
union of ϵ-covers restricted on the chosen indices, we can construct an ϵ-cover for Sd−1

M . Therefore,
the statement follows.

Proposition 72 For any q ∈ (0,∞], we have |a+ b|q ≤ 2(q−1)∨0(|a|q + |b|q).

Proof Without loss of generality, let’s assume |b| ≥ |a|. For q ∈ (0, 1], we have |a + b|q ≤
(|a| + |b|)q ≤ |a|q + q|a|q−1|b| ≤ |a|q + |b|q, where we use that x → xq is concave in the second
inequality. For q > 1, we have |a + b|q ≤ (|a| + |b|)q ≤ 2q−1(|a|q + |b|q) where we use Jensen’s
inequality in the last step.

Lemma 73 Let cosh(t) := et+e−t

2 . For Z ∼ N (0, 1), we have

(i) E[cosh(λZ2)] ≤ exp
(
4λ2
)
, |λ| ≤ 1

2
√
2

and (ii) E[exp(λ2Z2)] ≤ exp
(
2λ2
)
, |λ| ≤ 1

2 .

Proof Since |λ| ≤ 1
2
√
2
, we have E

[
exp(λZ2)

]
= 1√

1−2λ
and E

[
exp(−λZ2)

]
= 1√

1+2λ
. There-

fore,

E[cosh(λZ2)] =
1

2

(√
1− 2λ+

√
1 + 2λ√

1− 4λ2

)
≤ 1√

1− 4λ2

(a)

≤ exp(4λ2)

where (a) follows 1
1−t ≤ exp(2t) for |t| ≤ 1/2. The second statement also follows the same

argument.

H.5. Lemmas for Feature Learning

Proposition 74 For m ∈ N, M ∈ [d] and (a,W , b,u) ∈ Rm × Rd×m × Rm × Rd, let

Θ :=
{
(a,W , b,u)

∣∣ ∥a∥2 ≤ ra√
m
, ∥b∥∞ ≤ rb, ∥u∥2 ≤ ru, ∥Wj∗∥2 ≤ rW ,

∥u∥0 ≤M, ∥Wj∗∥0 ≤M, j ∈ [m]
}
.

and for some τ > 0, let G :=
{
(x, y)→

(
y − ⟨u,x⟩ −

〈
a, ϕ(W⊤x+ b)

〉)2∧ τ2 | (a,W , b,u) ∈ Θ
}

and letR(G) denote the Rademacher complexity of G. Then, with x ∼ N (0, Id), we have

R(G) ≤ 4τC

(rarW + ru)

√
M log

(
6d
M

)
n

+
rarb√
n


where n is number of samples and C > 0 is a universal constant.

73

VURAL ERDOGDU

Proof Let F :=
{
(x, y)→ ⟨u,x⟩+

〈
a, ϕ(W⊤x+ b)

〉
| (a,W , b,u) ∈ Θ

}
. By Talagrand’s

contraction principle, we have R(G) ≤ 2τR(F). Hence, in the following, we will bound R(F).
Indeed, let (εi)i∈[n] be a sequence of i.i.d Radamacher random variables. Then, we have

R(F) = E

[
sup

(a,W ,b,u)

1

n

n∑
i=1

εi

(
⟨u,xi⟩+

〈
a, ϕ(W⊤xi + b)

〉)]

≤ E

[
sup

(a,W ,b)

1

n

n∑
i=1

εi

〈
a, ϕ(W⊤xi + b)

〉]
+ E

[
sup
u

1

n

n∑
i=1

εi ⟨u,xi⟩

]

≤ E

[
sup

(a,W ,b)

1

n

n∑
i=1

εi

〈
a, ϕ(W⊤xi + b)

〉]
+ Cru

√
M log

(
6d
M

)
n

(H.9)

where we use (Vershynin, 2018, Exercise 10.3.8) in the last line. To bound the first term, we have

E

[
sup

(a,W ,b)

1

n

n∑
i=1

εi

〈
a, ϕ(W⊤xi + b)

〉]
≤ ra√

m
E

[
sup

(a,W ,b)

∥∥∥∥∥ 1n
n∑
i=1

εiϕ(W
⊤xi + b)

∥∥∥∥∥
2

]

≤ raE

[
sup

(a,W ,b)

∥∥∥∥∥ 1n
n∑
i=1

εiϕ(W
⊤xi + b)

∥∥∥∥∥
∞

]

≤ 2raE
[

sup
∥w∥2≤rW
∥w∥0≤M
|b|≤rb

∣∣∣∣∣ 1n
n∑
i=1

εi(⟨w,xi⟩+ b)

∣∣∣∣∣] (H.10)

where we use Cauchy Schwartz inequality in the first line, and the contraction lemma in the last line
(note that ϕ(0) = 0 and it is 1-Lipschitz). Then, since the set we take supremum over is symmetric,
we have

(H.10) = 2raE
[

sup
∥w∥2≤rW
∥w∥0≤M
|b|≤rb

1

n

n∑
i=1

εi(⟨w,xi⟩+ b)
]

≤ 2rarWE
[

sup
∥w∥2≤1
∥w∥0≤M

〈
w,

1

n

n∑
i=1

εixi

〉]
+ 2rarbE

[∣∣∣∣∣ 1n
n∑
i=1

εi

∣∣∣∣∣
]

≤ 2CrarW

√
M log

(
6d
M

)
n

+ 2rarb
1√
n

(H.11)

where we use (Vershynin, 2018, Exercise 10.3.8) in the last line. By (H.9) and (H.11), the statement
follows.

Lemma 75 For fixed (a,W , b) ∈ Rm × Rd×m × Rm, let ŷ(x; (a,W , b)) := a⊤ϕ(W⊤x + b).
For x ∼ N (0, Id), we have the following:

1. Ex[ŷ(x; (a,W , b))2] ≤ ∥a∥22
(
∥b∥22 + ∥W ∥2F

)
74

LEARNING SPARSE FEATURES WITH PRUNING

2. Ex[ŷ(x; (a,W , b))4] ≤ ∥a∥42m
∑m

j=1

(
3∥Wj∗∥42 + 6∥Wj∗∥22b2j + b4j

)
Proof For the first item, by using Cauchy Schwartz inequality and that ϕ(t) ≤ |t|, we have

E[ŷ(x; (a,W , b))2] = E
[〈

a, ϕ(W⊤x+ b)
〉2]
≤ ∥a∥22E

[
∥W⊤x+ b∥22

]
= ∥a∥22

(
∥b∥22 + ∥W ∥2F

)
.

For the second item, by using the same arguments,

E[ŷ(x; (a,W , b))2] = ∥a∥42E
[
∥W⊤x+ b∥42

] (a)

≤ ∥a∥42m
m∑
j=1

E
[
(⟨Wj∗,x⟩+ bj)

4
]

= ∥a∥42m
m∑
j=1

(
3∥Wj∗∥42 + 6∥Wj∗∥22b2j + b4j

)
where we use ∥v∥4 ≤ m1/4∥v∥2 for v ∈ Rm for (a).

Lemma 76 For fixed (a,W , b) ∈ Rm × Rd×m × Rm, and u ∈ Rd, let ŷ(x; (a,W , b)) :=
a⊤ϕ(W⊤x+ b) + u⊤x. For x ∼ N (0, Id), we have with probability at least 1− δ,

|ŷ(x; (a,W , b))− σ∗(V ⊤x)| ≤ ∥a∥2
√
∥b∥22 + ∥W ∥2F + (∥a∥2∥W ∥F + ∥u∥2)

√
2 log(4/δ)

+ C1(r + 2)(2e)C2 logC2(6/δ).

Proof We first observe that

|ŷ(x; (a,W , b))− σ∗(V ⊤x)| = |ŷ(x; (a,W , b))− E[ŷ(x; (a,W , b))]|
+ |E[ŷ(x; (a,W , b))]|+ |σ∗(V ⊤x)|
≤ |ŷ(x; (a,W , b))− E[ŷ(x; (a,W , b))]|+ |σ∗(V ⊤x)|

+ ∥a∥2
(
∥b∥22 + ∥W ∥2F

)1/2
.

Moreover, since ϕ is 1-Lipschitz that x → ŷ(x; (a,W , b)) is ∥a∥2∥W ∥F + ∥u∥2 - Lipschitz.
Then, by using Gaussian Lipschitz concentration inequality (see (Vershynin, 2018, Theorem 5.2.2))
and Corollary 66, we obtain the statement.

75

	 Introduction
	Related Work

	Preliminaries
	Limitations of Basis Independent Methods: CSQ Lower Bounds
	Training Procedure: Pruning as Dimension Reduction
	Main Results
	Learning Sparse Single-index Models with Pruning
	Learning Sparse Multi-index Models with Pruning

	Technicalities Around Pruning
	Discussion
	Further Discussion for Section 4
	Preliminaries for Proofs
	Hermite Expansion in the Multi-Index Setting
	Background on Tensors
	Auxiliary Tensor Results

	Hermite Expansion of the Population Gradient
	Bounding the Higher Order Terms in the Hermite Expansion
	Bounding q Norm of the Higher-Order Terms

	Concentration Bound for Empirical Gradients
	VC Dimension of { (w, + b); (w,b) SMd-1 R}
	Concentration for Y
	Concentration for
	Concentration for T
	Concentration Bound for the Empirical Gradient in the Single-Index Setting
	Concentration Bound for the Empirical Gradient in the Multi-Index Setting

	Guarantee for PruneNetwork
	Auxiliary Results
	Concentration for k

	Main Results

	Feature Learning
	Additional Notation and Terminology
	Auxiliary Results
	Lemmas for Moments

	Approximation of the target
	Empirical Approximation
	Concentration Bound for a Desirable Event
	Main Result

	Lower bounds for CSQ methods
	Lemmas for Lower Bounds
	Preliminaries
	Lemmas for Lower Bounds

	Miscellaneous
	Laurent-Massart Lemma and Its Corollaries
	Lemmas for Bounding Polynomials of Gaussian Random Vectors
	Magnitude Pruning
	Elementary Results
	Lemmas for Feature Learning

