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Abstract
Let a smooth function f : Td × Td → R over the d-torus and β > 0. Consider the min-max
objective functional Fβ(µ, ν) =

∫∫
fdµdν + β−1H(µ)− β−1H(ν) over P(Td)×P(Td), where

H denotes the negative differential entropy. Its unique saddle point defines the entropy-regularized
mixed Nash equilibrium of a two-player zero-sum game, and its Wasserstein gradient descent-
ascent flow (µt, νt) corresponds to the mean-field limit of a Langevin descent-ascent dynamics.
Do µt and νt converge (weakly, say) as t → ∞, for any f and β? This rather natural qualita-
tive question is still open, and it is not clear whether it can be addressed using the tools currently
available for the analysis of dynamics in Wasserstein space. Even though the simple trick of us-
ing a different timescale for the ascent versus the descent is known to guarantee convergence, we
propose this question as a toy setting to further our understanding of the Wasserstein geometry for
optimization.
Keywords: Wasserstein gradient flow, mean-field Langevin dynamics, min-max optimization

1. Introduction

The use of the minimax two-player game framework in Generative Adversarial Networks (GANs)
(Goodfellow et al., 2014) and distributionally robust learning (Sinha et al., 2018; Madry et al., 2018)
inspired renewed interest in the question of algorithmically identifying Nash equilibria of two-player
zero-sum games, or equivalently, saddle points of min-max problems minx∈X maxy∈Y f(x, y),
given first-order access to f . In order to bypass issues of existence and uniqueness of solutions,
one line of work has focused on finding (entropy-regularized) mixed Nash equilibria (Hsieh et al.,
2019), defined as follows.

Definition 1 Let X = Y = Td the Euclidean torus and f : X × Y → R a C2 function.1 A mixed-
strategy Nash equilibrium (MNE) is a couple of probability measures (µ∗, ν∗) ∈ P(X ) × P(Y)
such that (all double integrals are over X × Y)

∀(µ, ν) ∈ P(X )× P(Y),

∫∫
f dµ∗dν ≤

∫∫
f dµ∗dν∗ ≤

∫∫
f dµdν∗.

Observe that, equivalently, a MNE is a saddle point of the infinite-dimensional min-max problem
minµ∈P(X )maxν∈P(Y)

∫∫
fdµdν. For β > 0, we call entropy-regularized MNE the saddle point

of

min
µ∈P(X )

max
ν∈P(Y)

Fβ(µ, ν), Fβ(µ, ν) =

∫∫
f dµdν + β−1H(µ)− β−1H(ν), (1)

where H(µ) =
∫
X log

(
dµ
dx

)
dµ is the (negative) differential entropy.

1. We purposefully present the problem in the simplest setting. Possible extensions include taking as X ,Y compact
Riemannian manifolds without boundaries (Domingo-Enrich et al., 2020), or X ,Y = Rd with additional assumptions
on f and additional confining terms in (2) (Kim et al., 2024).
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The availability of first-order access to f prompted the use of Wasserstein gradient descent-
ascent flows (WGFs) for this setting (Domingo-Enrich et al., 2020), instead of multiplicative-weight
methods as more traditionally considered for games with finite strategy sets X ,Y (Wei et al., 2020;
Cen et al., 2021) (which only use zeroth-order access to f ). The WGF of Fβ is given by the PDE{

∂tµt = div
(
µt∇x

[∫
Y f(x, y)dνt(y)

])
+ β−1∆µt over X

∂tνt = −div
(
νt∇y

[∫
X f(x, y)dµt(x)

])
+ β−1∆νt over Y,

(2)

which can be viewed as the mean-field limit (N → ∞) of the system of SDEs, called Langevin
descent-ascent dynamics,{

∀i ≤ N, dXi
t = − 1

N

∑N
j=1∇xf(X

i
t , Y

j
t )dt+

√
2β−1dBi

t

∀j ≤ N, dY j
t = 1

N

∑N
i=1∇yf(X

i
t , Y

j
t )dt+

√
2β−1dBj

t

(3)

via µt = 1
N

∑N
i=1 δXi

t
and νt = 1

N

∑N
j=1 δY j

t
(Domingo-Enrich et al., 2020, Thm. 3 (i)). For

this reason, we follow Kim et al. (2024) in referring to (2) as mean-field Langevin descent-ascent
(MFL-DA).

We pose the open question:

Does the MFL-DA trajectory (µt, νt) converge weakly to some (µ∗, ν∗) as t → ∞?

It is proved in Domingo-Enrich et al. (2020, Thm. 1) that if (µt, νt) converges weakly, then the
limit (µ∗, ν∗) is the unique saddle point of Fβ . However, despite several positive results concerning
variants of MFL-DA (reviewed hereafter), the convergence of Eq. (2) itself has remained elusive.

1.1. Other notions of convergence

The natural measure of suboptimality for the min-max problem minP(X )maxP(Y) Fβ is the Nikaido-
Isoda (NI) error defined by

NI(µ, ν) = max
ν′∈P(Y)

Fβ(µ, ν
′)− min

µ′∈P(X )
Fβ(µ

′, ν).

One can show that there exists a constant ρ∗β > 0 such that2

ρ∗β
2

(
W 2

2 (µ, µ
∗) +W 2

2 (ν, ν
∗)
)
≤ KL (µ∥µ∗) + KL (ν∥ν∗) ≤ β NI(µ, ν) (4)

where W2 is the 2-Wasserstein distance and KL (·∥·) is the relative entropy. In particular, the fol-
lowing variants of the open question are increasingly stronger: if (µt, νt) is the MFL-DA trajectory,

• Does it hold W 2
2 (µt, µ

∗) + W 2
2 (νt, ν

∗) → 0 as t → ∞? Since the Wasserstein distance
metrizes weak convergence, this is equivalent to our main open question.

• Convergence in relative entropy: Does it hold KL (µt∥µ∗) + KL (νt∥ν∗) → 0?

• Convergence in NI error: Does it hold NI(µt, νt) → 0?

2. The first inequality of (4) follows by noting that µ∗ (resp. ν∗) satisfies a logarithmic Sobolev inequality (LSI) (Lu,
2023, Lemma 2.1), and so a Talagrand (T2) inequality (Otto and Villani, 2000) with the same constant. The second
inequality is proved e.g. in Kim et al. (2024, Lemma 3.5).
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Yet other variants of the open question can be formulated by asking only for local convergence,
i.e., by assuming that the initialization (µ0, ν0) lies in some W2 or relative entropy neighborhood
of (µ∗, ν∗), or in some sublevel set of NI. Once the question of qualitative convergence is settled, a
natural development may be to ask for explicit rates of convergence.

1.2. Motivation

This open question touches upon three different topics. In terms of design and analysis of algo-
rithms, the question is about the convergence of a particular continuous optimization dynamics,
MFL-DA, for the min-max problem (1). In fact, it is known that convergence can be guaranteed for
certain modifications of MFL-DA (Lu, 2023; Kim et al., 2024) (reviewed below). The question is
whether these modifications are really necessary for convergence to hold.

The open question is also interesting in its own right from the perspective of game theory and
economics, where it essentially asks to characterize the long-time behavior of a system of 2N agents
interacting via the SDE system (3), in the mean-field limit N ≫ 1.

From a broader point of view, the open question is about understanding the use of the Wasser-
stein geometry for optimization. A number of common machine learning tasks can be framed as
optimization over the space of probability measures via noisy particle methods (of which (3) is an
example), including sampling (Wibisono, 2018), training of two-layer neural networks (Mei et al.,
2018), trajectory inference (Chizat et al., 2022), quantization of measures (Xu et al., 2022), or grid-
free regularized Wasserstein barycenters (Chizat, 2023). Theoretical analyses for those tasks thus
borrow from and extend our understanding of Wasserstein geometry for optimization. This topic
has steadily progressed in the recent years and now relies on solid foundations, although several
important questions remain open. Yet, MFL-DA is a rare instance of a Wasserstein optimization
dynamics for which even qualitative convergence guarantees are not known. Regardless of whether
the answer to the open question turns out to be positive or negative, there is hope that progress for
this toy setting will lead to a better understanding of WGFs as a whole.

2. Related work and state of the problem

Positive results for variants of MFL-DA. The works of Mei et al. (2018); Hu et al. (2021); Chizat
(2022); Nitanda et al. (2022) analyze the convergence of mean-field Langevin descent dynamics,
i.e., the first half of Eq. (2) where ∇x

[ ∫
Y f(x, y)dνt(y)

]
is replaced by the Wasserstein gradient

at µt of a convex functional G : P(X ) → R. It is a natural analog of MFL-DA for minimization
instead of min-max.

A two-timescale variant of (2), where the right-hand side of the equation for ∂tνt is multiplied
by a small fixed ε > 0, has been studied by Lu (2023) (and previously by Ma and Ying (2021)
for infinitesimal ε). It is shown that it is convergent in NI error for any ε ≤ ε0, for some con-
stant ε0 dependent on f and β. The main proof ingredient is that for any ν, the “min” objective
Fβ(·, ν) : P(X ) → R satisfies a Wasserstein-space analog of the Polyak-Lojasiewicz (PL) inequal-
ity with a constant β−1ρβ independent of ν, and symmetrically for the “max” objective; in other
words, Fβ satisfies an analog of the two-sided PL inequality condition (Yang et al., 2020). This
allows to mimick the convergence analysis of two-timescale gradient descent-ascent flow in finite
dimension under this condition (Doan, 2022). Note that there exist finite-dimensional min-max
problems satisfying this condition and for which, numerically, single-timescale gradient flow seems
not to converge (Yang et al., 2020, Remark 1).
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A “time-averaged gradient” variant of (2) has been studied by Kim et al. (2024), where the
Wasserstein gradient ∇x

[ ∫
Y f(x, y)dνt(y)

]
is replaced by

∫ t
0 αs∇x

[∫
Y f(x, y)dνs(y)

]
ds/

(∫ t
0 αsds

)
for some weighting α : R+ → R+, and likewise for ∇y

[∫
X f(x, y)dµt(y)

]
. It is shown that for

αt = tr for a fixed r > −1, the dynamics converges in NI error (by specializing their Prop. 3.3 to
L being bilinear).

Positive results in specific cases. As mentioned in Domingo-Enrich et al. (2020, Sec. 4.1), the
high temperature case β−1 ≫ 1 can be analyzed using generic tools developed for diffusion or
McKean-Vlasov processes (Eberle et al., 2019). More precisely, one can show that MFL-DA is con-
vergent in NI error for β−1 ≳ max

(
∥∇xf∥∞ , ∥∇yf∥∞

)
, or for β−1 ≳ max

(
∥∇x∇y∥∞ , ∥f∥osc

}
where ∥f∥osc = sup f − inf f , where “≳” hides universal constants when X = Y = Td (or more
generally, constants dependent only on X ,Y).

Other relevant results. Other relevant results are contained in Sec. 4, 5 of the retracted arXiv
paper Domingo-Enrich and Bruna (2022) (and those sections are not affected by the mistake that
caused the retraction). Its Sec. 5 shows that if X = Y = R and f(x, ·) and f(·, y) are quadratic
for each x, y, then for µ0 and ν0 being Gaussians located close to µ∗, ν∗ in a certain sense, we have
(µt, νt) → (µ∗, ν∗) weakly. Its Sec. 4 shows an example of a function Gβ : P(R) × P(R) → R
which is convex-concave and displacement-convex-concave, whose WGF exhibits a cycling behav-
ior. Although these results do not quite fit the setting considered here as X and Y are non-compact,
the first one suggests that local convergence of MFL-DA may hold, and the second one may offer a
path to constructing counter-examples.
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