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Abstract
We study the problem of estimating the score function of an unknown probability distribution ρ∗

from n independent and identically distributed observations in d dimensions. Assuming that ρ∗

is subgaussian and has a Lipschitz-continuous score function s∗, we establish the optimal rate of
Θ̃(n− 2

d+4 ) for this estimation problem under the loss function ∥ŝ − s∗∥2L2(ρ∗) that is commonly
used in the score matching literature, highlighting the curse of dimensionality where sample com-
plexity for accurate score estimation grows exponentially with the dimension d. Leveraging key
insights in empirical Bayes theory as well as a new convergence rate of smoothed empirical distri-
bution in Hellinger distance, we show that a regularized score estimator based on a Gaussian kernel
attains this rate, shown optimal by a matching minimax lower bound. We also discuss extensions
to estimating β-Hölder continuous scores with β ≤ 1, as well as the implication of our theory on
the sample complexity of score-based generative models.
Keywords: Score estimation, kernel density estimation, empirical Bayes, Hellinger distance, min-
imax risk

1. Introduction

Sampling from a probability distribution is a fundamental algorithmic task in many applications;
for example, in Bayesian statistics, we draw samples from the posterior distribution to perform
approximate inference. The score function of a distribution, which is defined as the derivative of
the logarithm of the density of the distribution, encodes rich information about the distribution. In
particular, if we have access to the score function of a distribution, then we can sample from it
by running any first-order sampling algorithm such as the Langevin dynamics or the Hamiltonian
Monte Carlo. Recent results have shown mixing time guarantees for such algorithms under struc-
tural assumptions on the target distribution, such as log-concavity or isoperimetry; see for exam-
ple Dalalyan (2017a); Durmus et al. (2019); Bou-Rabee et al. (2020). More recently, an alternative
method for sampling known as the “Score-based Generative Models” (SGMs) have been proposed,
which operates via following the reverse diffusion process from a standard distribution such as the
standard Gaussian to the target distribution; see for example Song and Ermon (2019); Song et al.
(2020b); Ho et al. (2020). Implementing SGMs as an algorithm requires approximating the score
function of the target distribution along the forward diffusion process; this can be done for example
via score matching (Hyvärinen and Dayan, 2005), and in practice this is typically trained via neural
networks. A recent wave of theoretical results has shown that assuming we have access to a good
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sequence of score estimators along the forward process with provable error guarantees, then algo-
rithms derived from SGMs have good mixing time guarantees, with the same or even better iteration
complexity as classical algorithms such as based on the Langevin dynamics, but without requiring
assumptions such as isoperimetry, log-concavity, or even smoothness on the target distribution; see
for example Lee et al. (2022, 2023); Chen et al. (2023c); Benton et al. (2023).

Motivated by the wide applications of the score function, in this paper we study the problem of
estimating the score function of a probability distribution from independent samples. We assume
the target distribution has full support on Rd, is subgaussian, and has a Lipschitz-continuous score
function. The Lipschitzness of the score function is a common assumption in sampling literature, in-
cluding for analyzing classical Langevin-based algorithms (Dalalyan, 2017a,b; Cheng and Bartlett,
2018; Durmus and Moulines, 2019; Dalalyan and Karagulyan, 2019; Durmus et al., 2019; Vempala
and Wibisono, 2019) and the newly developed SGMs (Block et al., 2020; De Bortoli et al., 2021;
Lee et al., 2022; Yang and Wibisono, 2022; Chen et al., 2023a; Lee et al., 2023; Chen et al., 2023c).
Let Pα,L denote the class of probability distributions on Rd that are α-subgaussian with L-Lipschitz
score functions; here we assume α2L ≥ 1 to ensure that Pα,L is not empty. Let ρ∗ be a probability
density in Pα,L. The score function of ρ∗ is the vector field s∗ : Rd → Rd defined by

s∗(x) = ∇ log ρ∗(x)

for all x ∈ Rd, where ∇ is the gradient with respect to x. Observing samples Xn = (X1, . . . , Xn)
drawn i.i.d. (independently and identically distributed) from ρ∗, our goal is to learn a score estima-
tor ŝ(·) := ŝ(·;Xn) that uses the samples to approximate the true score function s∗. We measure
the score estimation error using the following loss:

ℓ(ŝ, ρ∗) := ∥ŝ− s∗∥2ρ∗ =

∫
Rd

∥ŝ(x)− s∗(x)∥2ρ∗(x)dx. (1)

There are a number of reasons why this is a meaningful loss function for score estimation.

• The loss function (1) is the relevant error metric in the application of score matching as as-
sumed in the recent works in SGMs. For example, Chen et al. (2023c) showed that the sam-
pling error of a popular type of SGM known as Denoising Diffusion Probabilistic Modeling
(Ho et al., 2020) can be bounded up to the score matching loss (1) and discretization error.
We will revisit this in Section 3 and discuss the implication of our results on SGMs.

• If the estimator ŝ is proper, i.e. it is the score function of a valid density ρ̂, then (1) equals the
relative Fisher information (or Fisher distance) (Villani, 2003, Eq. (9.25)) between ρ∗ and ρ̂.
In this work, however, we do not limit the scope to proper score estimators.

• In the special case when ρ∗ is a Gaussian mixture, the loss function (1) is precisely the regret,
the central quantity in the theory of empirical Bayes (EB), that measures the excess risk of a
data-driven procedure over the Bayesian oracle risk. Although our model class is far richer
than Gaussian mixtures, this connection with empirical Bayes is crucial for developing our
score estimator; see Section 1.1.

• Finally, it is also necessary to consider a squared loss weighted by the true density ρ∗ as the
score cannot be estimated well in low-density regions. Indeed, for the unweighted squared
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loss ∥ŝ−s∗∥22 =
∫
Rd ∥ŝ(x)−s∗(x)∥2dx, it is easy to show that the minimax score estimation

error is infinite.1

The minimax risk of score estimation over the density class Pα,L under the loss function (1)
with sample size n is defined as

Rn(Pα,L) := inf
ŝ

sup
ρ∗∈Pα,L

Eℓ(ŝ, ρ∗) (2)

where the expectation is over Xn = (X1, . . . , Xn) ∼ (ρ∗)⊗n and the infimum is taken over all esti-
mators ŝ that is measurable with respect to Xn. Taking a step toward understanding the theoretical
aspects of score estimation, we summarize the major contributions of this paper as follows:

1. We study a regularized score estimator based on the KDE (kernel density estimator) using
Gaussian kernel. We analyze the performance of this estimator ŝ (see (6)) under the loss
function (1) and establish an upper bound on the minimax risk as follows:

sup
ρ∗∈Pα,L

Eℓ(ŝ, ρ∗) ≲ n− 2
d+4 polylog(n). (3)

When ρ∗ is such that the score function s∗ is (L, β)-Hölder continuous for some 0 < β ≤ 1,
using the same estimator, we extend the upper bound to the following:

Eℓ(ŝ, ρ∗) ≲ n
− 2β

d+2β+2polylog(n).

2. We prove a matching minimax lower bound:

Rn(Pα,L) ≳ n− 2
d+4 (4)

thereby showing that the optimal rate of score estimation is n− 2
d+4 up to logarithmic factors.

The proof adapts the standard approach for establishing minimax lower bounds in nonpara-
metric density estimation using Fano’s lemma with modifications made for scores. Compar-
ing the lower bound (4) with the upper bound (3), we observe the typical “curse of dimen-
sionality” which suggests that to achieve a specified level of accuracy in score estimation, the
sample complexity must increase exponentially with dimension.

3. We discuss some implications of our results in the context of SGMs. In particular, we propose
a regularized score estimator along the Ornstein-Uhlenbeck (OU) process targeting standard
Gaussian, which is the usual forward process in SGMs. For estimating the score function
at time t along the forward process, by using intermediate results in the proof of the upper
bound (3), we derive an error bound of Õ

(
η−d/2(tn)−1

)
in the weighted squared loss, where

η is the step size in the SGM algorithm.

1. For example, the densities ρ0 = N (0, 1) and ρ1 = N (µn, 1) are statistically indistinguishable with sample size n
for µn = 2−n, but their score functions s0 and s1 differ by a constant, and hence ∥s0 − s1∥2 = ∞.
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1.1. Main idea

Let us discuss the algorithm that attains the optimal rate (3) and the broad strokes of its analysis in
connection to the empirical Bayes theory. Let ρ̂ = 1

n

∑n
i=1 δXi denote the empirical distribution of

the sample and its Gaussian smoothed version:

ρ̂h = ρ̂ ∗ N (0, hId) =
1

n

n∑
i=1

N (Xi, hId). (5)

for some bandwidth parameter h > 0. This Gaussian smoothing is an algorithmic device that allows
us to tap into the powerful machinery of empirical Bayes. Instead of applying the score of ρ̂h, we
consider its regularized version:

ŝεh(x) :=
∇ρ̂h(x)

max(ρ̂h(x), ε)
(6)

for some regularization parameter ε > 0. A deep result in empirical Bayes due to Jiang and Zhang
(2009) (see also Saha and Guntuboyina (2020) for extensions to multiple dimensions) is that the
error between regularized scores of two Gaussian mixtures is upper bounded within logarithmic
factors by the squared Hellinger distance between the two mixtures. Applying this result to our
setting and bounding the likelihood ratio of ρ∗

ρ∗h
using the score smoothness, we obtain

∥ŝεh − s∗εh ∥2ρ∗h ≲ ∥ŝεh − s∗εh ∥2ρ∗ ≲
1

h
H2(ρ̂h, ρ

∗
h) · polylog

(
1

H2(ρ̂h, ρ
∗
h)
,
1

ε

)
. (7)

Here ρ∗h = ρ∗ ∗ N (0, hId) is the smoothed version of the true density, s∗εh =
∇ρ∗h

max(ρ∗h,ε)
is its

regularized score, and the squared Hellinger distance between two densities p and q is

H2(p, q) :=

∫
Rd

(√
p(x)−

√
q(x)

)2
dx.

Next, we bound the Hellinger distance between the smoothed empirical distribution and the
population:

E[H2(ρ̂h, ρ
∗
h)] ≲

1

nhd/2
· polylog(n). (8)

Crucially relying on the smoothness of the score of ρ∗, this result seems not obtainable from the
literature on smooth empirical distribution based only on the subgaussianity of ρ∗ (Goldfeld et al.,
2020; Block et al., 2022). (In fact, we suspect whether (8) is true without the score smoothness. See
Lemma 9 and the surrounding discussion in Appendix A.1.1 for details.)

Finally, we control the error due to smoothing and regularization:

∥s∗εh − s∗∥2ρ∗ ≲
ε

h
polylog

(
1

ε
,
1

h

)
+ h. (9)

Since the regularization parameter only contributes logarithmically in (7), we may choose it rather
aggressively as ε = n−2. Balancing the main terms of 1

nh1+d/2 and h leading to the optimal choice

of bandwidth parameter h = n− 2
d+4 and the optimal rate (3).

4



OPTIMAL SCORE ESTIMATION VIA EMPIRICAL BAYES SMOOTHING

It is helpful to clarify the difference between classical empirical Bayes and the present paper. In
EB denoising, one observes i.i.d. samples Y1, . . . , Yn ∼ ρ∗h = ρ∗ ∗ N (0, hId), where the variance
parameter h is fixed by the problem and the prior ρ∗ is an arbitrary distribution with only tail
assumptions (e.g. subgaussian). Therein, the goal is to compete with the oracle who knows the prior
ρ∗ and computes the Bayes estimator of Xi ∼ ρ∗ given the noisy observation Yi. Thanks to the
Tweedie’s formula Efron (2011)

E[Xi | Yi = y] = y + hs∗h(y), (10)

this is equivalent to estimating the score of s∗h. Given an approximate score s̃, the regret of the
approximate Bayes denoiser X̃(y) = y + hs̃(y), i.e., the excess risk over the Bayesian oracle
applied to a fresh observation, is given by the score matching loss (1), namely h2ℓ(s̃, ρ∗h).

A popular method in EB (the so-called g-modeling approach (Efron, 2014)) is to first compute
an estimate ρ̃ of the distribution ρ∗ based on Yi’s using deconvolution techniques, such as nonpara-
metric maximum likelihood (NPMLE) (Jiang and Zhang, 2009; Saha and Guntuboyina, 2020), then
bound the density estimation error ρ̃h = ρ̃ ∗ N (0, hId) in Hellinger distance, and finally the regret
of the regularized score of ρ̃h using tools such as (7). In our setting, since we have access to samples
Xi’s drawn from ρ∗ before convolution, we can directly apply the smoothed empirical distribution
with an optimized bandwidth parameter h.

1.2. Related work

Empirical Bayes. As mentioned earlier, for Gaussian mixtures the score matching loss (1) and
the empirical Bayes regret is equivalent. This connection can be made more precise. Consider the
nonparametric class of Gaussian mixtures π∗N (0, Id), where the mixing distribution π is supported
on a ball of radius r = O(1). In view of (10), this is a subset of our model class Pα,L for some α,L
depending on r. On this subclass, the best score estimation error is at most O( (logn)

5

n ) (Jiang and
Zhang, 2009) in one dimension (see Saha and Guntuboyina (2020) for extensions to d dimensions),
achieved by the NPMLE. A different approach is carried out in Li et al. (2005) based on KDE
that applies (different) polynomial kernels of logarithmic degree to estimate the density and the
derivative leads to similar results with worse logarithmic factors. In terms of negative results, for
d = 1, a lower bound Ω

(
(logn)2

(log logn)2n

)
is shown in Polyanskiy and Wu (2021). Compared with these

near-parametric rates Θ̃(n−1), the nonparametric rate Θ̃(n− 2
d+4 ) in (3) is much slower, as the class

Pα,L we consider is much richer than Gaussian mixtures.

Density Estimation. We can view score estimation as a density estimation problem under a dif-
ferent measurement of the estimation error. In score estimation, if ŝ is a proper estimator, i.e.,
ŝ = ∇ log ρ̂ for some distribution ρ̂, then the loss function (1) is the relative Fisher information:

FI(ρ∗ ∥ ρ̂) := ∥∇ log ρ∗ −∇ log ρ̂∥2ρ∗ , (11)

which depends on both the density itself and its first-order gradient information. In classical density
estimation, common choices of the loss function include the squared L2(Rd) loss ∥ρ∗ − ρ̂∥22 :=∫
Rd(ρ

∗(x) − ρ̂(x))2dx and the squared Hellinger distance H2(ρ∗, ρ̂). There is a rich literature on
density estimation of nonparametric Gaussian mixtures. In one dimension, the optimal L2(R) error
is known to be Θ((log n)1/2/n); for the squared Hellinger, the lower bound is Ω(log n/n) (Ibragi-
mov, 2001; Kim, 2014), and the upper bound is O((log n)2/n) achieved by the NPMLE (Jiang and

5



WIBISONO WU YANG

Zhang, 2009). In d dimensions, the optimal L2(Rd) error is Θ((log n)d/2/n) (Kim and Guntuboy-
ina, 2022); for the squared Hellinger, the lower bound is Ω((log n)d/n) (Kim and Guntuboyina,
2022), and the upper bound is O((log n)d+1/n) which is established for the NPMLE (Saha and
Guntuboyina, 2020).

Score Estimation. While many methods have been proposed for estimating the score function,
theoretical results are scarce. One approach involves density estimation techniques, such as ker-
nel density estimation or neural network-based methods, followed by differentiation of their log-
arithm; see for example Scott (1992); Papamakarios et al. (2017). Another approach estimates
the unnormalized log-density and differentiates this estimate; this is effective since the score func-
tion does not depend on the normalizing constant. A popular method in this area is called score
matching (Hyvärinen and Dayan, 2005); this method proceeds by minimizing the relative Fisher
information between the data distribution and the learned model distribution, which is equivalent
to the loss function (1) in the case that the score estimator is proper. It has been shown that the
minimization of the score matching loss (1) is a consistent estimator assuming the global minimum
is found by the optimization algorithm used in the estimation (Hyvärinen and Dayan, 2005). The
work of Sutherland et al. (2018) uses the Nyström approximation to speed up the score matching
procedure to learn an exponential family density model with the natural parameter in a reproduc-
ing kernel Hilbert space, which may be infinite-dimensional, as introduced in Sriperumbudur et al.
(2017). The work of Zhou et al. (2020) studies nonparametric score estimation via kernel ridge
regression and proved the sample complexity of the resulting score estimator under some assump-
tions, including that the underlying score function can be written as the image of an integral operator
in a reproducing kernel Hilbert space. The work of Saremi et al. (2018) trained a neural network
to minimize the score matching objective and output the energy–unnormalized log-density. For a
review of modern approaches to energy-based model training, see for example Song and Kingma
(2021). Besides parameter estimation in unnormalized models, one can also train a neural network
to directly output the score by minimizing the score matching objective (Song et al., 2020a).

Score-based Generative Models. Recent advancements in SGMs have focused on convergence
analyses of the algorithms assuming access to an accurate score estimator. Initial studies either
hinged on structural assumptions on the data distribution such as a log-Sobolev inequality (Lee
et al., 2022; Yang and Wibisono, 2022) or strong assumptions on score estimation error such as L∞

error (De Bortoli et al., 2021), or they led to bounds that exponentially increased with the problem
parameters (De Bortoli, 2022; Block et al., 2020). Subsequent studies have achieved polynomial
convergence rates under less restrictive assumptions, including that the data distribution has a finite
second moment and the scores along the forward process are Lipschitz (Chen et al., 2023a; Lee
et al., 2023; Chen et al., 2023c). More recent results including Benton et al. (2023) have estab-
lished polynomial convergence guarantees under a minimal assumption of a finite second moment
of the data distribution. Parallel to these developments, significant efforts have been directed to-
wards the problem of score estimation in SGMs, including the following. The work of Chen et al.
(2023b) studied the score estimation using neural networks and derived a finite-sample bound for a
specifically chosen network architecture and parameters, with the assumption that the data lies in a
low-dimensional linear subspace. The work of Oko et al. (2023) bounded the estimation error when
using a neural network and showed that diffusion models are nearly minimax-optimal estimators
in the total variation and in the Wasserstein distance of order one, assuming the target density be-
longs to the Besov space. The work of Scarvelis et al. (2023) proposed to smooth the closed-form
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score from empirical distribution to obtain an SGM that can generate samples without training. The
work of Cui et al. (2023) obtained an error rate of Θ(1/n) for SGM when the target distribution is
a mixture of two Gaussians and using a two-layer neural network for learning the score function.
The work of Cole and Lu (2024) showed that the score function can be approximated efficiently
via neural networks when the target distribution is subgaussian and has a log-relative density with
respect to the Gaussian measure which is a Barron function, i.e. can be approximated efficiently by
neural networks. The work of Li et al. (2024) studied SGM with score estimator from empirical
kernel density estimator, similar to our work; they showed the sample complexity when the target
distribution is either a standard Gaussian or has bounded support, and discussed the issue of mem-
orization of training samples. A concurrent work by Zhang et al. (2024) shows that when the target
distribution belongs to the β-Sobolev space with β ≤ 2, the diffusion model with a kernel-based
score estimator is minimax optimal up to logarithmic factors.

1.3. Notations and definitions

We review the necessary notations and definitions. Let P(Rd) denote the space of probability
distributions on Rd. For distributions ρ, ν ∈ P(Rd) which are absolutely continuous with respect to
the Lebesgue measure on Rd, for convenience we also write their probability density functions as
ρ : Rd → R and ν : Rd → R. Recall the total variation (TV) distance between ρ and ν is

TV(ρ, ν) = sup
A⊆Rd

|ρ(A)− ν(A)| = 1

2

∫
Rd

|ρ(x)− ν(x)| dx.

For a function f : Rd → R and a probability distribution ρ on Rd, the squared L2(ρ)-norm of f is

∥f∥2ρ := Eρ[f
2] =

∫
Rd

f(x)2 ρ(x) dx.

We define L2(ρ) to be the space of functions f : Rd → R for which ∥f∥2ρ < ∞. Similarly, given a
vector field s : Rd → Rd, the squared L2(ρ)-norm of s is

∥s∥2ρ := Eρ

[
∥s∥2

]
=

∫
Rd

∥s(x)∥2 ρ(x) dx.

We say a probability distribution ρ on Rd is α-subgaussian for some 0 < α < ∞ if for all θ ∈ Rd:

Eρ exp(θ
⊤(X − EρX)) ≤ exp

(
α2∥θ∥2

2

)
.

We say a random variable X ∼ ρ is subgaussian if its distribution ρ is subgaussian.
We use a = O(b) or b = Ω(a) to indicate that a ≤ Cb for a universal constant C > 0. We use

a = Θ(b) to indicate that C1b ≤ a ≤ C2b for C2 > C1 > 0. And Õ(·) hides logarithmic factors.

2. Main results

2.1. Score estimator via Empirical Bayes smoothing

Suppose we are given a sample of n i.i.d. observations Xn = (X1, . . . , Xn) from an unknown
distribution ρ∗ ∈ Pα,L. Our goal is to estimate the score s∗ = ∇ log ρ∗.
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For h > 0, let ρ̂h be the smoothed empirical distribution which is a mixture of Gaussians:

ρ̂h =
1

n

n∑
i=1

N (Xi, hId).

We propose the following regularized KDE score estimator ŝεh(·) = ŝεh(·;Xn):

ŝεh(x) :=
∇ρ̂h(x)

max(ρ̂h(x), ε)
(12)

for some bandwidth parameter h > 0 and regularization parameter ε > 0.
We measure the accuracy of the score estimator ŝεh in the expected square L2(ρ∗)-norm as in (1),

and establish the following error bound on the order of Õ(n− 2
d+4 ). Here the expectation is taken

over the sample Xn ∼ (ρ∗)⊗n.

Theorem 1 Let d ≥ 1 be fixed, and suppose we have X1, . . . , Xn drawn i.i.d. from some ρ∗ ∈
Pα,L. Setting

ε = n−2 and h =

(
d3(α2 log n)d/2

L2n

) 2
d+4

,

for sufficiently large n, the score estimator (12) satisfies

Eℓ(ŝεh, ρ∗) ≤ Cdα2L2 (log n)
d

d+4 n− 2
d+4

where ℓ(·, ·) is defined in (1), and C > 0 is a universal constant.

Proof We provide the main argument for proving Theorem 1, deferring some of the lemmas to the
appendix. We define:

ρ∗h = ρ∗ ∗ N (0, hId), s∗h = ∇ log ρ∗h, and s∗εh =
∇ρ∗h

max(ρ∗h, ε)
. (13)

Since s∗ is L-Lipschitz, we can show that the density ratio of ρ∗ to ρ∗h is bounded from above
everywhere by a constant: In Lemma 10 in Appendix A.1, we show that for all x ∈ Rd,

ρ∗(x)

ρ∗h(x)
≤ exp (dLh/2) .

Then by a change of measure from ρ∗ to ρ∗h, we get

Eℓ(ŝεh, ρ∗) = E∥ŝεh − s∗∥2ρ∗ ≤ exp (dLh/2)E∥ŝεh − s∗∥2ρ∗h . (14)

We can decompose the last factor on the right-hand side above as follows:

E∥ŝεh − s∗∥2ρ∗h ≤ 3E∥ŝεh − s∗εh ∥2ρ∗h + 3∥s∗εh − s∗h∥2ρ∗h + 3∥s∗h − s∗∥2ρ∗h . (15)

We now bound each of the three terms above separately.
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First term: The first term E∥ŝεh − s∗εh ∥2ρ∗h concerns the distance between the regularized score

functions of ρ̂h and of ρ∗h, which we can bound as follows: If ε ∈ (0, (2πh)−d/2e−1/2] and
α2n−2/d log n ≲ h ≤ 1/(4L), then by Lemma 12 in Appendix A.2,

E∥ŝεh − s∗εh ∥2ρ∗h ≤
Cd (Ch,d,α + d)

nh

[(
log

1

ε(2πh)d/2

)3

+ log
n

Ch,d,α + d

]
. (16)

where C > 0 is a universal constant and Ch,d,α :=
(
α2 logn

h

)d/2
. The proof of Lemma 12 proceeds

by first bounding ∥ŝεh − s∗εh ∥2ρ∗h in terms of the squared Hellinger distance between ρ̂h and ρ∗h using
the result of Saha and Guntuboyina (2020), extending (Jiang and Zhang, 2009, Theorem 3) to d
dimensions. This crucially uses the regularization in the score estimates. Another crucial component
of the proof involves establishing a bound for the expected Hellinger distance between Gaussian-
smoothed empirical distribution to the population, which gives us the desired bound of 1

nhd/2 and
thereby achieving the optimal rate in Theorem 1. We formally present this result as Lemma 9 in
Appendix A.1.1.

Second term: The second term ∥s∗εh − s∗h∥2ρ∗h is the error induced by the regularization, which we

can bound as follows: If 0 ≤ ε ≤ (2πh)−d/2/e and h ≤ α2, then

∥s∗εh − s∗h∥2ρ∗h ≤ 2ε

h
(64α2 log n)d/2 log

1

ε(2πh)d/2
+

2d3/2

hn2
. (17)

We state the result formally as Lemma 13 in Appendix A.3.

Third term: The third term ∥s∗h − s∗∥2ρ∗h is a bias term that we can bound using the Lipschitzness
of the score function. Concretely, by Lemma 16 in Appendix A.5, we have: If h < 1/(4L),

∥s∗h − s∗∥2ρ∗h ≤ L2hd. (18)

Combining the bounds. Combining the bounds (16)–(18), we have

E∥ŝεh − s∗∥2ρ∗h ≤
Cd (Ch,d,α + d)

hn

(
log

1

ε(2πh)d/2

)3

+
Cd (Ch,d,α + d)

hn
log

n

Ch,d,α + d

+
6ε

h
(64α2 log n)d/2 log

1

ε(2πh)d/2
+

6d3/2

hn2
+ 3L2hd

where C > 0 is a universal constant. By choosing ε = n−2, the first term dominates the second and
third terms for n = Ω(ed). It follows that

E∥ŝεh − s∗∥2ρ∗h ≤ Cd4(α2 log n)d/2

nhd/2+1

(
log

n

h

)3
+ 3L2hd (19)

where C > 0 is a different universal constant. Finally, we optimize the bound (19) over h. By

choosing h =
(
d3(α2 logn)d/2

L2n

) 2
d+4 , the two terms in (19) are in the same order, and hence we obtain

the desired bound by the change of measure in (14):

E∥ŝεh − s∗∥2ρ∗ ≤ Cdα2L2 (log n)
d

d+4 n− 2
d+4

9
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for a universal constant C > 0.

The following result generalizes Theorem 1 to score function s∗ that is (L, β)-Hölder-continuous
with 0 < β ≤ 1, satisfying ∥s∗(x1)− s∗(x2)∥ ≤ L∥x1−x2∥β for any x1, x2 ∈ Rd. The proof uses
a more general argument based on the score bound of Gaussian mixture in (Polyanskiy and Wu,
2016, Proposition 2) in place of the more delicate argument (Lemma 14) based on log-concavity
that requires the Lipschitzness of the score. For readability, we provide the proof of Theorem 2
separately in Appendix B.

Theorem 2 Fix d ≥ 1. Suppose we have X1, · · · , Xn drawn i.i.d. from some ρ∗ which is a α-
subgaussian distribution on Rd with (L, β)-Hölder continuous score function for some 0 < β ≤ 1.
Setting

ε = n−2 and h =

(
d4−β(α2 log n)d/2

L2n

) 2
d+2β+2

for sufficiently large n, the score estimator (12) satisfies

Eℓ(ŝεh, ρ∗) ≤ CdβL2α2β(log n)
dβ

d+2β+2n
− 2β

d+2β+2

for a universal constant C > 0.

2.2. Minimax lower bound

The following minimax lower bound, matching the upper bound in Theorem 1 up to logarithmic
factors, is proved in Appendix C. The same argument is expected to extend straightforwardly to
yield a matching lower bound for Theorem 2 for the case of β-Hölder continuous scores.

Theorem 3 For any d ≥ 1 and α > 0, there exist constants c = c(d, α) and L = L(d, α) such that

inf
ŝ

sup
ρ∗∈Pα,L

Eℓ(s, ρ∗) ≥ c(d, α)n− 2
d+4 . (20)

The above convergence rate can be interpreted by drawing analogy with classic results on es-
timating smooth densities in the Hölder class. It is well-known (Stone, 1982, 1983) that, for m-
smooth densities supported on a d-dimensional hypercube, the optimal rate (in mean squared L2-
error) of estimating the rth derivative is

n− 2(m−r)
2m+d . (21)

It is conceivable that estimating the score function (derivative of log density) is at least as hard as
estimating the derivative of the density itself. Since the Lipschitz assumption of the score translates
to twice differentiability of the density, we see that Theorem 3 corresponds to (21) with m = 2 and
r = 1.

Furthermore, optimal estimation of m-smooth densities in squared error is attained by KDE
with kernel chosen depending on the smoothness parameter m and the optimal bandwidth n− 1

d+2m

(Stone, 1983). For m = 2 this curiously coincides with the bandwidth choice
√
h of the Gaussian

10
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kernel in Theorem 1; for m = β + 1, this coincides with Theorem 2. By classical results in density
estimation (Tsybakov, 2009), for densities with smoothness parameter m ≤ 2, positive kernels are
optimal; however, for higher smoothness m > 2, kernels with negative parts must be used. For this
reason, the methodology in the current paper based on Gaussian kernel may cease to be optimal if
the score function is smoother than Lipschitz. Determining the optimal rate of estimating β-Hölder
scores with β > 1 remains an open question.

The optimal rate n− 2
d+4 exhibits the typical “curse of dimensionality”, suggesting that the op-

timal sample complexity reaching a given accuracy of score estimation must grow exponentially
with the dimension. Rigorously establishing this is an interesting question that requires proving a
sharper non-asymptotic lower bound for score estimation that applies to d growing with n. We note
that for estimating the density itself this was successfully carried out in McDonald (2017).

3. Application to SGM

In this section, we discuss some implications of our results from Section 2.1 in the context of SGMs.
We derive a finite-sample error bound for a KDE score estimator along the forward process, and then
we plug in our result to existing guarantees for SGMs to deduce a final sample complexity result.
We first provide a brief review of a specific type of SGM called Denoising Diffusion Probabilistic
Modeling (DDPM); we refer the reader to Ho et al. (2020) for more details.

Suppose our target distribution is ν on Rd. In DDPM, we start with an Ornstein-Uhlenbeck
(OU) process targeting γ = N (0, Id):

dXt = −Xt dt+
√
2dWt, X0 ∼ ν0 = ν, (22)

where Wt is the standard Brownian motion in Rd. Let νt = Law(Xt) be the distribution of Xt along
the OU flow, and let st = ∇ log νt be the score function of νt 2. We run the OU process (22) until
time T > 0, and then we simulate the backward (time-reversed) process, which can be described by
the following stochastic differential equation:

dỸt = (Ỹt + 2sT−t(Ỹt))dt+
√
2dWt, Ỹ0 ∼ µ0 = νT . (23)

By construction, if we start the backward process of (23) from Ỹ0 ∼ µ0 = νT , then we will have
Ỹt ∼ µt = νT−t for 0 ≤ t ≤ T , and thus ỸT ∼ µT = ν is a sample from the target distribution.
However, in practice, we do not know the score functions (st)0<t≤T . Typically, we only assume we
have independent samples from ν, which we use to construct score estimators (ŝt)0<t≤T . Then in
the algorithm, we start the backward process (23) from Ỹ0 ∼ γ (the target distribution of forward
process (22) which is close to νT for large T ), and we simulate the backward process in discrete
time with score estimators (ŝt)0<t≤T that we learn from samples. Let η > 0 be the step size, and
K = T

η so T = Kη; we assume K ∈ N. In each step, the DDPM algorithm performs the following
update:

(DDPM) yk+1 = eηyk + 2(eη − 1)ŝη(K−k)(yk) +
√

e2η − 1zk (24)

2. We note a change in the notation of st. Previously, st denotes the score function of the Gaussian-smoothed target
distribution with t being the smoothing variance. In this section, st is the score function of νt along the OU process
starting from target distribution ν.

11
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where ŝηk is an approximation to the score function of νηk, and zk ∼ N (0, Id) is an independent
Gaussian random variable.

We will apply the convergence result from Chen et al. (2023c), who showed that the DDPM
algorithm (24) returns a sample that is close in TV distance to ν up to the score estimation error
and discretization error under some assumptions, including an error bound on the score estimation
error. We note that in Chen et al. (2023c) the score estimator is learned from (and hence depends
on) the sample, and their result is stated for a fixed score estimator. An inspection of their proof
shows that the guarantees hold in expectation (with respect to the random sample), which we state
below as Proposition 4.

Proposition 4 Assume:

1. For all t ≥ 0, the score st = ∇ log νt is L-Lipschitz for some 1 ≤ L < ∞;

2. The target distribution ν has a finite second moment m2
2 := Eν [∥X∥2] < ∞;

3. For k = 1, · · · ,K, the score estimator ŝkη(·) = ŝkη(·;Xn), which depends on the sample
Xn, has expected score estimation error EXn∥skη − ŝkη∥2νkη ≤ ϵ2score; and

4. The step size η = T/K satisfies η ≲ 1/L.

At each time t = kη, let ρt be the law of the iterate yk of the DDPM algorithm (24) conditioned on
the sample Xn. Then it holds that:

EXn [TV(ρT , ν)] ≲ e−T
√
KL(ν∥γ) +

(
L
√
dη + Lm2η + ϵscore

)√
T . (25)

3.1. Score estimation along the OU flow

Given i.i.d. observations X(1), · · · , X(n) from ν, we need to estimate the score functions along the
OU process, i.e. st = ∇ log νt for any t > 0. Recall that following the OU flow (22), Xt ∼ νt =
Law(e−tX0) ∗ N (0, τ(t)Id) where τ(t) = 1 − e−2t. When we start the OU flow with a finite
set of observations {X(i)}ni=1, i.e. the initial distribution of the flow is the empirical distribution
ν̂0 =

1
n

∑n
i=1 δX(i) , the perturbed distribution at time t is a Gaussian mixture

ν̂t =
1

n

n∑
i=1

N (e−tX(i), τ(t)Id)

Its score function, ∇ log ν̂t, can be easily expressed in a closed-form. Using this closed-form score
function for the sampling allows for a sampler without training. This may seem appealing, but using
this score function in the backward SDE (23) will convert the noise to the empirical distribution
ν̂0, which means the model will memorize the training set and cannot generate novel samples.
Therefore, we propose to use the regularized score function of ν̂t:

ŝεt =
∇ν̂t

max(ν̂t, ε)
(26)

for some ε > 0. The induced error in the closed-form score will enable the model to generalize.
Furthermore, we can analyze its performance by appealing to similar techniques used in the proof
of Theorem 1. We state the result as follows and provide the proof in Appendix D.

12
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Theorem 5 Fix d ≥ 1. Assume ν is α-subgaussian and has an L-Lipschitz score. Choose ε = n−2.
If the step size of DDPM (24) satisfies

1

2
log

(
1 +

α2 log n

n2/d

)
≲ η ≤ 1

2
log

(
1 +

1

4L− 1

)
,

then at time t ≥ η, the squared L2(νt) error of the estimator (26) satisfies

Eℓ(ŝεt , νt) = E∥ŝεt − st∥2νt ≲
1

n

d

(1− e−2t)

((
α2 log n

e2η − 1

)d/2

+ d

)(
log

n

(2π(1− e−2t))d/4

)3

(27)

where ≲ hides absolute constant, and the expectation is taken over the i.i.d. sample X(1), · · · , X(n)

from ν.

Note for small t and large n, the right-hand side above is Õ(η−d/2(tn)−1). The bound decreases in
t; this is because νt converges to the standard Gaussian as t → ∞. In fact, our method shows that
to reach Eℓ(ŝεt , νt) ≤ ϵ2score for all t ≥ η, it suffices to have Õ

(
dαd

ηd/2+1ϵ2score

)
samples. This is not

obvious because, despite that both ν̂t and νt move closer to the same Gaussian as t increases, it is
unclear whether the score estimation error ∥ŝεt − st∥2νt is monotonically decreasing in t.3 Neverthe-
less, empirical Bayes techniques (recall (7)) allow us to control ℓ(ν̂t, νt) in terms of the Hellinger
distance H2(ν̂t, νt) which satisfies data processing inequality (Polyanskiy and Wu, 2024, Theorem
7.4) and hence decreasing in t. Furthermore, a simple application of Markov inequality shows that
on a high probability event (with respect to H2(ν̂η, νη)), the preceding bound on ℓ(ŝεt , νt) holds
simultaneously for all t ≥ η.

Combining Theorem 5 with the previous convergence result for DDPM (Proposition 4), we ob-
tain the following sample complexity guarantee for DDPM driven by the regularized score estimator
(26):

Corollary 6 Suppose the assumptions in Proposition 4 and Theorem 5 hold. In order to have
ETV(ρT , ν) ≤ ϵTV, it suffices to run DDPM (24) with ŝt = ŝεt in (26) for T ≍ log(KL(ν∥γ)/ϵTV)

and η ≍ ϵ2TV
L2d

, and have

n = Õ

(
dd/2+2αdLd+2

ϵd+4
TV

)
samples for score estimation.

4. Discussion

In this paper, we study the score estimation for subgaussian densities in d dimensions with Lipschitz-
continuous score functions. Under the score matching loss (1), we establish a minimax lower bound
at the rate of n− 2

d+4 using Fano’s lemma. Applying techniques from empirical Bayes and smoothed

3. Even in the absence of the regularization parameter ϵ, in which case ∥ŝt − st∥2νt coincides with the relative Fisher
information FI(ν̂t ∥ νt) in (11), it is still unclear whether this is monotone in t because FI is convex in the first
argument but not in the second. In comparison, H2(ν̂t, νt) = H2(ν̂ ∗ N (0, (e2t − 1)Id), ν ∗ N (0, (e2t − 1)Id)) is
decreasing in t.
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empirical distribution as well as new insights enabled by the Lipschitzness of the true score, a
regularized KDE score estimator using a Gaussian kernel with optimized bandwidth is shown to
achieve this optimal rate up to logarithmic factors. The convergence rate n− 2

d+4 suggests that an
exponential increase in sample complexity is unavoidable as the dimension d grows.

Within the SGM framework, particularly considering an OU flow as the forward process, if
we start with n independent observations, the score function along the OU flow has a closed-form
(as the score of a Gaussian mixture). To improve generalization, we explicitly introduce a reg-
ularization term and analyze the performance of this estimator, leading to a sample complexity of

Õ
(

dαd

ηd/2+1ϵ2score

)
for score matching up to error ϵscore, and a sample complexity of Õ

(
dd/2+2αdLd+2

ϵd+4
TV

)
for SGMs using this score estimator to reach a sampling error ϵTV. The exponential dependence
of sample complexity on the dimension d is fundamental to the nonparametric distribution class
Pα,L we consider, which only assumes subgaussianity and score smoothness. There is a need to
seek a meaningful distribution class whose sample complexity for score estimation has a milder
dependency on d.
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Appendix A. Details for proof of Theorem 1

A.1. Preliminary results

We present preliminary results which we will use. We recall the following result from Saha and
Guntuboyina (2020).

Proposition 7 ((Saha and Guntuboyina, 2020, Theorem E.1)) Let ρ0 and ν0 be two distribu-
tions on Rd. Let ρ1 = ρ0 ∗ N (0, Id) and ν1 = ν0 ∗ N (0, Id). For ε > 0, let sερ1 and sεν1 denote the
regularized score functions of ρ1 and ν1 respectively. If ε ≤ (2π)−d/2e−1/2, then

∥sερ1 − sεν1∥
2
ρ1 ≤ Cdmax


(
log

(2π)−d/2

ε

)3

, |logH(ρ1, ν1)|

H2(ρ1, ν1)

where C is a universal positive constant.

Via a rescaling argument, we have the following generalization.

Lemma 8 Let ρ and ν be two distributions on Rd. Let h > 0, ρh = ρ ∗ N (0, hId) and νh =
ν ∗ N (0, hId). For any ε > 0, let sερh and sενh be the regularized score functions of ρh and νh
respectively. If 0 < ε ≤ (2πh)−d/2e−1/2, then

∥sερh − sενh∥
2
ρh

≤ Cd

h
max


(
log

(2πh)−d/2

ε

)3

, |logH(ρh, νh)|

H2(ρh, νh),

where C is a universal positive constant.

Proof Let X ∼ ρ and Y ∼ ν, so Xh = X +N (0, hI) ∼ ρh and Yh = Y +N (0, hI) ∼ νh. We
can also write Xh and Yh as

Xh =
√
hX ′ where X ′ =

X√
h
+N (0, Id) ∼ ρ′

Yh =
√
hY ′ where Y ′ =

Y√
h
+N (0, Id) ∼ ν ′.
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Note that ρ′ = Law(X/
√
h) ∗N (0, Id) and ν ′ = Law(Y/

√
h) ∗N (0, Id). It follows from Proposi-

tion 7 that if 0 < ε′ ≤ (2π)−d/2e−1/2, then

∥sε′ρ′ − sε
′
ν′∥2ρ′ ≤ Cdmax


(
log

(2π)−d/2

ε′

)3

,
∣∣logH(ρ′, ν ′)

∣∣H2(ρ′, ν ′)

for some positive constant C. By the relation of ρh and ρ′, we have ρh(x) = h−d/2ρ′( x√
h
). Thus

we have the following relation of the score functions of ρh and ρ′,

sρh(x) =
∇ρh(x)

ρh(x)
=

h−d/2h−1/2∇ρ′
(

x√
h

)
h−d/2ρ′

(
x√
h

) =
1√
h
sρ′

(
x√
h

)

and similarly for νh and ν ′, sνh(y) = h−1/2sν′
(

y√
h

)
. The same holds for the regularized score

functions,

sερh(x) =
1√
h
sε

′
ρ′

(
x√
h

)
and sενh(y) =

1√
h
sε

′
ν′

(
y√
h

)
where ε′ = hd/2ε. Therefore, if 0 < ε ≤ (2πh)−d/2e−1/2, i.e. 0 < ε′ ≤ (2π)−d/2e−1/2, then

∥sερh − sενh∥
2
ρh

=

∫
ρh(x̃) ∥sερh(x̃)− sενh(x̃)∥

2dx̃

=
1

h

∫
ρ′(x) ∥sε′ρ′(x)− sε

′
ν′(x)∥2dx (by letting x̃ =

√
hx)

(a)

≤ Cd

h
max


(
log

(2πh)−d/2

ε

)3

,
∣∣logH(ρ′, ν ′)

∣∣H2(ρ′, ν ′).

where (a) uses Proposition 7 and ε′ = hd/2ε. By the scale-invariance of the Hellinger distance,

H2(ρh, νh) = H2(ρ′, ν ′).

Therefore, we obtain the desired result

∥sερh − sενh∥
2
ρh

≤ Cd

h
max


(
log

(2πh)−d/2

ε

)3

, |logH(ρh, νh)|

H2(ρh, νh).

A.1.1. HELLINGER CONVERGENCE RATE OF SMOOTHED EMPIRICAL DISTRIBUTION

Another crucial ingredient of the proof is bounding the Hellinger distance between Gaussian-smoothed
empirical distribution to the population.
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Lemma 9 Let d ≥ 1, h > 0 and α > 0. Let ρ∗ ∈ Pα,L, which is an α-subgaussian measure on Rd

with an L-Lipschitz score s∗. Let ρ∗h = ρ∗ ∗ N (0, hId). Let ρ̂ be the empirical measure of an i.i.d.
sample of size n drawn from ρ∗ and ρ̂h = ρ̂ ∗ N (0, hId). Assume that h ≤ 1

4L and h ≤ α2. Then

EH2(ρ̂h, ρ
∗
h) ≤

1

n

(
Cα2 log n

h

)d/2

+
4d

n
, (28)

where C is some universal constant.

We note that convergence rate of smoothed empirical distribution has been well-studied in the
literature (see, e.g., Goldfeld et al. (2020); Block et al. (2022)) under various metrics including dif-
ferent types of f -divergences and transportation distances, some of which exhibit a rich spectrum
of behavior depending on the relationship between the smoothing parameter and the subgaussian
parameter of the population. For example, in the setting of Lemma 9, (Goldfeld et al., 2020, Propo-
sition 2) shows that

ETV(ρ∗h, ρ̂h) ≤
(

1√
2
+

α√
h

)d/2

e
3d
16

1√
n
, (29)

which holds for any α-subgaussian ρ∗ without smoothness conditions on the score. Using the
inequality H2/2 ≤ TV ≤ H (Polyanskiy and Wu, 2024, Sec. 7.3), (29) implies that EH2(ρ̂h, ρ

∗
h) ≲

1√
nhd/2

up to constant depending on d and α. Since the inequality H2 ≤ TV cannot be improved

in general,4 this falls short of the desired bound of 1
nhd/2 in (28) and hence the optimal rate of

score estimation in Theorem 1. Another option is to apply the smoothed KL bound in (Block et al.,
2022, Theorem 3) and the fact that H2 ≤ KL, leading to EKL(ρ̂h∥ρ∗h) ≤

C(logn)d

n ; unfortunately,
examining the proof of this result shows that the constant C is exponential in 1/h. In fact, our
proof of Lemma 9 (notably, Lemma 10 below) crucially relies on the Lipschitzness of the score and
directly deals with the Hellinger distance using a truncated second moment calculation. It is unclear
whether Lemma 9 holds for all subgaussian distributions without smooth scores.

To show Lemma 9, we start with an intermediate result.

Lemma 10 Let p be a density on Rd whose score s = ∇ log p is L-Lipschitz. Let ph = p ∗ φh

where φh is the density of N (0, hId). Then for all y ∈ Rd,

p

ph
(y) ≤ exp(dLh/2).

4. Note that we do have the special structure that ρ∗h are ρ̂h are both Gaussian mixtures. The recent work Jia et al.
(2023) shows that for Gaussian mixtures H2 and KL are comparable. Whether H and TV are comparable is posed
as an open problem in Jia et al. (2023).
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Proof Let Z ∼ N (0, Id). Then ph(y) = E[p(y −
√
hZ)]. We have

log
p

ph
(y) = log p(y)− logE[p(y −

√
hZ)]

(a)

≤ E[log p(y)− log p(y −
√
hZ)]

= E
∫ 0

−
√
h
⟨−Z, s(y − uZ)⟩du

(b)
= E

∫ 0

−
√
h
⟨−Z, s(y − uZ)− s(y)⟩du

(c)

≤ E
∫ 0

−
√
h
L|u|∥Z∥2du = dLh/2

where (a) applies Jensen’s inequality to the convex function x 7→ − log x; (b) is because E[Z] = 0;
(c) applies Cauchy-Schwarz and the Lipschitzness of s.

Remark 11 As we shall see below, the second moment calculation in bounding the expected square
Hellinger distance requires controlling a quantity of the form

∫
Rd dy

p
ph
(y) as poly(1/h). The hope

is that the convolution ph has a slightly heavier tail than that of p such that the ratio p
ph
(y) decays

like a Gaussian of variance approximately h; this is exactly the case when p is Gaussian. While we
cannot prove this in general, Lemma 10 bounds the density ratio p

ph
(y) by a constant independent of

y. As such, additional truncation will need to be introduced before passing to the second moment,
which we do below.

On the other hand, with more assumptions on the density p, it is possible to control
∫
Rd dy

p
ph
(y)

directly. For example, if p is not only log-smooth but also strongly log-concave, then by analyzing
the heat equation satisfied by ph, one can show that

∫
Rd dy

p
ph
(y) = O(h−d/2).

Proof [Proof of Lemma 9] Let B ⊂ Rd. Note that for any distributions P and Q with densities p
and q on Rd,

H2(p, q) =

∫
Rd

(
√
p−√

q)2 ≤
∫
B
(
√
p−√

q)2+P (Bc)+Q(Bc) ≤
∫
B

(p− q)2

q
+P (Bc)+Q(Bc).

Thus, applying Eρ̂h = ρ∗h, we obtain

EH2(ρ̂h, ρ
∗
h) ≤

∫
B
dy

E[(ρ∗h(y)− ρ̂h(y))
2]

ρ∗h(y)
+ 2

∫
Bc

ρ∗h. (30)

Recall that φh(x) = 1
(2πh)d/2

e−∥x∥2/(2h) is the density of N (0, hId). Let Xi be i.i.d. as ρ∗. Note
that for each y,

ρ̂h(y) =
1

n

n∑
i=1

φh(y −Xi).

Thus E[ρ̂h(y)] = ρ∗h(y) and Var[ρ̂h(y)] =
1
nVar(φh(y−X1)). Note that φh(x)

2 = (4πh)−d/2φh/2(x).
So

E[φh(y −X1))
2] = (4πh)−d/2E[φh/2(y −X1)] = (4πh)−d/2ρ∗h/2(y)
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and Var(φh(y −X1)) = (4πh)−d/2ρ∗h/2(y)− (ρ∗h(y))
2.

Combining the above with (30), we get

EH2(ρ̂h, ρ
∗
h) ≤

(4πh)−d/2

n

∫
B
dy

ρ∗h/2(y)

ρ∗h(y)
+ 2

∫
Bc

ρ∗h. (31)

Next, choose B = µ + [−a, a]d where µ is the mean of ρ∗, a =
√
C0 log n for some C0 to be

specified. Since ρ∗ is α-subgaussian, ρh is
√
α2 + h-subgaussian with the same mean µ. Assuming

h ≤ α2, by union bound ∫
Bc

ρ∗h ≤ 2d exp

(
− a2

4α2

)
≤ 2d

n
(32)

upon choosing C0 = 4α2 and hence a = 2α
√
log n.

For the first term in (31), since h < 1
L , Lemma 14 in Appendix A.4 below implies that the score

of ρ∗h/2 is 2L-Lipschitz. Applying Lemma 10 to p = ρ∗h/2 and t = h/2 yields

∫
B
dy

ρ∗h/2(y)

ρ∗h(y)
≤ vol(B) exp(dLh/4) = (16α2 log n)d/2 exp(dLh/4). (33)

Combining everything we get

EH2(ρ̂h, ρ
∗
h) ≤

1

n

(
Cα2 log n

h

)d/2

+
4d

n
.

A.2. Bounding the empirical Bayes regret

Lemma 12 Assume ρ∗ is α-subgaussian and has an L-Lipschitz score s∗. Let 0 < ε ≤ (2πh)−d/2e−1/2,
and assume

α2 log n

n2/d
≲ h ≤ 1

4L
.

Then

E∥ŝεh − s∗εh ∥2ρ∗h ≤
Cd (Ch,d,α + d)

nh

(log (2πh)−d/2

ε

)3

+ log
n

Ch,d,α + d

 .

where C > 0 is a universal constant and Ch,d,α =
(
α2 logn

h

)d/2
.

Proof First, by Lemma 8, we relate the quantity ∥ŝεh − s∗εh ∥2ρ∗h in terms of the squared Hellinger
distance between ρ̂h and ρ∗h conditional on the samples:

∥ŝεh − s∗εh ∥2ρ∗h ≤ Cd

h
max


(
log

(2πh)−d/2

ε

)3

, | logH(ρ∗h, ρ̂h)|

H2(ρ∗h, ρ̂h)
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where C > 0 is a universal constant. Note that | logH| ≤ log 2
H since 0 ≤ H ≤

√
2. Taking

expectation over Xn, and using the simple bound max(a, b) ≤ a+ b for a, b ≥ 0, we have:

E∥ŝεh−s∗εh ∥2ρ∗h ≤ Cd

h

(log (2πh)−d/2

ε

)3

EH2(ρ∗h, ρ̂h) +
1

2
E
[
H2(ρ∗h, ρ̂h) log

4

H2(ρ∗h, ρ̂h)

] .

(34)

By Lemma 9, we have that: If h ≤ 1
4L

EH2(ρ∗h, ρ̂h) ≤
1

n

(
Cα2 log n

h

)d/2

+
4d

n
. (35)

On the other hand, since x 7→ x log 4
x is concave, by Jensen’s inequality

1

2
E
[
H2(ρ∗h, ρ̂h) log

4

H2(ρ∗h, ρ̂h)

]
≤ 1

2
EH2(ρ∗h, ρ̂h) log

4

EH2(ρ∗h, ρ̂h)
.

Recall that x 7→ x log 4
x is increasing in (0, 4/e). Let

Ch,d,α ≜

(
α2 log n

h

)d/2

.

If Ch,d,α

n ≤ 4/e, which can be satisfied when h ≳ α2n−2/d log n, then

1

2
EH2(ρ∗h, ρ̂h) log

4

EH2(ρ∗h, ρ̂h)
≤

Ch,d,α + d

2n
log

n

Ch,d,α + d
. (36)

Therefore, combining (34), (35) and (36), we obtain the desired result

E∥ŝεh − s∗εh ∥2ρ∗h ≤
Cd (Ch,d,α + d)

nh

(log (2πh)−d/2

ε

)3

+ log
n

Ch,d,α + d

 .

A.3. Bounding the regularization error

The following result bounds the error introduced by the regularization parameter ε. Similar results
appeared before in (Jiang and Zhang, 2009, Theorem 3) for 1 dimension and (Saha and Guntuboy-
ina, 2020, Lemma 4.3) for d dimensions, the latter of which is not convenient to apply. Instead, we
provide a self-contained improved version following the simple approach in (Shen and Wu, 2022,
Sec. 5.2).

Lemma 13 Let ρ∗ be α-subgaussian. Assume that 0 ≤ ε ≤ (2πh)−d/2/e and h ≤ α2. Then

∥s∗εh − s∗h∥2ρ∗h ≤ 2ε

h
(64α2 log n)d/2 log

1

ε(2πh)d/2
+

2d3/2

hn2
.
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Proof We first control the size of the score s∗h. Let U ∼ ρ∗ and X = U +
√
hZ ∼ ρ∗h, where

Z ∼ N (0, Id). Recall Tweedie’s formula (10), namely

s∗h(x) = ∇ log ρ∗h(x) =
1

h
(E[U |X = x]− x). (37)

Following Jiang and Zhang (2009); Saha and Guntuboyina (2020), applying Jensen’s inequality
yields

∥s∗h(x)∥2 ≤
1

h2
E[∥X − U∥2|X = x]

≤ 2

h
logE[exp(∥X − U∥2/(2h))|X = x] =

2

h
log

1

(2πh)d/2ρ∗h(x)
(38)

where the last equality is because the conditional density of U given X = x is
exp(−∥x−u∥2/(2h))ρ∗(u)

(2πh)d/2ρ∗h(x)
.

Next, as in the proof Lemma 9, set B = µ + [−a, a]d, where µ = E[U ] = E[X] and a =√
64α2 log n. By the same subgaussian tail bound as in (32), we have

P [X /∈ B] ≤ 2d

n4
. (39)

Now we are ready to bound ∥s∗εh − s∗h∥2ρ∗h : Recall from (13) that s∗εh =
∇ρ∗h

max(ρ∗h,ε)
. Then

∥s∗εh − s∗h∥2ρ∗h ≤E[∥s∗h(X)∥21 {ρ∗h(X) ≤ ε}]

≤E[∥s∗h(X)∥21 {ρ∗h(X) ≤ ε}1 {X ∈ B}]︸ ︷︷ ︸
(I)

+E[∥s∗h(X)∥21 {X /∈ B}]︸ ︷︷ ︸
(II)

.

For the first term, applying (38) we get

(I) =
∫
B
dx ρ∗h(x)∥s∗h(x)∥21 {ρ∗h(x) ≤ ε}

≤2

h

∫
B
dx ρ∗h(x) log

1

(2πh)d/2ρ∗h(x)
1 {ρ∗h(x) ≤ ε}

≤(2a)d
2ε

h
log

1

ε(2πh)d/2

where the last inequality follows form the fact that t log 1
t is increasing on t ∈ (0, 1/e) and the

assumption that ε(2πh)d/2 < 1/e.
For the second term, applying (37)

(II) =
1

h
E[∥E[Z|X]∥2 1 {X /∈ B}]

≤1

h

√
E[∥Z∥4]P [X /∈ B]

≤2d3/2

hn2
.

where the first inequality applies Jensen’s inequality and Cauchy-Schwarz inequality, and the second
applies Jensen’s inequality, E[∥Z∥4] = 2d+ d2 and (39).
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A.4. Lipschitzness of the Gaussian mixture score

Lemma 14 Assume ρ0 is L-log-smooth. For t ∈ (0, 1
2L ], ρt = ρ0 ∗ N (0, tId) is 2L-log-smooth.

Proof For X0 ∼ ρ0, let Xt = X0 +
√
tZ where Z ∼ N (0, Id) is independent, so Xt ∼ ρt. For

t > 0, let ρ0t denote the joint distribution of (X0, Xt). Let ρ0|t(· | y) denote the conditional density
of X0 given Xt = y. Similarly, let ρt|0(· | x) denote the conditional density of Xt given X0 = x,
and note ρt|0(· | x) = N (x, t Id) by definition.

By Tweedie’s formula (10),

st(y) = ∇ log ρt(y) =
Eρ0|t [X | y]− y

t
. (40)

We then derive ∇2 log ρt(y): Noting that

∇y ρ0|t(x | y) = ∇
ρt|0(y | x)ρ0(x)

ρt(y)

=
∇ ρt|0(y | x)ρ0(x)

ρt(y)
−

ρt|0(y | x)ρ0(x)∇ρt(y)

ρ2t (y)

= ρ0|t(x | y)x− y

t
− ρ0|t(x | y)∇ log ρt(y),

we obtain the gradient of the posterior mean

∇Eρ0|t [X | y] =
∫

∇ρ0|t(x | y)x⊤dx

= Eρ0|t

[
(X − y)X⊤

t
−∇ log ρt(y)X

⊤ | y
]

(40)
=

Eρ0|t [XX⊤ | y]
t

−
Eρ0|t [X | y]Eρ0|t [X | y]⊤

t

=
Covρ0|t [X | y]

t
.

It follows that

−∇2 log ρt(y) =
Id
t
−

Covρ0|t [X | y]
t2

. (41)

We now bound the covariance term. Suppose ρ0 ∝ e−f . Recall that ρ0|t(x | y) ∝ e−f(x)− 1
2t
∥y−x∥2 ,

thus

−∇2
x log ρ0|t(x | y) = ∇2

x

(
f(x) +

1

2t
∥y − x∥2

)
= ∇2f(x) +

1

t
Id,

(note the derivative above is with respect to x). Since ∇2f(x) ⪯ LId, we have

−∇2
x log ρ0|t(x | y) ⪯

(
L+

1

t

)
Id.

This implies (see Lemma 15 below): For any y ∈ Rd

Covρ0|t [X | y] ⪰ 1

L+ 1/t
Id.
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Therefore, we obtain an upper bound of the Hessian matrix (41):

−∇2 log ρt(y) ⪯
(
1

t
− 1

t(tL+ 1)

)
Id =

L

tL+ 1
Id. (42)

To get a lower bound, we note that since ∇2f(x) ⪰ −LId for any x ∈ Rd,

−∇2
x log ρ0|t(x | y) ⪰ (−L+

1

t
)Id ⪰ 0.

So for t < 1
L , ρ0|t(· | y) is (1t − L)-strongly log-concave, which implies

Covρ0|t [X | y] ⪯ 1

1/t− L
Id.

Therefore, for any y ∈ Rd

−∇2 log ρt(y) ⪰
(
1

t
− 1

t(1− tL)

)
Id = − L

1− tL
Id. (43)

Combining (42) and (43) gives

− L

1− tL
Id ⪯ −∇2 log ρt(y) ⪯

L

1 + tL
Id.

For 0 ≤ t < 1
L , L

1−tL ≥ L
1+tL . Therefore, ρt is L

1−tL -log-smooth. If t ≤ 1
2L , then we have

L
1−tL ≤ 2L, so we conclude ρt is 2L-log-smooth for 0 ≤ t ≤ 1

2L .

Lemma 15 (Brascamp and Lieb (1976)) Suppose a density ρ on Rd satisfies −∇2 log ρ(x) ⪯
LId for all x ∈ Rd. Then

Covρ(X) ⪰ 1

L
Id.

This is a classical result; here we provide an alternate proof based on Fisher information calculation.
Proof Let ν = N (m,C) be a Gaussian with the same mean m = Eρ[X] and covariance C =
Covρ(X) as ρ. Note −∇ log ν(x) = C−1(x−m). We can compute the relative Fisher information
matrix of ρ with respect to ν to be:

J̃ν(ρ) := Eρ

[(
∇ log

ρ

ν

)(
∇ log

ρ

ν

)⊤]
= Eρ

[
(∇ log ρ) (∇ log ρ)⊤

]
+ Eρ

[
(∇ log ρ)

(
C−1(x−m)

)⊤]
+ Eρ

[(
C−1(x−m)

)
(∇ log ρ)⊤

]
+ Eρ

[(
C−1(x−m)

) (
C−1(x−m)

)⊤]
= Eρ[−∇2 log ρ]− C−1 − C−1 + C−1CC−1

⪯ LId − C−1

where the third equality above holds by integration by parts, and the last inequality holds by L-log-
smoothness of ρ. Since J̃ν(ρ) ⪰ 0, this implies C−1 ⪯ LId or equivalently C ⪰ 1

LId, as desired.
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A.5. Bounding the score error of the Gaussian smoothing

Lemma 16 Assume that s∗ is (L, β)-Hölder continuous for 0 < β ≤ 1: For any x1, x2 ∈ Rd

∥s∗(x1)− s∗(x2)∥ ≤ L∥x1 − x2∥β.

Then
∥s∗h − s∗∥2ρ∗h ≤ L2(hd)β.

Proof For X ∼ ρ∗, let Y = X +
√
hZ where Z ∼ N (0, Id). Then Y ∼ ρ∗h and ρ∗h(y) =

Eρ∗(y −
√
hZ). Moreover,

s∗h(y) = ∇ logEρ∗(y −
√
hZ) =

E
[
s∗(y −

√
hZ)ρ∗(y −

√
hZ)

]
Eρ∗(y −

√
hZ)

= E [s∗(X) | Y = y] . (44)

Therefore, for any y ∈ Rd

∥s∗h(y)− s∗(y)∥2 ≤ E
[
∥s∗(X)− s∗(y)∥2 | Y = y

]
≤ L2E

[
∥X − y∥2β | Y = y

]
.

So ∥s∗h − s∗∥2ρ∗h ≤ L2hβE[∥Z∥2β] ≤ L2(hd)β .

Remark 17 A natural question is whether the score smoothing error can be improved if the true
score has higher smoothness than Lipschitz (e.g. β-Hölder for β > 1, which is well-studied in
nonparametric statistics (Tsybakov, 2009).) However, Lemma 16 as stated cannot be improved. For
an example, consider ρ∗ = N (0, Id) whose score is s∗(x) = −x. Then ∥s∗h − s∗∥2ρ∗h = Θ(h).

Appendix B. Extensions to Hölder continuous scores

In this appendix we prove Theorem 2 on the estimation of β-Hölder continuous score functions
with 0 < β ≤ 1. The proof follows the same program of proving Theorem 1, except that the key
Lemma 10 bounding the likelihood ratio of Gaussian convolutions, which relies on Lipschitzness
of the score function, needs to be extended. More specifically, Lemma 14, which shows that the
score function remains Lipschitz after convolving with sufficiently small Gaussian noise, applies the
strong log-concavity of the posterior and the Brascamp-Lieb inequality. While it may be difficult to
extend Lemma 14 to less smooth scores, it turns out that we can circumvent the score smoothness
of Gaussian convolution in extending Lemma 10. The following result bounds the score difference
between the smoothed and the original distributions by applying the score bound in Polyanskiy and
Wu (2016).

Lemma 18 Let s denote the score of p. Suppose s is (L, β)-Hölder continuous for some 0 < β ≤ 1.
Let sh be the score of ph = p ∗ N (0, hId). Then for any y ∈ Rd and h > 0,

∥sh(y)− s(y)∥ ≤ 4L(∥y − µ∥+A)β

where A = EX∼p[∥X − µ∥] and µ = EX∼p[X].
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Proof Let Y = X +
√
hZ, where Z ∼ N(0, Id) and X ∼ p are independent. Recall from (44) that

sh(y) = E[s(X) |Y = y] = E[s(y −
√
hZ) |Y = y]. Then

∥sh(y)− s(y)∥ ≤E[∥s(y −
√
hZ))− s(y)∥ |Y = y]

≤LE[∥
√
hZ∥β |Y = y]

=LE[∥y −X∥β |Y = y]

(a)

≤ L (E[∥y −X∥ |Y = y])β

=L (E[∥(y − µ)− (X − µ)∥ |Y − µ = y − µ])β

(b)

≤ L(3∥y − µ∥+ 4E[∥X − µ∥])β

where (a) is by Jensen’s inequality; (b) applies Proposition 2 (in particular, Eq. (16)) in Polyanskiy
and Wu (2016) to the random variable Y − µ = (X − µ) +

√
hZ.

The following lemma is a counterpart for Lemma 10:

Lemma 19 Let s denote the score of p. Suppose s is (L, β)-Hölder continuous for some 0 < β ≤ 1.
Then for all t > 0,

log
p

pt
(y) ≤ L (td)(1+β)/2. (45)

Furthermore, for all a > 0, t > 0, we have

log
pa
pa+t

(y) ≤ 5L(td)(1+β)/2 + 4L
√
td(∥y − µ∥β +Aβ) (46)

where A = EX∼p[∥X − µ∥] and µ = EX∼p[X].

Later in the proof of Theorem 2, we will apply (45) with t = h (for change of measure, so that
the likelihood ratio is bounded) or (46) with a = t = h/2 (for bounding the smoothed empirical
distribution, in which case ∥y − µ∥ ≲

√
log n and h = 1/poly(n) so it is also bounded).

Proof Following the proof of Lemma 10, we have

log
pa
pa+t

(y) = log pa(y)− logE[pa(y −
√
tZ)]

≤ E
∫ 0

−
√
t
⟨−Z, sa(y − uZ)− s(y)⟩du

= E
∫ 0

−
√
t
⟨−Z, sa(y − uZ)− s(y − uZ)⟩du+ E

∫ 0

−
√
t
⟨−Z, s(y − uZ)− s(y)⟩du.

Using the (L, β)-Hölder continuity of s and Jensen’s inequality, the second term is upper
bounded by∫ 0

−
√
t
LE[∥Z∥1+β] |u|βdu =

L

1 + β
E[∥Z∥1+β] t(1+β)/2 ≤ L

1 + β
d(1+β)/2t(1+β)/2.
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(This proves (45) for a = 0.) Applying Lemma 18, the first term is bounded by:

4L

∫ 0

−
√
t
E[∥Z∥(∥y − µ− uZ∥+A)β]du ≤ 4L

√
tE[∥Z∥(∥y − µ∥+

√
t∥Z∥+A)β]

≤ 4L
√
t
(
(∥y − µ∥β +Aβ)E[∥Z∥] + tβ/2E[∥Z∥1+β]

)
≤ 4L

√
td(∥y − µ∥β +Aβ) + 4Lt(1+β)/2d(1+β)/2.

Combining the two terms above yields the bound in (46).

With the above lemma, we extend Lemma 9 on the smoothed empirical distribution to Hölder-
continuous scores.

Lemma 20 If ρ∗ is α-subgaussian and s∗ is (L, β)-Hölder continuous for some 0 < β ≤ 1, then
for h ≤ 1

4L and h ≤ α2,

EH2(ρ̂h, ρ
∗
h) ≤

1

n

(
2α2 log n

h

)d/2

exp
(
C1

√
h+ C2

√
h(log n)β/2

)
+

4d

n
(47)

where C1 = 9Lαβd
1+β
2 and C2 = 8Lαβd

1+β
2 .

Proof The proof of Lemma 20 follows that of Lemma 9, except that at the step (33) we apply the
bound (46) from Lemma 19 with a = t = h/2. We bound ∥y − µ∥ ≤ 2α

√
d log n for all y in the

box B = µ+[−2α
√
log n, 2α

√
log n]d where µ = EX∼ρ∗ [X], we bound A = EX∼ρ∗ [∥X−µ∥] ≤√

EX∼ρ∗ [∥X − µ∥2] ≤
√
dα since ρ∗ is α-subgaussian, and h

1+β
2 ≤

√
hαβ since h ≤ α2.

We are now ready to complete the proof of Theorem 2:
Proof Following the proof of Theorem 1, we perform a change of measure as in (14), by applying
the bound (45) from Lemma 19 to get

Eℓ(ŝεh, ρ∗) = E∥ŝεh − s∗∥2ρ∗ ≤ exp
(
L(hd)(1+β)/2

)
E∥ŝεh − s∗∥2ρ∗h . (48)

Since we will choose h = 1/poly(n), the exponential factor in the right-hand side above is bounded
by a constant. Following (15), E∥ŝεh − s∗∥2ρ∗h can be decomposed into the same three terms. For the
second term, the bound (17) from Lemma 13 still applies as its proof only uses subgaussianity of
ρ∗. We can bound the third term by Lemma 16 as follows:

∥s∗h − s∗∥2ρ∗h ≤ L2(hd)β. (49)

To bound the first term, we mimic the proof of Lemma 12, which involves two crucial steps: The
first step applies Lemma 8, which still holds since it does not rely on any assumption on the score
function. The second step involves deriving a Hellinger rate between the Gaussian-smoothed em-
pirical distribution to the population (analogous to Lemma 9), which can be extended as Lemma 20.
Since we will choose h = 1/poly(n), the bound in Lemma 20 can be further bounded by

EH2(ρ̂h, ρ
∗
h) ≤

C2

n

(
α2 log n

h

)d/2

+
4d

n
, (50)
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where C2 is a universal constant. Then the rest of the proof for bounding the first term follows that
of Lemma 12 and the same bound holds with a different constant:

E∥ŝεh − s∗εh ∥2ρ∗h ≤
C3d (Ch,d,α + d)

nh

(log (2πh)−d/2

ε

)3

+ log
n

Ch,d,α + d


where C3 is a universal constant and Ch,d,α =

(
α2 logn

h

)d/2
.

Similar to the proof of Theorem 1, by choosing ε = n−2,

E∥ŝεh − s∗∥2ρ∗h ≤ C3d
4(α2 log n)d/2

nhd/2+1

(
log

n

h

)3
+ L2(hd)β.

Optimizing the bound by choosing h =
(
d4−β(α2 logn)d/2

L2n

) 2
d+2β+2 and combining with the change

of measure (48), we obtain the desired rate:

Eℓ(ŝεh, ρ∗) ≤ CdβL2α2β(log n)
dβ

d+2β+2n
− 2β

d+2β+2

for some universal constant C > 0.

Appendix C. Proof of Lower Bound (Theorem 3)

Proof [Proof of Theorem 3.] The proof of Theorem 3 follows that of standard minimax lower
bounds for nonparametric density estimation, with a few adjustments made for scores. By scaling,
we can assume without loss of generality that α is some constant. Fix a reference density f0 = φ,
the standard normal density in d dimensions. We create a collection of perturbations to f0 by
modifying its values on the unit cube D = [0, 1]d. Fix some ϵ > 0 to be specified later. Let m = 1

ϵ
and assume m is an integer. Fix some kernel w : R → R satisfying the following conditions:

• w is supported on [0, 1], with
∫ 1
0 w(x)dx = 0.

• w is twice differentiable, with max{∥w∥∞, ∥w′∥∞, ∥w′′∥∞} ≤ C for some absolute constant
C. As a result, w satisfies the periodic boundary conditions w(0) = w(1) = w′(0) = w′(1) =
0.

(For example, a concrete choice is a sinusoid kernel, such as w(x) = (1−cos(4πx))1 {0 ≤ x < 1/2}+
(cos(4πx) − 1)1

{
1
2 ≤ x ≤ 1

}
.) We then extend w to Rd as follows: for every x = (x1, . . . , xd),

w(x) ≜
∏d

t=1w(xt). Then w is twice differentiable and supported on D, with bounded gradient
and Hessian, satisfying the periodic boundary conditions w(x) = 0 and ∇w(x) = 0 for all x ∈ ∂D.

For every i = 0, . . . ,m− 1, let xi = i
m . For a multi-index i = (i1, . . . , id) ∈ I ≜ {0, . . . ,m−

1}d, let xi = (xi1 , . . . , xid) and Di = xi + ϵD. Then D = ∪i∈IDi. For each b = (bi : i ∈ I) ∈
B ≜ {0, 1}I , let

fb(x) = f0(x) + ϵ2
∑
i∈I

biw

(
x− xi

ϵ

)
.

Note that provided that ϵ is at most a constant,5 each fb satisfies the following:

5. Here and below all constants depend on d.
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• fb is a valid density on Rd.

• fb is bounded from above and below by a universal constant on D = [0, 1]d and fb = f0
outside of D. Thus fb is α-subgaussian for some constant α.

• fb is twice differentiable on Rd. Furthermore, ∥∇fb∥ ≜ supx∈Rd ∥∇fb(x)∥∞ and ∥∇2fb∥ ≜
supx∈Rd ∥∇2fb(x)∥∞ are at most a constant.

• The score sb ≜ ∇ log fb =
∇fb
fb

satisfies

sb(x) =


−x x ∈ Dc

∇f0(x)+ϵbi∇w
(

x−xi
ϵ

)
f0(x)+ϵ2biw

(
x−xi

ϵ

) x ∈ Di
(51)

Furthermore, sb is L-Lipschitz on Rd for some constant L. To see this, note that its Jacobian

is Dsb = ∇2fb
fb

− ∇fb∇f⊤
b

f2
b

. Since fb is lower bounded by a constant on D and both ∇fb

and ∇2fb are entrywise upper bounded everywhere, Dsb is bounded on D and hence sb is
L-Lipschitz on either D or Dc. This implies that sb is L-Lipschitz on Rd. (Indeed, for every
x ∈ D and y ∈ Dc, there exists z ∈ ∂D such that ∥x − y∥ = ∥x − z∥ + ∥z − y∥. So
∥sb(x)−sb(y)∥ ≤ ∥sb(x)−sb(z)∥+∥sb(z)−sb(y)∥ ≤ L(∥x−z∥+∥z−y∥) = L∥x−y∥.)

In view of the above properties, we have F = {fb : b ∈ B} ⊂ Pα,L. So

inf
ŝ

sup
f∈Pα,L

Ef∥ŝ− sf∥2L2(Rd,f) ≥ inf
ŝ
sup
b∈B

Efb∥ŝ− sb∥2L2(Rd,fb)

= inf
ŝ
sup
b∈B

Efb∥ŝ− sb∥2L2(D,fb)
+ Efb∥ŝ− sb∥2L2(Dc,fb)

(i)
= inf

ŝ
sup
b∈B

Efb∥ŝ− sb∥2L2(D,fb)

≳ inf
ŝ
sup
b∈B

Efb∥ŝ− sb∥2L2(D). (52)

Here the infimum in (i) is over estimators ŝ(·) = ŝ(·;X1, . . . , Xn) such that ŝ(x) = −x for x ∈ Dc,
∥ŝ− sb∥2L2(D) ≜

∫
D dx∥ŝ(x)− sb(x)∥22 stands for the unweighted squared L2-norm on D, and the

last inequality holds because fb ∈ F is uniformly lower bounded on D.
After these reductions, the proof proceeds by a standard application of Fano’s inequality as

follows.

Separation of scores. For any b, b′ ∈ B,

∥sb − sb′∥2L2(D) =
∑
i∈I

∫
Di

dx∥sb(x)− sb′(x)∥221
{
bi ̸= b′i

}
.
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For each i ∈ I such that bi ̸= b′i, say bi = 1 and b′i = 0, applying (51) yields

∫
Di

dx∥sb(x)− sb′(x)∥22 =
∫
Di

dx

∥∥∥∥∥∇f0(x) + ϵ∇w
(
x−xi
ϵ

)
f0(x) + ϵ2w

(
x−xi
ϵ

) − ∇f0(x)

f0(x)

∥∥∥∥∥
2

2

= ϵd
∫
D
dy

∥∥∥∥∇f0(xi + ϵy) + ϵ∇w(y)

f0(xi + ϵy) + ϵ2w(y)
− ∇f0(xi + ϵy)

f0(xi + ϵy)

∥∥∥∥2
2

= ϵd
∫
D
dy

∥∥∥∥ϵf0(xi + ϵy)∇w(y)− ϵ2w(y)∇f0(xi + ϵy)

f0(xi + ϵy)(f0(xi + ϵy) + ϵ2w(y))

∥∥∥∥2
2

≍ ϵd+2

where the last step applies again the facts that f0 and w are bounded from above and below on D
and ∥∇w∥ is bounded from above on D. So for sufficiently small ϵ, the numerator of the integrand
scales as Θ(ϵ2), whereas the denominator scales as Θ(1). Thus

∥sb − sb′∥2L2(D) ≍ ϵd+2dH(b, b
′)

where dH(b, b
′) =

∑
i∈I 1 {bi ̸= b′i} is the Hamming distance.

Next, by the Gilbert-Varshamov bound (see e.g. (Tsybakov, 2009, Lemma 2.9)), there exists an
exponentially large packing B′ ⊂ B, whose minimum Hamming distance is linear in the dimen-
sion, namely, |B′| ≥ exp(c0m

d) and minb ̸=b∈B′ dH(b, b
′) ≥ c0m

d for some universal constant c0.
Recalling that m = 1/ϵ, we have

min
b ̸=b∈B′

∥sb − sb′∥2L2(D) ≍ ϵ2. (53)

Bounding the KL radius. For every b ∈ B, the Kullback-Leibler divergence satisfies

KL(fb∥f0) ≤ χ2(fb∥f0)

=

∫
Rd

dx
(fb(x)− f0(x))

2

f0(x)

=

∫
D
dx

(fb(x)− f0(x))
2

f0(x)

≍
∫
D
dx(fb(x)− f0(x))

2

≤
∑
i∈I

∫
Di

dx

(
ϵ2w

(
x− xi

ϵ

))2

(i)
≍ ϵ4

where (i) is because

∑
i∈I

∫
Di

w2

(
x− xi

ϵ

)
dx =

∑
i∈I

ϵd
∫
D
w2 (y) dy =

∑
i∈I

ϵd
(∫ 1

0
w2 (yi) dyi

)d

≍ mdϵd = 1.
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Since the observations are i.i.d., we get maxb∈B KL(f⊗n
b ∥f⊗n

0 ) ≲ nϵ4. By choosing ϵ = cn− 1
d+4

for sufficiently small constant c, we get nϵ4 ≤ c|B′|. In view of (53), applying Fano’s inequality
(see e.g. (Tsybakov, 2009, Corollary 2.6)) yields

inf
ŝ

sup
b∈B′

Ef∥ŝ− sb∥2L2(D) ≳ n− 2
d+4 ,

which, together with (52), implies the desired lower bound (20).

Appendix D. Proof of Upper Bound in DDPM (Theorem 5)

Proof [Proof of Theorem 5] By triangle inequality, we can decompose L2(νt) error into two com-
ponents

E∥ŝεt − st∥2νt ≤ 2E∥ŝεt − sεt∥2νt + 2∥sεt − st∥2νt . (54)

The first term can be bounded in the same manner as the proof of Lemma 12, as follows. First, we
bound ∥ŝεt − sεt∥2νt by Lemma 8: If 0 < ε ≤ (2πτ(t))−d/2e−1/2, then

∥ŝεt − sεt∥2νt ≤
Cd

τ(t)
max


(
log

(2πτ(t))−d/2

ε

)3

, |logH(ν̂t, νt)|

H2(ν̂t, νt). (55)

Let X ∼ ν0 and X ′ ∼ ν̂0. Note that

H2(ν̂t, νt) = H2(Law(X +
√
e2t − 1Z),Law(X ′ +

√
e2t − 1Z))

where Z ∼ N (0, Id) and it is independent of X,X ′. Hence by data processing inequality, H2(ν̂t, νt)
is decreasing in t. It follows that

H2(ν̂t, νt) ≤ H2(ν̂η, νη)

where η is the step size in DDPM (24).
Note that since X is α-subgaussian, Law(e−ηX) is (e−ηα)-subgaussian. Then by Lemma 9 we

have: If η ≤ 1
2 log

(
1 + 1

4L−1

)
,

EH2(ν̂t, νt) ≤
1

n

(
α2 log n

e2η − 1

)d/2

+
4d

n
. (56)

Therefore, similar to (34)-(36), we obtain

E∥ŝεt − sεt∥2νt ≤
Cd

τ(t)

Cη,d,α + d

n

[(
log

1

ε(2πτ(t))d/2

)3

+ log
n

Cη,d,α + d

]
(57)

where Cη,d,α =
(
α2 logn
e2η−1

)d/2
, if η ≳ 1

2 log
(
α2 logn
n2/d + 1

)
.
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The second term in (54) can be bounded by Lemma 13: If 0 ≤ ε ≤ (2πτ(t))−d/2/e, then

∥sεt − st∥2νt ≤
2ε

τ(t)
(64e−2tα2 log n)d/2 log

1

ε(2πτ(t))d/2
+

2d3/2

τ(t)n2
. (58)

Combining (57) and (58), and taking ε = n−2, for n = Ω(ed) we have

E∥ŝεt − st∥2νt ≤
Cd

τ(t)

Cη,d,α + d

n

(
log

n

(2πτ(t))d/4

)3

.
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