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Abstract
We study the problem of oracle-efficient hybrid online learning when the features are generated by
an unknown i.i.d. process and the labels are generated adversarially. Assuming access to an (offline)
ERM oracle, we show that there exists a computationally efficient online predictor that achieves a
regret upper bounded by Õ(T

3
4 ) for a finite-VC class, and upper bounded by Õ(T

p+1
p+2 ) for a class

with α fat-shattering dimension α−p. This provides the first known oracle-efficient sublinear regret
bounds for hybrid online learning with an unknown feature generation process. In particular, it
confirms a conjecture of Lazaric and Munos (2012). We then extend our result to the scenario of
shifting distributions with K changes, yielding a regret of order Õ(T

4
5K

1
5 ). Finally, we establish

a regret of Õ((K
2
3 (log |H|) 1

3 +K) · T 4
5 ) for the contextual K-armed bandits with a finite policy

set H, i.i.d. generated contexts from an unknown distribution, and adversarially generated costs.
Keywords: Hybrid online learning, ERM oracle, oracle-efficiency, relaxation, random playout

1. Introduction

We study the problem of hybrid stochastic-adversary online learning, where the features are as-
sumed to be sampled from an unknown stochastic source while the labels are selected adversarially.
Recent advancements Lazaric and Munos (2009); Rakhlin et al. (2012); Haghtalab et al. (2020,
2022a,b); Block et al. (2022); Wu et al. (2023a,b) have demonstrated that such hybrid settings
provide a fundamental paradigm shift beyond the classical worst-case adversarial online setting
to accommodate broader stochastic scenarios, while still preserving the capacity to handle various
adversarial situations and maintain minimal assumptions on the expert class.

We are interested in oracle-efficient regret minimization methods as in Kakade and Kalai
(2005). Here, we assume that the learner has access to an Empirical Risk Minimization (ERM)
optimization oracle which, given any sequence of feature-label pairs, identifies the expert within the
class that achieves the minimal cumulative loss. This effectively reduces the online learning prob-
lem to a batch learning problem, for which algorithms such as gradient descent have been highly
successful in computing ERM optimization, even in complex classes like neural networks. Previous
studies have applied this methodology in various online learning scenarios, including transductive
online learning as in Kakade and Kalai (2005), online learning with smooth adversary samples as
in Rakhlin et al. (2012); Haghtalab et al. (2022a); Block et al. (2022), and contextual bandits with
a known i.i.d. feature generation distribution as in Rakhlin and Sridharan (2016); Syrgkanis et al.
(2016); Banihashem et al. (2023). However, all of these works have assumed some form of access
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to a sampling oracle for the feature generation process. This may not be realistic when feature
generation is costly, such as in medical data, or when the underlying probability law is unknown
a priori. Other studies, like Lazaric and Munos (2009); Wu et al. (2023a,b), do address scenarios
with unknown distributions, but provide only computationally inefficient prediction rules.

This paper initiates the study of oracle-efficient hybrid online learning without assuming any
access to the underlying probability law of the feature generation process. For the clarity of pre-
sentation, we will mainly focus on scenarios of online learning where features are generated by
an unknown i.i.d. process. However, we will also consider extensions to other scenarios, such as
shifting distributions and contextual multi-armed bandits. Our approach also provides a general
methodology that concentrates on the feature efficiency in online learning.

Problem formulation. Let X be an instance (feature) space and H ⊂ [0, 1]X be a function class
mapping X → [0, 1]. We consider the following hybrid online learning scenario. Nature selects
an (unknown) distribution µ over X at the start of the game. At each time step t, Nature inde-
pendently samples xt ∼ µ and selects adversarially a yt ∈ [0, 1], but reveals only xt. A pre-
dictor then (randomly) generates ŷt ∈ [0, 1] based on xt, yt−1, where xt = {x1, · · · ,xt} and
yt−1 = {y1, · · · , yt−1}. Nature then reveals yt, and the predictor incurs a loss ℓ(ŷt, yt), for a prede-
fined loss function ℓ : [0, 1]2 → R+. Here, we assume that the loss ℓ is convex in its first argument
and L-Lipschitz in both arguments, e.g., the absolute loss ℓ(ŷ, y) = |ŷ − y|. A prediction rule is a
function Φ that takes inputs from (X × [0, 1])∗×X and generates a distribution over [0, 1]. For any
prediction rule Φ and function class H, we define the hybrid minimax regret as:

r̃T (H,Φ) = sup
µ

Ex1 sup
y1∈[0,1]

Eŷ1 · · ·ExT sup
yT∈[0,1]

EŷT

[
T∑
t=1

ℓ(ŷt, yt)− inf
h∈H

T∑
t=1

ℓ(h(xt), yt)

]
, (1)

where xt ∼ µ and ŷt ∼ Φ(xt, yt−1) for t ∈ [T ]. Our goal is to find an oracle-efficient prediction
rule Φ that minimizes r̃T (H,Φ).

1.1. Results and Techniques

In this work, we provide the first known oracle-efficient sub-linear regret bounds for the hybrid
online learning with unknown feature generation distributions.

Theorem 1 (Informal) Let H ⊂ [0, 1]X be a class with Rademacher complexity O(T q). Then,
there exists an oracle-efficient predictor with at most O(

√
T log T ) calls to the ERM oracle that

achieves the hybrid minimax regret of order Õ(T
2−q
3−2q ). In particular, for a VC-class, this implies

a regret of Õ(T
3
4 ), and for classes with α-fat shattering dimension α−p, it results in a regret of

Õ(T
max{ 3

4
, p+1
p+2

}
), where Õ hides poly-log factors.

To the best of our knowledge, the regret bounds presented in Theorem 1 are the first known oracle-
efficient sub-linear regrets for hybrid online learning with unknown feature generation distributions
and generic (non-parametric) hypothesis classes. In particular, our Õ(T

3
4 ) bound confirms a conjec-

ture of Lazaric and Munos (2012) regarding the oracle-efficient regret bounds for finite-VC classes
under absolute loss 1. Note that, it was demonstrated by (Block et al., 2022, Theorem 7) that for
known feature generation distributions, an Õ(T

max{ 1
2
, p−1

p
}
) regret bound is achievable for a class

1. They also obtained an O(
√
T log T ) bound using a computationally inefficient covering-based approach.
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with an α-fat shattering dimension of order α−p. However, to the best of our knowledge, such a
chaining-based bound was not known for the unknown distribution case, even in the information-
theoretical sense. The closest comparison is the regret bound obtained in Wu et al. (2023b) that
matches our Õ(T

p+1
p+2 ) bound, but established via an (inefficient) one-step covering approach.

At a high level, our oracle-efficient prediction rule is based on the relaxation and random play-
out techniques, as introduced in Rakhlin et al. (2012). However, a distinguishing feature of our
setup is that we are not able to access the sampling oracle of the underlying feature generating pro-
cess. Our main idea is to employ an epoch-based approach. We partition the time horizon into a
set of carefully designed epochs. At each epoch, we estimate the underlying distribution µ by µ̂
using samples observed in prior epochs. We then use the estimated distribution µ̂ to generate the
hallucinated samples as needed in the relaxation framework for the current epoch. Observe, how-
ever, that the estimation µ̂ can arbitrarily deviate from µ under total variation, as we do not make
any structural assumption on µ, and the adversary knows µ̂ when generating adversary samples.
Therefore, the randomness matching argument, as in Rakhlin et al. (2012); Block et al. (2022), will
not work. To overcome this issue, we introduce a surrogate relaxation based on µ̂ and relate it to
the regret via a novel concept of approx-admissibility, which is further controlled by a novel sym-
metrization argument. The regret will then follow by carefully designing the epochs to balance the
error introduced by the approx-admissibility and the Rademacher complexity of the class restricted
to each epoch.

Tighter bounds for special cases. Going beyond the general result in Theorem 1, we show in
Theorem 23 (Appendix F) that an oracle-efficient Õ(T

max{ 1
2
, p−1

p
}
) regret is achievable for finite

fat-shattering classes of order p if we assume a weaker oblivious adversary. This is tight upto poly-
logarithmic factors. Furthermore, for the class H of all Lipschitz functions [0, 1]d → [0, 1] we
establish in Theorem 15 the (optimal) regret Õ(Tmax{ 1

2
, d−1

d
}) against the adaptive adversary.

Shifting distributions. Our next result drops the i.i.d. assumption and allows distributions to
change over time. We assume that the number of changes is upper bounded by K and that the
possible distributions and change points are completely unconstrained and unknown a priori. We
show that the oracle-efficient regret is upper bounded by Õ(T

4
5K

1
5 ) for a finite VC class. Note that

an O(
√
KT log T ) bound was demonstrated by Wu et al. (2023a). However, their algorithm relies

on constructing an exponentially large covering, thus being computationally inefficient.

Contextual K-arm Bandits. Finally, we establish an O((K
2
3 (log |H|)

1
3 + K

√
logK) · T

4
5 )

oracle-efficient regret bound for the contextual K-armed bandits with a finite policy set H, where
the contexts are generated by an unknown i.i.d. process and the costs are selected adversarially. The
closest comparison to this result is the O(T

2
3 (K log |H|)

1
3 ) bound established in Banihashem et al.

(2023), only for the known i.i.d. distribution case. Notably, our result answers positively a question
of Banihashem et al. (2023) regarding relaxing the sampling access to the context distribution.

2. Notation and Preliminaries

Oracle-Efficient Predictors. We adopt the following mixed-ERM oracle from Block et al. (2022).
Let (x1, y1), · · · , (xm, ym) ∈ X × [0, 1], C ∈ R+, ϵn ∈ {−1,+1}n, and x̃n ∈ X n. The mixed
ERM oracle is the task of finding infh∈H

{∑m
i=1 ℓ(h(xi), yi) + C

∑n
j=1 ϵjh(x̃j)

}
. Note that the

3
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unintuitive parts ϵh(x̃) can be interpreted as an absolute loss since ϵh(x̃) = |h(x̃) − (1−ϵ)
2 | − 1−ϵ

2
for ϵ ∈ {+1,−1}. Therefore, the mixed ERM oracle is reduced to a regular (weighted) ERM oracle
if ℓ is the absolute loss. Moreover, the weight C can be understood as repeating the same sample C
times (rounding to an integer if necessary). We say a predictor Φ is oracle-efficient if the running
time of computing ŷt ∼ Φ(xt, yt−1) is polynomial with respect to t by accessing a mixed ERM
oracle (with each oracle call treated as unit time) for any xt, yt−1.

Adaptive v.s. Oblivious. Note that our formulation in (1) assumes that the generation of yts is
adaptive, since the selection of yt at each time step depends on all prior information xt, yt−1, and
ŷt−1. For comparison, we also introduce a weaker notion of adversary, namely, the oblivious adver-
sary, which selects the yts based only on the current instance xt (see Theorem 23 in Appendix F).
It turns out that the adaptive nature of the adversary constitutes the main obstacle in our analysis.

Hybrid Contextual Bandits. We now formulate the contextual K-arm bandits within our frame-
work. Let DK be the set of all probability distributions over [K]. A policy set H is a class of
functions X → [K]. We consider the following bandit setup: Nature selects some µ at the start
of the game. At each time step t, Nature samples xt ∼ µ and selects adversarially a cost vector
ct ∈ [0, 1]K , but reveals only xt. A predictor then selects a distribution qt ∈ DK based on the
history observed thus far and samples ŷt ∼ qt. Nature reveals only ct[ŷt] which is also the predictor
incurred loss. The goal is to find an oracle-efficient prediction rule Φ : (X × [0, 1])∗×X → DK that

minimizes: r̃banditT (H,Φ) = sup
µ

Ex1 sup
c1

· · ·ExT sup
cT

EŷT

[
T∑
t=1

⟨qt, ct⟩ − inf
h∈H

T∑
t=1

ct[h(xt)]

]
, where

qt = Φ(xt, c1[ŷ1], · · · , ct−1[ŷt−1]). Here, the ERM oracle is to find infh∈H
∑m

i=1 ĉi[h(xi)] for
any (x1, ĉ1), · · · , (xm, ĉm) ∈ X × RK , as Rakhlin and Sridharan (2016).

3. Oracle-Efficient Regret Bounds for Online Learning

In this section, we focus on bounding the hybrid minimax regret for online learning as in (1) with a
generic hypothesis class H, using oracle-efficient predictors by accessing to an mixed ERM oracle.
We first recall the following standard notion of Rademacher complexity:

Definition 2 Let H ⊂ [0, 1]X be a function class and T ∈ N+. The Rademacher complexity of H
at horizon T is defined to be RadT (H) = supxT∈XT EϵT

[
suph∈H

∑T
t=1 ϵth(xt)

]
, where ϵt is i.i.d.

sampled from the uniform distribution over {±1}.

We are now ready to state our first main result:

Theorem 3 Let H ⊂ [0, 1]X be a class with RadT (H) ≤ O(T q) for some q ∈ [12 , 1], and let ℓ be a
L-Lipschitz loss that is convex in its first argument. Then there exists an oracle-efficient prediction
rule Φ with at most O(L

√
T log T ) calls to the ERM oracle per round, such that

r̃T (H,Φ) ≤ O
(
L
√

log(LT ) · T
2−q
3−2q

)
.

In particular, for a binary-valued class with finite VC-dimension, we have r̃T (H,Φ) ≤
O(L

√
VC(H) log(LT ) · T

3
4 ), and for a real-valued class H with an α-fat shattering dimension

of order α−p for p > 0 (Alon et al., 1997), we have r̃T (H,Φ) ≤ Õ(LT
max{ 3

4
, p+1
p+2

}
).
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The rest of this section is devoted to establishing Theorem 3. At a high level, we will partition
the time horizon into a set of epochs and make predictions at each epoch using features in prior
epochs as side-information. Our main proof technique is an epoch-based predictor introduced in
Section 3.2, together with a novel approx-admissibility framework for handling prediction with
side-information, as developed in Section 3.1.

3.1. Regret Analysis with Side-Information

We first consider a hypothetical scenario where we assume the predictor has access to some side-
information x0

−N+1 sampled i.i.d. from the same distribution µ. It is crucial to note that this in-
formation is known to the adversarial as well, i.e., the adversary’s strategy could also depend on
x0
−N+1, which turns out to be the main obstacle in our analysis.

Formally, we consider the following learning game proceeds over a horizon of length M : At
the start of the game, Nature selects an unknown distribution µ over X , samples an i.i.d. sample
x0
−N+1 of size N from µ and reveals x0

−N+1 to a predictor; At each time step j ∈ [M ], Nature
samples xj ∼ µ and selects adversarially yj ∈ [0, 1] (depends on xj

−N+1 and ŷt−1) but reveals only
xj ; The predictor then (randomly) generates ŷj ∈ [0, 1] based on xj

−N+1 and yj−1; Nature reveals
yj and the predictor incurs loss ℓ(ŷj , yj), for some predefined convex and L-Lipschitz loss.

Predictor via surrogate relaxation. Let µ̂N be the empirical distribution µ̂N = 1
N

∑N
i=1 δx−N+i ,

where δx is the Dirac measure on x. For any time step j ∈ [M ] and horizon M satisfying M ≤ N/2,
we construct the following randomized prediction rule:

1. Sample (internally) the hallucinated samples x̃j+1, · · · , x̃M from µ̂N without replacement 2

and ϵj+1, · · · , ϵM i.i.d. from the uniform distribution over {−1,+1};

2. Make prediction

ŷj = argmin
ŷ∈[0,1]

sup
y∈[0,1]

ℓ(ŷ, y) + sup
h∈H

2L M∑
i=j+1

ϵih(x̃i)− ℓ(h(xj), y)−
j−1∑
i=1

ℓ(h(xi), yi)

 .

(2)

Note that the main difference from the classical random play-out techniques such as in Rakhlin
et al. (2012); Block et al. (2022) is that the hallucinated samples are generated from µ̂N instead
of µ. Crucially, our sampling is performed without replacement (not i.i.d.), which is essential for
our following analysis (Lemma 9). More generally, one may also replace the estimation µ̂N with
other estimation rules instead of the empirical distribution we used here. This could provide tighter
bounds if the distribution µ is well structured, see Section 3.3. The following lemma shows that the
predictor ŷj can be computed efficiently by accessing to a mixed-ERM oracle.

Lemma 4 The predictor ŷj can be computed upto error ± 1
L
√
M

by making at most

O(L
√
M logM) mixed-ERM oracle calls. Moreover, for binary valued class H with y ∈ {0, 1}

and absolute loss, we need only 2 (regular) ERM orcale calls to compute ŷj exactly.

2. For technical reasons, we assume here that x̃M
j+1 is sampled from µ̂N without replacement. Equivalently, x̃M

j+1 is
sampled uniformly from all (permuted) subseqeunces of x0

−N+1 of length M − j.

5
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Proof Clearly, a naive approach for discretizing both ŷ and y with scale 1
L
√
M

yields an algorithm

with L2M oracle calls. The O(L
√
M logM) bound follows from (Block et al., 2022, Thm 7)

leveraging the convexity on ŷ. The second part follows from the relation ϵh(x̃) = |h(x̃)− (1−ϵ)
2 | −

1−ϵ
2 for ϵ ∈ {+1,−1} and the second assertion of (Block et al., 2022, Thm 7).

Analysis of the regret. Denote by Φ the prediction rule derived from (2). We consider the fol-
lowing analogous hybrid minimax regret as in (1) with the additional side-information:

r̃sideM,N (H,Φ) = sup
µ

Ex0
−N+1

Ex1 sup
y1

Eŷ1 · · ·ExM sup
yM

EŷM

 M∑
j=1

ℓ(ŷj , yj)− inf
h∈H

M∑
j=1

ℓ(h(xj), yj)

 ,

(3)
where the randomness of ŷjs is over the x̃’s and ϵ’s as in (2), while xjs are sampled i.i.d. from µ.

To proceed, we first introduce the following key concept. Let (x1, y1), · · · , (xM , yM ) ∈ X ×
[0, 1] be any realization of the feature-label pairs. We write Lh

j =
∑j

i=1 ℓ(h(xi), yi) to simplify our
discussion. The surrogate relaxation is defined as 3

Rj = Ex̃,ϵ

sup
h∈H

2L

M∑
i=j+1

ϵih(x̃i)− Lh
j

 , (4)

where x̃is and ϵis are generated the same way as in (2). We also define the following variation that
replaces the single x̃j+1 with a sample x ∼ µ:

R̃j = Ex∼µEx̃,ϵ

sup
h∈H

2Lϵj+1h(x) + 2L

M∑
i=j+2

ϵih(x̃i)− Lh
j

 . (5)

Note that the main technique for proving the relaxation based regret bounds, such
as Rakhlin et al. (2012), is through the concept of admissibility, which essentially asserts that
Exj supyj Eϵ,x̃ [ℓ(ŷj , yj) +Rj ] ≤ Rj−1. However, a major technical step for establishing such an
result is based on the so-called randomness matching argument by leveraging the fact that the hallu-
cinated samples used to define the relaxation are the same as the actual feature generating process.
This, unfortunately, is not true in our case since the empirical distribution µ̂N can deviate arbitrarily
from µ under total variation, regardless of how large the sample size N is. We instead establish the
following approx-admissibility of our surrogate relaxation, with the proof deferred to Appendix A.

Lemma 5 (Approx-Admissibility) Let ŷj be as in (2), then for all j ∈ [M ] we have:

Exj sup
yj

Eϵ,x̃ [ℓ(ŷj , yj) +Rj ] ≤ R̃j−1. (6)

We are now ready to state our first main technical lemma of this section, which follows from
Lemma 5 by a ”backward tracing” argument. The detailed proof is deferred to Appendix B.

3. Throughout the paper, we use the convention Ex̃,ϵ ≡ Ex̃M
j+1,ϵ

M
j+1

to simplify notation.

6
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Lemma 6 (Regret Bound via Approx-Admissibility) Let Φ be the predictor as in (2). Then for
any class H ⊂ [0, 1]X with a convex and L-Lipschitz loss ℓ, we have

r̃sideM,N (H,Φ) ≤ Ex0
−N+1

R̃0 +
M−1∑
j=1

Exj sup
yj

(R̃j −Rj)

 , (7)

where xM
−N+1 are sampled i.i.d. from µ and Rj , R̃j are defined as in (4) and (5).

Remark 7 Note that the decomposition presented in Lemma 6 holds whenever the approx-
admissibility condition of Lemma 5 is satisfied. We believe this could be applicable to a broader set
of problems and is of independent interest.

Bounding the relaxations. By Lemma 6, we know that the regret r̃sideM,N (H,Φ) can be upper
bounded by R̃0 and the discrepancies between Rj and R̃j . Clearly, by the definition of R̃j , we have
R̃0 ≤ 2LRadM (H), where RadM (H) is the Rademacher complexity of H as in Definition 2. To
bound the discrepancies, for any j ∈ [M − 1], xj , x̃M

j+2 ∈ X ∗, ϵMj+1 ∈ {±1}∗ and yj ∈ [0, 1]j , we
define the following function:

fxj ,x̃M
j+2,ϵ

M
j+1,y

j (x) = sup
h∈H

2Lϵj+1h(x) + 2L
M∑

i=j+2

ϵih(x̃i)− Lh
j

 . (8)

The following fact is a consequence of our definitions.

Fact 1 We have Rj = Ex̃,ϵ

[
fxj ,x̃M

j+2,ϵ
M
j+1,y

j (x̃j+1)
]

and R̃j = Ex∼µEx̃,ϵ

[
fxj ,x̃M

j+2,ϵ
M
j+1,y

j (x)
]
.

Let zj = (xj , x̃M
j+2, ϵ

M
j+1). We now observe the following key properties of the functions

fzj ,yj (x), which demonstrates that fzj ,yj (x) has sensitivity upper bounded by 4L and is Lipschitz
on yj . We refer to Appendix D for the detailed proof.

Proposition 8 For any zj and yj , we have supx,x′ |fzj ,yj (x)− fzj ,yj (x
′)| ≤ 4L. Moreover, for all

zj , x and yj , y′j ∈ [0, 1]j , we have |fzj ,yj (x)− fzj ,y′j (x)| ≤ jL||yj − y′j ||∞.

Note that Proposition 8 and Fact 1 immediately imply that R̃j − Rj ≤ 4L||µ − µ̂N ||TV 4.
Unfortunately, we are unable to bound the total variation distance ||µ − µ̂N ||TV due to the lack
of any structure we impose on µ. We instead establish the following key technical result, which
bounds the discrepancies via a Rademacher sum of the functions fzj ,yj . This result constitutes the
main technical ingredient in our following analysis.

Lemma 9 For all j ∈ [M − 1], M ≤ N/2 and B = N −M + j + 1, we find

Ex0
−N+1

Exj sup
yj

(R̃j −Rj) ≤ sup
x−N+B
−N+1 ,x′B ,zj

Eϵ′B

[
sup
yj

1

B

B∑
i=1

ϵ′i(fzj ,yj (x
′
i)− fzj ,yj (x−N+i))

]
,

(9)
where x−N+B

−N+1 ,x
′B, zj run over all possible values and ϵ′B is distributed uniformly over {±1}B .

4. Using the fact that Ex∼µ[f(x)]− Ex∼ν [f(x)] ≤ supx,x′ |f(x)− f(x′)| · ||µ− ν||TV.

7
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Proof [Sketch] We highlight only the main idea here and refer to Appendix C for the complete
proof. By Fact 1, we can upper bound the discrepancies by Ex0

−N+1
Ezj supyj [Ex∼µ[fzj ,yj (x)] −

Ex̃j+1 [fzj ,yj (x̃j+1)]], where zj = (xj , x̃M
j+2, ϵ

M
j+1). Note that x̃M

j+1 is sampled uniformly from
x0
−N+1 without replacement as in (2). Therefore, the randomness of x̃M

j+1 can be described as fol-
lows: we first sample x̃M

j+2 from x0
−N+1 and then sample x̃j+1 uniformly from the remaining sam-

ples in x0
−N+1. Now, the key observation is that, by symmetries of x0

−N+1 (which are i.i.d.), we
can fix x̃M

j+2 being the last M−j−1 samples in x0
−N+1. Therefore, we have Ex̃j+1 [fzj ,yj (x̃j+1)] =

1
B

∑B
i=1 fzj ,yj (x−N+i), where B = N−M+j+1. Since zj is decoupled from x−N+B

−N+1 by our con-
struction, we obtain the upper bound EzjEx−N+B

−N+1
supyj [Ex∼µ[fzj ,yj (x)]−

1
B

∑B
i=1 fzj ,yj (x−N+i)].

The lemma then follows by symmetrization with Ex∼µ[fzj ,yj (x)] (see Appendix C).

For any j ∈ [M − 1] and zj as above, we define the following function class 5:

Gzj = {gzj ,yj (x,x
′)

def
= fzj ,yj (x

′)− fzj ,yj (x) : y
j ∈ [0, 1]j , (x,x′) ∈ X 2}. (10)

Lemma 9 essentially states that the discrepancy between Rj and R̃j is upper bounded by the
Rademacher complexity of the class Gzj as Ex0

−N+1
Exj supyj (R̃j −Rj) ≤ supzj

1
BRadB(Gzj ).

The following lemma provides a useful bound on such Rademacher complexities.

Lemma 10 Let Gzj be as in (10), M ≤ N/2 and B = N −M + j + 1. Then

sup
zj

1

B
RadB(Gzj ) ≤ O

(√
jL2 log(jLB)

B

)
≤ O

(√
2jL2 log(jLN/2)

N

)
. (11)

Proof Let C ⊂ [0, 1]j be a covering of [0, 1]j with norm L∞ radius 1
jLB . We have |C| ≤ (jLB)j .

By the second part of Proposition 8, we know that the class G′
zj

def
= {gzj ,yj : y

j ∈ C} forms a uniform
L∞-covering of Gzj with radius 2

B . Therefore, 1
BRadB(Gzj ) ≤ 1

BRadB(G′
zj ) +

2
B . The first in-

equality then follows by a simple application of Massart’s lemma (Shalev-Shwartz and Ben-David,
2014, Lemma 26.8) over G′

zj , since |G′
zj | ≤ |C| ≤ (jLB)j and sup(x,x′)∈X 2{gzj ,yj (x,x

′)} ≤ 4L
for all gzj ,yj ∈ Gzj due to the first part of Proposition 8. The second inequality is implied by that
B ≥ N/2 and the fact that the function logB

B is monotone decreasing.

Putting everything together, we arrive at:

Theorem 11 Let Φ be the predictor as in (2) and M ≤ N/2. Then for any class H ⊂ [0, 1]X with
a convex and L-Lipschitz loss ℓ, the predictor Φ can be computed efficiently with access to at most
O(L

√
M logM) mixed-ERM oracle calls per round such that

r̃sideM,N (H,Φ) ≤ 2LRadM (H) +
√
M +O

(√
M3L2 log(MLN)

N

)
. (12)

Proof The regret bound follows directly from Lemma 4, Lemma 6 and Lemma 9. We then invoke
Lemma 10 to bound the discrepancies by noticing that j ≤ M .

5. Note that the ”complexity” of Gzj arises from the yj ∈ [0, 1]j .

8
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Remark 12 Note that Theorem 11 shows that if N ≫ M2 logM then the regret with side-
information is reduced to the Rademacher complexities of H, and thus matches the case when the
distribution is known in advance. However, in reality such side-information is not available for the
unknown distribution case, which can only be obtained from prior samples.

3.2. Proof of Theorem 3: the Epoch Approach

We are now equipped with all the technical tools to prove Theorem 3, with the only missing ingre-
dient of constructing the side-information. For this purpose, we employ an epoch-based approach,
resembling those used in Lazaric and Munos (2009); Wu et al. (2023a), but in a completely dif-
ferent context. We partition the time horizon into epochs, with epoch n of length M(n). Let
S(n) =

∑n−1
i=1 M(i) be the total time steps after n − 1 epochs. We will use the features observed

upto time S(n) as the side-information introduces in Section 3.1 and apply the predictor constructed
in (2) to make the prediction during the nth epoch.

Epoch 1
... Epoch n

...

N := S(n) M(n)

To this end, our main technical part is to optimize the epoch length M(n) that balances the trade-
off in (12) and achieving the minimal total regret. Let Φ be the predictor derived from (2), which we
write as Φ(x0

−N+1,x
j , yj−1) for the side-information x0

−N+1, features xj and labels yj−1 observed
thus far. We define the following epoch predictor Ψ: for any epoch n and time step j during such
epoch, we set

Ψ(xS(n)+j , yS(n)+j−1) = Φ
(
xS(n),x

S(n)+j
S(n)+1, y

S(n)+j−1
S(n)+1

)
. (13)

Let S−1(T ) be the largest number n such that S(n) < T . The following lemma upper bounds the
hybrid minimax regret (1) of Ψ using the regrets with side information (3) incurred by Φ. Note that
this is not immediately obvious since we have reused the side-information among different epochs.

Lemma 13 For any H and convex L-Lipschitz loss ℓ, we have

r̃T (H,Ψ) ≤
S−1(T )∑
n=1

r̃sideM(n),S(n)(H,Φ).

Proof Define the operator Qj
i ≡ Exi supyi Eŷi · · ·Exj supyj Eŷj , where ŷt ∼ Ψ(xt, yt−1) for all

t ∈ [T ]. We have (truncate the last S(n+ 1) above T if necessary):

r̃T (H,Ψ) = QT
1 sup

h∈H

S−1(T )∑
n=1

S(n+1)∑
j=S(n)+1

ℓ(ŷj , yj)− ℓ(h(xj), yj)


(a)

≤
S−1(T )∑
n=1

QT
1 sup

h∈H

 S(n+1)∑
j=S(n)+1

ℓ(ŷj , yj)− ℓ(h(xj), yj)


9
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(b)
=

S−1(T )∑
n=1

ExS(n)QS(n+1)
S(n)+1 sup

h∈H

 S(n+1)∑
j=S(n)+1

ℓ(ŷj , yj)− ℓ(h(xj), yj)


(c)
=

S−1(T )∑
n=1

r̃sideM(n),S(n)(H,Φ),

where (a) follows by sup(A+B) ≤ supA+ supB and linearity of expectation; (b) follows since
ŷj depends only on xj and yjS(n) for j ∈ (S(n), S(n+ 1)]; (c) follows by definition.

Proof [Proof of Theorem 3] Assume RadT (H) ≤ O(T q) for some q ∈ [12 , 1]. By Theorem 11 and
M(n), S(n) ≤ T we have

r̃sideM(n),S(n)(H,Φ) ≤ O

(
LM(n)q +

√
M(n)3L2 log(LT 2)

S(n)

)
.

Let M(n) = nα for some α > 0 to be determined later. We have S(n) =
∑n−1

i=1 iα = Θ(nα+1)
by integration approximation, and S−1(T ) ≤ O(T 1/(α+1)). This implies that r̃sideM(n),S(n)(H,Φ) ≤
O(Lnαq + L

√
log(LT 2)nα− 1

2 ). By Lemma 13 and integration approximation again, we conclude

r̃T (H,Ψ) ≤ O

(
LT

αq+1
α+1 + L

√
log(LT 2)T

α+1
2

α+1

)
. (14)

Optimizing argminα>0max{αq+1
α+1 ,

α+ 1
2

α+1 }, we find (14) is minimized when taking α = 1
2(1−q) .

Plugging back to (14), we find r̃T (H,Ψ) ≤ O
(
L
√
log(LT )T

2−q
3−2q

)
. This completes the proof of

the first part. The second and third parts follow by the facts that RadT (H) ≤ O(
√
VC(H)T ) for

finite-VC class (Wainwright, 2019, Example 5.24), and RadT (H) ≤ Õ(T
max{ 1

2
, p−1

p
}
) for classes

with α-fat shattering dimension of order α−p (Block et al., 2022). This completes the proof and the
big-O notations and M(n) ≤ S(n)/2 are justified by noting that α ≥ 1 since q ≥ 1

2 .

3.3. Tighter Bounds for Special Classes

As demonstrated in Section 3.1, the main technical obstacle for analyzing the regret is to upper
bound the discrepancies between R̃j and Rj as in Lemma 6. It was shown in Lemma 9 that such
discrepancies can be upper bounded by the Rademacher complexity of the class Gzj in (10). We
demonstrate in this section how to leverage the structural information of Gzj leading to tighter regret
bounds for certain special classes, when compared to the general bounds from Theorem 3.

Binary valued classes. Let H ⊂ {0, 1}X be a binary valued class and ℓ(ŷ, y) = |ŷ − y|. For
any given zj (assume, w.l.o.g., ϵj+1 = 1) and yj ∈ {0, 1}j , the function fzj ,yj can be expressed
as fzj ,yj (x) = suph{2h(x) + F (h)} (see definition in (8)), where F (h) is a discrete valued func-
tion taking values in [−2M, 2M ]. Define H0 = {h ∈ H : F (h) = suph′∈H F (h′)} and H1 =
{h ∈ H : F (h) = suph′∈H F (h′)− 1} . Let h0(x) = suph∈H0{h(x)}, h1(x) = suph∈H1{h(x)}
and ĥ = argmaxh∈H F (h). The following structural characterization of fzj ,yj holds:

10
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Fact 2 For any x, if h0(x) = 1 then fzj ,yj (x) = F (ĥ) + 2; if h0(x) = 0 and h1(x) = 1 then

fzj ,yj (x) = F (ĥ) + 1 ; else fzj ,yj (x) = F (ĥ).

Theorem 14 Let H ⊂ {0, 1}X , Fu = {fH′(x) = suph∈H′{h(x)} : H′ ⊂ H}, F i = {fH′(x) =
infh∈H′{h(x)} : H′ ⊂ H} be two classes of functions and ℓ be the absolute loss. Then there exists
an oracle-efficient predictor Φ satisfying r̃T (H,Φ) ≤ O(

√
max{VC(Fu),VC(F i)}T ).

Proof [Sketch] By Fact 2, we know fzj ,yj is completely determined by the functions h0, h1. There-
fore, the ”complexity” of Gzj is reduced to that of {h0, h1}s. The proof then follows by the key
observation that h0, h1 ∈ Fu and techniques in Section 3.1 & 3.2. See Appendix D for details.

Note that for the threshold functions H = {1{x ≥ a} : a, x ∈ [0, 1]} we have Fu = F i = H.
Theorem 14 implies an oracle efficient O(

√
T ) regret, which matches the information-theoretical

lower bound and is tighter than the covering-based O(
√
T log T ) bound implied by Lazaric and

Munos (2009). Another example is the class of indicators of intervals with bounded length {1{x ∈
[a, b]} : b− a ≥ γ, [a, b] ⊂ [0, 1]}, for which we have VC(F i) = 2 and VC(Fu) ≤ O( 1γ ).

Lipschitz functions. Let X = [0, 1]d and H ⊂ [0, 1]X be the class of all 1-Lipschitz functions un-
der L∞ norm. Assume ℓ(ŷ, y) = |ŷ−y| is the absolute loss. Let µ and µ̂N be the true and empirical
distributions, respectively, as in Section 3.1. By Fact 1 and assuming that x̃M

j+1 is sampled i.i.d. from
µ̂N , we have E

xj
−N+1

supyj (R̃j − Rj) ≤ Ex0
−N+1

supyj ,zj (Ex∼µ[fzj ,yj (x)] − Ex∼µ̂N
[fzj ,yj (x)]).

By the same argument as Proposition 8 (second part) and Lipschitz property of h ∈ H, we have:

Fact 3 For all zj , yj and x,x′, |fzj ,yj (x)− fzj ,yj (x
′)| ≤ 2||x− x′||∞.

Theorem 15 Let H and ℓ be as above. Then, there exists an oracle-efficient predictor Φ such that
r̃T (H,Φ) ≤ Õ(Tmax{ 1

2
, d−1

d
}), and this bound is tight upto poly-logarithmic factors.

Proof By Fact 3, we know that for all zj , y
j the function fzj ,yj (x) is 2-Lipschitz. There-

fore, by Kantorovich-Rubinstein duality (Villani, 2021) we have supyj ,zj (Ex∼µ[fzj ,yj (x)] −
Ex∼µ̂N

[fzj ,yj (x)]) ≤ 2W1(µ, µ̂N ), where W1(µ, µ̂N ) = infγ∈Γ(µ,µ̂N ) E(x,x′)∼γ [||x − x′||∞] is
the Wasserstein 1-distance with Γ(µ, µ̂N ) being the class of all coupling between µ, µ̂N . Therefore,
we have E

xj
−N+1

supyj (R̃j − Rj) ≤ 2Ex0
−N+1

[W1(µ, µ̂N )], i.e., the discrepancy is upper bounded
by the convergence rate of empirical distribution under Wasserstein 1-distance. Invoking (Fournier
and Guillin, 2015, Thm 1) and boundedness of X , we have Ex0

−N+1
[W1(µ, µ̂N )] ≤ Õ(N−1/d). Let

Φ be the predictor in (2). By Lemma 6 and RadM (H) ≤ Õ(Mmax{ 1
2
, d−1

d
}) (Wainwright, 2019),

we have r̃sideM,N (H) ≤ Õ(Mmax{ 1
2
, d−1

d
} + MN−1/d). The result then follows by Lemma 13 with

M(n) = 2n (which ensures N = S(n) = M(n) − 1). The last part follows by that the ϵ-metric
entropy of H is Θ( 1

ϵd
) (Wainwright, 2019).

Remark 16 Note that, if we assume certain structure on µ that admits a computationally efficient
estimator µ̂N that satisfies ||µ − µ̂N ||TV ≤ O( 1√

N
) (such as for Gaussian distributions (Ashtiani

et al., 2018)), then the (optimal) O(RadT (H)+
√
T ) bound is achievable for any class H ⊂ [0, 1]X .

11



WU SIMA SZPANKOWSKI

4. Shifting Distributions

In this section, we consider a scenario where the underlying feature-generating distribution is al-
lowed to change over time. We assume that the total number of changes is upper bounded by K,
while the selection of distributions and change points are completely arbitrary. It was demostrated
by Wu et al. (2023a) that for finite-VC classes and absolute loss, the regret grows as O(

√
KT log T )

under such feature generation processes. However, their algorithm depends on the construction of
an exponentially sized cover, making it computationally inefficient. We will demonstrate in this
section an oracle-efficient algorithm that achieves a slightly worse regret.

We first observe that if we know the positions of the change points, then we can simply run
our oracle-efficient predictor from Theorem 3 on each of the segments independently, leading
to an Õ(T

3
4K

1
4 ) regret. Since there are only TK possible configurations of the change points,

we can therefore run an expert algorithm to aggregate each of such configurations, leading to an
Õ(

√
KT log T + T

3
4K

1
4 ) regret. Unfortunately, this approach has computational cost dominated

by Ω(TK) and therefore not efficient for large K. To address this issue, we instead partition the
time horizon into epochs with fixed length B and run our oracle-efficient algorithm on each of the
epochs independently. The rationale behind this approach is that, if we select B small enough, there
will be at least T

B −K epochs with i.i.d. sampling. By tuning the epoch length B, we arrive at:

Proposition 17 Let H ⊂ {0, 1}X be a binary valued class with finite VC-dimension under a convex
and L-Lipschitz loss. Then there exists an oracle-efficient predictor Φ such that if the features are
generated by the process with change cost K and the labels are generated adversarially, then the
hybrid minimax regret as (1) is upper bounded by O

(
L
√
VC(H) log(LT )K

1
5T

4
5

)
.

Proof We partition the time horizon into T
B epochs each of length B. Let Φ be the predic-

tor from Theorem 3 that we run on each epochs independently. By independence, we know
that the total regret is upper bounded by the sum of regrets incurred on each of the epochs.
Note that, if an epoch does not contain a change point, then the regret is upper bounded by
O(L

√
VC(H) log(LT/B)B

3
4 ) by Theorem 3, else we naively upper bounded by B. Since

there can be at most K epochs containing a change point, the total regret is upper bounded
by O

((
T
B −K

)
L
√

VC(H) log(LT/B)B
3
4 +KB

)
by optimizing over B: We find that B =

T
4
5K− 4

5 attains the minimum and the result follows.

5. Contextual K-arm Bandits

We now briefly discuss the extension to the contextual K-arm bandits as introduced in Section 2,
leaving details to Appendix E. The basic idea follows the same path as in the online learning case,
where we partition the time steps into epochs, at each epoch we use the sample observed thus far to
estimate the underlying distribution and use the estimated distribution to generate the hallucinated
samples as needed in the relaxation based algorithms.

Bandit predictor with side-information. Let (x1, c1), · · · , (xM , cM ) be any realization of the
context-cost pairs and x0

−N+1 be the side-information with xM
−N+1 sampled i.i.d. from an (un-

known) distribution µ. At each time step j ∈ [M ], we construct the following prediction rule
adapted from Syrgkanis et al. (2016) by generating the hallucinated samples from µ̂N instead of µ:

12
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1. Sample x̃M
j+1 from µ̂N without replacement; ϵMj+1 i.i.d. from uniform distribution over

{±1}K ; ZM
j+1 i.i.d. from distribution over {0, 1γ } such that Pr[Zi = 1

γ ] = γK, where γ

is a parameter to be tuned; Let ek be the standard base of RK with coordinate k being 1;

2. Let DK be the class of distributions over [K]. Find (using ERM oracle):

q̂j = argmin
q∈DK

sup
pj∈D′

Eĉj∼pj

⟨q, ĉj⟩ − inf
h∈H

 j∑
i=1

ĉi[h(xi)] +

M∑
i=j+1

2ϵi[h(x̃i)]Zi

+ γ(M − j)K

 ,

where D′ is the class of distributions over { 1
γ ek : k ∈ [K]} ∪ {0} such that the probability

equals 1
γ ek is upper bounded by γ for all k ∈ [K]; and 0 ∈ RK is the all 0s vector;

3. Define qj = (1− γK)q̂j + γ1 and make prediction ŷj ∼ qj , where 1 is the all 1s vector.

Here, the ĉi at step 2 is an unbiased estimation of ci as ĉi = 1
γ Iieŷi , where Ii is the indicator that

takes value 1 w.p. γci[ŷi]
qi[ŷi]

with ŷi and qi being the predictions at step i ≤ j − 1.

Analysis of regret. Our key idea is to define a surrogate relaxation Rj and R̃j for the predictor q̂j
and establish a bandit version of decomposition for the regret with side-information as in Lemma 6.
This is achieved via the concept of approx-admissibility as in Lemma 5 and a careful adaption
of the admissibility proof from Syrgkanis et al. (2016). The technical challenge then boils down to
bounding the discrepancies between Rj and R̃j , as in Lemma 6. To this end, we employ a technique
similar to Lemma 9 that relates the discrepancies to a Rademacher sum and show that the sensitivity
of the functions in the sum is upper bounded by O(K). Crucially, the sensitivity is independent of γ,
and therefore the regret with side information is optimized at γ = (log |H|/KM)

1
3 . By leveraging

a similar epoch approach as in the proof of Theorem 3, and setting the epoch length to n
3
2 , we arrive

at the main result of this section (see Appendix E for a detailed proof):

Theorem 18 Let H ⊂ [K]X be a finite policy set. Then there exists an oracle-efficient predictor Φ
such that the hybrid bandit minimax regret defined in Section 2 is upper bounded by

r̃banditT (H,Φ) ≤ O
(
(K

2
3 (log |H|)

1
3 +K

√
logK) · T

4
5

)
.

Remark 19 Note that, our primary focus here is on the dependency on T . We believe a more careful
selection of the epoch length and employing techniques from Banihashem et al. (2023) could result
in a better dependency on K. We leave it as an open problem to improve the 4

5 exponent of T .

6. Additional Related Work

The relaxation-based approach was first introduced by Rakhlin et al. (2012), providing a generic
method for constructing sequential prediction algorithms (albeit potentially inefficient) for a wide
range of online learning scenarios. Rakhlin et al. (2012) demonstrated that an oracle-efficient online
learning algorithm is feasible via the so-called random play-out approach, provided one can access a
sampling oracle for future features. This includes applications such as transduction online learning
(Kakade and Kalai, 2005; Cesa-Bianchi and Shamir, 2013) and known i.i.d. feature generation
distributions (Rakhlin and Sridharan, 2016; Syrgkanis et al., 2016; Banihashem et al., 2023). A more
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sophisticated scenario, the smooth adversarial setting, was investigated by Rakhlin et al. (2011);
Haghtalab et al. (2022b); Block et al. (2022); Haghtalab et al. (2022a). In this setting, the future
sampling distribution is not directly accessible but can be stochastically controlled via a coupling
argument introduced by Haghtalab et al. (2022b). However, this approach still requires access to a
sampling oracle of the underlying reference measure.

An alternative technical approach, the follow the perturbed leader (FTPL) algorithm, has been
widely used in the literature for obtaining oracle-efficient algorithms (Kakade and Kalai, 2005;
Haghtalab et al., 2022a; Block et al., 2022; Bhatt et al., 2023). A key technical benefit of this
approach, compared to the relaxation-based approach, is that the prediction rule is proper (i.e., the
prediction can be generated by a function within the hypothesis class) and involves fewer ERM
oracle calls. However, it also suffers from higher regret guarantees for general fat-shattering classes
Block et al. (2022). Interestingly, the FTPL-based approaches share some technical similarities
with our work as well. For instance, our Lemma 6 is similar to the decomposition of regret as
presented in (Cesa-Bianchi and Lugosi, 2006, Chapter 4.3). Additionally, the way we control the
discrepancies of our surrogate relaxation in Lemma 9 is similar in spirit to methods employed by
Haghtalab et al. (2022a); Block et al. (2022) for bounding their ”generalization errors”. However, it
is unclear whether this FTPL-based approach can be adapted to our unknown distribution setting.

Concurrent work. We note also a recent concurrent work by Block et al. (2024), which specifi-
cally studied the ERM rule for smoothed adversaries with an unknown reference measure under the
assumption of realizable labels and with L2 loss. However, this work does not provide sublinear
regret bounds for adversarially generated labels as investigated in our paper.
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Appendix A. Proof of Lemma 5

In this section, we establish the approx-admissibility of our predictor in (2). The reasoning follows
closely to the arguments as in (Rakhlin et al., 2012, Lemma 11&12) but needs careful adaption for
handling the hallucinated samples x̃s generated from µ̂N . We have

Exj sup
yj

Eϵ,x̃ [ℓ(ŷj , yj) +Rj ]
(a)
= Exj sup

yj
Eϵ,x̃

ℓ(ŷj , yj) + sup
h∈H

2L

M∑
i=j+1

ϵih(x̃i)− Lh
j


≤ Eϵ,x̃Exj

sup
yj

ℓ(ŷj , yj) + sup
h∈H

2L
M∑

i=j+1

ϵih(x̃i)− ℓ(h(xj), yj)− Lh
j−1


(b)

≤ Eϵ,x̃Exj

inf
ŷ
sup
yj

ℓ(ŷ, yj) + sup
h∈H

2L
M∑

i=j+1

ϵih(x̃i)− ℓ(h(xj), yj)− Lh
j−1


= Eϵ,x̃Exj

inf
ŷ
sup
yj

sup
h∈H

2L
M∑

i=j+1

ϵih(x̃i)− Lh
j−1 + ℓ(ŷ, yj)− ℓ(h(xj), yj)


(c)

≤ Eϵ,x̃Exj

inf
ŷ
sup
yj

sup
h∈H

2L

M∑
i=j+1

ϵih(x̃i)− Lh
j−1 + ∂ℓ(ŷ, yj)(ŷ − h(xj))


(d)

≤ Eϵ,x̃Exj

inf
ŷ
sup
yj

sup
gj∈[−L,L]

sup
h∈H

2L
M∑

i=j+1

ϵih(x̃i)− Lh
j−1 + gj(ŷ − h(xj))


(e)

≤ Eϵ,x̃Exj

inf
ŷ

sup
gj∈{−L,L}

sup
h∈H

2L
M∑

i=j+1

ϵih(x̃i)− Lh
j−1 + gj(ŷ − h(xj))


where (a) follows by the definition of Rj and that ŷj has the same randomness as Rj (i.e, the x̃s
and ϵs); (b) is due to definition of ŷj ; (c) is due to convexity of ℓ; (d) is due to L-Lipschitz property
of ℓ; (e) follows by that the inner function is convex w.r.t. gj and thus the supgj∈[−L,L] is attained
on the boundary {−L,L}. We have

Eϵ,x̃Exj

inf
ŷ

sup
gj∈{−L,L}

sup
h∈H

2L

M∑
i=j+1

ϵih(x̃i)− Lh
j−1 + gj(ŷ − h(xj))


(a)
= Eϵ,x̃Exj

inf
ŷ

sup
dj∈∆({−L,L})

Egj∼dj

sup
h∈H

2L

M∑
i=j+1

ϵih(x̃i)− Lh
j−1 + gj(ŷ − h(xj))


(b)
= Eϵ,x̃Exj

 sup
dj∈∆({−L,L})

inf
ŷ
Egj∼dj

sup
h∈H

2L
M∑

i=j+1

ϵih(x̃i)− Lh
j−1 + gj(ŷ − h(xj))


(c)
= Eϵ,x̃Exj

sup
dj

inf
ŷ
Egj∼dj

gj ŷ + sup
h∈H

2L
M∑

i=j+1

ϵih(x̃i)− Lh
j−1 − gjh(xj)
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= Eϵ,x̃Exj

sup
dj

inf
ŷ

Egj∼dj [gj ŷ] + Egj∼dj

sup
h∈H

2L

M∑
i=j+1

ϵih(x̃i)− Lh
j−1 − gjh(xj)


(d)
= Eϵ,x̃Exj

sup
dj

(
inf
ŷ
Eg′j∼dj [g

′
j ŷ]

)
+ Egj∼dj

sup
h∈H

2L

M∑
i=j+1

ϵih(x̃i)− Lh
j−1 − gjh(xj)


= Eϵ,x̃Exj

sup
dj

Egj∼dj

inf
ŷ
Eg′j∼dj [g

′
j ŷ] + sup

h∈H
2L

M∑
i=j+1

ϵih(x̃i)− Lh
j−1 − gjh(xj)


= Eϵ,x̃Exj

sup
dj

Egj∼dj

sup
h∈H

2L
M∑

i=j+1

ϵih(x̃i)− Lh
j−1 + inf

ŷ
Eg′j∼dj [g

′
j ŷ]− gjh(xj)


(e)

≤ Eϵ,x̃Exj

sup
dj

Egj∼dj

sup
h∈H

2L

M∑
i=j+1

ϵih(x̃i)− Lh
j−1 + Eg′j∼dj [g

′
jh(xj)]− gjh(xj)


(f)

≤ Eϵ,x̃Exj

sup
dj

Egj ,g′j∼dj

sup
h∈H

2L
M∑

i=j+1

ϵih(x̃i)− Lh
j−1 + (g′j − gj)h(xj)


(g)
= Eϵ,x̃Exj

sup
dj

Egj ,g′j∼djEϵj

sup
h∈H

2L
M∑

i=j+1

ϵih(x̃i)− Lh
j−1 + ϵj(g

′
j − gj)h(xj)



= Eϵ,x̃Exj

supdj Egj ,g′j∼djEϵj

suph∈H

2L
M∑

i=j+1

ϵih(x̃i)− Lh
j−1


︸ ︷︷ ︸

A

+ ϵjg
′
jh(xj)︸ ︷︷ ︸
B

+(−ϵjgjh(xj))︸ ︷︷ ︸
C




(h)

≤ Eϵ,x̃Exj

sup
dj

Egj∼djEϵj

sup
h∈H

2L
M∑

i=j+1

ϵih(x̃i)− Lh
j−1 + 2ϵjgjh(xj)


(i)
= Eϵ,x̃Exj

Eϵj

sup
h∈H

2L

M∑
i=j+1

ϵih(x̃i)− Lh
j−1 + 2ϵjLh(xj)


= R̃j−1,

where (a) follows by supgj∈{−L,L} ≡ supdj∈∆({−L,L}) Egj∼dj where ∆({−L,L}) is the set of
all probability distributions over {−L,L}; (b) follows by the minimax theorem and noticing that
the inner expectation is bi-linear w.r.t. ŷ and dj ; (c) follows by the fact that gj ŷ is independent of
suph; (d) follows by that the suph term is independent of ŷ and introducing an i.i.d. copy g′j of
gj ; (e) follows by the fact that replacing ŷ with h(xj) does not decrease the inf term; (f) is due to
supE ≤ E sup; (g) is due to symmetries of gj , g′j and ϵj is uniform over {−1, 1}; (h) follows by
sup(A + B + C) ≤ sup(A/2 + B) + sup(A/2 + C) = (sup(A + 2B) + sup(A + 2C))/2, the
linearity of expectation and symmetries of B,C; (i) follows by that the inner expectation takes the
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same value for all gj ∈ {−L,L} and therefore the supdj Egj∼dj can be eliminated. This completes
the proof.

Appendix B. Proof of Lemma 6

Denote Qj ≡ Ex0
−N+1

Ex1 supy1 Eŷ1 · · ·Exj supyj Eŷj for notation convenience. We have

r̃sideM,N (H,Φ)
(a)
= QM

 M∑
j=1

ℓ(ŷj , yj) +RM


(b)
= QM−1

M−1∑
j=1

ℓ(ŷj , yj) + ExM
sup
yM

EŷM
[ℓ(ŷM , yM ) +RM ]


(c)

≤ QM−1

M−1∑
j=1

ℓ(ŷj , yj) + R̃M−1


= QM−1

M−1∑
j=1

ℓ(ŷj , yj) +RM−1 + (R̃M−1 −RM−1)


(d)

≤ QM−1

M−1∑
j=1

ℓ(ŷj , yj) +RM−1

+ Ex0
−N+1

ExM−1 sup
yM−1

(R̃M−1 −RM−1)

(e)

≤ Ex0
−N+1

[R̃0] +

M−1∑
j=1

Ex0
−N+1

Exj sup
yj

(R̃j −Rj),

where (a) follows by definition of RM ; (b) follows by extracting the last layer of QM ; (c) follows
by Lemma 5 and noticing that ŷj has the same randomness as Rj ; (d) follows by the the facts that
sup(A + B) ≤ supA + supB, supE ≤ E sup, the linearity of expectation and R̃M−1 − RM−1

is independent of ŷj for all j ≤ M − 1; (e) follows by repeating the same arguments for another
M − 1 steps. This completes the proof.

Appendix C. Proof of Lemma 9

We have

Ex0
−N+1

Exj sup
yj

(R̃j −Rj)
(a)
= Ex0

−N+1
Exj sup

yj
Ex̃M

j+1,ϵ
M
j+1

Ex∼µ[fzj ,yj (x)− fzj ,yj (x̃j+1)]

≤ Ex0
−N+1

ExjEx̃M
j+2,ϵ

M
j+1

sup
yj

Ex̃j+1,x[fzj ,yj (x)− fzj ,yj (x̃j+1)]

(b)
= Ex0

−N+1
Ezj sup

yj
Ex̃j+1,x[fzj ,yj (x)− fzj ,yj (x̃j+1)]

= Ex0
−N+1

Ezj sup
yj

[Ex∼µ[fzj ,yj (x)]− Ex̃j+1 [fzj ,yj (x̃j+1)]]

(c)
= EzjEx−N+B

−N+1
sup
yj

[
Ex∼µ[fzj ,yj (x)]−

1

B

B∑
i=1

fzj ,yj (x−N+i)

]
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(d)
= EzjEx−N+B

−N+1
sup
yj

[
1

B

B∑
i=1

Ex′
i∼µ[fzj ,yj (x

′
i)]− fzj ,yj (x−N+i)

]

= EzjEx−N+B
−N+1

sup
yj

Ex′B∼µ⊗B

[
1

B

B∑
i=1

fzj ,yj (x
′
i)− fzj ,yj (x−N+i)

]

≤ EzjEx−N+B
−N+1

Ex′B sup
yj

[
1

B

B∑
i=1

fzj ,yj (x
′
i)− fzj ,yj (x−N+i)

]
(e)
= EzjEx−N+B

−N+1
Ex′BEϵ′B sup

yj

[
1

B

B∑
i=1

ϵ′j(fzj ,yj (x
′
i)− fzj ,yj (x−N+i))

]

≤ sup
x−N+B
−N+1 ,x′B ,zj

Eϵ′B sup
yj

[
1

B

B∑
i=1

ϵ′j(fzj ,yj (x
′
i)− fzj ,yj (x−N+i))

]

where (a) follows by Fact 1 (in Section 3.1); (b) follows by definition of zj ; (c) follows by Fact 4
below and taking B = N−M+j+1; (d) follows by introducing B fresh i.i.d. samples x′B ∼ µ⊗B;
(e) follows by symmetries of x′B and x−N+B

−N+1 (which are independent of zj) and introducing the
i.i.d. random variables ϵ′B uniform over {−1, 1}B;

Fact 4 Let B = N −M + j + 1, then

Ex0
−N+1

Ezj sup
yj

[Ex∼µ[fzj ,yj (x)]− Ex̃j+1 [fzj ,yj (x̃j+1)]]

= EzjEx−N+B
−N+1

sup
yj

[
Ex∼µ[fzj ,yj (x)]−

1

B

B∑
i=1

fzj ,yj (x−N+i)

]
.

Proof Note that zj = (xj , x̃M
j+2, ϵ

M
j+1), where x̃M

j+1 are sampled uniformly from x0
−N+1 without

replacement, and xj , ϵMj+1 are independent of x0
−N+1. Therefore, we have

Ex0
−N+1

Ezj sup
yj

[Ex∼µ[fzj ,yj (x)]− Ex̃j+1 [fzj ,yj (x̃j+1)]]

= Exj ,ϵMj+1
Ex0

−N+1
Ex̃M

j+2
sup
yj

[Ex∼µ[fzj ,yj (x)]− Ex̃j+1 [fzj ,yj (x̃j+1)]]

(⋆)
= Exj ,ϵMj+1

Ex0
−N+1

EI sup
yj

Ex∼µ[fzj ,yj (x)]−
1

B

∑
i∈[N ]\I

fzj ,yj (x−N+i)


where the key step (⋆) follows by noticing that the randomness of x̃M

j+2 is equivalent to selecting a
random index set I ⊂ [N ] uniformly with size |I| = M − j − 1 and the index of x̃j+1 (in x0

−N+1)
is then uniform over [N ]\I 6, where the size of [N ]\I is B = N −M + j + 1; Therefore,

Ex̃j+1 [fzj ,yj (x̃j+1)] =
1

B

∑
i∈[N ]\I

fzj ,yj (x−N+i).

6. By the definition of sampling without replacement.
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Note that x0
−N+1 is an i.i.d. sample, by symmetries, we can fix I = {B + 1, · · · , N} (i.e., we

take x̃M
j+2 being x0

−N+B+1) and therefore x̃M
j+2 can be decoupled from x−N+B

−N+1 , leading to

Exj ,ϵMj+1
Ex0

−N+1
EI sup

yj

Ex∼µ[fzj ,yj (x)]−
1

B

∑
i∈[N ]\I

fzj ,yj (x−N+i)


= Exj ,ϵMj+1

Ex̃M
j+2

Ex−N+B
−N+1

sup
yj

[
Ex∼µ[fzj ,yj (x)]−

1

B

B∑
i=1

fzj ,yj (x−N+i)

]

= EzjEx−N+B
−N+1

sup
yj

[
Ex∼µ[fzj ,yj (x)]−

1

B

B∑
i=1

fzj ,yj (x−N+i)

]
.

This completes the proof of the Fact.

Appendix D. Omitted Proofs

In this section, we collect all other proofs that are omitted from the main text.
Proof [Proof of Proposition 8] Denote

F (h) = 2L
M∑

i=j+2

ϵih(x̃i)− Lh
j .

Let ĥ = argmaxh∈H F (h) (find an approximation if necessary). We claim that for any x ∈ X ,

F (ĥ)− 2L ≤ sup
h∈H

{2ϵj+1Lh(x) + F (h)} ≤ F (ĥ) + 2L.

This will complete the proof of the first part. To see the upper bound, we have

sup
h∈H

{2ϵj+1Lh(x) + F (h)} ≤ sup
h
{2ϵj+1Lh(x)}+ sup

h
F (h) ≤ 2L+ F (ĥ),

since h(x) ∈ [0, 1]. For the lower bound, we have

sup
h∈H

{2ϵj+1Lh(x) + F (h)} ≥ 2ϵj+1Lĥ(x) + F (ĥ) ≥ F (ĥ)− 2L,

since sup do not increase by replacing h with any specific ĥ and ĥ(x) ∈ [0, 1].
To prove the second part, for any given h ∈ H, we denote

gh(y
j) = 2Lϵj+1h(x) + 2L

M∑
i=j+2

ϵih(x̃i)− Lh
j .

Note that, yj only appears in the Lh
j term. By definition of Lh

j and L-Lipschitz property of the loss
ℓ, we have

∀h ∈ H, |gh(yj)− gh(y
′j)| ≤ jL||yj − y′j ||∞.
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Let ĥ = argmaxh gh(y
j), we have

sup
h

gh(y
j)− sup

h
gh(y

′j) ≤ gĥ(y
j)− gĥ(y

′j) ≤ jL||yj − y′j ||∞.

Let ĥ′ = argmaxh gh(y
′j), we have

sup
h

gh(y
j)− sup

h
gh(y

′j) ≥ gĥ′(y
j)− gĥ′(y

′j) ≥ −jL||yj − y′j ||∞.

The proposition follows by noticing that fzj ,yj (x) = suph gh(y
j).

Proof [Proof of Fact 2] Note that fzj ,yj (x) = suph{2h(x) + F (h)}. If h0(x) = 1, then ∃h ∈ H0

such that h(x) = 1 and F (h) = F (ĥ), thus fzj ,yj (x) ≥ 2+F (ĥ). Clearly, we also have fzj ,yj (x) ≤
2 suph h(x)+suph F (h) ≤ 2+F (ĥ), the first case follows. If h0(x) = 0 and h1(x) = 1, then there
exists h ∈ H1 such that h(x) = 1 and F (h) = F (ĥ)−1, thus fzj ,yj (x) ≥ F (ĥ)−1+2 = F (ĥ)+1.
On the other-hand, since h0(x) = 0, we have for all h ∈ H0, 2h(x) +F (h) = F (ĥ). For any other
h ̸∈ H0 ∪H1, we have 2h(x) + F (h) ≤ 2 + F (ĥ)− 2 = F (ĥ). Therefore, fzj ,yj (x) ≤ F (ĥ) + 1,
this completes the second case. Finally, if both h0(x) = h1(x) = 0, we have for any h ∈ H0,
2h(x) + F (h) = F (ĥ), i.e., fzj ,yj (x) ≥ F (ĥ). Moreover, for any h ̸∈ H0, it is easy to verify that
2h(x) + F (h) ≤ F (ĥ). This completes the proof.

Proof [Proof of Theorem 14] Assume, w.o.l.g., ϵj+1 = 1. The functions h0, h1 as in Fact 2 are
within Fu. For any x2N ∈ X 2N and µ̂ uniform over x2N , there exists a γ-cover Cγ of Fu under

distance dµ̂(f1, f2)
def
= Prx∼µ̂[f1(x) ̸= f2(x)] such that |Cγ | ≤ O( 1

γVC(Fu) ) (Haussler, 1995). By

Fact 2, there exists a function T : (Fu)2 → {0, 1, 2}X such that for any fzj ,yj , there exist h0, h1 ∈
Fu such that fzj ,yj (x) = T (h0(x), h1(x)) + czj ,yj , where czj ,yj = F (ĥ) as in Fact 2. Therefore,

the function class C′ def
= {T (h0, h1) : h0, h1 ∈ Cγ} forms a 2γ-cover of {(fzj ,yj (x) − czj ,yj ) :

yj ∈ [0, 1]j} under distance dµ̂(f1, f2) and |C′| ≤ O( 1
γ2VC(Fu) ). This implies that the function class

C′′ def
= {g(x′,x) = f(x′)− f(x) : f ∈ C′, (x′,x) ∈ X 2} forms a 4γ-cover of

Gzj = {gzj ,yj (x
′,x) = fzj ,yj (x

′)− fzj ,yj (x) : y
j ∈ [0, 1]j , (x′,x) ∈ X 2}

under distance dν̂(g1, g2) = Pr(x′,x)∼ν̂ [g1(x
′,x) ̸= g2(x

′,x)] for any distribution ν̂ uniform over
a fixed pairing of x2N and |C′′| ≤ O( 1

γ2VC(Fu) ). We have by the chaining argument (Wainwright,

2019, Example 5.24) that RadN (Gzj ) ≤ O(
√
VC(Fu)N). This implies by Lemma 6 & 9 that

r̃sideM,N (H,Φ) ≤ O

(√
VC(H)M +

M
√
VC(Fu)√
N

)
. (15)

Taking M(n) = 1.5n in (13), we have N = S(n) = 2 · 1.5n − 3, which ensures M(n) ≤
S(n)/2 +O(1) (as required for (15) to hold). Invoking Lemma 13, we conclude

r̃T (H,Ψ) ≤ O(
√

VC(H) +
√

VC(Fu))

⌈log1.5(T )⌉∑
n=1

1.5n/2 ≤ O(
√
VC(Fu)T ),

where the last inequality follows by H ⊂ Fu. This completes the proof and the case for ϵj+1 = −1
is symmetric with F i.
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Appendix E. Analysis of Contextual K-arm Bandits

In this appendix, we provide a detailed analysis of the contextual K-arm bandit problem with the
contexts generated by an unknown i.i.d. process and costs generated adversarially, as defined in Sec-
tion 2. Let H ⊂ [K]X be a finite policy set. Following the same steps as in the online learning case,
we first consider the scenario with side-information as in Section 3.1. Let (x1, c1), · · · , (xM , cM )
be any realization of the feature-loss pairs and x0

−N+1 be the side-information with xM
−N+1 sampled

i.i.d. from an (unknown) distribution µ. We consider the following surrogate relaxation:

Rj = Ex̃,ϵ,Z

− inf
h∈H

2ϵj+1[h(x̃j+1)]Zj+1 +

j∑
i=1

ĉi[h(xi)] +
M∑

i=j+2

2ϵi[h(x̃i)]Zi

+ γ(M − j)K

 ,

where ϵis are (vectors) i.i.d. uniform over {±1}K , x̃is are sampled from µ̂N (i.e., the empirical
distribution over x0

−N+1) without replacement and Zis are i.i.d. with Zi ∈ {0, 1γ } such that Pr[Zi =
1
γ ] = γK and γ is a parameter that needs to be tuned. Moreover, ĉi is a random vector constructed
from the prediction ŷi ∈ [K] and distribution qi (see construction below) as ĉi = 1

γ Iieŷi , where ek

is the standard base of RK with coordinate k being 1 and Ii is the indicator that takes value 1 w.p.
γci[ŷi]
qi[ŷi]

. Similarly, we define the variational relaxation as

R̃j = Ex∼µEx̃,ϵ,Z

− inf
h∈H

2ϵj+1[h(x)]Zj+1 +

j∑
i=1

ĉi[h(xi)] +
M∑

i=j+2

2ϵi[h(x̃i)]Zi

+ γ(M − j)K

 .

Prediction rule. The prediction rule at step j is given as follows:

1. Sample the data x̃is, ϵis and Zis as in the definition of Rj ;

2. Let DK be the class of distribution over [K]. Find

q̂j = argmin
q∈DK

sup
pj∈D′

Eĉj∼pj

⟨q, ĉj⟩ − inf
h∈H

 j∑
i=1

ĉi[h(xi)] +
M∑

i=j+1

2ϵi[h(x̃i)]Zi

+ γ(M − j)K

 ,

where D′ is the class of distributions over { 1
γ ek : k ∈ [K]}∪{0} s.t. ∀k ∈ [K], p[k] ≤ γ and

⟨q, ĉj⟩ is the scalar product;

3. Define qj = (1− γK)q̂j + γ1 and make prediction ŷj ∼ qj .

Note that, the prediction rule is iterative in the sense that the predictions qjs and ŷjs are used to
construct ĉjs for the predictors in the following steps.

Let Φ be the prediction rule as define above. The bandit minimax regret with side-information
is defined as follows:

r̃banditM,N (H,Φ) = sup
µ

Ex0
−N+1

Ex1 sup
c1

· · ·ExM sup
cM

EŷM

 M∑
j=1

⟨qj , cj⟩ − inf
h∈H

M∑
j=1

cj [h(xj)]

 , (16)

where Eŷj is over all the internal randomness used to construct the predictor, including x̃, ϵ, Z, Ij
and the randomness of ŷj ∼ qj . It is important to note that the selection of costs cjs is oblivious to
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the predictions ŷjs 7, although it still (adaptively) depends on the contexts xjs, which differs from
the online learning case as in (1).

We have the following bandit version of approx-admissibility.

Lemma 20 For the predictors qjs and ŷjs, we have

Exj sup
cj

Eŷj [cj [ŷj ] +Rj ] ≤ R̃j−1.

Proof [Sketch] We sketch only the high-level ideas. The proof essentially follows the same argu-
ments as in Lemma 5 and the admissibility proof of Syrgkanis et al. (2016, Theorem 3), by noticing
that the primary distinction between our Rj and the relaxation described in Syrgkanis et al. (2016)
is the randomness of x̃is. Their entire proof of admissibility is conducted by conditioning on such
randomness, which only enters in the final step. Therefore, it can be applied in parallel to our case,
as in the proof of Lemma 5.

Similarly, we have the following decomposition as in Lemma 6.

Lemma 21 For the predictor Φ and any given µ, the bandit minimax regret with side-information
is upper bounded by

r̃banditM,N (H,Φ) ≤ Ex0
−N+1

R̃0 +

M−1∑
j=1

Exj ,ŷj sup
cj

(R̃j −Rj)

 .

Proof We first observe that ĉj is a unbiased estimation of cj for all j ∈ [M ], i.e., Eŷj [ĉj [k]] = cj [k]
for all k ∈ [K]. Therefore,

EŷM

 M∑
j=1

⟨qj , cj⟩ − inf
h∈H

M∑
j=1

cj [h(xj)]

 = EŷM

 M∑
j=1

⟨qj , cj⟩

− inf
h∈H

M∑
j=1

cj [h(xj)]

= sup
h∈H

EŷM

 M∑
j=1

⟨qj , cj⟩

−
M∑
j=1

cj [h(xj)]

(a)
= sup

h∈H
EŷM

 M∑
j=1

⟨qj , cj⟩ − ĉj [h(xj)]


≤ EŷM sup

h∈H

 M∑
j=1

⟨qj , cj⟩ − ĉj [h(xj)]


= EŷM

 M∑
j=1

⟨qj , cj⟩ − inf
h∈H

M∑
j=1

ĉj [h(xj)]

 .

7. This assumption was also made implicitly in prior literature for contextual bandits, such as Rakhlin and Sridharan
(2016); Syrgkanis et al. (2016); Banihashem et al. (2023).
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where (a) follows by that ĉjs are unbiased estimations of cjs. This implies that

r̃banditM,N (H,Φ) ≤ Ex0
−N+1

Ex1 sup
c1

· · ·ExM sup
cM

EŷM

 M∑
j=1

⟨qj , cj⟩+RM


≤ Ex0

−N+1
Ex1 sup

c1
Eŷ1 · · ·ExM sup

cM

EŷM

 M∑
j=1

cj [ŷj ] +RM

 ,

where the second inequality follows by supE ≤ E sup and Eŷj [cj [ŷj ]] = ⟨qj , cj⟩. The lemma then
follows from Lemma 20 and the same argument as in the proof of Lemma 6.

In order to analyze the discrepancy between Rj and R̃j , we define the following function:

fzj ,ĉj (x) = EZj+1

 inf
h∈H

2ϵj+1[h(x)]Zj+1 +

j∑
i=1

ĉi[h(xi)] +

M∑
i=j+2

2ϵi[h(x̃i)]Zi

 ,

where zj is composed of all other variables that define Rj except Zj+1 and ĉj .
The following key property bounds the sensitivity of fzj ,ĉj :

Lemma 22 We have for any zj , ĉ
j and x,x′ ∈ X

|fzj ,ĉj (x)− fzj ,ĉj (x
′)| ≤ 4K.

Proof Clearly, if Zj+1 = 0 then the sensitivity is 0, else, Zj+1 = 1
γ and the sensitivity is upper

bounded by 4
γ using the same argument in the proof of Proposition 8. Since Zj+1 ̸= 0 happens w.p.

≤ γK, the expected function has sensitivity upper bounded by 4
γ × γK = 4K.

We now observe that

Exj ,ŷj sup
cj

(R̃j −Rj) ≤ Exj sup
ĉj

(R̃j −Rj),

since Rj and R̃j depend only on ĉj . Notably, the support set size of ĉjs is finite and upper bounded
by K + 1. Invoking Lemma 9, Lemma 22 and a simple application of Massart’s lemma gives

E
xj
−N+1,ŷ

j sup
cj

(R̃j −Rj) ≤ O

(√
K2j logK

N

)
. (17)

Note that this upper bound is independent of the parameter γ. Invoking (Syrgkanis et al., 2016,
Theorem 3) and taking γ = (log |H|/KM)

1
3 , we find R̃0 ≤ O((KM)

2
3 (log |H|)

1
3 ). This, together

with Lemma 21 and (17), implies that

r̃banditM,N (H,Φ) ≤ O

(
(KM)

2
3 (log |H|)

1
3 +K

√
M3 logK

N

)
.

Setting M(n) = n
3
2 and using a similar argument as Lemma 13, we arrive at our main result of this

section
r̃banditT (H,Φ) ≤ O

(
(K

2
3 (log |H|)

1
3 +K

√
logK) · T

4
5

)
,

where Φ can be computed efficiently by accessing to an ERM oracle (with computational cost same
as Syrgkanis et al. (2016)).
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Appendix F. Oblivious Adversaries

In this section, we provide the regret analysis for online learning against an oblivious adversary as
introduced in Section 2. We follow the same online learning game as in (1) with the exception that
the adversary fixes functions f1, · · · , fT : X → [0, 1] before the game and sets the adversary labels
yt = ft(xt) for each time step t ∈ [T ]. Formally, for any expert class H and prediction rule Φ, we
are interested in the following oblivious minimax regret:

r̃obT (H,Φ) = sup
f1,··· ,fT∈[0,1]X

sup
µ

ExTEŷT

[
T∑
t=1

ℓ(ŷt, ft(xt))− inf
h∈H

T∑
t=1

ℓ(h(xt), ft(xt))

]
,

where xT are sampled i.i.d. from µ and ŷt ∼ Φ(xt, yt−1) for t ∈ [T ]. For the clarity of presentation,
we assume that ℓ(ŷ, y) = |ŷ − y| is the absolute loss. We now ready to state the main result of this
appendix:

Theorem 23 Let H ⊂ [0, 1]X be a class of Rademacher complexity RadT (H) = O(T q) for some
q ∈ [12 , 1] and ℓ be the absolute loss. Then there exists an oracle-efficient prediction rule Φ with at
most O(

√
T log T ) calls to the ERM oracle per round, such that r̃obT (H,Φ) ≤ O(T q). In particular,

for finite-VC class H, we have r̃obT (H,Φ) ≤ O(
√
VC(H)T ). For a class H with α-fat shattering

dimension O(α−p) for some p > 0, we have r̃obT (H,Φ) ≤ Õ(T
max{ 1

2
, p−1

p
}
).

Proof We will follow the same path as the regret analysis for the non-oblivious adversaries as
established in Section 3. We first consider the scenario with side-information x0

−N+1, and define
for any predictor Φ the following oblivious minimax regret with side-information:

r̃ob,sideM,N (H,Φ) = sup
f1,··· ,fM∈[0,1]X

sup
µ

ExM
−N+1

EŷM

 M∑
j=1

ℓ(ŷj , fj(xj))− inf
h∈H

M∑
j=1

ℓ(h(xj), fj(xj))

 ,

where xM
−N+1 are sampled i.i.d. from µ. Let Φ be the predictor as in (2) and Rj and R̃j be the same

surrogate relaxations as in (4) and (5). We claim that:

r̃ob,sideM,N (H,Φ) ≤ sup
fM

sup
µ

Ex0
−N+1

R̃0 +

M−1∑
j=1

Exj [R̃j −Rj ]

 . (18)

To see this, we find

r̃ob,sideM,N (H,Φ) = sup
fM

sup
µ

ExM
−N+1

EŷM

 M∑
j=1

ℓ(ŷj , fj(xj))− inf
h∈H

M∑
j=1

ℓ(h(xj), fj(xj))


= sup

fM

sup
µ

ExM
−N+1

EŷM

 M∑
j=1

ℓ(ŷj , fj(xj)) +RM


= sup

fM

sup
µ

ExM−1
−N+1

EŷM−1

M−1∑
j=1

ℓ(ŷj , fj(xj)) + ExMEŷM [ℓ(ŷM , fM (xM )) +RM ]
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(a)

≤ sup
fM

sup
µ

ExM−1
−N+1

EŷM−1

M−1∑
j=1

ℓ(ŷj , fj(xj)) + ExM sup
yM

EŷM [ℓ(ŷM , yM ) +RM ]


(b)

≤ sup
fM

sup
µ

ExM−1
−N+1

EŷM−1

M−1∑
j=1

ℓ(ŷj , fj(xj)) + R̃M−1


= sup

fM

sup
µ

ExM−1
−N+1

EŷM−1

M−1∑
j=1

ℓ(ŷj , fj(xj)) +RM−1 + R̃M−1 −RM−1


= sup

fM

sup
µ

ExM−1
−N+1

EŷM−1

M−1∑
j=1

ℓ(ŷj , fj(xj)) +RM−1

+ ExM−1
−N+1

(R̃M−1 −RM−1)


(c)

≤ sup
fM

sup
µ

Ex0
−N+1

R̃0 +

M−1∑
j=1

Exj [R̃j −Rj ]


where (a) follows by that replacing fM (xM ) with supyM do not decrease the value; (b) follows by
Lemma 5; (c) follows by repeating the same argument for another M − 1 steps.

Now, the key observation is that E
xj
−N+1

[R̃j − Rj ] = 0 for all j ∈ [M − 1] whenever N ≥
M − 1. This follows by the same argument as in the proof of Lemma 9 by noticing that the supyj
is outside the expectation Eϵ′B for oblivious adversaries. Moreover, this argument holds for all
B = N − M + j + 1 ≥ 1, i.e., N ≥ M − j (since by our assumption N ≥ M − 1 and j ≥ 1).
Therefore, we have

r̃ob,sideM,N (H,Φ) ≤ Ex0
−N+1

[R̃0] ≤ RadM (H) ≤ O(M q),

whenever N ≥ M − 1. By the epoch approach as in Section 3.2 and taking the epoch length
M(n) = 2n (which ensures S(n) ≥ M(n)− 1) we conclude

r̃obT (H,Ψ) ≤
⌈log T ⌉∑
n=1

2nq ≤ O(T q),

where Ψ is the epoch predictor derived from Φ as (13). The theorem now follows by Lemma 4 and
noticing that the computational error only contributes O(

√
T ) to the regret.

Remark 24 Theorem 23 demonstrates that the oblivious minimax regret with unknown i.i.d. fea-
ture generation process is equivalent to the regret achievable with known feature generation
distribution and non-oblivious adversaries (Block et al., 2022, Thm 7), which also matches the
information-theoretical lower bound (upto poly-logarithmic factors).

Remark 25 It is interesting to note that the proof of Theorem 23 can also be applied to the semi-
adaptive adversaries that selects the adversary label yj depending on xj

j−B for some B ≥ 0. This

provides a way to interpolate all the ranges of regret from Õ(T
max{ 1

2
, p−1

p
}) to Õ(T

max{ 3
4
, p+1
p+2

}
).
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