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Adversarial Rademacher complexity was introduced to bound adversarially robust generaliza-
tion (Khim and Loh, 2018; Yin et al., 2019). However, despite the dedication of numerous works
(Awasthi et al., 2020; Gao and Wang, 2021; Xiao et al., 2022; Mustafa et al., 2022) to this problem,
achieving a satisfactory bound remains an elusive goal. Existing works on deep neural networks
(DNNs) either apply to a surrogate loss or yield bounds that are notably looser compared to their
standard counterparts.1

This paper presents upper bounds for adversarial Rademacher complexity of DNNs that matches
the best-known upper bounds in standard settings, as established in the work of Bartlett et al. (2017).
The dependency on width and dimension improve from at least O(

√
m) or O(

√
d) to O(ln(dm)).

This provides a new insight on understanding robust generalization: the complexity of standard and
robust generalization is nearly identical.

To state the bound, some notation is necessary. The notation mainly follows the work of Bartlett
et al. (2017). The networks will use L fixed activation functions (σ1, · · · , σL), where σi is ρi-
Lipschitz and σi(0) = 0. Let ℓ(·, y) be a ρ-Lipshitz function with respect to the first argument and
takes values in [0, 1]. Given L weight matrices W = (W1, · · · ,WL) with Wl ∈ Rml×ml−1 , let the
deep neural networks be f(x) = σLWLσL−1(WL−1 · · ·σ1(W1x) · · · ). The network output f(x) ∈
RmL (with m0 = d and mL = k) is converted to a class label in {1, · · · , k} by taking the argmax
over components, with an arbitrary rule for breaking ties. Whenever input data x1, · · · , xn ∈ Rd

are given with ∥xi∥2 ≤ B, collect them as columns of a matrix X ∈ Rd×n. Let B(x) be arbitrary
perturbation set around x. For example, for ℓp attack, we denote Bp

ε(x) = {x′ | ∥x − x′∥p ≤ ε}.
The ℓp norm ∥ · ∥p is always computed entry-wise. Thus, for a matrix, ∥ · ∥2 corresponds to the
Frobenius norm. Finally, let ∥ · ∥σ denote the spectral norm.

Theorem 1 Let nonlinearities (σ1, · · · , σL) be given as above. Let the network f : Rd → Rk

with weight matrices W = (W1, · · · ,WL) have spectral norm bounds (s1, · · · , sL) and ℓ1-norm
bounds (a1, · · · , aL). Then for S = {(xi, yi)}ni=1 drawn i.i.d. from any probability distribution D
over Rd×{1, · · · , k}, with probability at least 1−δ over S, the adversarially robust generalization
gap satisfies

ED max
x′∈B(x)

ℓ(f(x′), y)− ES max
x′∈B(x)

ℓ(f(x′), y) ≤ Õ
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where B̃ is the magnitude of adversarial examples, i.e., ∥x′∥2 ≤ B̃, ∀x′ ∈ B(x) and x ∈ {xi}ni=1.
1. Extended abstract. Full version appears as [arXiv reference, 2406.05372].
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