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Abstract
Composite quantile regression has been used to obtain robust estimators of regression coefficients
in linear models with good statistical efficiency. By revealing an intrinsic link between the com-
posite quantile regression loss function and the Wasserstein distance from the residuals to the set of
quantiles, we establish a generalization of the composite quantile regression to the multiple-output
settings. Theoretical convergence rates of the proposed estimator are derived both under the setting
where the additive error possesses only a finite ℓ-th moment (for ℓ > 2) and where it exhibits a
sub-Weibull tail. In doing so, we develop novel techniques for analyzing the M-estimation problem
that involves Wasserstein-distance in the loss. Numerical studies confirm the practical effectiveness
of our proposed procedure.
Keywords: quantile regression, optimal transport, multivariate quantiles, robust estimation

1. Introduction

The area of robust statistics has seen a revival of interest in recent years, both in Statistics and
Computer Science. This is partly due to the fact that the massive surge in data volumes brings about
a significant demand for efficient and precise analysis of heavy-tailed or partially corrupted data
(Eklund et al., 2016; Wang et al., 2015; Szegedy et al., 2014). Compared to earlier works in this area
pioneered by Tukey and McLaughlin (1963) and Huber (1964, 1965), modern treatment of this topic
focuses more on handling multivariate data. For instance, in the area of robust mean estimation,
Diakonikolas et al. (2020); Lugosi and Mendelson (2021); Depersin and Lecué (2022); Minasyan
and Zhivotovskiy (2023) have proposed various extensions of univariate robust mean procedures
such as the trimmed mean estimator (Tukey and McLaughlin, 1963) and median of means estimator
(Nemirovskij and Yudin, 1983; Jerrum et al., 1986; Alon et al., 1996) to the multivariate setting. We
witness a similar surge in research interest in the area of robust covariance estimation (Mendelson
and Zhivotovskiy, 2020; Abdalla and Zhivotovskiy, 2022; Minasyan and Zhivotovskiy, 2023).

In this work, we focus on the topic of robust linear regression with potentially multivariate
response variable, where a covariate-response pair (X,Y ) ∈ Rp×Rd with joint distribution P (X,Y )

is generated from

Y = b∗X + ε, (1)

with regression coefficients b∗ ∈ Rd×p, a zero-mean covariate vector X ∈ Rp and a noise vec-
tor ε taking values in Rd independent of X . Given independent and identically distributed (i.i.d.)
covariate-response pairs (X1, Y1), . . . (Xn, Yn) drawn from P (X,Y ), our goal is to estimate b∗. The
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contamination of a linear model is mainly captured by two different mechanisms: heavy-tailed noise
(Catoni, 2012; Lugosi and Mendelson, 2019) and outlier contamination (Szegedy et al., 2014; Hu-
ber, 2004). When d = 1, both directions have thrived in recent years (Nguyen and Tran, 2013;
Fan et al., 2017; Sun et al., 2020; Sasai and Fujisawa, 2020; Pensia et al., 2020; Adomaityte et al.,
2023). However, in the context of multiple-output linear regression, where d > 1, the literature is
notably scant. In this work, we go beyond the case of the univariate response variable to the case of
the multiple-output linear model under possibly heavy-tailed noise.

One popular way to tackle the heavy-tailed error is based on the quantile regression (Koenker
and Bassett, 1978; Wang et al., 2007; Li and Zhu, 2008; Zou and Yuan, 2008; Wu and Liu, 2009;
Belloni and Chernozhukov, 2011). In the case of univariate linear regression, although the ordinary
least square (OLS) estimator is widely recognized as the best unbiased estimator when the random
error follows a Gaussian distribution since it attains the Cramer–Rao lower bound, it may not per-
form well when the random error is heavy-tailed, as the mean squared error of the OLS estimator
is proportional to the second moment of the random error term. This issue can be addressed by
using the quantile regression estimator (Koenker and Bassett, 1978). Unlike the OLS estimator,
which estimates the conditional mean function, the quantile regression estimator aims to estimate
the conditional quantile function of Y given X . Thanks to the robustness of quantiles, the quantile
regression estimator is less affected by outliers or heavy-tailed distributions. However, the relative
efficiency of the quantile regression estimator compared to the OLS estimator, i.e. the asymptotic
variance of OLS estimator to that of the CQR estimator, can be arbitrarily small based on their
respective asymptotic variances. Zou and Yuan (2008) proposed a solution to this issue through
the composite quantile regression (CQR) method, whose loss function aggregates multiple quantile
regression loss functions. Specifically, for d = 1 and any K ∈ N, the CQR estimator b̃ is obtained
by the following optimization problem

(q̂1, . . . , q̂K , b̃) = argmin
q1,...,qK∈R, b∈Rd×p

n∑
i=1

K∑
k=1

ρτk(Yi − bXi − qk), (2)

where ρτ (t) is the so-called check function defined as ρτ (t) = max{t, 0}+ (τ − 1)t for any t ∈ R,
and τk = k/(K + 1). Zou and Yuan (2008) showed that the CQR estimator can achieve at least
70% relative efficiency compared to the OLS estimator even for Gaussian noise. However, when
d ≥ 2, the CQR estimator b̃ does not have a natural extension due to the lack of a proper definition
for multivariate rank/quantile and the corresponding multivariate check function.

One of the key contributions of this study is the development of a multiple-output composite
quantile regression (MCQR) estimator. The definition of our proposed estimator is closely related
to the concept of the Monge–Kantorovich (MK) ranks/quantiles, which are multivariate generaliza-
tion of ranks and quantiles from the view of optimal transport developed by Chernozhukov et al.
(2017) and Hallin et al. (2021). Intuitively, the univariate cumulative distribution function (CDF)
and the quantile function of any probability distribution PX can be viewed as optimal transport
maps between PX and a reference distribution, e.g. the uniform distribution U [0, 1]. This perspec-
tive allows for a natural extension of ranks and quantiles to multivariate distributions. Compared
to many previous extensions based on Tukey’s depth (Tukey, 1975), MK-ranks/quantiles have sev-
eral advantages, including the ability to capture more complex and possibly non-convex quantile
contours and allowing for distribution-free inference in multivariate settings. Please refer to Hallin
(2022) for a comprehensive introduction to the MK-ranks/quantiles.
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A crucial observation in constructing our MCQR estimation is that the univariate CQR loss func-
tion can be equivalently described as the Wasserstein product between the empirical distribution of
the residuals (Yi − bXi : i = 1, . . . , n) and the uniform distribution U [0, 1]. Here, the ‘Wasserstein
product’ between two distributions P and Q is the maximum of E(XY ) over all couplings (X,Y )
with marginal distributions X ∼ P and Y ∼ Q. When Q is viewed as a reference distribution,
this optimal coupling is exactly the same as in MK-quantiles. See (4) for a formal definition and
more detailed discussion. This alternative viewpoint allows us to circumvent the need of defining
individual multivariate check functions and instead formulate the MCQR loss in terms of the MK-
quantiles. It is worthwhile to note that while various previous studies in the literature have attempted
to extend the concept of quantile regression to the multiple-output setting (Hallin et al., 2010; Kong
and Mizera, 2012; Hallin et al., 2015; Carlier et al., 2016; del Barrio et al., 2022), the majority have
concentrated on estimating the quantile contours rather than focusing on the robust estimation of
the regression coefficients. See Section 2 for a more detailed discussion of our proposed method.

Then in Section 3 we investigate the theoretical guarantees of the MCQR estimator. We first
prove the consistency result when the random noise is only assumed to have finite ℓ-th moment for
some ℓ > 2 (see Theorem 5). Then a faster convergence rate is established when we assume a
noise distribution with a sub-Weibull tail (see Theorem 8). We highlight that the MCQR procedure
represents an M-estimation problem incorporating the Wasserstein distance within its loss function,
for which the empirical process theory tools used in traditional M-estimators are not directly appli-
cable. To the best of our knowledge, Theorem 5 and Theorem 8 are the first results that establish
the consistency and convergence rate of an M-estimation where the loss function involves the 2-
Wasserstein distance. New theoretical tools were developed along the way, which we believe may
be of independent interest in future research. Please refer to Section 3 for detailed descriptions of
the Theorems and proof sketches.

1.1. Related works

Various definitions of multiple-output quantile regression have been proposed in the past, includ-
ing the depth-based directional method (Hallin et al., 2010; Kong and Mizera, 2012; Hallin et al.,
2015), the M-quantile (Koltchinskii, 1997), the spatial quantile (Chaudhuri, 1996; Chakraborty and
Chaudhuri, 2014), among others. As remarked above, unlike our work, all these approaches focus
on estimating the quantile contours of the response variable. In addition, these definition of mul-
tivariate quantiles do not preserve the quintessential attributes of the univariate quantile, notably
distribution-freeness and the Glivenko-Cantelli property (Hallin et al., 2021). Furthermore, their
quantile contours are constrained to be convex, which hinders performance when data distribution
exhibits non-convex level sets.

In contrast, Chernozhukov et al. (2017) and Hallin et al. (2021) introduced a novel multivariate
quantile/rank framework based on optimal transport. This framework adeptly captures level set non-
convexities while retaining the distribution-freeness and the Glivenko-Cantelli property, hallmarks
of the univariate rank/quantile (Chernozhukov et al., 2017; Hallin et al., 2021). Several applications
in multivariate statistics have been established successfully (Deb and Sen, 2021; del Barrio et al.,
2022; Hallin et al., 2023; Shi et al., 2024). We refer to a comprehensive survey Hallin (2022) and
references therein. Building upon this groundwork, Carlier et al. (2016) and del Barrio et al. (2022)
proposed two notions of multiple-output quantile regression, though concentrating primarily on the
estimation of conditional quantile functions rather than the regression coefficients themselves.
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1.2. Notation

For n ∈ N, write [n] := {1, . . . , n}. For any vector v ∈ Rd, we write ∥v∥ := (
∑

j∈[d] v
2
j )

1/2.

For any matrix M ∈ Rp×d, we define ∥M∥F :=
(
Tr(M⊤M)

)1/2. We denote Sd−1 to be the unit
sphere in Rd. For any measurable function f : X → R, we denote f+(x) := max{f(x), 0} as its
positive part, and f−(x) := max{−f(x), 0} as its negative part. We write B as the Borel σ-algebra
of Rd. Write Pℓ(Rd) as the set of Borel probability measures defined on (Rd,B) with finite ℓ-th
order moments for ℓ ∈ N and Pac(Rd) be the set of probability measures on the same space that
are absolutely continuous with respect to the Lebesgue measure. For any random variable X on
Rd, write PX for the associated probability measure and PXn := 1

n

∑n
i=1 δXi for the associated

empirical distribution where X1, . . . , Xn are n independent copies of X and δx denote the Dirac
measure on x.

2. The MCQR construction

In this section, we present a generalization of the traditional CQR when the dimension of the re-
sponse variable d is greater than 1. We start by revisiting the univariate CQR estimator, and show-
ing that at the population level, it can be seen as the minimizer of the Wasserstein product between
P Y−bX and the uniform reference distribution U [0, 1], which allows a multivariate generalization.
Moreover, we justify that the choice of the reference distribution does not affect the population min-
imizer in this problem, thus allowing us to select more natural reference distributions in multivariate
settings.

2.1. Univariate CQR revisited

Since q1, . . . , qK in (2) have the interpretation of quantiles associated with τ1, . . . , τK , it is natural
to further constrain the optimization by assuming q1 ≤ · · · ≤ qK . Let M denote the set of all
increasing functions on R, then (2) with this additional constraint can be viewed as the empirical
version of the following optimization problem

argmin
q∈M, b∈R1×p

E
{
ρT

(
Y − bX − q(T )

)}
= argmin

q∈M, b∈R1×p

E
{∫ 1

0
ρτ
(
Y − bX − q(τ)

)
dτ

}
, (3)

where (X,Y ) ∼ P (X,Y ) and T ∼ U [0, 1]. The following lemma indicates that, when d = 1, the true
regression coefficient b∗ in (1) and the quantile function q∗ε : τ 7→ inf{y ∈ R : P ε(−∞, y] ≥ τ} of
ε form a solution of (3). As we will see from Lemma 2 and Proposition 3, this is actually the unique
solution to the problem.

Lemma 1 Under the linear model (1), we have

(b∗, q∗ε) ∈ argmin
b∈R1×p, q∈M

E
∫ 1

0
ρτ (Y − bX − q(τ)) dτ.

In fact, an inspection of the proof (see Section A.3) of the above lemma reveals that if τ1, . . . , τK
converges to a distributionPZ with support Z rather than toU [0, 1], then a similar result to Lemma 1
holds provided that we modify the convex check functions ρτ : R → R+ for τ ∈ Z so that
they satisfy F−1

W ◦ FZ(τ) ∈ argminθ E ρτ (W − θ) for all random variables W with absolutely
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continuous distributions. However, generalizing the check functions beyond the univariate setting is
difficult. While some attempts have been made (Chaudhuri, 1996; Koltchinskii, 1997), the resulting
multivariate quantiles, defined through the minimizer of these generalized check functions, lack key
properties of their univariate counterparts (see our discussion in Section 1.1, as well as empirical
comparisons in Section 4). Instead, our work takes a different approach and generalizes the CQR
population loss function as a whole rather than individual check functions. A key observation that
allows us to achieve this is the following reformulation of the loss function of (3) in Lemma 2 below.
To state the lemma, we define the Wasserstein product between P,Q ∈ P2(Rd) as

⟨⟨P,Q⟩⟩W2 := sup
γ∈C(P,Q)

∫
⟨x, y⟩ dγ(x, y), (4)

where C(P,Q) denotes the set of all couplings between P and Q, i.e. for any γ ∈ C(P,Q), and
measureable subsets A, B ⊂ Rd, we have γ(A×Rd) = P (A) and γ(Rd×B) = Q(B). The name
‘Wasserstein product’ stems from its intrinsic link with the 2-Wasserstein distance: 1

2W
2
2 (P,Q) =

1
2

∫
∥x∥2 dP (x) + 1

2

∫
∥y∥2 dQ(y) − ⟨⟨P,Q⟩⟩W2 . We will often slightly abuse notation to write

⟨⟨X,Y ⟩⟩W2 instead of ⟨⟨PX , P Y ⟩⟩W2 .

Lemma 2 Suppose that X ∼ PX is mean-zero with finite second moment. For U ∼ U [0, 1], and
a fixed b ∈ R1×p, we have

inf
q∈M

E
{∫ 1

0
ρτ
(
Y − bX − q(τ)

)
dτ

}
+

1

2
EY = ⟨⟨Y − bX,U⟩⟩W2 .

The proof is deferred to Section A.4. Writing L(b;U) := ⟨⟨Y − bX,U⟩⟩W2 , Lemma 2 and Equa-
tion (3) imply that, the optimizer in b for the population CQR loss function in (3) is equal to
argminb∈Rd×p L(b;U) when d = 1.

2.2. Multiple-output CQR via optimal transport

With the help of Lemma 2, we may regard L(b;U) as a generalized population CQR loss function
for the multiple-output case (d ≥ 2) for suitably chosen reference random vector U . The following
proposition (see Section A.5 for proof) verifies that under a mild condition this loss has a unique
minimizer and that is independent of the specific choice of U (see Section C for an intuitive illus-
tration).

Proposition 3 If P ε, PU ∈ P2(Rd) ∩ Pac(Rd) and PX is not a point mass, then b∗ is the unique
minimizer of L(b;U).

There are various choices of the reference distribution of U , including the uniform distribution
on the unit cube (Chernozhukov et al., 2017; Deb and Sen, 2021) and the spherical uniform distri-
bution (Hallin et al., 2021; del Barrio et al., 2022). In this paper, we opt for the standard multivariate
normal distribution as the reference distribution, primarily motivated by its advantageous theoretical
characteristics. Moreover, we will also omit the specification of the reference distribution in the loss
function and simply write it as L(b) throughout the rest of the paper.

Proposition 3 motivates the following natural estimator of b∗ based on the Wasserstein product
of the empirical distributions.

5



YANG WANG

Definition 4 Given i.i.d. covariate-response pairs (X1, Y1), . . . , (Xn, Yn) generated as in (1) and

a reference distribution PU ∈ P2(Rd) ∩ Pac(Rd) and U1, . . . , Um
i.i.d.∼ PU , the MCQR estimator

for b∗ is defined as

b̂ ∈ argmin
b∈Rd×p

Ln,m(b), where Ln,m(b) := ⟨⟨P Y−bX
n , PUm⟩⟩W2 . (5)

The optimization procedure above is an M-estimation problem. However, unlike classical M-
estimation problems, the empirical loss function cannot be viewed as an empirical process of the
population loss (in fact, E⟨⟨P Y−bX

n , PUm⟩⟩W2 ̸= ⟨⟨P Y−bX , PU ⟩⟩W2), which prevents us from apply-
ing traditional empirical process theory techniques to obtain the convergence rate results directly.
Instead, a collection of new theoretical results is developed to better understand both the population
and empirical version of the Wasserstein product loss. Please refer to Section 3 for more details.
Secondly, it is worth noting that the empirical reference distribution PUm is distinct from the distri-
bution of τk’s in (2) when d = 1. Instead, we employ it as the reference distribution to redefine
the distribution function and the quantile function (refer to Section C for an example). Thus, even
when d = 1 with a uniform reference distribution, the plug-in estimator in (5) does not reduce to
the univariate CQR estimator (2). This can also be seen from the proof of Lemma 2. Therefore, our
proposed MCQR estimator (5) is different from the univariate CQR estimator that is studied in Zou
and Yuan (2008) but shares the same loss function at the population level. See also Figure 3(a) and
Figure 3(b) for an interesting difference in their robustness to contamination in one dimension.

2.3. Solving MCQR via linear programming

We describe here how the optimization problem can be solved in practice. Given {(Xi, Yi)}ni=1 ⊂
Rp × Rd and {Ui}mi=1, we define X = (X1, . . . , Xn)

⊤ ∈ Rn×p and Y = (Y1, . . . , Yn)
⊤ ∈ Rn×d

and U = (U1, . . . , Um)
⊤ ∈ Rm×d. Define

Cn,m = {A ∈ Rm×n
+ : A1n = 1m/m and A⊤1m = 1n/n}.

Every π ∈ Cn,m represents a coupling of P (X,Y )
n and PUm in the sense that πi,j denotes the mass to

be transported from (Xi, Yi) to Uj . Then by the definition of ⟨⟨·, ·⟩⟩W2 , the optimization problem
in (5) can be written as

min
b∈Rd×p

max
π∈Cn,m

Tr
(
U⊤π(Y −Xb⊤)

)
= max

π∈Cn,m

min
b∈Rd×p

Tr
(
U⊤π(Y −Xb⊤)

)
= max

π∈Cn,m

min
b∈Rd×p

{
Tr(U⊤πY )− Tr(U⊤πXb⊤)

}
,

where the exchange of the minimum and maximum is allowed as the objective is linear (von Neu-
mann, 1928). The dual formulation on the right-hand side is easier to handle since its inner minimum
is equal to −∞ unless U⊤πX = 0. Hence, the dual problem of (5) is

max
π∈Cn,m

Tr(U⊤πY )

s.t. U⊤πX = 0,

which can be solved by standard linear programming solvers. After obtaining the dual optimizer π̂,
the MCQR estimator b̂ is obtained via complementary slackness.
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3. Theoretical guarantees

In this section, we investigate the theoretical performance of the proposed estimator when adopting a
standard Gaussian reference distributionU ∼ N (0, Id). In Theorem 5, we provide a non-asymptotic
bound for the estimation error when only assuming a finite 2 + δ moment condition on the random
noise term. Furthermore, we demonstrate in Theorem 8 that in cases where the distributions of both
the covariates and the noise exhibit a sub-Weibull tail, the MCQR estimator enjoys a faster rate of
convergence to the truth.

Given a positive definite matrix Σ ∈ Rp×p and any matrix A ∈ Rd×p, we define the matrix
Mahalanobis norm of A with respect to Σ as ∥A∥Σ := Tr1/2(AΣA⊤) = ∥AΣ1/2∥F. We will
assume throughout this section that E(XX⊤) = Σ.

Assumption 1 X follows an elliptical distribution, i.e., there exists independent random variableR
on R+ and random vectorQ ∼ U(Sd−1) such thatX = Σ1/2QR, and P ε is absolutely continuous.

Under this assumption, we first consider the case when the random noise ε is only assumed to
satisfy a finite moment condition.

Theorem 5 Suppose (X,Y ), (X1, Y1), . . . , (Xn, Yn) are i.i.d. pairs generated according to (1),

U1, . . . , Um
i.i.d.∼ N (0, Id). Assume m ≥ n > 1 and that Assumption 1 holds. If PX , P ε ∈ Pℓ(Rd)

for ℓ > 2 then there exists C > 0 depending only on ℓ, d and p such that with probability at least
1− 4(log n)−1, the MCQR estimator defined in (5) satisfies

∥b̂− b∗∥2Σ ∧ 1 ≤ C
(
n−

1
4 + n

− 1
d∨p + n−

ℓ−2
2ℓ

)
logm.

An immediate consequence of Theorem 5 is that if taking n and m to be large enough such that

C
(
n−

1
4 + n

− 1
d∨p + n−

ℓ−2
2ℓ

)
logm < 1, (6)

then we have

∥b̂− b∗∥2Σ ≤ C
(
n−

1
4 + n

− 1
d∨p + n−

ℓ−2
2ℓ

)
logm (7)

holds with probability at least 1 − 4(log n)−1. We make a few remarks here. Firstly, to the best
of our knowledge, this is the first consistency result for an M-estimator whose loss function in-
volves a multivariate 2-Wasserstein distance term. Bernton et al. (2019) studied the convergence
rate and asymptotic distribution of a minimum Wasserstein estimator, but their result is restricted
to 1-Wasserstein distance in the univariate setting, for which explicit characterization of the opti-
mal transport is available. In our setting, the traditional M-estimator/Z-estimator argument (van der
Vaart and Wellner, 1996, Chapter 3.2-3.3) that derives consistency and rate of convergence of an
M-estimator by analyzing the curvature of the loss function is infeasible. Instead, our proof relies
on several new lemmas that reveal important properties of the Wasserstein product.

To briefly sketch the proof of Theorem 5, we first introduce the following lemmas.

Lemma 6 Let Z and ε be independent random vectors in Rd and U ∼ N (0, Id). If P ε and PZ

are absolutely continuous with finite second moments, then

⟨⟨Z + ε, U⟩⟩2W2
≥ ⟨⟨Z,U⟩⟩2W2

+ ⟨⟨ε, U⟩⟩2W2
.
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Linear lower bound

Quodratic lower bound
Quodratic upper bound

0(26, 19)

∥b̂− b∗∥Σ

y

Upper bound
Lower bound

(a) The upper and lower bound constructed in the
Proof of Theorem 5.

Linear lower bound

Quodratic lower bound

Uniform upper bound

0(26, 19)

∥b̂− b∗∥Σ

y

Upper bound
Lower bound

(b) The upper and lower bound constructed in the
proof of Theorem 8.

Figure 1: Illustration of proofs.

This lemma is proved by constructing a sequence of couplings of the triple (Z, ε, U) via the Slepian
smart path interpolation (see e.g. Vershynin, 2018, Chapter 7.2.1). The best induced coupling of
(Z + ε, U) provides the desired lower bound of ⟨⟨Z + ε, U⟩⟩W2 . See Section A.7 for the proof. We
remark that the lower bound in Lemma 6 is sharp, as can be seen from Lemma S23.

Lemma 7 Let X1, X2, Y1, Y2 be random elements taking values in a normed space (X , ∥ · ∥).
Then we have∣∣⟨⟨X1, X2⟩⟩W2 − ⟨⟨Y1, Y2⟩⟩W2

∣∣ ≤ (
E ∥Y2∥2

)1/2W2(P
X1 , P Y1) +

(
E ∥X1∥2

)1/2W2(P
X2 , P Y2).

This lemma links W2(P
X1 , PX2), W2(P

Y1 , P Y2) with W2(P
X1 , P Y1), W2(P

X2 , P Y2). This is
useful when transforming a two-sample problem into two one-sample problems. Please refer to
Section A.8 for the proof.
Proof sketch of Theorem 5 We start with the basic inequality:

L(b̂)− L(b∗) ≤ L(b̂)− Ln,m(b̂) + Ln,m(b∗)− L(b∗). (8)

The proof strategy involves establishing a lower bound for the left-hand side of (8) with respect to
∥b̂− b∗∥Σ and an upper bound for the right-hand side of (8) in terms of ∥b̂− b∗∥Σ. Then by solving
the resulting inequality, we can derive an expression bounding ∥b̂− b∗∥Σ.

For a lower bound of the left-hand side of (8), since for any b ∈ Rd×p, we have L(b) −
L(b∗) = ⟨⟨(b∗ − b)X + ε, U⟩⟩W2 − ⟨⟨ε, U⟩⟩W2 , by applying Lemma 6 and the explicit form for
⟨⟨(b∗ − b)X,U⟩⟩W2 we can show that

L(b)− L(b∗) ≥
√
r2 + ∥b∗ − b∥2Σ − r, (9)

where r := ⟨⟨ε, U⟩⟩W2 is a constant. This lower bound grows quadratically in ∥b̂ − b∗∥Σ when
∥b̂− b∗∥Σ is close to zero and linearly when ∥b̂− b∗∥Σ is large (see Figure 1(a) for an illustration).

To upper bound the right-hand side of (8), by applying Lemma 7 we have for each b ∈ Rd×p,

|L(b)− Ln,m(b)| ≤
(

1

m

m∑
i=1

∥Ui∥2
)1/2

W2(P
Y−bX , P Y−bX

n )+ (E ∥Y − bX∥2)1/2W2(P
U , PUm).

(10)
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Here W2(P
Y−bX , P Y−bX

n ) and W2(P
U , PUm) are one-sample empirical Wasserstein distance, and

the state-of-art convergence rate can be applied (see e.g. Fournier and Guillin, 2015) (the actual
proof is more involved in the sense that we need to establish the same result uniformly over b).
Then a direct calculation on the right-hand side of (10) leads to a quadratic upper bound in terms of
∥b∗ − b∥Σ. The result follows by combining the upper bound with the lower bound (9). See Section
A.6 for a complete proof.

Before we state a faster convergence rate result, we first introduce the following assumptions.

Assumption 2 For some σ1, σ2 > 0 and α, β ∈ (0, 2], it holds that the distribution of Σ−1/2X is
(σ1, α)-sub-Weibull and P ε is (σ2, β)-sub-Weibull, in the sense that

E exp

{
1

2
(∥Σ−1/2X∥/σ1)α

}
≤ 2 and E exp

{
1

2
(∥ε∥/σ2)β

}
≤ 2 (11)

Assumption 3 For some γ1, γ2 > 0, the density function of ε, write as fε, satisfies the following
anti-concentration property

fε(e) ≥ γ1 exp (−γ2∥e∥2), for ∥e∥ ≥ 1. (12)

On the one hand, Assumption 3 immediately implies the following anti-concentration bound

P(∥ε∥ ≥ r) ≥
πd/2

(
(r + 1)d − rd

)
Γ(d2 + 1)

γ1 exp(−2γ2r
2 − 2γ2), for r ≥ 1.

This indicates that the random noise ε possesses a heavier tail than the sub-gaussian tail outside
the unit ball. On the other hand, by proposition S24(i), the sub-Weibull assumption implies that
P(∥ε∥ ≥ r) ≤ 2e−

1
2
(r/σ2)β . The anti-concentration condition in (12) is a relaxation of the so-called

(γ1, γ2)-regularity defined in Polyanskiy and Wu (2016). The merit of employing this relaxation
becomes apparent when examining Lemma S27, where it is demonstrated that the convolution of
two independent probability densities adhering to (12) continues to satisfy the anti-concentration
inequality. In contrast, the convolution of two independent regular densities may not be regular.

Equipped with these assumptions, we are ready to state an improved convergence rate.

Theorem 8 Under the same setup of Theorem 5 and suppose that Assumptions 2 and 3 are satisfied.
For m,n large enough such that (6) is satisfied, there exists some constant M > 0 depending only
on d, α, β, σ1, σ2, γ1, γ2 such that with probability at least 1− 33(log n)−1, we have

∥b∗ − b̂∥2Σ ≤M
(
(p/n)1/2 + n−2/d

)
(logm)

8
2∧α∧β . (13)

When d > 4, up to a factor of the logarithm, the empirical Wasserstein distance estimation error
n−2/d is the dominant term. This is derived from a uniform empirical Wasserstein distance control
(see (14) and Proposition S17), and its minimax optimality has been established in Singh and Póczos
(2018). Compared to (7), this improved bound in (13) removes the dependence on p in the exponent.
Moreover, unlike the convergence rate result established for the projected Wasserstein distance in
Wang et al. (2021, 2022), our argument does not require the distribution of ε to have compact
support. When d ≤ 4, the parametric rate (p/n)1/2 dominates the estimation error. However,

9
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this does not translate into a the root-n consistency even when d = 1. We conjecture that this is
likely due to an artifact of our proof. Specifically, due to a lack of effective tools to analyze the
curvation of the loss function that incorporates the Wasserstein distance, we were unable to obtain
concentration results for ∂

∂b(L(b) − Ln,m(b)) uniformly over b in a similar way that we have done
for L(b) − Ln,m(b). Exploration along this direction remains an area for future work. We briefly
sketch the proof below. See Section A.9 for a complete proof.
Proof sketch of Theorem 8 Assume the setting of Theomem 5, error bound (7) implies that on
a high probability event, b̂ will lie in a bounded ball centered at b∗, denoted by B. Thus the basic
inequality (8) indicates the following uniform bound

L(b̂)− L(b∗) ≤ 2 sup
b∈B

|L(b)− Ln,m(b)|

≤
∣∣∣ 1
m

m∑
i=1

∥Ui∥2 − E ∥U∥2
∣∣∣+ sup

b∈B

∣∣∣ 1
n

n∑
i=1

∥Yi − bXi∥2 − E ∥Y − bX∥2
∣∣∣

+ sup
b∈B

∣∣∣W2
2 (P

Y−bX , PU )−W2
2 (P

Y−bX
n , PUm)

∣∣∣. (14)

Utilizing the same lower bound for the left-hand side as in (9), it remains to derive an upper bound
for the right-hand side of the above inequality. While the initial two terms of (14) can be effectively
controlled through the application of statistical concentration arguments, as elucidated in Lemma
S21, achieving control over the last term demands much more effort. Motivated by the duality
argument presented in Manole and Niles-Weed (2024, Theorem 13), we establish a non-asymptotic
uniform error bound for the empirical 2-Wasserstein distance (Proposition S17; see also Figure 1(b)
for an illustration), which forms the key ingredient of the proof.

4. Numerical experiments

In this section, we compare the empirical performance of MCQR with other robust regression esti-
mators. The MCQR estimator is obtained by solving the linear programming problem in Section 2.3.
The competitors used in the simulation studies include the ordinary least squares estimator (LS), the
spatial quantile regression (SpQR) with zero quantile level (Chaudhuri, 1996), and coordinate-wise
CQR (CoorCQR), i.e. independently applying CQR to each component of the response variable.
We refer readers to Section D for more details about SpQR.

In each experiment, we draw i.i.d. data (X1, Y1), . . . , (Xn, Yn) according to model (1), where
the regression coefficients b∗ ∈ Rd×p has independent N (5, 5) entries and is kept fixed for all
repetitions. Covariates Xi ∈ Rp, i = 1, . . . , n, are drawn from N(0,Σ) with a Toeplitz covariance
matrix Σ = (2−|i−j|)i,j ∈ Rp×p. The noise ε is generated from one of the following distributions:

(1a) ε ∼ N (0, Id)
(1b) ε ∼ t2(0, Id) follows a multivariate t2 distribution
(1c) ε has each marginal distributed with Pareto(−2, 2, 1) 1 and the same copula as N (0,Σ′),

where Σ′ = (0.9|i−j|)i,j ∈ Rd×d

1. the Pareto distribution Pareto(k, α, s) has density function f(x) ∝ αsα+1

(x−k)α+1 for all x ≥ 1+k, with shape parameter
α > 0, location parameter k ∈ R and scale parameter s > 0. Here Pareto(−2, 2, 1) has mean 0.

10
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(a) Gaussian noise (b) Multivariate t2 noise

(c) Pareto copula noise (d) Banana-shaped noise

Figure 2: Logarithmic average loss, measured in matrix Mahalanobis norm, of the regression coef-
ficient estimated by MCQR, CoorCQR, SpQR and LS for data generated according to the
mechanism described in Section 4 for various sample size n, covariate dimension p and
response dimension d and four different noise distributions (panels (a) to (d)).

11
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(1d) ε follows a centered Banana-shaped distribution, i.e. εi
d
= (Bd−1, ∥Bd−1∥2 − 2

d+2) + 0.3Bd,
where Bd is uniformly distributed in the unit ball in Rd

Figure 2 reports the average matrix Mahalanobis norm error (estimated over 100 Monte Carlo
repetitions) of MCQR, LS, SpQR and CoorCQR over the four noise distributions mentioned above
for n ∈ {100, 200, . . . , 600} and (d, p) ∈ {(2, 7), (4, 10)}. We see that MCQR has done well over
all settings considered here. In contrast, LS estimator performs the best under Gaussian noise but has
poor performance under heavy-tailed noise or noise with non-convex support. CoorCQR and SpQR
have relatively good performance in panels (a) and (b) when the noise is spherically symmetric but
their performance deteriorated when the noise exhibits strong cross-sectional dependence in panels
(c) and (d).

While our theoretical results have mostly concerned with heavy-tailed noise, we also investigate
the empirical performance of MCQR in the presence of outlier contamination. Here, we consider
two cases of ϵ-contaminated noise, for some ϵ ∈ (0, 1):

(2a) ε ∼ (1−ϵ)P1+ϵP2; here P1 is a Pareto copula with Pareto(−10
9 , 10, 1) marginals and copula

generated by N (0,Σ′) as in case (1c) and P2 is a heavier-tailed location-shifted Pareto copula
with marginals distributed as Pareto(10, 2, 10).

(2b) ε ∼ (1− ϵ)N (0, Id) + ϵN (100, Id)

(a) Pareto contamination (b) Gaussian contamination

Figure 3: Logarithmic average estimation loss, measured in matrix Mahalanobis norm, of the re-
gression coefficient estimated by MCQR, CoorCQR, SpQR and LS for data generated
according to the mechanism described in Section 4 for various outlier contamination pro-
portion (from 0.05 to 0.5), covariate dimension p and response dimension d and two
different noise contamination models. We fix n = 200.

Figure 3 shows the performance of the four procedures for increasing levels of contamination
proportion ϵ. We observe that MCQR is generally more robust than other competitors when we
add additional outliers to the random error. Interestingly, we see that in the case where d = 1,
the CoorCQR, which reduces to the univariate CQR, shows a lack of robustness against the outlier

12
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contamination, while the 1-dimensional version of MCQR maintains its robustness even with a high
proportion of contamination.

Acknowledgments

This research is funded by EPSRC grant EP/T02772X/1.

References

Pedro Abdalla and Nikita Zhivotovskiy. Covariance estimation: Optimal dimension-free guarantees
for adversarial corruption and heavy tails. arXiv preprint arXiv:2205.08494, 2022.

Urte Adomaityte, Leonardo Defilippis, Bruno Loureiro, and Gabriele Sicuro. High-dimensional
robust regression under heavy-tailed data: Asymptotics and universality. arXiv preprint
arXiv:2309.16476, 2023.

Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the fre-
quency moments. In Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of
Computing, pages 20–29, 1996.

Alexandre Belloni and Victor Chernozhukov. ℓ1-penalized quantile regression in high-dimensional
sparse models. Annals of Statistics, 39:82–130, 2011.

Espen Bernton, Pierre E. Jacob, Mathieu Gerber, and Christian P. Robert. On parameter estimation
with the Wasserstein distance. Information and Inference: A Journal of the IMA, 8:657–676,
2019.

Efim M. Bronshtein. ε-entropy of convex sets and functions. Siberian Mathematical Journal, 17:
393–398, 1976.

Guillaume Carlier, Victor Chernozhukov, and Alfred Galichon. Vector quantile regression: An
optimal transport approach. Annals of Statistics, 44:1165–1192, 2016.

Olivier Catoni. Challenging the empirical mean and empirical variance: a deviation study. Annales
de l’IHP Probabilités et statistiques, 48:1148–1185, 2012.

Anirvan Chakraborty and Probal Chaudhuri. The spatial distribution in infinite dimensional spaces
and related quantiles and depths. Annals of Statistics, 32:1203–1231, 2014.

Biman Chakraborty. On multivariate quantile regression. Journal of Statistical Planning and Infer-
ence, 110:109–132, 2003.

Probal Chaudhuri. On a geometric notion of quantiles for multivariate data. Journal of the American
Statistical Association, 91:862–872, 1996.

Victor Chernozhukov, Alfred Galichon, Marc Hallin, and Marc Henry. Monge–Kantorovich depth,
quantiles, ranks and signs. Annals of Statistics, 45:223–256, 2017.

Joydeep Chowdhury and Probal Chaudhuri. Nonparametric depth and quantile regression for func-
tional data. Bernoulli, 25:395–423, 2019.

13



YANG WANG

Nabarun Deb and Bodhisattva Sen. Multivariate rank-based distribution-free nonparametric testing
using measure transportation. Journal of the American Statistical Association, 118:1–16, 2021.

Eustasio del Barrio, Alberto Gonzalez Sanz, and Marc Hallin. Nonparametric multiple-output
center-outward quantile regression. arXiv preprint arXiv:2204.11756, 2022.

Jules Depersin and Guillaume Lecué. Robust sub-Gaussian estimation of a mean vector in nearly
linear time. Annals of Statistics, 50:511–536, 2022.
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Marc Hallin, Davy Paindaveine, and Miroslav Šiman. Multivariate quantiles and multiple-output
regression quantiles: From ℓ1 optimization to halfspace depth. Annals of Statistics, 38:635–703,
2010.

Marc Hallin, Zudi Lu, Davy Paindaveine, and Miroslav Šiman. Local bilinear multiple-output
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Supplement to “Multiple-output composite quantile regression
through an optimal transport lens”

We presents the proofs of all main results in Appendix A. Specifically, Appendix A.3 - A.5
contain proof of the theoretical results in Section 2. Then the proof of Lemma 6 and Lemma 7 are
included in Appendix A.7 and A.8, respectively. The consistency Theorem 5 is proved in Appendix
A.6, while the proof regarding the convergence rate, as specified in Theorem 8, is showed in A.9.
All ancillary results are included in Appendix B.

Appendix C provides an example of a check function under a U [−1, 1] reference distribution.
A brief introduction about spatial quantile is provided in Appendix D

Appendix A. Proofs

We first record here some notations and several classical results on optimal transport theory that will
be used throughout our theoretical analysis.

A.1. Preliminaries on optimal transport theory

Define the rescaled squared ℓ2-distance as L2(x, y) := 1
2∥x − y∥2 for any x, y ∈ Rd. In this

notation, for two distributions P and Q on Rd, we have

1

2
W2

2 (P,Q) = inf
γ∈C(P,Q)

∫
L2(x, y)dγ(x, y) =: I2(P,Q). (S15)

Our proof depends on the following Kantorovich duality (see e.g., Villani, 2021, Theorem 1.3)

I2(P,Q) = sup
φ,ψ∈Φ2

JP,Q(φ,ψ), (S16)

where Φ2 := {(φ,ψ) ∈ L1(P )× L1(Q) : φ(x) + ψ(y) ≤ L2(x, y)} and

JP,Q(φ,ψ) :=

∫
φ(x)dP (x) +

∫
ψ(y)dQ(y).

By taking advantage of the particular form of L2, we also have for Φ̃ := {(φ,ψ) ∈ L1(P )×L1(Q) :
φ(x) + ψ(y) ≥ xT y} that∫

∥x∥2

2
dP (x) +

∫
∥y∥2

2
dQ(y)− sup

φ,ψ∈Φ2

JP,Q(φ,ψ) = inf
φ,ψ∈Φ̃

JP,Q(φ,ψ) := Ĩ2(P,Q). (S17)

Thus solve the problem of (S16) degenerates to solve the problem of Ĩ2(P,Q).
For any φ ∈ L1(P ), define its Legendre transform as φ∗(y) := supx∈Rd(xT y − φ(x)). Then

it can be shown that φ∗ is a convex lower semi-continuous (l.s.c.) function. This definition imme-
diately implies that for any (φ,ψ) ∈ Φ̃, ψ(y) ≥ φ∗(y), ∀y ∈ Rd. Thus we have JP,Q(φ,ψ) ≥
JP,Q(φ,φ

∗). Similarily, we have φ(x) ≥ supy∈Rd

(
xT y − φ∗(y)

)
= φ∗∗(x), ∀x ∈ Rd, which

further implies that JP,Q(φ,φ∗) ≥ JP,Q(φ
∗∗, φ∗). In the end, we deduced that

inf
φ,ψ∈Φ̃

JP,Q(φ,ψ) ≥ inf
φ∈L1(P )

JP,Q(φ
∗∗, φ∗) ≥ inf

φ is convex l.s.c.
JP,Q(φ

∗, φ).
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In fact, it can be shown (see e.g. Villani, 2021, Theorem 2.9) that the equality above holds, i.e. there
exists a convex l.s.c. function φ0 such that the conjugate pair (φ0, φ

∗
0) is the optimal solution to

Ĩ2(P,Q). Now we are ready to state a fundemental theorem for the optimal transport theory with
L2 loss function.

Theorem S9 (Villani, 2021, Theorem 2.12 and Remark 2.13(iii)) Let P and Q be probability mea-
sures on Rd, with finite second moment. We consider the Kantorovich dual problem associated with
the rescaled squared ℓ2-distance L2. Then γ ∈ C(P,Q) is optimal if and only if there exists a convex
l.s.c. function φ0 such that

Supp(γ) ⊂ ∂φ0,

or equivalently, for γ-almost all (x, y),

y ∈ ∂φ0(x).

Moreover, there exists a conjugate pair (φ0, φ
∗
0) that is a minimizer of Ĩ2(P,Q). Thus (∥ · ∥2/2 −

φ0, ∥ · ∥2/2− φ∗
0) solves the Kantorovich dual problem I2(P,Q).

The 1-Wasserstein distance satisfies the following Kantorovich–Rubinstein duality.

Theorem S10 (Kantorovich–Rubinstein theorem) Suppose X is a subset of Rd, define the diam-
eter of X as diam(X ) := supx,y∈X ∥x− y∥. Let Lip(X ) denote the space of all Lipschitz function
on X and for any f within this space define

∥f∥Lip(X ) := max
{

sup
x,y∈X
x ̸=y

|f(x)− f(y)|
∥x− y∥

,
∥f∥∞

diam(X )

}
.

Then

W1(P,Q) = sup

{∫
f(x)dP (x)−

∫
f(y)dQ(y) : f ∈ L1(|P −Q|), f ∈ Lip1(X )

}
, (S18)

where Lip1(X ) := {f : ∥f∥Lip(X ) ≤ 1}.

In particular, the 1-Wasserstein distance can be seen as a special case of a integral probability metric
(defined below) with respect to the Lip1 function class.

Definition S11 (Integral Probability Metrics) Given probability measures P andQ as before, the
integral probability metrics (IPMs) with respect to function class F is defined as

IPM(P,Q;F) = sup
f∈F

{∫
f(x)dP (x)−

∫
f(y)dQ(y)

}
. (S19)
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A.2. Additional notation

Suppose T is a map from a measurable space X , equipped with a measure µ, to an arbitrary space
Y , we denote by T#µ as the push-forward of µ by T . Specifically, (T#µ)(A) = µ(T−1(A)) for
any measurable set A.

Suppose X1, . . . , Xn are random samples from some probability distribution P . Then given
any function class F , define the Rademacher complexity of F as

Rn(F , P ) := E
(
sup
f∈F

1

n

n∑
i=1

ξif(Xi)
)
, (S20)

where ξi’s are independent Rademacher random variables, independent from X1, . . . , Xn. The p-
dimensional closed ball in centered at x ∈ Rp with radius r > 0 is denoted by Bpx,r := {y ∈ Rp :
∥y∥ ≤ r} and we omit r when r = 1: Bpx,1 := Bpx. The matrix operator norm is denoted by ∥ · ∥op,
so that ∥A∥op := supx:∥x∥=1 ∥Ax∥.

A.3. Proof for Lemma 1

Proof For any fixed τ ∈ (0, 1), by the definition of check function ρτ we have

qY (τ) ∈ argmin
θ

E ρτ (Y − θ),

where qY (·) is the quantile function of Y . Thus under the linear model (1) we have for any x ∈ Rp,

(b∗, q∗ε(τ)) ∈ argmin
b∈R1×d,q∈R

E[ρτ (Y − bX − q) | X = x]. (S21)

For any b ∈ R1×p and q ∈ R, define g(x; b, q) := E[ρτ (Y − bX − q) | X = x], then (S21) implies
that

g(x; b∗, q∗ε(τ)) ≤ g(x; b, q),

thus ∫
Rp

g(x; b∗, q∗ε(τ)) dx ≤
∫
Rp

g(x; b, q) dx.

Then by the Fubini Theorem and the Law of iterated expectation, we have

E[ρτ (Y − b∗X − q∗ε(τ))] ≤ E[ρτ (Y − bX − q)]. (S22)

Because the quantile function q∗ε ∈ M, thus (S22) implies that for any q(·) ∈ M∫ 1

0
E[ρτ (Y − b∗X − q∗ε(τ))] dτ ≤

∫ 1

0
E[ρτ (Y − bX − q(τ))]dτ.

Therefore the result follows by applying the Fubini Theorem once again.
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A.4. Proof for Lemma 2

Proof Let C denote the class of convex functions on [0, 1]. By the definition of the check function
ρτ and the fact that X is mean-zero, we have

inf
q∈M

E
{∫ 1

0
ρτ
(
Y − bX − q(τ)

)
dτ

}
+

1

2
EY

= inf
q∈M

{
E
∫ 1

0
(Y − q(τ)− bX)+dτ +

∫ 1

0
(1− τ)q(τ)dτ

}
= inf

q∈M

{
E max
t∈[0,1]

∫ t

0
(Y − q(τ)− bX) dτ +

∫ 1

0

∫ 1

τ
q(τ) du dτ

}
= inf

ϕ∈C

{
E max
t∈[0,1]

(t(Y − bX)− ϕ(t)) + Eϕ(U)
}

= inf
ϕ∈C

E
{
ϕ∗(Y − bX) + Eϕ(U)

}
, (S23)

where ϕ∗(t) := maxt∈[0,1]{ut − ϕ(u)} is the Legendre conjugate of ϕ : [0, 1] → R and we
used Fubini’s theorem and a change of variable q 7→ ϕ ∈ C defined by ϕ(t) =

∫ t
0 q(τ) dτ in the

penultimate step.
Let ϕ0 be the optimizer of (S23) and ϕ∗0 its Legendre conjugate, then by Villani (2021, Theo-

rem 2.9), we have

Eϕ∗0(Y − bX) + Eϕ0(U) = inf
ϕ∈C

{
Eϕ∗(Y − bX) + Eϕ(U)

}
= inf

ϕ,ψ∈C:ϕ(x)+ψ(y)≥xy

{
Eψ(Y − bX) + Eϕ(U)

}
.

Then by the arguments in Villani (2021, Sec 2.1.2), the pair (ϕ̃0, ψ̃0) defined by ϕ̃0(u) = u2/2 −
ϕ0(u) and ψ̃0(y) = y2/2−ϕ∗0(y) is the optimizer of the Kantorovich dual formulation of the optimal
transport problem between P Y−bX and PU , i.e.

Eψ̃0(Y − bX) + Eϕ̃0(U) = sup
ϕ̃,ψ̃∈L1(R)

ϕ̃(x)+ψ̃(y)≤(x−y)2/2

Eψ̃(Y − bX) + Eϕ̃(U). (S24)

By the strong duality theorem (Villani, 2021, Theorem 1.3), we have

1

2
W2

2

(
P Y−bX , PU

)
= Eψ̃0(Y − bX) + Eϕ̃0(U)

= E
{
1

2
(Y − bX)2 − ϕ∗0(Y − bX)

}
+ E

{
1

2
U2 − ϕ0(U)

}
, (S25)

which together with the definition of ⟨⟨·, ·⟩⟩W2 implies that

⟨⟨P Y−bX , PU ⟩⟩W2 = Eϕ∗0(Y − bX) + Eϕ0(U).

The result follows by combining the above identity with the optimality of ϕ0 in (S23).
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A.5. Proof for Proposition 3

Proof By Brenier’s Theorem, there exists a PU -a.e. unique (and P ε-a.e. invertible) optimal trans-
port map ϕ : Rd → Rd from PU to P ε, which induces a coupling P (U,ε) := (ϕ ⊗ Id)#PU ∈
C(PU , P ε). Then P (U,ε) ⊗ P (b∗−b)X is a joint distribution of (U, ε, (b∗ − b)X), which induces a
joint distribution P (U,Y−bX) ∈ C(PU , P Y−bX) through the map (u, e, z) 7→ (u, e + z). Observe
that the squared L2 transport cost associated with P (U,Y−bX) is∫

∥u− v∥22 dP (U,Y−bX)(u, v) =

∫
∥u− (e+ z)∥22 d(P (U,ε) ⊗ P (b∗−b)X)(u, e, z)

=

∫
∥ϕ(u)− u∥22 dPU (u) +

∫
∥z∥22 dP (b∗−b)X(z)

= W2
2 (P

U , P ε) + E ∥(b∗ − b)X∥22. (S26)

Therefore, we have

L(b;U)− L(b∗;U) = −1

2
W2

2 (P
U , P Y−bX) +

1

2
W2

2 (P
U , P ε) +

1

2
E ∥(b∗ − b)X∥22

=
1

2

∫
∥u− v∥22 dP (U,Y−bX)(u, v)

− 1

2
inf

Q∈C(PU ,PY −bX)

∫
∥u− v∥22 dQ(u, v) ≥ 0. (S27)

This implies that b∗ ∈ argminL(b;U). To prove the uniqueness, by Brenier’s Theorem, since
PU ∈ Pac(Rd), the optimal transport map from PU to P Y−bX is PU -a.e. unique, thus the equality
can only be achieved in (S27) if P (U,Y−bX) is the optimal coupling. In such a case, by the Knott-
Smith optimality criterion (Villani, 2021, Theorem 2.12(i)), there exists a unique convex lower semi-
continuous function h : Rd → Rd such that Supp(P (U,Y−bX)) ⊂ Graph(∇h) in the sense that, for
almost all (u, v) ∈ Supp(P (U,Y−bX)), we have v = ∇h(u). Define an eventA = {∇h(ϕ−1(ε))) =
ε+ (b∗ − b)X}. Then

P(A) = P
(
(ϕ−1(ε), ε+ (b∗ − b)X) ∈ {(u, v) : ∇h(u) = v}

)
= P (U,Y−bX){(u, v) : ∇h(u) = v} = 1.

This implies that ε+ (b∗ − b)X = ∇h(ϕ−1(ε)) almost surely. Because X is independent of ε, and
is not a point mass, the only way to make this equality hold is when b = b∗ as desired.

A.6. Proof for Theorem 5

For notation simplicity, write S := Σ−1/2X and Si := Σ−1/2Xi for i ∈ [n] throughout the rest of
the paper.
Proof By the definition of b̂ in (5), we have the following basic inequality:

L(b̂)− L(b∗) ≤ L(b̂)− Ln,m(b̂) + Ln,m(b∗)− L(b∗). (S28)

22



MULTIPLE-OUTPUT COMPOSITE QUANTILE REGRESSION VIA OPTIMAL TRANSPORT

By the explicit formula for the 2-Wasserstein distance between two elliptical distributions (see Gel-
brich, 1990, Theorem 2.1), we have

⟨⟨P (b∗−b)X , PU ⟩⟩W2 =
1

2

{
E ∥(b∗ − b)X∥2 + E ∥U∥2 −W2

2 (P
(b∗−b)X , PU )

}
=

1

2

{
E ∥(b∗ − b)X∥2 + E ∥U∥2 −

∥∥((b∗ − b)Σ(b∗ − b)T
)1/2 − Id

∥∥2
F

}
= Tr

{(
(b∗ − b)Σ(b∗ − b)T

)1/2} (S29)

≥ Tr1/2
{
(b∗ − b)Σ(b∗ − b)T

}
= ∥b∗ − b∥Σ. (S30)

Hence, writing r := ⟨⟨P ε, PU ⟩⟩W2 , we have by Lemma 6 that for any b ∈ Rd×p,

L(b)− L(b∗) = ⟨⟨P (b∗−b)X+ε, PU ⟩⟩W2 − ⟨⟨P ε, PU ⟩⟩W2

≥
√
r2 + ⟨⟨P (b∗−b)X , PU ⟩⟩2W2

− r ≥
√
r2 + ∥b∗ − b∥2Σ − r. (S31)

On the other hand, by Lemma 7, we have

|L(b)− Ln,m(b)| =
∣∣∣⟨⟨P Y−bX , PU ⟩⟩W2 − ⟨⟨P Y−bX

n , PUm⟩⟩W2

∣∣∣
≤ αmW2(P

Y−bX , P Y−bX
n ) + (E ∥Y − bX∥2)1/2W2(P

U , PUm), (S32)

where αm :=
(
1
m

∑m
i=1 ∥Ui∥2

)1/2. We control the two terms on the right-hand side of (S32)
separately. For the first term, suppose P1 is the optimal coupling between PS and PSn , and P2 is
the optimal coupling between P ε and P εn. Since P1 ⊗ P2 induces a coupling between P Y−bX and
P Y−bX
n through the relation Y − bX = (b∗ − b)Σ1/2S + ε, we have

W2
2 (P

Y−bX ,P Y−bX
n )

≤
∫

∥(b∗ − b)Σ1/2s1 + e1 − (b∗ − b)Σ1/2s2 − e2∥2d(P1 ⊗ P2)(s1, s2, e1, e2)

≤
∫

∥b∗ − b∥2Σ∥s1 − s2∥2dP1(s1, s2) +

∫
∥e1 − e2∥2dP2(e1, e2)

= ∥b∗ − b∥2ΣW2
2 (P

S , PSn ) +W2
2 (P

ε, P εn).

Thus,

W2(P
Y−bX , P Y−bX

n ) ≤ ∥b∗ − b∥ΣW2(P
S , PSn ) +W2(P

ε, P εn) =: In(∥b∗ − b∥Σ). (S33)

For the second term on the right-hand side of (S32), define s2 := E ∥ε∥2, we have

(E ∥Y − bX∥2)1/2 = (E ∥(b∗ − b)X + ε∥2)1/2 ≤ {2E∥(b∗ − b)X∥2 + 2E∥ε∥2}1/2

=
{
2∥b∗ − b∥2Σ + 2s2

}1/2
. (S34)

Combining (S32), (S33) and (S34), we obtain that

|L(b)− Ln,m(b)| ≤ αmIn(∥b∗ − b∥Σ) +
{
2∥b∗ − b∥2Σ + 2s2

}1/2W2(P
U , PUm). (S35)
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Since (S31) and (S35) holds for arbitrary b ∈ Rd×p, we have by (S28) that

{
r2 + ∥b∗ − b̂∥2Σ

}1/2 − r ≤ αmIn(∥b∗ − b̂∥Σ) +
{
2∥b∗ − b̂∥2Σ + 2s2

}1/2W2(P
U , PUm)

+ αmIn(0) + s
√
2W2(P

U , PUm).

We apply Lemma S22 to the left-hand side of the above and combine with the fact that r2 ≤ s2d,
we deduce that for some constant C > 0 only depending on d, the following inequality holds:

(2∥b∗ − b̂∥Σ − 1) ∧ ∥b∗ − b̂∥2Σ
(∥b∗ − b̂∥Σ ∨ 1)

≤ C(2 + 2s)
(
αmW2(P

S , PSn ) + (
√
2 + 2s

√
2)W2(P

U , PUm) + 2αmW2(P
ε, P εn)

)
. (S36)

Thus we only need to control the right-hand side of the above.
Note by Markov’s inequality, E(m)

0 := {αm ≤
√
d logm} holds with probability at least 1 −

(logm)−1. Similarily, by the convergence rate of empirical 2-Wasserstein distance in Theorem S29
implies that there exists constantsC1 > 0 depending only on p and ℓ andC2,C3 > 0 depending only
on d, ℓ such that for allm,n > 1, eventsE(n)

1 := {W2(P
S , PSn ) ≤ C1τ

1/2
n (p, ℓ) log1/2 n}, E(n)

2 :=

{W2(P
ε, P εn) ≤ C2τ

1/2
n (d, ℓ) log1/2 n} and E(m)

3 := {W2(P
U , PUm) ≤ C3τ

1/2
m (d, ℓ) log1/2m}

hold with probability at least 1− (log n)−1, 1− (log n)−1, 1− (logm)−1, respectively. Therefore,
for all n > 1 and m > n, let E(n,m) := E

(m)
0

⋂
E

(n)
1

⋂
E

(n)
2

⋂
E

(m)
3 , we have P(E(n,m)) ≥

1− 4(log n)−1.
Note

(2∥b∗ − b̂∥Σ − 1) ∧ ∥b∗ − b̂∥2Σ
(∥b∗ − b̂∥Σ ∨ 1)

≥ ∥b∗ − b̂∥2Σ ∧ 1.

Then combining this with (S36), and working on the event E(n,m), there exists some constant M̃ >
0 depending only on d, ℓ, p such that

∥b∗ − b̂∥2Σ ∧ 1 ≤ M̃(1 + s)
(
τ1/2n (p, ℓ) + sτ1/2n (d, ℓ)

)
log1/2m

≤ M̃
(
n−1/4 + n

− 1
d∨p + n

2−ℓ
2ℓ

)
logm,

where a positive constant depending on d is absorbed in M̃ in the final inequality, while we stick
with notation M̃ for simplicity.

A.7. Proof for Lemma 6

Proof By the Brenier’s Theorem (Villani, 2009, Theorem 2.12 (ii)), there exists optimal transport
maps ϕ, ψ : Rd → Rd such that ϕ#P ε = PU and ψ#PZ = PU . Now, for any fixed t ∈ [0, 1],

we define Mt(z, e) :=
√
1− tψ(z) +

√
tϕ(e), for all z, e ∈ Rd. Since Mt(Z, ε)

d
= U , there exists

a coupling P (Z,ε,U) ∈ C(PZ ⊗ P ε, PU ) whose associated transport map is Mt (more specifically,
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P (Z,ε,U) = (Id⊗Mt)#(PZ ⊗ P ε)). Thus, we have

⟨⟨Z + ε, U⟩⟩W2 ≥
∫
⟨z + e, u⟩dP (Z,ε,U)(z, e, u)

=

∫ 〈
z + e,

√
1− tψ(z) +

√
tϕ(e)

〉
d(PZ ⊗ P ε)(z, e)

=
√
1− t

∫
⟨z, ψ(z)⟩dPZ(z) +

√
t

∫
⟨e, ϕ(e)⟩dP ε(e)

=
√
1− t⟨⟨Z,U⟩⟩W2 +

√
t⟨⟨ε, U⟩⟩W2 ,

where in the penultimate step we used the fact that ε is independent from Z. Now, taking t =
⟨⟨ε,U⟩⟩2W2

⟨⟨ε,U⟩⟩2W2
+⟨⟨Z,U⟩⟩2W2

, we have

⟨⟨Z + ε, U⟩⟩2W2
≥ ⟨⟨Z,U⟩⟩2W2

+ ⟨⟨ε, U⟩⟩2W2

as desired.

A.8. Proof for Lemma 7

Proof Let X1,X2,Y1,Y2 denote four copies of X . By Lemma S12, there exists a distribution η on
X1 ×X2 ×Y1 ×Y2 with marginals PX1 , PX2 , P Y1 , P Y2 , such that η|X1×X2 , η|X2×Y2 , η|X1×Y1 are
optimal couplings between X1 and X2, X2 and Y2, and X1 and Y1 respectively. Then we have

⟨⟨X1, X2⟩⟩W2 − ⟨⟨Y1, Y2⟩⟩W2

= sup
µ∈C(PX1 ,PX2 )

∫
⟨x1, x2⟩ dµ(x1, x2)− sup

ν∈C(PY1 ,PY2 )

∫
⟨y1, y2⟩ dν(y1, y2)

≤
∫
⟨x1, x2⟩ dη|X1×X2(x1, x2)−

∫
⟨y1, y2⟩ dη|Y1×Y2(y1, y2)

≤
∫
⟨x1, x2 − y2⟩ − ⟨y1 − x1, y2⟩ dη(x1, x2, y1, y2)

≤
(∫

∥x2 − y2∥2dη|X2×Y2(x2, y2)
)1/2(∫

∥x1∥2dη|X1(x1)
)1/2

+
(∫

∥x1 − y1∥2dη|X1×Y1(x1, y1)
)1/2(∫

∥y2∥2dη|Y2(y2)
)1/2

= W2(P
X2 , P Y2) ·

(
E ∥X1∥2

)1/2
+W2(P

X1 , P Y1) ·
(
E ∥Y2∥2

)1/2
,

where we used the Cauchy–Schwarz inequality in the final inequality. Similarly, we can find η̃ such
that η̃|Y1×Y2 , η̃|X2×Y2 , η̃|X1×Y1 are the corresponding optimal couplings between Y1 and Y2, X2

and Y2, and X1 and Y1 respectively. Then,

⟨⟨Y1, Y2⟩⟩W2 − ⟨⟨X1, X2⟩⟩W2 ≤
∫

⟨y1, y2⟩ dη̃|Y1×Y2(y1, y2)−
∫

⟨x1, x2⟩ dη̃|X1×X2(x1, x2)

≤
∫
⟨y1 − x1, y2⟩ − ⟨x1, x2 − y2⟩ dη̃(x1, x2, y1, y2)

≤ W2(P
X1 , P Y1) ·

(
E ∥Y2∥2

)1/2
+W2(P

X2 , P Y2) ·
(
E ∥X1∥2

)1/2
.
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Combining the above two bounds, we get the desried results.

Lemma S12 For L ∈ N, write V = {1, . . . , L}. Let (Xi,Ωi, νi), i ∈ V be L probability spaces.
Suppose that for someE ⊆ V ×V , and for each (i, j) ∈ E, we have a pre-specified joint probability
measure ξi,j on (Xi×Xj ,Ωi⊗Ωj) such that ξi,j |Xi = νi and ξi,j |Xj = νj . If the simple undirected
graphG = (V,E) is acyclic, then there exists a joint probability measure ρ on

(∏L
i=1Xi,

⊗L
i=1Ωi

)
such that ρ|Xi = νi for all i ∈ V and ρ|Xi×Xj = ξi,j for all (i, j) ∈ E.

Proof We assume first that G is connected. Then, there exists a traversal of all the vertices in G
such that apart from the first vertex in the traversal, each vertex has exactly one edge connected
to an earlier vertex. This can be done by using e.g. depth-first search or breadth first search, after
arbitrarily assigning a root node, and each node is connected only to its parent node when first
visited. Hence, without loss of generality, we may relabel the nodes so that this traversal is given
by the ordering 1, 2, . . . , L. We now prove by induction that for any ℓ ∈ {1, . . . , L}, there exists a
measure ρ1,...,ℓ on X1 × · · · × Xℓ such that ρ1,...,ℓ|Xi = νi for all i ∈ {1, . . . , ℓ} and ρ1,...,ℓ|Xi×Xj =
ξi,j for all (i, j) ∈ E ∩ {1, . . . , ℓ}2.

The base case of the induction is trivially true as we can take ρ1 = ν1. Now assume that we
have successfully constructed ρ1,...,ℓ−1 for some ℓ ∈ {2, . . . , L}. Let ℓ′ be the only neighbour of
ℓ in {1, . . . , ℓ − 1} (the existence and uniqueness of ℓ′ is guaranteed by the traversal ordering of
the vertices in the previous paragraph). By the Disintegration Theorem (see e.g. Graf and Mauldin,
1989), there exists a probability measure ξℓ|ℓ′(· | xℓ′) on Xℓ such that dξℓ|ℓ′(xℓ | xℓ′)dνℓ′(xℓ′) =
dξℓ′,ℓ(xℓ′ , xℓ). Now, we define

dρ1,...,ℓ(x1, . . . , xℓ) = dρ1,...,ℓ−1(x1, . . . , xℓ−1)dξℓ|ℓ′(xℓ | xℓ′).

To see that ρ1,...,ℓ satisfies the required conditions, we check that for any B ∈ Ωi, ρ1,...,ℓ|Xi(B) =
ρ1,...,ℓ−1|Xi(B) = νi(B) if i ≤ ℓ− 1 and

ρ1,...,ℓ|Xℓ
(B) = ρ1,...,ℓ(X1 × · · · × Xℓ−1 ×B) =

∫
Xℓ′

∫
B
dξℓ|ℓ′(xℓ | xℓ′)dρ1,...,ℓ−1|Xℓ′ (xℓ′)

=

∫
Xℓ′

∫
B
dξℓ|ℓ′(xℓ | xℓ′)dνℓ′(xℓ′) = ξℓ′,ℓ(Xℓ′ ×B) = νℓ(B),

if i = ℓ. Moreover, if (i, j) ∈ E ∩{1, . . . , ℓ}2, then for A ∈ Ωi and B ∈ Ωj , we either have (i, j) ∈
E ∩{1, . . . , ℓ− 1}2, in which case ρ1,...,ℓ|Xi×Xj (A×B) = ρ1,...,ℓ−1|Xi×Xj (A×B) = ξi,j(A×B),
or (i, j) = (ℓ′, ℓ) (or (ℓ, ℓ′) which can be handled symmetrically), in which case,

ρ1,...,ℓ|Xℓ′×Xℓ
(A×B) =

∫
A

∫
B
dξℓ|ℓ′(xℓ | xℓ′)dρ1,...,ℓ−1|Xℓ′ (xℓ′)

=

∫
A

∫
B
dξℓ|ℓ′(xℓ | xℓ′)dνℓ′(xℓ′) = ξℓ′,ℓ(A×B).

This completes the induction. In particular, ρ1,...,L satisfies the desired properties of ρ in the lemma.
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A.9. Proof for Theorem 8

Define event Θ := {∥b̂ − b∗∥Σ < 1}, then in the regime of (6) we have P(Θ) ≥ 1 − 4(log n)−1.
We henceforth work on the event Θ throughout the proof. Write the linear transformation A(b) =
(b∗ − b)X + ε for any b ∈ Rd×p.

Our proof strategy for Theorem 8 is to use the fact that b∗ maximizes L and b̂ maximizes Ln to
bound L(b̂)−L(b∗) by |L(b∗)−Ln(b∗)|+|L(b̂)−Ln(b̂)|. Write B := {b ∈ Rd×p : ∥b−b∗∥Σ < 1}.
Then on the event Θ, the key to control the latter is to establish a bound on

sup
b∈B

∣∣∣W2
2 (P

A(b), PU )−W2
2 (P

A(b)
n , PUm)

∣∣∣
in Proposition S17. The proof of Proposition S17 relies on rewriting the Wasserstein distances using
the Kantorovich dual formulation. Specifically, writing Φ̃b := {(f, g) ∈ L1(P

A(b)
n ) × L1(PUm) :

vTu ≤ f(v) + g(u), ∀(v, u) ∈ Supp(P
A(b)
n )× Supp(PUm)}, then for any fixed b ∈ B, by Theorem

S9 and Lemma S28, there exists a conjugate pair (φ̃b;n,m, φ̃∗
b;n,m) such that

(φ̃∗
b;n,m, φ̃b;n,m) = argmin

(f,g)∈Φ̃b

∫
f dPA(b)n +

∫
g dPUm , (S37)

1

2
W2

2 (P
A(b)
n , PUm) =

∫
∥v∥2/2− φ̃∗

b;n,m(v) dP
A(b)
n (v) +

∫
∥u∥2/2− φ̃b;n,m(u) dP

U
m(u),

and

∥u∥2/2 ≤ φ̃b;n,m(u) ≤ ∥u∥2/2 + Lb;n,m, ∥v∥2/2− Lb;n,m ≤ φ̃∗
b;n,m(v) ≤ ∥v∥2/2, (S38)

where Lb;n,m := max{L2(A(b)i, Uj) : 1 ≤ i ≤ n, 1 ≤ j ≤ m}.
Before stating Proposition S17, we first establish two results on extensions of φ̃b;n,m and φ̃∗

b;n,m

onto the entire Rd, which will form the core of the argument in the proof of Proposition S17.

Proposition S13 Let φ̃ and φ̃∗ be defined as in (S37) and setLb;n,m := maxi∈[n],j∈[m] L2(A(b)i, Uj).
Let ζb;n,m, φb;n,m and φ∗

b;n,m be defined such that for all v ∈ Rd,

ζb;n,m(v) := sup
u∈Supp(PA(b)

n )

{
vTu− φ̃b;n,m(u)

}
∨
(∥v∥2

2
− Lb;n,m

)
,

φb;n,m(v) := sup
u∈Rd

{
vTu− ζb;n,m(u)

}
,

φ∗
b;n,m(v) := sup

u∈Rd

{
vTu− φb;n,m(u)

}
.

Then we have

(i) for any (u, v) ∈ Rd × Rd, vTu ≤ φb;n,m(u) + φ∗
b;n,m(v);

(ii) φb;n,m(u) = φ̃b;n,m(u) for u ∈ Supp(P
A(b)
n ) andφ∗

b;n,m(v) = φ̃∗
b;n,m(v) for v ∈ Supp(PUm);

(iii) for u, v ∈ Rd, −Lb;n,m ≤ ∥u∥2
2 − φb;n,m(u) ≤ 0 and 0 ≤ ∥v∥2

2 − φ∗
b;n,m(v) ≤ Lb;n,m;
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(iv) Let πb;n,m ∈ C(PA(b)n , PUm) be the optimal coupling between PA(b)n and PUm . Then for any
(u, v) ∈ Supp(πb;n,m), we have v ∈ ∂φb;n,m(u) and u ∈ ∂φ∗

b;n,m(v).

Proof Note (i) is immediately followed by the definition of φb;n,m and φ∗
b;n,m. For part (ii), note

for any u ∈ Supp(PUm)

φb;n,m(u) ≤ sup
v∈Rd

{
vTu− vTu+ φ̃b;n,m(u)

}
= φ̃b;n,m(u). (S39)

For any v ∈ Supp(P
A(b)
n ),

φ∗
b;n,m(v) ≤ sup

u∈Rd

{
vTu− vTu+ ζb;n,m(v)

}
= ζb;n,m(v) ≤ φ̃∗

b;n,m(v) ∨
(∥v∥2

2
− ∥c∥∞

)
≤ φ̃∗

b;n,m(v). (S40)

Assume any of (S39) or (S40) holds strictly, then because PA(b)n and PUm are finitely support it
follows that∫
φb;n,m(u)dP

U
m(u) +

∫
φ∗
b;n,m(v)dP

A(b)
n (v) <

∫
φ̃b;n,m(u)dP

U
m(u) +

∫
φ̃∗
b;n,m(v)dP

A(b)
n (v),

which contradicts to the optimality of (φ̃b;n,m, φ̃∗
b;n,m). This completes the proof for (ii).

For part (iii), by the bounded property (S38) and preceding constructions we have for u ∈ Rd

∥u∥2/2− φb;n,m(u) ≥ inf
v∈Rd

{
L2(u, v)− Lb;n,m

}
= −Lb;n,m. (S41)

Moreover, we have

∥u∥2/2− φb;n,m(u) ≤ −
(
∥u∥2/2− ζb;n,m(u)

)
= − inf

u′∈Supp(PA(b)
n )

(
L(u, u′)− (∥u′∥2/2− φ̃b;n,m(u

′))
)
∧ Lb;n,m ≤ 0,

(S42)

where the last step follows by the fact that ∥u′∥2/2 − φ̃b;n,m(u
′) ≤ 0, for all u′ ∈ Supp(P

A(b)
n ).

Here, we proved that −Lb;n,m ≤ ∥u∥2
2 − φb;n,m(u) ≤ 0 and the result holds. For any v ∈ Rd, by

(S42) we have

∥v∥2/2− φ∗
b;n,m(v) = inf

u∈Rd

(
L2(u, v)− (∥u∥2/2− φb;n,m(u))

)
≥ 0. (S43)

Moreover, by (S41) it follows that

∥v∥2/2− φ∗
b;n,m(v) ≤ −(∥v∥2/2− φb;n,m(v)) ≤ Lb;n,m. (S44)

Thus we have 0 ≤ ∥v∥2
2 − φ∗

b;n,m(v) ≤ Lb;n,m as desired.
To prove (iv), note (ii) implies that∫

(φb;n,m(u) + φ∗
b;n,m(v)− vTu)dπb;n,m(u, v) = 0.
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Furthermore, part (i) implies that the integrand of the above is nonnegative. Thus it follows that

φb;n,m(u) + φ∗
b;n,m(v) = vTu, ∀(u, v) ∈ Supp(πb;n,m).

Then the conclusion follows by (Villani, 2021, Proposition 2.4).

Now we argue that for all b ∈ B, φ∗
b;n,m (and similarly, φb;n,m) is a piecewise Lipschitz function

on a high probability event that does not depend on b. The following lemma plays a key role in the
argument. It implies that the local Lipschitz constant of φ∗

b;n,m is largely driven by the magnitude of
the subdifferential of φ∗

b;n,m. The proof is analogous to Manole and Niles-Weed (2024, Lemma 10),
but for the sake of completeness, we provide it here.

Lemma S14 Suppose P and Q are two distributions on Rd. Let (φ0, φ
∗
0) be the conjugate pair

that solves Ĩ2(P,Q) (see (S17)). Then for any r ≥ 1, φ0 : Bd0,r → R and φ∗
0 : Bd0,r → R are

Lipschitz continuous with parameters L0 and L∗
0 respectively, where

L0 := sup
{
∥y∥ : y ∈ ∂φ0

(
Bd0,r

)}
, and L∗

0 := sup
{
∥z∥ : z ∈ ∂φ∗

0(Bd0,r)
}

Proof We focus on φ0 and the same argument can be used for φ∗
0. Firstly, by Villani (2021,

Proposition 2.4), for any v ∈ Bd0,r, φ0 admits the following representation

φ0(v) = sup
u∈∂φ0(v)

{
uT v − φ∗

0(u)
}
.

Thus, there exists a sequence of uk ∈ ∂φ0(v) such that

φ0(v) ≤ uTk v − φ∗
0(uk) +

1

k
, for k = 1, 2, . . . .

Then for any v′ ∈ Bd0,r, we have

φ0(v)− φ0(v
′) ≤ uTk v − φ∗

0(uk) +
1

k
− uTk v

′ + φ∗
0(uk)

= uTk (v − v′) +
1

k
≤ L0∥v − v′∥+ 1

k
,

and the Lipschitz property follows by letting k → +∞.

For all j ≥ 0, define Lj := [−3j , 3j ]d and let Pj := Lj \ Lj−1. We note that each Pj can be
further partitioned into N := 3d−1 cubes, say {Pj,k}k=1,...,N , that are each congruent to Lj−1. We
note that all elements of Pj has norm bounded by ℓj := supz∈Pj

∥z∥ = 3j
√
d.

For any I ⊂ Rd, we write C(I) for the set of all the convex function on I . We define Cm,u(I) :=
{f ∈ C(I) : ∃m,u > 0, s.t. |f(x) − f(y)| ≤ m∥x − y∥, |f(x)| ≤ u, ∀x, y ∈ I} to be the class
of m-Lipschitz convex functions on I bounded in value by u. Given a sequence M and U , define

CM,U :=
{
f : Rp × Rd → R : f |Pj,k

∈ CMj ,Uj (Pj,k), j ≥ 0, 1 ≤ k ≤ N
}
.

We now prove that for suitable choices ofM , U andR, T , φ∗
b;n,m−φ∗

b;n,m(0) ∈ CM,U and φb;n,m−
φb;n,m(0) ∈ CR,T on a high probability event that does not depend on b. Recalling that we write
S = Σ−1/2X and Si = Σ−1/2Xi for i ∈ [n].

29



YANG WANG

Let’s first discuss the concentration property of PU and PA(b) and their empirical counterparts
PUm and PA(b)n . In fact, due to the Gaussian assumption, PU is a (

√
2d, 2)-sub-Weibull distribution.

Moreover, by the sub-Weibull assumptions on S and ε, there exists a constant σ > 0 depends on
σ1, σ2 such that ∥S∥+∥ε∥ ∼ (σ, α∧β)-sub-Weibull. Thus by noting that ∥A(b)∥ ≤ ∥S∥+∥ε∥ for
all b ∈ B, PA(b) is a (σ, α ∧ β)-sub-Weibull random vector as well. However, the concentration of
the corresponding empirical measures introduces extra randomness on the sub-Weibull parameters,
as defined here

E1,m =

∫
exp

(∥u∥2
4d

)
dPUm , and Eb;2,n =

∫
exp

(∥v∥α∧β
4σα∧β

)
dPA(b)n .

The following lemma constructs the sub-Weibull properties of PUm and PA(b)n .

Lemma S15 Define E2,n := supb∈B Eb;2,n. Then for any fixed n,m ≥ 1 we have that PUm is
((2dE1,m)

1/2, 2)-sub-Weibull and PA(b)n is (σ(2E2,n)
1/(α∧β), α ∧ β)-sub-Weibull, where E1,m ≤

2 +
√

logm
m with probability at least 1 − 2(logm)−1 and E2,n ≤ 2 +

√
logn
n with probability at

least 1− 2(log n)−1.

Proof We only need to note that E1,m ≥ 1, and Jensen’s inequality yields that∫
exp

( ∥u∥2

4dE1,m

)
dPUm ≤ E

1
E1,m

1,m ≤ 2.

One the other hand, for each fixed b ∈ B, a similar calculation can be applied to PA(b)n and obtain
that PA(b)n ∼ (σ(2Eb;2,n)

1/(α∧β), α ∧ β)-sub-Weibull. Thus by noting that∫
exp

( ∥v∥α∧β

4Eb;2,nσα∧β

)
dPA(b)n (v) ≥

∫
exp

( ∥v∥α∧β

4E2,nσα∧β

)
dPA(b)n (v)

we have PA(b)n ∼ (σ(2E2,n)
1/(α∧β), α ∧ β)-sub-Weibull

Now we control the sub-Weibull parameters. Define Γ1 :=
{
E1,m ≤ 2 +

√
logm
m

}
, then by the

Chebyshev’s inequality we have

P(Γc1) ≤ P
(
|E1,m − EE1,m| ≥

√
logm

m

)
≤ mVar(E1,m)

logm
≤ 2

logm
.

To control E2,n, we first note

EE2,n = E sup
b∈B

exp
(1
4

(∥A(b)∥
σ

)α∧β) ≤ E exp
(1
4

(∥S∥+ ∥ε∥
σ

)α∧β) ≤ 2.

Then define Γ2 :=
{
E2,n ≤ 2 +

√
logn
n

}
, then we have

P(Γc2) ≤ P
(
E2,n − E exp

(1
4

(∥S∥+ ∥ε∥
σ

)α∧β) ≥
√

log n

n

)
≤ P

( 1

n

n∑
i=1

exp
(1
4

(∥Si∥+ ∥εi∥
σ

)α∧β)− E exp
(1
4

(∥S∥+ ∥ε∥
σ

)α∧β) ≥
√

log n

n

)
≤ 2

log n
,
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where the final inequality is obtained by Chebyshev’s inequality.

Proposition S16 Let Jn =
⌊
1
2 log3

(
logn
16γ2d

)⌋
, Im =

⌊
1
2 log3

(
logm
8d

)⌋
and ln,m = (logm) ∨

(log n)2/(α∧β). Then there exist an event Υ with probability at least 1− 12(log n)−1 and constants
C ′
i, C

′
i, C̃i, C̃i > 0 depends on d, γ1, γ2, σ1, σ2, α, β such that on Υ, for all b ∈ B, we have φ∗

b;n,m−
φ∗
b;n,m(0) ∈ CM,U and φb;n,m − φb;n,m(0) ∈ CR,T where M and U are chosen as

Mj =

{
C ′
0ℓj , 0 ≤ j ≤ Jn

C ′
1ln,mℓj , j > Jn

, Uj =

{
C̃0ℓ

3
j , 0 ≤ j ≤ Jn

C̃1ln,mℓ
3
j , j > Jn

, (S45)

and R and T are chosen as

Ri =

{
C ′
2ℓi, 0 ≤ i ≤ Im

C ′
3ln,mℓi, i > Im

, Ti =

{
C̃2ℓ

3
i , 0 ≤ i ≤ Im

C̃3ln,mℓ
3
i , i > Im

. (S46)

Proof Note Lemma S14 implies that in order to quantify the Lipschitz constant of φ∗
b;n,m on Pj,k,

we only need to bound the magnitude of sup{∥y∥ : y ∈ ∂φ∗
b;n,m(Pj,k)}. To this end, we first

note that ∂φ∗
b;n,m(v) = ∂c(∥ · ∥2/2 − φ∗

b;n,m)(v) and ∥ · ∥2/2 − φ∗
b;n,m is obviously a c-concave

function. Thus by Lemma S13(iv) and Lemma S15, we can apply Manole and Niles-Weed (2024,
Theorem 11) to obtain2 that there exists a constant C0 > 0 depends on d such that for any v ∈ Pj,k
and y ∈ ∂φ∗

b;n,m(v), we have

∥y∥ ≤ C0(2dE1,m)
1/2

{
(∥v∥+ 1) ∨ sup

w:∥v−w∥≤2

[
log

( 1

P
A(b)
n (Bdw,3)

)]1/2}
. (S47)

Thus to upper bound the magnitude of ∂φ∗
b;n,m(v) we only need to prove an anticoncentration bound

for PA(b)n .
We first note that from (12), for any 0 ≤ j ≤ Jn, v ∈ Pj and w such that ∥w− v∥ ≤ 2, we have

P ε(Bdw,2) ≥
∫
Bd
w,2\Bd

0

γ1 exp(−γ2∥e∥2) de ≥
πd/2(2d − 1)

Γ(d/2 + 1)
γ1 exp

(
− 2γ2∥z∥2 − 50γ2

)
≥ 2K1 exp(−2γ2ℓ

2
j ), (S48)

where K1 ∈ (0, 1) is a constant depending on d, γ1, γ2. Observe that the right-hand side does not
depend on z or w, hence, we may take infimum over v ∈ Pj and w such that ∥w− v∥ ≤ 2 and have
the same lower bound. Hence, we have

P ε ⊗ PS(Bdw,2 × Bp0) = P ε(Bdw,2)PS(B
p
0) ≥ 2K ′

1 exp(−2γ2ℓ
2
j ),

for some K ′
1 ∈ (0, 1) depends on d, γ1, γ2, σ1 and α, where the sub-Weibull assumption on S has

been exploited in the final inequality.

2. We remark that the bound given below uses the probability mass on Bd
w,3 whereas the original formulation in Manole

and Niles-Weed (2024, Theorem 11) has Bd
w,1 instead. We have used a slightly different radius here for the conve-

nience of the subsequent argument. The exact radius is unimportant in the argument used in that theorem and the
same proof will work verbatim with radius changed to 3.
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On the other hand, let Bd := {Bda,r : a ∈ Rd, r > 0} be the set of all balls in Rd. Let

ũ =
√

160d logn
n and define

Υ1 :=
{
sup
B∈Bd

|P εn ⊗ PSn (B × Bp0,)− P ε ⊗ PS(B × Bp0)| < ũ
}
.

Thus, since ũ ≲ K ′
1n

−1/8 ≤ K ′
1e

−2γ2ℓ2j for 0 ≤ j ≤ Jn, working on Υ1 we have P εn ⊗ PSn (Bdw,2 ×
Bd0) ≥ K ′

1 exp(−2γ2ℓ
2
j ). Thus consider the event

Υ2 :=

Jn⋂
j=0

{
inf
v∈Pj

inf
w:∥v−w∥≤2

P εn ⊗ PSn (Bdw,2 × Bp0) ≥ K ′
1 exp

(
−2γ2ℓ

2
j

)}
,

we have Υ1 ⊂ Υ2. Note the Vapnik–Chervonenkis (VC) dimension of Bd is no more than d + 2
(See e.g. Devroye et al., 2013, Corollary 13.2), by the VC-inequality (see Vapnik and Chervonenkis,
2015, Theorem 2) we have

P(Υc
1) ≲ nd+2 exp(−nũ2/32) ≤ n2−4d ≤ n−2, (S49)

whence P(Υ2) ≥ 1− n−2. Thus working on Υ2 ∩ Γ1, by ∥A(b)i∥ ≤ ∥Si∥+ ∥εi∥ for all b ∈ B and
i ∈ [n], we have PA(b)n (Bdw,3) ≥ K ′

1 exp(−2γ2ℓ
2
j ), and combining this with (S47), we conclude that

for any 1 ≤ k ≤ N and 0 ≤ j ≤ Jn, there exits some sufficiently large constant C ′
0 > 0 depends

on d, γ1, γ2, σ1, α such that

sup
y∈∂φ∗

b;n,m(Pj,k)
∥y∥ ≤ C0(2dE1,m)

1/2
(
ℓj + 1 +

√
2ℓjγ

1/2
2 +

√
log(1/K ′

1)
)

≤ C ′
0E

1/2
1,mℓj ≤ C ′

0

(
2 +

√
logm

m

)1/2
ℓj ≲ C ′

0ℓj :=Mj . (S50)

When j > Jn, by Lemma S13(iii) and Manole and Niles-Weed (2024, Proposition 16), we
only need to bound Lb;n,m. Note Lb;n,m ≤ Ln,m := 2maxi∈[n] ∥Σ−1/2Xi∥2 + 2maxi∈[n] ∥εi∥2 +
2maxj∈[m] ∥Uj∥2. Define rn,m := 2σ21(4 log n)

2/α + 2σ22(4 log n)
2/β + 8d logm and consider the

event Υ3 := {Ln,m < rn,m}. By part(i) of Proposition S24 and union bound, it follows that

P
(
Υc

3

)
≤ P

(
max
i∈[n]

∥Σ−1/2Xi∥2 ≥ σ21(4 log n)
2/α

)
+ P

(
max
i∈[n]

∥εi∥2 ≥ σ22(4 log n)
2/β

)
+ P

(
max
j∈[m]

∥Uj∥2 ≥ 8d logm
)
≤ 4n−1 + 2m−1. (S51)

Therefore on the event Υ3, by Manole and Niles-Weed (2024, Proposition 16) we have that there
exists a universal constant C1 > 0 and a sufficiently large C ′

1 > 0 depends on σ1, σ2 such that for
any 1 ≤ k ≤ N ,

sup
y∈∂φ∗

b;n,m(Pj,k)
∥y∥ ≤ C1(ℓj + rn,m) ≤ C ′

1ln,mℓj =:Mj , for all j > Jn. (S52)
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Putting (S50) and (S52) together, for some constants C̃0, C̃1 > 0 depend on d, γ1, γ2, σ1, σ2, α,
we have φ∗

b;n,m − φ∗
b;n,m(0) ∈ CM,U on the event Υ′ := Υ2 ∩ Γ1 ∩ Υ3, where M = (Mj)j≥0 and

U = (Uj)j≥0 are chosen as

Mj =

{
C ′
0ℓj , 0 ≤ j ≤ Jn

C ′
1ln,mℓj , j > Jn

, Uj =

{
C̃0ℓ

3
j , 0 ≤ j ≤ Jn

C̃1ln,mℓ
3
j , j > Jn

,

as desired.
A similar argument can be applied to study the Lipschitz property of φb;n,m. Since U ∼

N (0, Id), for all i ≤ Im, u ∈ Pi and all w such that ∥w − u∥ ≤ 2, we have

PU (Bdw) =
∫
Bd
w

(2π)−d/2 exp(−∥y∥2/2) dy ≥ 2K2e
−ℓ2i ,

where K2 ∈ (0, 1) is a constant depends only on d. Let ṽ =
√

160d logm
m , and define

Υ4 :=
{
sup
B∈Bd

|PUm(B)− PU (B)| < ṽ
}
, and Υ5 :=

Im⋂
i=0

{
inf
u∈Pi

inf
w:∥u−w∥≤2

PUn (Bdw) ≥ K2e
−ℓ2i

}
.

Then since ṽ ≤ m−1/8 ≤ K2e
−ℓ2Im we have Υ4 ⊂ Υ5. Furthermore, by leveraging the VC-

inequality again, we can deduce that P(Υc
4) ≤ m−2, which implies that P(Υ5) ≥ 1−m−2. On the

event Υ5 ∩Γ2, by applying Manole and Niles-Weed (2024, Theorem 11) and Lemma S14 again we
obtain that for 0 ≤ i ≤ Im, there exists constants C2 > 0 depends on d, α, β and C ′

2 > 0 depends
on d, σ, α, β such that

sup
z∈∂φb;n,m(u)

∥z∥ ≤ C2σ(2E2,n)
1/(α∧β)(2ℓi + 1 +

√
log(1/K2))

≤ C ′
2E

1/(α∧β)
2,n ℓi ≤ C ′

2

(
2 +

√
log n

n

)1/(α∧β)
ℓi ≲ C ′

2ℓi := Ri. (S53)

When i > Im, since we still have |∥u∥2/2 − φb;n,m| ≤ Lb;n,m ≤ Ln,m by Lemma S13(iii),
working on the event Υ3, there exists an absolute constant C3 > 0, and C ′

3 > 0 depends on σ1, σ2
such that for 1 ≤ k ≤ N .

sup
z∈∂φb;n,m(Pi,k)

∥z∥ ≤ C3(ℓi + rn,m) ≤ C ′
3ln,mℓi := Ri for i > Im. (S54)

Thus combine (S53) and (S54) we can deduce that there exists constants C̃2, C̃3 > 0 depend on
d, α, β, σ1, σ2 such that φb;n,m − φb;n,m(0) ∈ CR,T on the event Υ = Υ′ ∩Υ5 ∩ Γ2, where

Ri =

{
C ′
2ℓi, 0 ≤ i ≤ Im

C ′
3ln,mℓi, i > Im

, Ti =

{
C̃2ℓ

3
i , 0 ≤ i ≤ Im

C̃3ln,mℓ
3
i , i > Im

.

Finally, combining the controls on the probability of Υ2,Υ3,Υ5,Γ1 and Γ2, we arrive at the the
upper bound P(Υ) ≥ 1−n−2−4n−1−2m−1−m−2−2(logm)−1−2(log n)−1 ≥ 1−12(log n)−1

when m ≥ n, which completes the proof.

Now we are ready to introduce the core proposition in the proof.
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Proposition S17 There exists a constant C > 0 depending on d, α, β, σ1, σ2, γ1, γ2 such that for
any fixed n,m ≥ 1, the following inequality holds

sup
b∈B

∣∣W2
2 (P

A(b), PU )−W2
2 (P

A(b)
n , PUm)

∣∣ ≤ C(logm)
8

2∧α∧β

(√
p

n
+

1

n2/d

)
(S55)

with probability at least 1− 29(log n)−1.

Proof Note part (i) and part (iii) of Lemma S13 implies that (∥ · ∥2 − φ∗
b;n,m, ∥ · ∥2 − φb;n,m) is a

feasible pair to the duality of the Kantorovich problem between PA(b) and PU . This yields that

1

2
W2

2 (P
A(b), PU ) ≥

∫ (
∥v∥2

2
− φ∗

b;n,m(v)

)
dPA(b)(v) +

∫ (
∥u∥2

2
− φb;n,m(u)

)
dPU (u)

=

∫
∥v∥2

2
dPA(b)n (v) +

∫
∥u∥2

2
dPUm(u)

+

∫
∥v∥2

2
(dP (A(b) − dPA(b)n )(v) +

∫
∥u∥2

2
(dPU − dPUm)(u)

−
{∫

φ∗
b;n,m(v)dP

A(b)
n (v) + φb;n,m(u)dP

U
m(u)

}
−
{∫

φ∗
b;n,m(v)d

(
PA(b) − PA(b)n

)
(v) +

∫
φb;n,m(u)d

(
PU − PUm

)
(u)

}
.

By the definition of (φb;n,m, φ∗
b;n,m), we have W2

2 (P
A(b)
n , PUm) =

∫ (∥v∥2
2 −φ∗

b;n,m(v)
)
dP

A(b)
n (v)+∫ (∥u∥2

2 − φb;n,m(u)
)
dPUm(u). Consequently, from the above display, we deduce that

1

2
W2

2 (P
A(b)
n , PUm)− 1

2
W2

2 (P
A(b), PU )

≤
∫
φ∗
b;n,m(v)d

(
PA(b) − PA(b)n

)
(v) +

∫
φb;n,m(u)d

(
PU − PUm

)
(u)︸ ︷︷ ︸

=:Eb;n,m

+

∫
∥v∥2

2
d
(
PA(b)n − PA(b)

)
(v) +

∫
∥u∥2

2
d
(
PUm − PU

)
(u)︸ ︷︷ ︸

=:Fb;n,m

. (S56)

On the other hand, define Ψb := {(f, g) ∈ L1(PA(b))×L1(PU ) : vTu ≤ f(v)+g(u), ∀(v, u) ∈
Supp(PA(b)) × Supp(PU )}, then Theorem S9 implies that for any b ∈ B there exists a conjugate
pair (ψ∗

b , ψb) such that

(ψ∗
b , ψb) = argmin

f,g∈Ψb

∫
f dPA(b) +

∫
g dPU ,

1

2
W2

2 (P
A(b), PU ) =

∫
∥v∥2/2− ψ∗

b (v) dP
A(b)(v) +

∫
∥u∥2/2− ψb(u) dP

U (u).
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Since Ψb ⊆ Φ̃b, (∥v∥2/2 − ψ∗
b (v), ∥u∥2/2 − ψb(u)) is a feasible solution for the duality between

P
A(b)
n and PUm . Therefore, we can rerun the previous derivation and obtain that

1

2
W2

2 (P
A(b)
n , PUm)− 1

2
W2

2 (P
A(b), PU )

≥
∫
ψ∗
b (v)d

(
PA(b) − PA(b)n

)
(v) +

∫
ψb(u)d

(
PU − PUm

)
(u)︸ ︷︷ ︸

=:Gb;n,m

+

∫
∥v∥2

2
d
(
PA(b)n − PA(b)

)
(v) +

∫
∥u∥2

2
d
(
PUm − PU

)
(u). (S57)

Write the first two terms and the last two terms of (S56) as En,m and Fn,m respectively, and write
the first two terms of (S57) as Gn,m. Then combining (S56) and (S57), for ϑk defined in (S68), we
have

sup
b∈B

∣∣∣1
2
W2

2 (P
A(b)
n , PUm)− 1

2
W2

2 (P
A(b), PU )

∣∣∣ ≤ sup
b∈B

|Eb;n,m|+ 2 sup
b∈B

|Fb;n,m|+ sup
b∈B

|Gb;n,m|

≲ (logm)
6

2∧α∧β
(
ϑn +

√
p

n
+

√
log n

n
+ ϑm +

√
logm

m

)
,

≤ (logm)
8

2∧α∧β

(√
p

n
+

1

n2/d

)
. (S58)

with probability at least 1− 29(log n)−1, where we have used Lemmas S18, S21 and S20 to bound
each of the three terms in the penultimate inequality.

Lemma S18 There exists C > 0, depending only on d, α, β, γ2, σ1, σ2, and an event Ω with prob-
ability at least 1− 18(log n)−1, such that on Ω, for any b ∈ B, we have∣∣∣∣∫ φ∗

b;n,m(v) d
(
PA(b) − PA(b)n

)
(v)

∣∣∣∣ ≤ C(logm)
6

2∧α∧β

(
ϑn +

√
p

n
+

√
2 log n

n

)
∣∣∣∣∫ φb;n,m(u) d

(
PU − PUm

)
(u)

∣∣∣ ≤ C(logm)
6

2∧α∧β

(
ϑm +

√
2 logm

m

)
,

where ϑn is defined as (S68).

Proof We note that the value of the integrals on the left-hand side of both inequalities will not
change if we add any constant to the functions ϕ∗b;n,m and ϕb;n,m. Hence, we may assume without
loss of generality throughout this proof that ϕ∗b;n,m(0) = ϕb;n,m(0) = 0.

Note that due to the sub-Weibull assumptions on ε and S, and combining with Proposition
S25(ii), we have (ε, S) ∼ (ρ, α ∧ β)-sub-Weibull for ρ > 0 depending only on σ1 and σ2. Then let
κ = ρ(4 log n)1/(α∧β) and Ω1 := {max1≤i≤n ∥(εi, Si)∥ ≤ κ}, and by Proposition S24(i), we have

P(Ωc1) ≤ nP(∥(ε, S)∥ ≥ κ) ≤ 2n exp

{
−1

2
(κ/ρ)α∧β

}
≤ 2

n
.
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For any b ∈ B, define the linear projection Tb : Rp × Rd → Rd such that

Tb(s, e) := (b∗ − b)Σ1/2s+ e. (S59)

Write Eb = {Tb(s, e) ∈ Rd : (s, e) ∈ Bd+p0,κ }. Working on the event Ω1 and observing that
∥Tb∥op ≤ 1 for any b ∈ B, we have∫

Rd\Eb

φ∗
b;n,m(v) d

(
PA(b) − PA(b)n

)
(v) =

∫
Rd+p\Bd+p

0,κ

φ∗
b;n,m ◦ Tb(e, s) dP ε ⊗ PS(e, s)

(a)

≤
∫
Rd+p\Bd+p

0,κ

(
∥Tb(e, s)∥2

2
+ rn,m

)
d(P ε ⊗ PS)(e, s)

≤
∫
Rd+p\Bd+p

0,κ

(
∥(e, s)∥2

2
+ rn,m

)
d(P ε ⊗ PS)(e, s)

(b)

≤ C4e
− 1

4
(κ
ρ
)α∧β

+
2rn,m
n2

≲
C4

n
, (S60)

where we use part (iii) of Proposition S13 to obtain (a) and Lemma S26 to obtain (b) and C4 > 0 is
a constant only depending on d, σ1, σ2, α, β.

On the other hand, for X ⊆ Rd, we define Lip1,1(X ) := {f ∈ Lip1(X ) : supx∈X |f(x)| ≤ 1}
to be the class of 1-Lipschitz functions on X uniformly bounded by 1. Consider the following
function class

F :=
{
(s, e) 7→ (φ ◦ Tb)(s, e)1Bd+p

0
(s, e) : b ∈ B, φ ∈ Lip1,1(Bd0)

}
. (S61)

Let jn = (Jn+1)+ ⌈log3(ρ(4 log n)1/(α∧β)/d1/2)⌉. Then we have 3jn
√
d ≥ κ, which implies

that Bd0,κ ⊆
⋃jn
j=0

⋃N
k=1 Pj,k forPj,k defined before Lemma S15. Let Υ be the event with probability

1−12(log n)−1 on which Proposition S16 holds. Then, from Proposition S16, we haveφ∗
b;n,m|Bd

0,κ
is

Lipschitz continuous with parameterMjn and upper bound Ujn , forMj and Uj are defined in (S45).
Specifically, since jn > Jn, from (S45), there exists C5 > 0, depending only on d, α, β, σ1, σ2, γ2,
such that Mjn ∨ Ujn ≤ C5(logm)

5
2∧α∧β . Whence, observing that

φ∗
b;n,m

(
κTb(·, ·)

)
1Bd+p

0
(·, ·)

C5(logm)
5

2∧α∧β

∈ F ,

we deduce that∫
Eb

φ∗
b;n,m(v)

C5κ(logm)
5

2∧α∧β

d
(
PA(b) − PA(b)n

)
(v)

=

∫
Bd+p
0,κ

φ∗
b;n,m(Tb(s, e))

C5κ(logm)
5

2∧α∧β

d(P ε ⊗ PS − P εn ⊗ PSn )(e, s)

=

∫
Bd+p
0,1

φ∗
b;n,m(κTb(s, e))

C5(logm)
5

2∧α∧β

d(P ε ⊗ PS − P εn ⊗ PSn )(e, s)

≤ sup
f∈F

{∫
f(s, e) d(P ε ⊗ PS − P εn ⊗ PSn )(e, s)

}
. (S62)
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By Lemma S19 and Wainwright (2019, Theorem 4.10), there exists an event Ω2 with probability
at least 1− n−1, on which for some constant C ′ > 0, depending only on d, we have

sup
f∈F

∣∣∣∫ f d(P ε ⊗ PS − P εn ⊗ PSn )
∣∣∣ ≤ 2C ′

(
ϑn +

√
p

n

)
+

√
2 log n

n
. (S63)

Combining (S60), (S62) and (S63), we have on event Υ ∩ Ω1 ∩ Ω2 that∫
φ∗
b;n,m(v) d

(
PA(b) − PA(b)n

)
(v) ≤ C5κ(logm)

5
2∧α∧β

(
2C ′

(
ϑn +

√
p

n

)
+

√
2 log n

n

)
+
C4

n

≤ C ′
5(logm)

6
2∧α∧β

(
ϑn +

√
p

n
+

√
2 log n

n

)
,

for some C ′
5 > 0 depending only on d, α, β, σ1, σ2, γ2. A symmetric argument shows that on Υ ∩

Ω1 ∩Ω2,
∫
−φ∗

b;n,md(P
A(b) − P

A(b)
n ) can be controlled by the same upper bound. This establishes

the first claim of the lemma.
A similar argument is applied to obtain the bound for the empirical process of φb;n,m. Let

γ = 2
√
2d logm, and define Ω3 := {max1≤i≤m ∥Ui∥ ≤ γ}. Then by a union bound we have

P(Ωc3) ≤ mP
(
∥U1∥ ≥ γ

)
≤ 2m exp(−1

2
γ2

2d ) ≤ 2
m . Working on Ω3 we deduce that for some

absolute constant C6 > 0,

∫
Rd\Bd

0,γ

φb;n,m(u) d(P
U − PUm)(u) =

∫
Rd\Bd

0,γ

φb;n,m(u) dP
U (u)

(c)

≤
∫
Rd\Bd

0,γ

∥u∥2

2
dPU (u)

(d)

≤ C6

m2
. (S64)

In the above, we use part (iii) in the Proposition S13 to obtain (c) and Lemma S26 in inequality (d).
Define

H = {g 1Bd
0
: g ∈ Lip1,1(Bd0)}. (S65)

Let im := (Im + 1) +
⌈
1
2 log3(8d logm)

⌉
. Observe that 3im

√
d ≥ γ thus we have Bd0,γ ⊂⋃im

i=0

⋃N
k=1 Pi,k. Since φb;n,m ∈ CR,T on Υ according to Proposition S16, we have that φb;n,m|Bd

0,γ

is bounded and Lipschitz continuous with upper bound Tim and Lipshictz constant Rim as de-
fined in (S46). Moreover, by the explicit display of (S46), there exists a constant C7 depends on
d, σ1, σ2, α, β, γ2 such that Rim ∨ Tim ≤ C7(logm)

5
2∧α∧β . Therefore, on Υ, we have

φb;n,m(⟨γ, ·⟩)

C7(logm)
5

2∧α∧β

1Bd
0,1
(·) ∈ H,

and consequently,

1

C7γ(logm)
5

2∧α∧β

∫
Bd
0,γ

φb;n,m(u) d(P
U − PUm)(u) ≤ sup

h∈H

{∫
h(u) d(PU − PUm)(u)

}
. (S66)
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Then applying Lemma S19 and Wainwright (2019, Theorem 4.10), we derive that there exists an
event Ω4 with probability at least 1−m−1 such that on this event we have

sup
h∈H

∣∣∣∣∫ h d(PU − PUm)

∣∣∣∣ ≤ 2ϑm +

√
2 logm

m
. (S67)

Consequently, combining (S64), (S66) and (S67), and working on the event Υ∩Ω3∩Ω4, we obtain∫
φb;n,m(u) d(P

U − PUm) ≤ C7(logm)
5

2∧α∧β γ
(
2ϑm +

√
2 logm

m

)
+
C6

m
,

≤ C ′
7(logm)

6
2∧α∧β

(
ϑm +

√
2 logm

m

)
.

for some C ′
7 depends on d, σ1, σ2, α, β, γ2. A symmetric argument can be applied to establish the

upper bound for
∫
−φb;n,m(u) d(PU − PUm) and the second claim follows. Finally, the proof is

complete by observing that P(Υ ∩ Ω1 ∩ Ω2 ∩ Ω3 ∩ Ω4) ≥ 1− 18(log n)−1.

Lemma S19 Suppose that T be a subset of linear maps from Rp to Rd whose operator norms
are bounded by 1 and let L be a subset of {g : g ∈ Lip1,1(Bd0), g(0) = 0 and g is convex}. Define
F := {(g ◦ h)1Bp

0
: h ∈ T , g ∈ L}. Let P ∈ P2(Rp). Then exists C > 0, depending only on d,

such that

Rn(F , P ) ≤ C

(
ϑn +

√
p

n

)
,

where

ϑk :=


k−2/d, if d ≥ 5,
k−1/2 log k, if d = 4,
k−1/2, if d ≤ 3.

(S68)

for k ∈ N.

Proof For any fixed δ ∈ (0, 1), let G be a δ-covering set of L with respect to ∥ · ∥L∞(Bd
0)

. By

Bronshtein (1976, Remark 1 and Theorem 6), we have N0 := |G| ≤ eC8(4/δ)d/2 for some C8 > 0,
depending only on d. Similarly, let H be a δ-covering set of T with respect to ∥·∥op. By Wainwright
(2019, Lemma 5.7), we haveN1 := |H| ≤ (1+2/δ)dp. Now, given any f = g ◦h ∈ F , we can find
g′ ∈ G and h′ ∈ H such that ∥g′ − g∥L∞(Bd

0)
≤ δ and ∥h′ − h∥op ≤ δ. Consequently, for X ∼ P ,

we have

∥(g ◦ h− g′ ◦ h′)1Bp
0
∥L2(P ) ≤ ∥(g ◦ h− g′ ◦ h)1Bp

0
∥L2(P ) + ∥(g′ ◦ h− g′ ◦ h′)1Bp

0
∥L2(P )

=
{
E
∣∣∣(g − g′) ◦ h(X)1{∥X∥≤1}

∣∣∣2}1/2
+
{
E
∣∣∣g′ ◦ (h− h′)(X)1{∥X∥≤1}

∣∣∣2}1/2
≤ 2δ.

which implies

logN(2δ,F , ∥ · ∥L2(P )) ≤ log(N0N1) ≤ C8

(
4

δ

)d/2
+ dp log

(
1 +

2

δ

)
≤ C8

(
4

δ

)d/2
+

2dp

δ
.

(S69)
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Since all functions in F are uniformly bounded by 1, the L2(P )-diameter of F is bounded by 2.
Thus, by Dudley’s chaining (see e.g. Wainwright, 2019, Theorem 5.22), for any ϵ ∈ [0, 1], we have

Rn(F , P ) ≤ 2ϵ+
32√
n
E
∫ 2

ϵ/4
log1/2N(δ,F , ∥ · ∥L2(P )) dδ

≤ 2ϵ+
25+3d/4C

1/2
8

n1/2

∫ 2

ϵ/4

1

δd/4
dδ +

64(dp)1/2

n1/2

∫ 2

ϵ/4

1

δ1/2
dδ.

By choosing ϵ ≍ n−2/d if d ≥ 4 and ϵ = 0 otherwise, we deduce from the previous inequality that
there exists C > 0 depending only on d such that

Rn(F , P ) ≤ C


n−2/d + (p/n)1/2, if d ≥ 5

n−1/2(log n+ p1/2), if d = 4

(p/n)1/2, if d ≤ 3,

,

completing the proof.

Lemma S20 There exists C > 0 depending only on d, α, β, σ1, σ2, γ1, γ2, such that with probabil-
ity at least 1− 6/n, both of the following inequalities hold:

sup
b∈B

∣∣∣∣∫ ψ∗
b (v) d(P

A(b) − PA(b)n )(v)

∣∣∣∣ ≤ C(logm)
2

2∧α∧β n−1/2

sup
b∈B

∣∣∣∣∫ ψb(u) d(P
U − PUm)(u)

∣∣∣∣ ≤ C(logm)
2

2∧α∧βm−1/2.

Proof Since adding a constant to ψ∗
b or ψb will not change the value of

∫
ψ∗
b (v) d(P

A(b)−PA(b)n )(v)
or

∫
ψb(u) d(P

U − PUm)(u), we assume ψ∗
b (0) = ψb(0) = 0 with out loss of generality. We first

note that E ∥(b∗ − b)Σ1/2S∥2 = ∥b∗ − b∥2Σ ≤ 1, for any b ∈ B. By Lemma S27 and the anti-
concentration inequality of ε given in (12), there exists a constant M1 > 0 depends on γ1 and γ2
such that the density function of A(b), write as fA(b), have the anti-concentration inequality

fA(b)(v) ≥M1 exp(−2γ2∥v∥2), for all ∥v∥ ≥ 2.

Then by recalling that PU ∼ (
√
2d, 2)-sub-Weibull, we apply Manole and Niles-Weed (2024, The-

orem 11)3 to obtain that ∥∇ψ∗
b (v)∥ ≤ C(∥v∥ + 1) for all v ∈ Rd, where C > 0 is a constant

depending on d, γ1, γ2. Therefore, applying mean value theorem, we have |ψ∗
b (v)| ≤ C(∥v∥+ 1)2

for all v ∈ Rd.

3. In the original Theorem 11 of Manole and Niles-Weed (2024), a regular condition is required on the density function
of the source probability measure. Nevertheless, it is indeed sufficient to reestablish the result by merely assuming an
anti-concentration inequality on the density function of the source probability measure, as we have proven for fA(b)

here.
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Define Ω1 := {max1≤i≤n ∥(εi, Si)∥ ≤ κ} and Eb := {Tb(s, e) : (s, e) ∈ Bd+p0,κ } for each fixed
b ∈ B. From the proof of Lemma S18, we have P(Ω1) ≥ 1− 2/n. Then on Ω1 we can obtain that

sup
b∈B

∣∣∣∫
Rd\Eb

ψ∗
b (v) d(P

A(b) − PA(b)n )(v)
∣∣∣ = sup

b∈B

∣∣∣∫
Rd+p\Bd+p

0,κ

ψ∗
b ◦ Tb(s, e) d(PS ⊗ P ε)(s, e)

∣∣∣
≤ C sup

b∈B

∫
Rd+p\Bd+p

0,κ

(1 + ∥Tb(s, e)∥)2 d(PS ⊗ P ε)(s, e)

≤ C sup
b∈B

∫
Rd+p\Bd+p

0,κ

(1 + ∥(s, e)∥)2 d(PS ⊗ P ε)(s, e)

≤ C ′

n
,

for some constant C ′ > 0 depending on d, α, β, σ1, σ2, γ1, γ2, where we used the fact that P (S,ε) ∼
(ρ, α ∧ β)-sub-Weibull and Lemma S26 in the final inequality. It therefore remains to control

G := sup
b∈B

∣∣∣∫
Eb

ψ∗
b (v) d(P

A(b)−PA(b)n )(v)
∣∣∣ = sup

b∈B

∣∣∣∫
Bd+p
0,κ

ψ∗
b ◦Tb(s, e) d(PS⊗P ε−PSn ⊗P εn)(s, e)

∣∣∣.
To simplify the notation, define the centered function

ψ̄∗
b (s, e) := ψ∗

b ◦ Tb(s, e)1{∥(s, e)∥ ≤ κ} − E[ψ∗
b ◦ Tb(S, ε)1{∥(S, ε)∥ ≤ κ}],

then it follows that ∥ψ̄∗
b∥∞ ≤ 2C(κ + 1)2 ≤ C(logm)

1
2∧α∧β . In this notation, we have G =

supb∈B |n−1
∑

i∈[n] ψ̄
∗
b (Si, εi)|. By Markov’s inequality, we then have

E(G) =
∫ +∞

0
P(G ≥ t) dt ≤ n−1/2 + C

∫ +∞

n−1/2

(logm)
2

2∧α∧β

nt2
dt ≲

(logm)
2

2∧α∧β

√
n

. (S70)

We now claim that G, when viewed as a function of (s1, e1), . . . , (sn, en), satisfies the bounded
difference property (see e.g. Wainwright, 2019, (2.32)). By symmetry, it suffices to consider a
perturbation on (s1, e1). Define v = (vi)

n
i=1, v

′ = (v′i)
n
i=1 where each vi = (si, ei), v

′
i = (s′i, e

′
i) ∈

Rd+p, such that vi = v′i for any i ̸= 1. We have

sup
b∈B

∣∣∣∣ 1n
n∑
i=1

ψ̄∗
b (vi)

∣∣∣∣− sup
b∈B

∣∣∣∣ 1n
n∑
i=1

ψ̄∗
b (v

′
i)

∣∣∣∣ ≤ sup
b∈B

{∣∣∣∣ 1n
n∑
i=1

ψ̄∗
b (vi)

∣∣∣∣− ∣∣∣∣ 1n
n∑
i=1

ψ̄∗
b (v

′
i)

∣∣∣∣}

≤ 1

n
sup
b∈B

∣∣∣ψ̄∗
b (v1)− ψ̄∗

b (v
′
1)
∣∣∣ ≤ 2C(logm)

1
2∧α∧β

n
,

estbalishing, the bounded difference property for G. Thus by McDiarmid’s inequality (see e.g.
Wainwright, 2019, Corollary 2.21), we obtain that the event

Λ1 :=
{
G ≤ EG+

√
2C(logm)

2
2∧α∧β

√
n

}
,

occurs with probability at least 1− 1/m.
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Thus, working on the event Ω1 ∩ Λ1, we deduce from (S70) that

sup
b∈B

∣∣∣∫ ψ∗
b (v)d(P

A(b) − PA(b)n )(v)
∣∣∣ ≤ C(logm)

2
2∧α∧β

√
n

+
C ′

n
≤ C(logm)

2
2∧α∧β

√
n

,

for some constant C > 1 depends on d, α, β, γ1, γ2, σ1, σ2, which completes the first claim of the
lemma.

For the second claim, in order to bound
∫
ψb(u) d(P

U − PUm)(u), we notice that the anti-
concentration property of PU holds due to the Gaussian assumption. Thus Manole and Niles-Weed
(2024, Theorem 11) implies that ∥∇ψb(u)∥ ≤ C̃(1 + ∥u∥)

2
α∧β for some C̃ > 0 depending on

d, σ1, σ2, α, β, and it follows that |ψb(u)| ≤ C̃(1 + ∥u∥)
2

α∧β
+1.

Define Ω2 := {max1≤i≤m ∥Ui∥ ≤ γ}. From the proof of Lemma S18 again, we have P(Ω2) ≥
1− 2/n. Working on Ω2, we have

sup
b∈B

∣∣∣∣∫
Rd\B0,γ

ψb(u)d(P
U − PUm)(u)

∣∣∣∣ = sup
b∈B

∣∣∣∣∫
Rd\B0,γ

ψb(u)dP
U (u)

∣∣∣∣
≤ C̃

∫
Rd\B0,γ

(1 + ∥u∥)
2

α∧β
+1
dPU (u) ≤ C̃

m
,

for some constant C̃ > 0 depending on d, α, β, σ1, σ2. Now, defining G̃ := supb∈B
∣∣∫

B0,γ
ψbd(P

U−
PUm)

∣∣, by the same argument as in the proof of the first part of this lemma, there is an event Λ2 with
probability at least 1−m−1, such that on Ω2 ∩ Λ2, we have

sup
b∈B

∣∣∣∫ ψb(u)d(P
U − PUm)(u)

∣∣∣ ≤ G̃+
C̃ ′

m
≤ EG̃+

C̄(logm)
2

2∧α∧β

√
m

+
C̃

m
≤ C̄(logm)

2
2∧α∧β

√
m

,

(S71)

for C̄ > 0 depending only on d, α, β, σ1, σ2, γ2.

Lemma S21 There exists C > 0 depending only on d, α, β, σ1, σ2, γ1, γ2, such that with probabil-
ity at least 1− 5/n, we have

sup
b∈B

∣∣∣∣∫ ∥v∥2 d
(
PA(b)n − PA(b)

)
(v)

∣∣∣∣ ≤ C(logm)
2

2∧α∧β n−1/2,∣∣∣∣∫ ∥u∥2 d
(
PU − PUm

)
(u)

∣∣∣∣ ≤ C

√
logm

m
.

Proof Observe that the only property of ψ∗
b that we used in the first part of the proof of Lemma S20

is that ∥∇ψ∗
b (v)∥ ≤ C(∥v∥ + 1) for all b ∈ B and v ∈ Rd. The same property is satisfied by the

function v 7→ ∥v∥2. Hence, a very similar proof to that of Lemma S20 will establish the first claim
here.

As for the second inequality, since Ui
i.i.d.∼ N (0, Id), we have

∑m
i=1 ∥Ui∥2 ∼ χ2

md. By Laurent
and Massart (2000, Lemma 1) we deduce that

P
(∣∣∣ 1
m

m∑
i=1

∥Ui∥2 − E ∥U∥2
∣∣∣ ≥ √

2d logm

m
+

2 logm

m

)
≤ 2

m
,
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which implies the second claim.

Proof of Theorem 8 Recalling that in the regime of (6) event Θ holds with probability at least
1 − 4(log n)−1, and working on Θ we have b̂ ∈ B. Thus there exists M > 0 depending only on d,
α, β, σ1, σ2, γ1, γ2 such that with probability at least 1− 33(log n)−1, we have

L(b̂)− L(b∗) ≤ 2 sup
b∈B

|L(b)− Ln,m(b)|

≤
∣∣∣ 1
m

m∑
i=1

∥Ui∥2 − E ∥U∥2
∣∣∣+ sup

b∈B

∣∣∣ 1
n

n∑
i=1

∥Tb(Si, εi)∥2 − E ∥Tb(Si, εi)∥2
∣∣∣

+ sup
b∈B

∣∣∣W2
2 (P

A(b), PU )−W2
2 (P

A(b)
n , PUm)

∣∣∣
≤M(logm)

8
2∧α∧β

(√
p

n
+

1

n2/d

)
, (S72)

where the second inequality uses the definition of ⟨⟨·, ·⟩⟩W2 and in the final inequality, we used
Lemma S21 to control the first two terms and Proposition S17 for the last term.

On the other hand, by the lower bound developed in (S31) and Lemma S22 we have for r :=
⟨⟨P ε, PU ⟩⟩W2 that

L(b̂)− L(b∗) ≥
√
r2 + ∥b∗ − b̂∥2Σ − r ≥ 1

2
(1 + r2)−1/2∥b∗ − b̂∥2Σ. (S73)

Combining (S72) with (S73), we obtain that

∥b∗ − b̂∥Σ ≤M(logm)
4

2∧α∧β

{(
p

n

)1/4

+
1

n1/d

}
, (S74)

with probability at least 1− 33(log n)−1. Here we close the proof.

Appendix B. Ancillary results

Lemma S22 For any a ≥ 0, we have inequality√
a+ x2 ≤

{
x2

2
√
a
+
√
a , if 0 ≤ x ≤ 1,

(x− 1) + 1
2
√
a
+
√
a , if x > 1.

,

and √
a+ x2 ≥

{
x2

2
√
a+1

+
√
a , if 0 ≤ x ≤ 1,

x−1√
a+1

+ 1
2
√
a+1

+
√
a , if x > 1.

Proof Write √
a+ x2 =

∫ x

0

t√
a+ t2

dt+
√
a.

Thus the first inequality can be obtained by utilizing t/
√
a+ t2 ≤ t/

√
a and t/

√
a+ t2 ≤ 1 in

the case of 0 ≤ t ≤ 1 and t ≥ 1 respectively. The second inequality follows by noting that
t/
√
a+ t2 ≥ t/

√
a+ 1 when 0 ≤ t ≤ 1 and t/

√
a+ t2 ≥ 1/

√
a+ 1 when t ≥ 1.
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Lemma S23 There exist independent random vectors Z and ε such that PZ , P ε ∈ P2(Rd) ∩
Pac(Rd) such that ⟨⟨Z + ε, U⟩⟩2W2

= ⟨⟨Z,U⟩⟩2W2
+ ⟨⟨ε, U⟩⟩2W2

.

Proof Consider independent random vectors Z ∼ N (0,Σ) and ε ∼ N (0,Γ). By the same argu-
ment as in (S30), we have

⟨⟨Z + ε, U⟩⟩W2 = Tr((Σ + Γ)1/2)

⟨⟨Z,U⟩⟩W2 = Tr(Σ1/2)

⟨⟨ε, U⟩⟩W2 = Tr(Γ1/2).

Hence, the desired result hold if we take Σ = σ2Id and Γ = γ2Id.

Proposition S24 Let X be a random vecotor. Then the following properties are equivalent:

(i) There exists σ > 0 such that P(∥X∥ ≥ x) ≤ 2e−
1
2
(x/σ)β for all x ≥ 0.

(ii) There exists Kσ > 0 such that {E∥X∥k}1/k ≤ Kσk
1/β .

(iii) There exists K ′
σ > 0 such that E exp

(
(λ∥X∥)β

)
≤ exp

(
(λK ′

σ)
β
)

for all |λ| ≤ 1/K ′
σ.

(iv) X follows the (σ, β)-sub-weibull distribution.

The proof follows by Vladimirova et al. (2020, Theorem 2.1).

Proposition S25 For p1, p2 ∈ N, let X ∈ Rp1 , Y ∈ Rp2 be two independent sub-Weibull random
vectors with parameter (σ1, α) and (σ2, β) respectively. Then the following statements holds:

(i) For matrices A ∈ Rd×p1 and B ∈ Rd×p2 , there exists σ > 0 depending only on σ1, σ2,
∥A∥op, ∥B∥op such that AX +BY ∼ (σ, α ∧ β)-sub-Weibull.

(ii) There exists σ > 0 depending only on σ1, σ2 such that the concatenation of two random
vectors Z := (X,Y ) ∈ Rp1+p2 is a sub-Weibull random vector with parameter (σ, α ∧ β).

Proof (i) SupposeKσ1 andKσ2 are the induced constants ofX and Y by the part (ii) of Proposition
S24. Then it follows that(

E ∥AX +BY ∥k
)1/k ≤ (E ∥AX∥k)1/k + (E ∥BY ∥k)1/k

≤ ∥A∥op(E ∥X∥k)1/k + ∥B∥op(E ∥Y ∥k)1/k

≤ ∥A∥op ∨ ∥B∥op ·
(
Kσ1k

1/α +Kσ2k
1/β

)
≤ 2(∥A∥op ∨ ∥B∥op) · (Kσ1 ∨Kσ2)k

1/(α∧β).

This proves that AX + BY satisfies part (ii) in the Proposition S24 thus the conclusion follows by
the equivalence of part (ii) and (iv).

(ii) For any integer k ≥ 1, we have(
E ∥(X,Y )∥k

)1/k ≤ (
E(∥X∥+ ∥Y ∥)k

)1/k
≤

(
E ∥X∥k

)1/k
+
(
E ∥Y ∥k

)1/k ≤ (Kσ1 ∨Kσ2)k
1/(α∧β),

where the sub-Weibull assumption on X and Y have been exploited. The conclusion follows by
employing Proposition S24.
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Lemma S26 If X is a (σ, β)-sub-Weibull random vector as defined in (11), then for any s > 0,
there exists C > 0, depending on s, σ, β, such that E

(
∥X∥s 1{∥X∥ ≥ t}

)
≤ Ce−

1
4
(t/σ)β .

Proof We have

E
(
∥X∥s 1{∥X∥ ≥ t}

)
= E

[
∥X∥s 1

{
e

1
4
(∥X∥/σ)β ≥ e

1
4
(t/σ)β

}]
≤ E

{
∥X∥se

1
4
(∥X∥/σ)βe−

1
4
(t/σ)β

}
≤ e−

1
4
(t/σ)β

{
E ∥X∥2s

}1/2
{
E e

1
2
(∥X∥/σ)β

}1/2

≤ 21/2e−
1
4
(t/σ)β

{
E ∥X∥2s

}1/2
,

where we used the definition ofX being (σ, β)-sub-Weibull in final step. The desired bound follows
since by Proposition S24, we have E∥X∥2s ≤ C for some constant C that depends on s, σ, β.

Lemma S27 Suppose X,Y are independent d-dimensional random vectors with finite second mo-
ment. If X follows an absolutely continuous distribution with density function fX which admits the
following anti-concentration inequality for some constant γ1, γ2 > 0:

fX(x) ≥ γ1 exp
(
−γ2∥x∥2

)
, ∀ ∥x∥ ≥ E ∥Y ∥2.

Then there exists a constantK1 depends on γ1 and γ2 such that the density function of V := X+Y ,
write as fV , satisfying

fV (v) ≥ K1 exp (−2γ2∥v∥2), ∀ ∥v∥ ≥ 2E ∥Y ∥2.

Proof Write M2 := E ∥Y ∥2 < +∞. For all ∥v∥ ≥ 2M2, we have

fV (v) =

∫
fX(v − y)fY (y)dy ≥

∫
∥y∥≤M2

γ1 exp
(
−γ2∥v − y∥2

)
fY (y)dy

≥
∫
∥y∥≤M2

γ′1 exp
(
−2γ2∥v∥2

)
fY (y)dy ≥ γ′1

(
1− 1

M2

)
exp

(
−2γ2∥v∥2

)
,

where γ′1 = γ1 exp(−2γ2M
2
2 ) and the last inequality is followed by the Markov inequality. Thus

the result holds by letting K1 = γ′1
(
1− 1

M2

)
.

Lemma S28 Let X ,Y ⊆ Rd are Borel sets such that L2 is bounded on X × Y , i.e. ∥L2∥∞ :=
sup(x,y)∈X×Y L2(x, y) < +∞. Then for any µ ∈ P2(X ) and ν ∈ P2(Y) we have

inf
{
Jµ,ν(φ,ψ) : (φ,ψ) ∈ Φ̃}
= inf

{
Jµ,ν(φ,ψ) : (φ,ψ) ∈ Φ̃,−∥L2∥∞ ≤ φ− ∥ · ∥2/2 ≤ 0, 0 ≤ ψ − ∥ · ∥2/2 ≤ ∥L2∥∞},

where Φ̃ := {(φ,ψ) ∈ L1(X )× L1(Y) : φ(x) + ψ(y) ≥ xT y, ∀(x, y) ∈ X × Y}.
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Proof Note that by the argument same as (S17) we have

inf
{
Jµ,ν(φ,ψ) : (φ,ψ) ∈ Φ̃}

=

∫
X

∥x∥2

2
dµ(x) +

∫
Y

∥y∥2

2
dν(y)− sup

{
Jµ,ν(φ,ψ) : (φ,ψ) ∈ Φ2

}
, (S75)

where Φ2 := {(φ,ψ) ∈ L1(X ) × L1(Y) : φ(x) + ψ(y) ≤ L2(x, y), ∀(x, y) ∈ Rd × Rd}. Note
by Villani (2021, Remark 1.13), we may restrict the supremum in the right-hand side of (S75) over
some bounded functions:

sup
{
Jµ,ν(φ,ψ) : (φ,ψ) ∈ Φ2

}
= sup

{
Jµ,ν(φ,ψ) : (φ,ψ) ∈ Φ2, 0 ≤ φ ≤ ∥L2∥∞, −∥L2∥∞ ≤ ψ ≤ 0

}
. (S76)

By Villani (2009, Theorem 5.10) we may further impose that φ be c-concave and ψ = φc. Suppose
(φ0, φ

c
0) be a solution to the right-hand side of (S76). Define φ̃ := ∥·∥2/2−φ0, ψ̃ := ∥·∥2/2−φc0.

Then by (S75) we have

inf
{
Jµ,ν(φ,ψ) : (φ,ψ) ∈ Φ̃} =

∫
X
φ̃(x)dµ(x) +

∫
Y
ψ̃(y)dν(y). (S77)

Moreover, note

φ̃(x) = ∥x∥2/2− φ0(x) = ∥x∥2/2− inf
y∈Y

{c(x, y)− φc0(y)} = sup
y∈Y

{xT y − (∥y∥2/2− φc0(y))},

which implies that (φ̃, ψ̃) ∈ Φ̃. Combine this with (S77), we proved that (φ̃, ψ̃) is an optimal
solution to the left-hand side of (S75). Finally, by the boundedness of φ0 and φc0, we have

0 ≤ ∥x∥2/2− φ̃(x) ≤ ∥L2∥∞ and − ∥L2∥∞ ≤ ∥y∥2/2− ψ̃(y) ≤ 0,

as desired.

Theorem S29 (Fournier and Guillin, 2015, Theorem 1) Let X ∼ PX be a probability measure
on Rd such that Mℓ := E ∥X∥ℓ < +∞ with ℓ ∈ (2,+∞). If PXn is the corresponding empirical
distribution, then there exists a constant C > 0 depending only on d and ℓ such that for all n ≥ 1,

E
[
W2

2 (P
X , PXn )

]
≤ CM

2/ℓ
ℓ τn(d, ℓ), (S78)

where

τn(d, ℓ) :=


n−

1
2 if d < 4

n−
1
2 log(1 + n) if d = 4

n−
2
d if d > 4

+


n−

1
d if ℓ > 4

n−
1
2 log(1 + n) if ℓ = 4

n
2−ℓ
ℓ if 2 < ℓ < 4.
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Appendix C. Spatial reference distribution

In this section, we derive the MCQR loss function under reference distribution U [−1, 1], which may
provide an intuitive example for the verification of Proposition 3. In one dimension, the traditional
rank and quantile can be understood as a pair of optimal transport maps between the distribution
of interest X ∼ P and the uniform distribution U ∼ U [0, 1]. When P does not assign mass to
sets with Hausdorff dimension 0, the corresponding distribution function F and its inverse map
Q := F−1 serve as the corresponding optimal transport map. This concept can be generalized to
other reference distributions, for instance, U [−1, 1]. In this case, the spatial distribution function
Fsp(·) := 2F (·)− 1 takes on the role of F in the previous case. Moreover, the corresponding check
function needs to be modified as

ρspτ (X − θ) := (1 + τ)(X − θ)− 2(X − θ)1{X − θ < 0}, ∀τ ∈ [−1, 1].

Suppose V ∼ U [−1, 1], then the composite quantile regression optimization becomes

E
∫ 1

−1
ρspτ

(
Y − β⊤X − q(τ)

)
· 1
2
dτ = E

∫ 1

−1

(
Y − β⊤X − q(τ)

)−
dτ +

∫ 1

−1

∫ −1

τ

1

2
q(τ) dtdτ

= E max
t∈[−1,1]

∫ 1

t
−
(
Y − bX − q(τ)

)
dτ +

∫ 1

−1

∫ 1

t

1

2
q(τ) dτdt

= E max
t∈[−1,1]

(
−(1− t)(Y − bX) + ϕ(t)

)
+ Eϕ(V )

= E max
t∈[−1,1]

(
t(Y − bX) + ϕ(t)

)
+ Eϕ(V ),

where ϕ(t) =
∫ 1
t q(τ)dτ. Thus, applying the same argument as Lemma 2 we can see that the

composition quantile regression estimator of b∗ is once again

b∗ = argmin⟨⟨P Y−bX , P V ⟩⟩W2 .

This gives some intuition on Proposition 3. However, if choose the standard normal distribution as
the reference distribution, we may not be able to find a straightforward optimal transport map as F
or Fsp, but Proposition 3 demonstrates the validity of this extension.

Appendix D. Spatial quantile

The concept of the spatial (or geometric) quantile was initially introduced by Chaudhuri (1996).
Uniquely characterizing the underlying probability distribution as a special case of M-quantile,
as demonstrated in (Koltchinskii, 1997, Theorem 2.5), this quantile permits a seamless extension
to the regression framework (Chakraborty, 2003) and functional quantile regression (Chakraborty
and Chaudhuri, 2014; Chowdhury and Chaudhuri, 2019). A more recent development involves an
extension to the hypersphere, as explored by Konen and Paindaveine (2023).

The definition of Spatial quantile starts from rewriting the check function ρτ (·) as

ρτ (z) =
1

2

(
|z|+ (2τ − 1)z

)
=

1

2
(|z|+ vz), for any z ∈ R,
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with v = 2τ − 1. Thus a natural extension of the check function to the multi-dimensional case is by
substituting the absolute value function by the L1-loss function:

Φv(z) :=
1

2
(∥z∥+ v⊤z),

where v = τu, and u ∈ Sd−1. This extension of the check function immediately leads to the
following definition of spatial quantile:

Definition S30 Suppose Y ∼ PY is a random variable on Rd (d ≥ 1). Then for any τ ∈ [0, 1] and
u ∈ Sd−1, the τu-spatial quantile of P Y is defined as

Qτu = argmin
y∈Rd

EΦτu(Y − y). (S79)

Note the solution of (S79) are such that

E
( Y −Qτu
∥Y −Qτu∥

)
= −τu.

Intuitively speaking, this indicates that Qτu defines a point in Rd such that the average unit vector
from it to other random samples should be τu.

The generalization to quantile regression setting is simply by applying the spatial quantile defi-
nition to Y −b∗X−a, whereX ∈ Rp is the covariate vector, b∗ ∈ Rd×p is the regression coefficient
and a is the intercept term. Specifically, for fixed τ ∈ [0, 1] and u ∈ Sd−1,

(aτu, bτ,u) = argmin
b∈Rd×p, a∈Rd

EΦτu(Y − bX − a).

Therefore, given observations (Y1, X1), . . . , (Yn, Xn) satisfying equations

Yi = b∗Xi + εi, i = 1, . . . , n,

for some random residue terms εi’s that are independent with with Xi’s, the spatial quantile estima-
tor of b∗ can be obtained by

(b̂(sp), â(sp)τu ) argmin
b∈Rd×p, a∈Rp

1

n

n∑
i=1

Φτu(Yi − bXi − a).

Therefore, the optimizer can be obtained by applying classical convex optimization algorithms.

47


	Introduction
	Related works
	Notation

	The MCQR construction
	Univariate CQR revisited
	Multiple-output CQR via optimal transport
	Solving MCQR via linear programming

	Theoretical guarantees
	Numerical experiments
	Proofs
	Preliminaries on optimal transport theory
	Additional notation
	Proof for Lemma 1
	Proof for Lemma 2
	Proof for Proposition 3
	Proof for Theorem 5
	Proof for Lemma 6
	Proof for Lemma 7
	Proof for Theorem 8

	Ancillary results
	Spatial reference distribution
	Spatial quantile

