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Abstract
In this paper, we address the top-K ranking problem with a monotone adversary. We consider
the scenario where a comparison graph is randomly generated and the adversary is allowed to add
arbitrary edges. The statistician’s goal is then to accurately identify the top-K preferred items
based on pairwise comparisons derived from this semi-random comparison graph. The main
contribution of this paper is to develop a weighted maximum likelihood estimator (MLE) that
achieves near-optimal sample complexity, up to a log2(n) factor, where n denotes the number of
items under comparison. This is made possible through a combination of analytical and algorithmic
innovations. On the analytical front, we provide a refined ℓ∞ error analysis of the weighted
MLE that is more explicit and tighter than existing analyses. It relates the ℓ∞ error with the
spectral properties of the weighted comparison graph. Motivated by this, our algorithmic innovation
involves the development of an SDP-based approach to reweight the semi-random graph and meet
specified spectral properties. Additionally, we propose a first-order method based on the Matrix
Multiplicative Weight Update (MMWU) framework to solve the resulting SDP efficiently in nearly-
linear time in the size of the semi-random comparison graph.

1. Introduction

In this paper, we consider the problem of ranking n items given pairwise comparisons among them.
This problem possesses numerous applications in recommendation system (Wang et al., 2018),
rating players (Elo, 1967), web search (Dwork et al., 2001), etc. One widely adopted model for
pairwise comparison data is the Bradley-Terry-Luce (BTL) model (Bradley and Terry, 1952; Luce,
2005). In this model, one assumes a latent score vector θ⋆ ∈ Rn, and that the Bernoulli outcome of
the comparison between items i and j follows

P [ item i is preferred over item j ] = eθ
⋆
i

eθ
⋆
i +e

θ⋆
j
.

It is intuitive that in BTL, a higher score indicates a higher chance of winning a comparison.
In practice, comparisons are often made for a subset of all possible pairs. A popular model

to accommodate this situation is the uniform sampling model (Chen and Suh, 2015; Chen et al.,
2019b), where each pair is compared independently with probability p. Uniform sampling is quite
convenient for theory. As an example, under this sampling mechanism, Chen et al. (2019b) shows
that with high probability, the (regularized) maximum likelihood estimator (MLE) (Ford Jr, 1957)
exactly identifies the top K preferred items with an optimal sample complexity:

n2p ≳ n log(n)
∆2

K
, (1)
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uniform sampling
monotone adversary

Figure 1: Adjacency matrix of semi-random
graph. Each non-white square corresponds
to a non-zero entry in the adjacency matrix.
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Figure 2: Accuracy of top-K recovery for
MLE under uniform sampling and weighted
MLE under semi-random sampling. See
Appendix E for the experiment setup.

where ∆K measures the latent score difference between the K-th and the (K + 1)-th preferred
items, and n2p is the expected number of comparisons.

Uniform sampling, while convenient for theoretical purposes, is often too ideal to match practice.
This motivates a line of work (Shah et al., 2016; Li et al., 2022; Chen, 2023) that goes beyond
uniform sampling and focuses on general sampling mechanisms. However, the theoretical guarantees
are far from satisfactory. Take the recent work (Li et al., 2022) on the general sampling case as
an example. The (regularized) MLE requires a sample complexity of n2p ≳ ∆−2

K p−1n log(n)
when applied to the special case of uniform sampling. For a sparse random graph, i.e., when
p ≳ log(n)/n, this sample complexity could be n times larger than the optimal one (1).

In this paper, we aim to find a middle ground between uniform and general sampling mechanisms.
Inspired by a line of work Blum and Spencer (1995); Feige and Kilian (2001); Makarychev et al.
(2012); Moitra et al. (2016); Awasthi and Vijayaraghavan (2018); Cheng and Ge (2018); Kelner
et al. (2023); Gao and Cheng (2023), we consider the so-called semi-random sampling where
some benign adversary is allowed to make more comparisons in addition to uniform sampling; see
Figure 1. Given its monotone nature, this is sometimes also referred to as a monotone adversary.1

An important example of semi-random sampling is non-uniform sampling, where each pair (i, j) is
sampled with non-uniform probability pij ∈ [p, 1]. Clearly, this is more flexible and practical than
uniform sampling.

Intuitively, monotone adversaries should bring no harm to the ranking problem as it only reveals
more information about the underlying score vector θ⋆. However, it is well-documented in the
literature that the monotone adversaries pose serious algorithmic and analytical challenges for a
variety of problems. In community detection, Moitra et al. (2016) shows that the information-
theoretic detection limit could shift given a monotone adversary. In problems including sparse
recovery (Kelner et al., 2023) and matrix completion (Cheng and Ge, 2018), methods and analyses
that work well for uniform sampling can fail dramatically with a semi-random adversary. In this
paper, we investigate top-K ranking under semi-random sampling. Our goal is to address the
following question:

Can we identify the top-K items with minimal sample complexity, even under a monotone adversary?

1. In this paper, we use the terms semi-random and monotone interchangeably.
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1.1. Technical challenges

Top-K ranking under semi-random sampling brings some unique challenges. To begin, it is worth
noting that bounding the ℓ2 estimation error for the score vector θ⋆ is not sufficient to guarantee
exact recovery of the top-K items with an optimal sample complexity; see Chen and Suh (2015);
Jang et al. (2016); Chen et al. (2019b). Instead, one would need a more fine-grained ℓ∞ error bound.

To further complicate matters, obtaining optimal control of the ℓ∞ error—thus ensuring optimal
sample complexity for top-K ranking—poses a significant challenge, even under uniform sampling.
Chen et al. (2019b), and subsequently Chen et al. (2022); Gao et al. (2023), successfully characterize
the optimal ℓ∞ error of the MLE, leveraging a powerful leave-one-out argument (El Karoui, 2018;
Zhong and Boumal, 2018; Abbe et al., 2020; Ma et al., 2018; Chen et al., 2019a); see Chen et al.
(2021) for more references. However, a successful application of this argument relies crucially on
independence of the edges and certain homogeneity (e.g., degree homogeneity) in the Erdős–Rényi
random graphs—a model for uniform sampling. These properties are easily violated for general
comparison graphs, let alone the semi-random model we consider herein. In fact, as a manifestation,
Li et al. (2022) recently applied the leave-one-out technique to the BTL model in a general (deterministic)
sampling mechanism, obtaining somewhat loose control on the ℓ∞ error of the MLE. Even in the
special case of uniform sampling, the required sample complexity for MLE can be n times larger
than the optimal one. As a result, to tackle a monotone adversary, one needs to develop novel
analyses that go beyond uniform sampling and the leave-one-out technique.

1.2. Main contributions

The key result of this paper is to answer the main question affirmatively: we show that the weighted
maximum likelihood estimator (MLE) with proper choices of weights is able to recover the top-
K items with near-optimal sample complexity, albeit under a semi-random adversary; see Figure 2.
Moreover, the weights can be computed efficiently, in nearly-linear time in the size of the comparison
graph. We achieve this through a combination of analytical and algorithmic innovations:

Analytical contributions. We provide a novel ℓ∞ error analysis of the weighted MLE with
explicit dependence on the spectral properties of the weighted comparison graph (e.g., the maximum
degree, and the spectral gap of the weighted graph Laplacian); see Theorem 3. While the dependence
on spectral properties has been characterized for the ℓ2 error of the MLE (Shah et al., 2016; Hajek
et al., 2014), ℓ2 error alone cannot guarantee top-K recovery with optimal sample complexity.

Inspired by the recent work Chen (2023), we analyze the weighted MLE via a preconditioned
gradient descent method that iteratively approximates the weighted MLE. This analysis bypasses
the use of the leave-one-out argument. As opposed to some mysterious and complicated functions
for the comparison graph appearing in the performance bound (cf. Theorem 1 in Chen (2023)), our
characterization of the ℓ∞ error of the weighted MLE depends explicitly on the spectral properties
of the weighted comparison graph. In particular, it is tight when applied to uniform sampling, in
stark contrast with the previously mentioned result in Li et al. (2022). We expect this novel ℓ∞ error
analysis to be broadly applicable to more general sampling mechanisms beyond the semi-random
case.

Algorithmic contributions. Motivated by the ℓ∞ analysis of the weighted MLE, our goal
boils down to finding a reweighting of the semi-random comparison graph such that it satisfies
the required spectral properties. These amount to a constant lower bound on the spectral gap and
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upper bounds on the maximum degree and maximum weight in the reweighting. Taking a convex
optimization approach, we show that the problem of finding such a reweighting can be cast exactly
as a semi-definite program (SDP). We then develop a fast first-order method—based on the Matrix
Multiplicative Weight Update (MMWU) framework (Arora and Kale, 2016) to approximately solve
the resulting SDP; see Algorithm 2. We further show that such an approximate solution yields a
desired set of weights, and the solution can be found efficiently, in nearly-linear time in the size
of the semi-random graph. We believe that our SDP approach may find broader applications in
learning problems over semi-random graphs where we need to restore spectral properties that have
been disrupted by adversarial perturbations.

1.3. Related work

Ranking with the BTL model. The BTL model is a classic model for the ranking problem and
has been extensively studied in the literature. Various methods have been proposed to tackle this
problem, including Borda counting (Borda, 1781), the maximum likelihood estimator (Ford Jr,
1957), and the spectral method (Negahban et al., 2012), among others. Since the conventional ℓ2
analysis (Negahban et al., 2012) fails to capture the accuracy of top-K recovery, recent advances
(Chen and Suh, 2015; Jang et al., 2016; Chen et al., 2019b, 2022) focus on establishing the ℓ∞
estimation error of the score vector θ⋆. The story is mostly successful under the uniform sampling
model. For instance, Chen et al. (2019b) first show that both the spectral method and the (regularized)
MLE achieve minimax optimal ℓ∞ estimation error, and recover exactly the top-K items under
the minimal sample complexity. Chen et al. (2022) further prove that the vanilla MLE without
regularization is optimal, and is superior to the spectral method in terms of the leading constant in
the sample complexity. As uniform sampling is often too ideal, several attempts have been made to
go beyond it. Most recently, Li et al. (2022) and Chen (2023) investigate the ℓ∞ guarantee of the
MLE for general comparison graphs. As we mentioned, their analyses are loose, even when applied
to the special case of uniform sampling.

Semi-random adversary. Semi-random adversary has been examined in a number of settings.
Early work in this line studies problems related to semi-random graphs, including graph partitioning
(Makarychev et al., 2012), coloring (Blum and Spencer, 1995; Feige and Kilian, 2001), and finding
independent sets (Feige and Kilian, 2001). In recent years, researchers have started to consider semi-
random adversary in non-graphical data structures such as sparse recovery (Kelner et al., 2023),
Gaussian mixture model (Awasthi and Vijayaraghavan, 2018), matrix sensing (Gao and Cheng,
2023), and dueling optimization (Blum et al., 2023). While the exact definition of semi-random
varies, it usually involves some seemingly benign manipulation on top of random sampling. For
instance, Liu and Moitra (2022); Moitra et al. (2016); Makarychev et al. (2016); Fei and Chen (2020)
study stochastic block model, where the data is corrupted by monotone adversary that can arbitrarily
add edges within the clusters and remove edges between the clusters. Cheng and Ge (2018) consider
matrix completion problem where the adversary can only provide additional observed entries.

2. Main results

We begin with formally introducing the problem setup for top-K ranking with a monotone adversary.

Semi-random comparison graph. Let G = (V, E) be a comparison graph over the n items of
interest. In other words, items i and j are compared if and only if (i, j) ∈ E . Prior work often
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Algorithm 1 Weighted MLE for top-K recovery under the semi-random sampling

1: Observe GSR = (V, ESR) and {yij}(i,j)∈ESR,i>j .
2: Compute weights using Algorithm 2 with input GSR = (V, ESR).
3: Output θ̂ := argminθ:1⊤

n θ=0 Lw(θ).

assumes a homogeneous random comparison graph, e.g., G is an Erdős–Rényi random graph where
each pair (i, j) is an edge with probability p independently. Our focus in this work is to investigate
the ranking problem with a monotone adversary described as follows. Let GER = (V, EER) be
the initial Erdős–Rényi random graph. An adversary observes GER and is allowed to add edges to
EER arbitrarily. We denote the semi-random comparison graph with added edges GSR = (V, ESR).
From now on, GSR will be the comparison graph on which pairwise comparisons are made.

Latent scores and pairwise comparisons. In the Bradley-Terry-Luce (BTL) model, each item
i ∈ [n] is associated with a latent score θ⋆i that represents the skill level of item i. Without loss of
generality, we assume that the scores are ordered, i.e., θ⋆1 ≥ θ⋆2 ≥ · · · ≥ θ⋆n.

For each pair (i, j) ∈ ESR with i > j, we observe L outcomes {y(l)ij }l∈[L], which are independent
Bernoulli random variables obeying

P(y(l)ij = 1) = e
θ⋆j

eθ
⋆
i +e

θ⋆
j
.

Correspondingly, we define the average winning rate yij := (1/L)
∑L

l=1 y
(l)
ij . A simple observation

is that the BTL model is shift invariant in θ⋆ so we assume 1⊤n θ
⋆ = 0 without loss of generality.

Finally, we define a sort of condition number κ := eθ
⋆
1/eθ

⋆
n to characterize the range of θ⋆.

Top-K recovery. Our goal is to recover the top-K items. Clearly, the hardness of the problem
relies on the score difference between the K-th and the (K + 1)-th preferred items, denote by

∆K := θ⋆K − θ⋆K+1.

Throughout the paper, we assume ∆K > 0 so that the top-K items are well-defined, and are given
by [K]. Now we turn to the main message of this paper: the weighted MLE, with proper weights,
achieves exact top-K recovery.

2.1. Weighted MLE achieves exact recovery

Under uniform sampling, it has been shown (Chen et al., 2019b) that the MLE achieves exact
recovery of the top-K items with optimal sample complexity. This motivates us to consider a
weighted MLE for the semi-random graph GSR that can approximate the vanilla MLE under the
purely random sampling case (i.e., with the comparison graph being GER). More formally, let
{wij}i>j be a set of non-negative weights supported on ESR, that is, wij = 0 if (i, j) /∈ ESR. We
define the weighted negative log-likelihood function Lw(·):

Lw(θ) := − 1

L

∑
i,j:i>j

L∑
l=1

wij log

(
y
(l)
ji

eθi

eθi + eθj
+ (1− y

(l)
ji )

eθj

eθi + eθj

)
=
∑

i,j:i>j

wij

(
−yji(θi − θj) + log(1 + eθi−θj )

)
, (2)
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where we recall yji = (1/L)
∑L

l=1 y
(l)
ji . We then define the weighted MLE to be

θ̂ := arg min
θ:1⊤

n θ=0
Lw(θ). (3)

The top-K items are identified by selecting the top-K entries in the estimate θ̂.
The key to the success of the weighted MLE lies in a proper construction of the set of weights

{wij} that can mimic the vanilla MLE under an Erdős–Rényi random graph. It turns out that such
a goal can be achieved, and we have the following guarantees for the estimation error as well as the
top-K recovery performance.

Theorem 1 Suppose that np ≥ C1 log(n) and npL ≥ C2κ
4 log3(n) for some large enough

constants C1, C2 > 0. With probability at least 1− n−10, Algorithm 1 returns the weighted MLE θ̂
that obeys

∥θ̂ − θ⋆∥∞ ≤ C3κ

√
log(n)

npL
(4)

for some constant C3 > 0. On this event, the top-K items are recovered exactly as long as

n2pL ≥ C4
κ2n log(n)

∆2
K

for some large enough constant C4 > 0. In addition, the reweighting algorithm (i.e., Algorithm 2)
runs in nearly-linear time in the size of GSR.

We defer the details on the construction of the weights to Section 3.2 and focus on interpreting
the performance of the weighted MLE now. Similar to the literature (Chen and Suh, 2015; Chen
et al., 2019b, 2022), we assume κ = O(1) when interpreting the results.

Near-optimal sample complexity under monotone adversary. Under the uniform sampling, the
minimax sample complexity for top-K recovery has been identified in Chen and Suh (2015).

Theorem 2 (Informal) Assume that κ = O(1). If n2pL ≤ cn log(n)/∆2
K for some small constant

c > 0, then no method whatsoever can achieve exact recovery with constant probability.

Since uniform sampling is a special case of semi-random sampling (i.e., the adversary adds no
edges at all), Theorem 2 is also a valid lower bound for the semi-random case. Comparing the
performance of the weighted MLE (Theorem 1) and the lower bound (Theorem 2), we see that
the weighted MLE achieves near-optimal sample complexity for top-K recovery with a monotone
adversary; see Figure 3. More precisely, when ∆K ≲ 1/ log(n), the weighted MLE requires
n2pL ≍ n log(n)/∆2

K number of observations, which is exactly the minimax limit. On the other
hand, when 1/ log(n) ≲ ∆K ≲ 1, the weighted MLE needs n2pL ≍ n log3(n) comparisons, which
exceeds the minimax lower bound by at most a log2(n) factor.
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Figure 3: Sample complexity required to exactly recover top-K items v.s. score gap ∆K . The solid
line represents the required sample complexity of the weighted MLE as given in Theorem 1. The
dashed line represents the minimax lower bound given in Theorem 2.

Computational complexity. Compared to a vanilla MLE, Algorithm 1 requires an additional
reweighting step, which is performed by Algorithm 2. Crucially, we show that this step does
not fundamentally alter the complexity of the whole procedure, as Algorithm 2 runs nearly-linear
time in the size of the graph GSR. To ensure this fast running time, we combine the Matrix
Multiplicative Weight Update (MMWU) framework (Arora and Kale, 2016) with a number of
known approximation schemes: fast computations of the action of a matrix exponential (Orecchia
et al., 2012), randomized dimensionality reduction (Achlioptas, 2003), and fast solvers for packing
linear programs (Allen-Zhu and Orecchia, 2018). We also describe a simpler algorithm which does
not require solving a packing linear program as a subroutine but relies on an easy-to-compute greedy
approximation. This is the algorithm we implement in Section E.

Improved dependence on κ. We remark in passing that compared to the ℓ∞ bound ∥θ̂−θ⋆∥∞ ≲
κ2
√

log(n)/npL provided in Chen et al. (2019b), which is based on a probabilistic leave-one-out
argument, our ℓ∞ error bound (4) is tighter by a κ factor.

3. Two algorithmic components

In this section we present the high-level analyses of the two algorithmic components in Algorithm 1,
namely the weighted MLE, and the SDP-based reweighting method.

3.1. Weighted MLE

As the selected weight can be dependent on all edges of the comparison graph, we cannot use the
popular and powerful leave-one-out technique in recent papers (Chen et al., 2019b, 2022) to achieve
entrywise control. Instead, we rely on and refine a new analysis for MLE (Chen, 2023) that is geared
towards general graphs.

Recall that our estimator is a weighted MLE with weights {wij} supported on the edges of
the semi-random graph GSR. Let wmax be the maximum weight, dmax be the maximum (weighted)
degree, dmin be the minimum (weighted) degree, and λi(·) be the i-th largest eigenvalue. In addition,
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we define the weighted graph Laplacian of GSR = (V, ESR, {wij}) to be

Lw :=
∑

(i,j):i>j

wij(ei − ej)(ei − ej)
⊤. (5)

We have the following performance bounds for the weighted MLE whenever the weights are
independent with the observed comparisons {yij}.

Theorem 3 Suppose that the weighted graph GSR = (V, ESR, {wij}) is connected. Assume that
wmax ≤ n2 and dmin ≥ 1. Further suppose that

L ≥ C1
κ4wmax(dmax)

4 log2(n)

(λn−1(Lw))5
(6)

for some large enough constant C1 > 0. Then with probability at least 1− n−10, we have

∥θ̂ − θ⋆∥∞ ≤ C2κ

√
wmax log(n)

λn−1(Lw)L
,

where C2 > 0 is a constant. On this event, the top-K items are recovered exactly as long as

L ≥ C3
κ2wmax log(n)

λn−1(Lw)∆2
K

for some large enough constant C3 > 0.

See Section 4 for the proof of this theorem. Note that the assumptions on wmax and dmin are mild
and stated only to simplify the log factor.

Theorem 3 provides an ℓ∞ error bound for the weighted MLE under general comparison graphs.
The bounds depend explicitly on the spectral properties of the weighted graph, including the maximum
degree, and the spectral gap of the graph Laplacian. An important by-product of our novel analysis
of the weighted MLE is to demonstrate the optimal ℓ∞ estimation error of the vanilla MLE in the
uniform sampling case.

Corollary 4 Consider the uniform sampling case where the comparison graph is Erdős–Rényi.
Assume κ = O(1), p ≳ log(n)/n, and npL ≳ log2(n). Vanilla MLE with high probability achieves

∥θ̂ − θ⋆∥∞ ≲
√

log(n)
npL .

Proof Observe that the vanilla MLE is equivalent to the weighted MLE with a uniform weight 1 on
all the edges. With this choice, it is easy to show (see Lemma 14) that with high probability,

wmax ≤ 1, (7a)

dmax ≤ 2np, (7b)

λn−1(Lw) ≥ Cnp, (7c)

where C > 0 is some constant. Moreover by Lemma 18, λn−1(Lw) ≥ np/2 together with p ≳
log(n)/n implies dmin ≥ 1. Apply Theorem 3 verbatim to arrive at the desired conclusion.
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3.2. An SDP-based reweighting

In view of the proof of Corollary 4, to mimic the vanilla MLE under uniform sampling, it is sufficient
to construct the weights {wij} such that the weighted graph GSR = (V, ESR, {wij}) satisfies the
spectral properties (7). In this section, we describe how to formulate this problem as a saddle-point
semi-definite program (SDP) and approximately solve it in nearly-linear time in the size of GSR by
designing a fast first-order method.

We formulate our task in terms of a convex optimization problem with variables {wij ∈ R}(i,j)∈ESR
representing our desired reweighting. The convex feasible set F for such weights is given by the
rescaled Equations (7b) and (7c):

F := {w ∈ RESR
≥0 : ∀i ∈ V,

∑
j:(i,j)∈ESR

wij ≤ 2np ∧ ∀(i, j) ∈ ESR, wij ≤ 1}. (8)

For a choice of weights w, we denote by Lw the corresponding weighted Laplacian as defined in
(5). With this notation, we consider the problem of maximizing the spectral gap λn−1(Lw) over
w ∈ F . It is a well-known fact that this is a convex optimization problem in the variables w (Boyd
et al., 2004). Indeed, we can write λn−1(Lw) as the minimum of the matrix inner product ⟨Lw,X⟩
over X in the set ∆ := {X ∈ SV : X ⪰ 0 ∧ ⟨Π⊥1,X⟩ = 1} where SV is the set of symmetric
linear operators over V and Π⊥1 is the orthogonal projector over the orthogonal complement of the
vector 1, which is the eigenvector of Lw with the smallest eigenvalue. Therefore, our desired convex
optimization problem can be recast as the following saddle point problem between an SDP variable
X and the weight w. This formulation will be crucial for the solvers designed subsequently:

OPT := max
w∈F

min
X∈∆

⟨Lw,X⟩. (Saddle-Point SDP)

By considering the weighting w corresponding to the original graph in GER as a feasible
reweighting for Saddle-Point SDP, the proof of Corollary 4 immediately implies a lower bound
on OPT: with probability at least 1− n−10,

OPT ≥ np
2 , (9)

as long as p ≥ C log(n)/n for some sufficiently large constant C > 0.
While it is not always possible to recover the underlying graph GER, the lower bound (9) ensures

that approximately solving Saddle-Point SDP can find a reweighting of GSR which satisfies the
required spectral properties (7). The next lemma, proved in Section 5, shows that this approximate
solution can be computed in nearly-linear time in the size of GSR. The corresponding algorithm,
Algorithm 2 to be detailed in Section 5, is based on the Matrix Multiplicative Weight Update
(MMWU) framework (Arora and Kale, 2016), a first-order method for SDP optimization.

Lemma 5 Given the observed comparison graph GSR, there is an algorithm that computes a set of
non-negative weights {wij}i>j supported on ESR that satisfy the properties (7) with high probability.
In addition, the algorithm runs in nearly-linear time in the size of GSR.

We finish this section by noting that once the spectral properties are met, repeating the proof of
Corollary 4 yields the desired results in Theorem 1 in the semi-random case.
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4. Analysis of weighted MLE

In this section, we present detailed analysis of the weighted MLE with the aim of proving Theorem 3.
Given a set of weights {wij}, the Hessian of the weighted loss at ground truth is given by

∇2L(θ⋆) =
∑

(i,j):i>j

wij
eθ

⋆
i e

θ⋆j

(eθ
⋆
i +e

θ⋆
j )2︸ ︷︷ ︸

=:zij

(ei − ej)(ei − ej)
⊤.

This is exactly the graph Laplacian of the weighted graph GSR with weights {wijzij}. Hence we
denote this by Lwz . We also define the effective resistance to be

Ωkl(Lwz) := (ek − el)
⊤L†

wz(ek − el),

where L†
wz is the pseudo-inverse of Lwz .

Inspired by Theorem 1 in Chen (2023), the first step of the proof relates the performance of the
weighted MLE with two crucial quantities {Bkl} and {Qkl}.

Lemma 6 Suppose that the weighted graph (V, ESR, {wij}) is connected by edges of non-zero
weight and the weights {wij} are independent with the observations {yij}. For any (k, l) ∈
[n]2, k ̸= l, let Bkl and Qkl be some quantities obeying

Bkl ≥ C

√
κ

L

(
max
i,j

wij

)
Ωkl(Lwz) log(n); (10a)

Qkl ≥
∑

(i,j):i>j

wijB
2
ij

∣∣∣(ek − el)
⊤L†

wz(ei − ej)
∣∣∣ . (10b)

Here C > 0 is some large enough constant. Suppose that Qkl ≤ 4Bkl for any (k, l). Then with
probability at least 1− n−10, we have that for any (k, l) ∈ [n]2,

∥θ̂ − θ⋆∥∞ ≤ Bkl.

On this event, the top-K items are recovered exactly as long as maxk,l Bkl ≤ ∆K/2.

Admittedly, the two quantities {Bkl} and {Qkl} appearing in the performance bound of MLE is
quite mysterious. A key contribution of this paper is to further relate these two quantities to basic
spectral properties of the weighted graph (V, ESR, {wij}). We start with the characterization of Bkl.
Recall that wmax = maxi,j wij is the maximum weight.

Lemma 7 For any (k, l) ∈ [n]2, the effective resistance Ωkl(Lwz) satisfies

Ωkl(Lwz) ≤
8κ

λn−1(Lw)
.

As a result, it is sufficient to take Bkl = Cκ
√

wmax log(n)
Lλn−1(Lw) , where C > 0 is a large enough constant.

The proof is deferred to Appendix B.2. Now we move on to controlling the Q factors via spectral
properties of the weighted graph. Recall dmax = maxi∈[n]

∑
j:j ̸=iwij is the maximum (weighted)

degree and dmin = mini∈[n]
∑

j:j ̸=iwij is the minimum (weighted) degree. We have the following
bound. The proof is deferred to Appendix B.3.

10
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Algorithm 2 MMWU algorithm for Saddle-Point SDP

Input: Graph GSR = (V, ESR), |V | = n, |ESR| = m, error parameter ϵ ∈ (0, 1/2].
1: w(0) = 0, η = ϵ/4pn, k = O (log(n)/ϵ2) , T = 8 log(n)/ϵ2

2: for t = 0, . . . , T − 1 do
3: Sample R = {±1/

√
k}n×k uniformly at random. // {±1} JL matrix (Achlioptas, 2003)

4: Compute U (t) = exp{−η
∑

ij∈ESR w
(t)
ij Lij}R. // Use (Orecchia et al., 2012)

5: Compute V (t) = U (t)/
√

⟨Π⊥1,U (t)(U (t))T ⟩. // MMWU Normalization
6: For each ij ∈ ESR, let cij = ⟨Lij ,V

(t)(V (t))T ⟩. // Compute edge gains
7: Compute ŵ(t) ∈ F , an approximate solution to maxw∈F ⟨c,w⟩. // Use Theorem 9 or 10
8: Update wt+1 = w(t) + ŵ(t).
9: end for

Output: Edge weighting wout = 1/T ·
∑T−1

t=0 w(t).

Lemma 8 Suppose that wmax ≤ n2 and that dmin ≥ 1. Then for any (k, l) ∈ [n]2, we have

∑
(i,j):i>j

wij

∣∣∣(ek − el)
⊤L†

wz(ei − ej)
∣∣∣ ≤ Cκ · (dmax)

2 log(n)

(λn−1(Lw))2
,

where C1 > 0 is some constant. As a result, it is sufficient to take Qkl = C2κ
3 · wmax(dmax)2 log

3(n)
L(λn−1(Lw))3

for some large enough constant C2 > 0.

Combining Lemmas 7-8, we see that Qkl ≤ 4Bkl holds as long as the condition (6) holds. This
together with Lemma 6 completes the proof of Theorem 3.

5. Analysis of SDP-based reweighting

In this section, we describe and analyze the MMWU algorithm for solving the reweighting SDP
problem Saddle-Point SDP in Section 3.2. We conclude by proving Lemma 5. We present the
pseudocode for the MMWU Algorithm in Algorithm 2. Our algorithm instantiates the MMWU
framework of Arora and Kale (2016), where we avoid maintaining full |V|×|V| matrices by relying
on the Johnson-Lindenstrauss Lemma (Achlioptas, 2003) (see lines 3 and 4).

At every iteration, the MMWU algorithm produces a candidate solution X(t) ∈ ∆ to which we
respond with a loss matrix L(t) := Lw(t) =

∑
ij∈ESR w

(t)
ij Lij with w(t) ∈ F . In this way, the loss

⟨L(t),X(t)⟩ incurred by the MMWU algorithm at iteration t equals the value of Saddle-Point SDP
on the pair of solutions (X(t),w(t)). At every iteration t, given X(t), our goal is then to choose
w(t) ∈ F to maximize the loss ⟨L(t),X(t)⟩. The regret minimization property of MMWU then
allows us to turn this per-iteration guarantee into a global guarantee on λn−1(

∑T−1
t=0 L(t)).

To maximize the loss of the MMWU algorithm, we choose w(t) ∈ F to approximate the best
response maxw∈F ⟨Lw,X

(t)⟩. We describe two algorithms (oracles in the language of Arora and
Kale (2016)) for approximately solving this task. The first one is based on directly applying a nearly-
linear-time packing LP solver. It is described in Appendix C and yields the following theorem.

Theorem 9 For X ∈ ∆, one can (1− ϵ)-approximate max
w∈F

⟨Lw,X⟩ in time Õ(|ESR|/ϵ).

11
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Our second oracle exploits the fact that maxw∈F ⟨Lw,X⟩ = maxw∈F ⟨c,w⟩ is an LP relaxation
of the maximum weight b-matching problem over GSR with edge weights c. We can approximate
the maximum weight b-matching by a greedy procedure: iterate through the edges of ESR once in
decreasing order of edge gains cij = ⟨Lij ,X⟩, and add an edge so long as both adjacent vertices
possess available demand. Though this only achieves a 1/2-approximation (Mestre, 2006), the
simplicity of the algorithm makes it extremely suitable for implementation. We prove the following
theorem in Appendix C.

Theorem 10 Given X ∈ ∆, one can 1/2-approximate maxw∈F ⟨Lw,X⟩ in time Õ(|ESR|).

We now state our main result on the correctness of Algorithm 2. It is proved in Appendix C.2.1.

Lemma 11 With high probability, Algorithm 2 outputs a reweighting wout ∈ F of GSR such that

min
X∈∆

⟨Lwout ,X⟩ ≥

{
(1−O(ϵ)) ·OPT, if Theorem 9 is used in line 7,
(1/2 −O(ϵ)) ·OPT, if Theorem 10 is used in line 7.

We can also bound the running time of Algorithm 2 using known algorithms for computing the
action of a matrix exponential (Orecchia et al., 2012). The next lemma is proven in Appendix C.2.3.

Lemma 12 For a constant ϵ > 0, Algorithm 2 runs in nearly-linear time in the size of GSR.

Finally, combining Lemmata 11 and 12, we can prove Lemma 5.
Proof [Proof of Lemma 5] We claim that the output wout of Algorithm 2 satisfies the required
properties. The conditions of (7b) and (7a) are immediately satisfied by the fact that wout ∈ ∆,
which is proved in Lemma 11. The spectral condition in (7c) follows from the approximation
guarantee of Lemma 11 and the lower bound (9):

λn−1 (Lwout) = · min
X∈∆

⟨Lwout ,X⟩ ≥ Ω (OPT) ≥ Ω(np).

The nearly-linear running time is proved in Lemma 12.

6. Discussion

In this paper we consider top-K ranking with a monotone adversary. We carefully construct a
weighted MLE that achieves the optimal ℓ∞ estimation error and top-K recovery sample complexity.
This leaves open quite a few interesting directions. We single out several of them below.

• Is weighted MLE necessary? While our approach relies on the weighted MLE, it is not clear
whether the unweighted vanilla MLE succeeds or not with a monotone adversary. In fact,
in Appendix D, we present a specific example of semi-random sampling where the spectral
properties of the semi-random graph are drastically different from those of random graph, yet
the vanilla MLE still succeeds.

• Extension to general graphs. Theorem 1 in Chen (2023) and Theorem 6 in our paper both
consider general comparison graphs. Our analysis can recover a good rate with small sample
complexity when the spectrum of the comparison graph has small dynamic range, i.e. λ1/λn−1

12
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is small. Our reweighting procedure indicates that any comparison graph which can be
reweighted to match this spectral condition will yield small sample complexity. It is an
interesting question to explore the connection between the reweighting SDP and similar SDPs
used in the approximation of general partitioning objectives (Lau et al., 2023) to find novel
combinatorial or geometric properties enabling the success of the weighted MLE.

• Extensions to other ranking models. In this paper we focus on one of the most popular model
in ranking, namely the BTL model. It is certainly interesting to see whether our algorithm
and analysis for semi-random sampling can be extended to other models, for instance the
Thurstone model (Thurstone, 1927), the Plackett-Luce model (Luce, 2005), and other models
for multi-way comparisons (Fan et al., 2022, 2023).
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Appendix A. Auxiliary lemmas

This section collects several auxiliary lemmas we use in the proofs of our main results.

Lemma 13 (Range of zij) Recall that

zij =
eθ

⋆
i eθ

⋆
j

(eθ
⋆
i + eθ

⋆
j )2

=
eθ

⋆
i −θ⋆j

(1 + eθ
⋆
i −θ⋆j )2

.
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We have for any i, j,
1

4κ
≤ zij ≤

1

4
.

Proof
The function f(x) = x/(1 + x)2 has derivative (1 − x2)/(1 + x)4 so it is increasing in (0, 1)

and decreasing in (1,∞). Furthermore from the definition of κ, |θ⋆i − θ⋆j | ≤ log(κ). Then we have

1

4κ
≤ min {f(κ), f(1/κ)} ≤ zij ≤ f(1) =

1

4
.

This completes the proof.

Lemma 14 (spectral gap of an Erdős-Rényi graph) Let G = ([n], E) ∼ G(n, p) be an Erdős-
Rényi graph with n vertices and edge probability p. Let L be its corresponding graph Laplacian
matrix. Let dmax be the maximum degree of the vertices. Suppose that np ≥ C log(n) for some
large enough constant C > 0, then with probability at least 1− n−10,

λn−1(L) ≥ np

2
dmax ≤ 2np.

Proof See, for instance, Section 5.3.3 of Tropp (2015).

Lemma 15 (Spielman (2007)) Let G be a weighted graph and Φ(G) be its conductance (see
Definition 21). Let L be its graph Laplacian matrix. Let D be the diagonal matrix with the weighted
vertex degrees as the entries. Then

Φ(G) ≥ 1

2
λn−1(D

−1/2LD−1/2).

Lemma 16 (Rayleigh’s monotonicity law, Bollobás (1998) Corollary 7 in Ch.IX) Let G = (V, E)
be a graph with weights {wij} on E , and G̃ = (V, Ẽ) be a graph with weights {w̃ij} on Ẽ . Suppose
that E ⊂ Ẽ and wij ≤ w̃ij for any (i, j) ∈ E , then for any (k, l) ∈ V2, the effective resistance
satisfies

Ωkl(LGw) ≤ Ωkl(LG̃w̃
).

Lemma 17 (A quantitative version of Sylvester’s law of inertia, Ostrowski (1959)) For any real
symmetric matrix A ∈ Rn×n and S ∈ Rn×n be a non-singular matrix. Then for any i ∈ [n],
λi(SAS⊤) lies between λi(A)λ1(S

⊤S) and λi(A)λn(S
⊤S).

Lemma 18 Let G = (V, E , {wij}(i,j)∈E) be a weighted graph. Recall dmin = mini∈[n]
∑

j:(i,j)∈E wij

is the minimal weighted degree and Lw =
∑

i>j wij(ei − ej)(ei − ej)
⊤ is the weighted graph

Laplacian. Then

dmin ≥ 1

2
λn−1(Lw).
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Proof Let k ∈ [n] be an arbitrary vertex. Let v ∈ Rn be a vertex defined by vk = 1 and vj =
−1/(n−1) for all j ̸= i. It is easy to see that v⊤1n = 0. Moreover, for any i, j ̸= k, (ek−ej)

⊤v =
n/(n− 1) and (ei − ej)

⊤v = 0. By the definition of λn−1(Lw), we have that

λn−1(Lw) = min
u∈Rn:u⊤1n=0

u⊤Lwu

∥u∥2

≤ v⊤Lwv

∥v∥2

=

∑
j:j ̸=k wkj

(
n

n−1

)2
n/(n− 1)

≤ 2
∑
j:j ̸=k

wkj

as long as n ≥ 2. This holds for all k ∈ [n] so dmin ≥ 1
2λn−1(Lw).

Appendix B. Proofs for weighted MLE

B.1. Proof of Lemma 6

We start by defining some useful notations. Let ϵ(l)ij = y
(l)
ji −σ(θ⋆i −θ⋆j ) where σ(x) = ex/(1+ex) is

the sigmoid function. Let B :=
[
· · · ,√wijzij(ei − ej), · · ·

]
∈ Rn×n(n−1)L/2 (each entry repeats

for L times), ϵ̂ =
[
· · · ,

√
wij/zijϵ

(l)
ji , · · ·

]
∈ Rn(n−1)L/2 and δt := θt − θ⋆. Observe that

BB⊤ = L
∑

(i,j):i>j

wijzij(ei − ej)(ei − ej)
⊤ = L ·Lwz. (11)

Inspired by Chen (2023), we analyze the weighted MLE by studying the preconditioned gradient
descent starting from the ground truth. Let θ0 = θ⋆ be the starting point and η > 0 be the step size.

θt+1 = θt − ηL†
wz∇Lw(θ

t). (12)

It is worth noting that because the preconditioned gradient descent starts at ground truth and the
gradient is of form

∇Lw(θ) =
1

L

∑
i,j:i>j

L∑
l=1

wij

{
−y

(l)
ji +

eθi

eθi + eθj

}
(ei − ej),

we have 1⊤n θ
t = 0 for all t ≥ 0. We break the proof of Lemma 6 into the following lemmas.

The first states that θt stays close to the ground truth in ℓ∞ distance, and the second states that it
converges to the weighted MLE.

Lemma 19 Instate the assumptions of Lemma 6. With probability at least 1−n−10, (16) is satisfied
and for any k, l and iteration t ≥ 0,∣∣(θtk − θtl

)
− (θ⋆k − θ⋆l )

∣∣ ≤ Bkl. (13)
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For any x ∈ R and Z ∈ Rn×n, let ∥x∥Z := (x⊤Zx)1/2.

Lemma 20 Instate the assumptions of Lemma 6. On the event that (16) is satisfied, the following
holds:

1. There exists a unique minimizer θ̂ of (2).

2. There exists some α1, α2 ∈ R such that 0 < α1 ≤ α2 and for any t ∈ N,

∥θt − θ̂∥Lwz ≤ (1− ηα1)
t∥θ0 − θ̂∥Lwz ,

provided that 0 < η ≤ 1/α2.

We will prove these two lemmas in Section B.1.1 and Section B.1.2. Their proofs are similar
to the proof of Theorem 1 in Chen (2023). As we are studying weighted MLE instead of the
unweighted MLE used in Chen (2023), we redo the proofs and add necessary modifications.

Proof of Lemma 6. It is easy to see that Lemma 20 shows the preconditioned gradient descent
iterates θt converge to a unique solution θ̂. Combining this with Lemma 19, we have∣∣∣(θ̂k − θ̂l

)
− (θ⋆k − θ⋆l )

∣∣∣ ≤ Bkl.

As 1⊤n θ
⋆ = 1⊤n θ̂ = 0, for any i ∈ [n],

∣∣∣θ̂i − θ⋆i

∣∣∣ =
∣∣∣∣∣∣ 1n

n∑
j=1

(
θ̂i − θ̂j

)
−
(
θ⋆i − θ⋆j

)∣∣∣∣∣∣
≤ 1

n

n∑
j=1

∣∣∣(θ̂i − θ̂j

)
−
(
θ⋆i − θ⋆j

)∣∣∣
≤ max

k,l
Bkl.

It remains to show the exact recovery of the top-K items. Recall θ⋆1 ≥ · · · ≥ θ⋆K > θ⋆K+1 ≥ · · · ≥
θ⋆n by assumption. It suffices to show θ̂i − θ̂j > 0 for any i ≤ K, j > K. Let i ≤ K, j > K,

θ̂i − θ̂j ≥
(
θ⋆i − θ⋆j

)
−
∣∣∣(θ̂i − θ̂j

)
−
(
θ⋆i − θ⋆j

)∣∣∣ ≥ ∆K −Bij .

Then θ̂i − θ̂j > 0 as long as
max
k,l

Bkl ≤ ∆K/2.

Now the proof of Lemma 6 is completed.

B.1.1. PROOF OF LEMMA 19

We will prove this lemma by induction on t. Since preconditioned gradient descent starts at ground
truth, the base case of t = 0 is trivial. We will now study the dynamics of (12) to prove the induction
step. Using the definition (2) we can compute the gradient and Hessian of the loss function:

∇L(θ) = 1

L

∑
i,j:i>j

L∑
l=1

wij

{
−y

(l)
ji +

eθi

eθi + eθj

}
(ei − ej);
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∇2L(θ) =
∑

i,j:i>j

wij
eθieθj(

eθi + eθj
)2 (ei − ej)(ei − ej)

⊤.

Applying Taylor’s expansion on ∇L(θt), we have

∇L(θt) =
1

L

∑
i,j:i>j

L∑
l=1

wij

((
−y

(l)
ji + σ(θti − θtj)

)
(ei − ej)

)

=
1

L

∑
i,j:i>j

L∑
l=1

wij

((
−ϵ

(l)
ji − σ(θ⋆i − θ⋆j ) + σ(θti − θtj)

)
(ei − ej)

)

=
1

L

∑
i,j:i>j

L∑
l=1

wij

((
−ϵ

(l)
ji + σ′(θ⋆i − θ⋆j )(δ

t
i − δtj) +

1

2
σ′′(ζtij)(δ

t
i − δtj)

2

)
(ei − ej)

)
.

Here for all i, j ∈ [n], δti := θti − θ⋆i and ζtij ∈ R is some number that lies between θ⋆i − θ⋆j and
θti − θtj . As σ′(θ⋆i − θ⋆j ) = zij and δti − δtj = (ei − ej)

⊤δ, we can rewrite the above formula as

∇L(θt) =
1

L

(
L ·Lwzδ

t −Bϵ̂+ L · rt
)
,

where rt :=
∑

i,j:i>j wij [
1
2σ

′′(ζtij)(δ
t
i − δtj)

2(ei − ej)]. Putting this in (12), we have

δt+1 = (1− η) δt − η

L

(
L†

wzBϵ̂− L ·L†
wzr

t
)
. (14)

Now consider δtk − δtl = (ek − el)
⊤δt, we have

δt+1
k − δt+1

l = (1− η)
(
δtk − δtl

)
− η

L
(ek − el)

⊤
(
L†

wzBϵ̂− L ·L†
wzr

t
)
. (15)

We now control the size of (ek − el)
⊤L†

wzBϵ̂ and (ek − el)
⊤L†

wzrt separately.

Controlling (ek − el)
⊤L†

wzBϵ̂. We rewrite this term with

(ek − el)
⊤L†

wzBϵ̂ = ⟨B⊤L†
wz(ek − el), ϵ̂⟩.

By Lemma 13, zij ≥ 1/(4κ) so each entry of ϵ̂ is of sub-Gaussian norm
√
wij/zij ≤

√
4κmaxij wij .

Then ⟨B⊤L†
wz(ek − el)

⊤, ϵ̂⟩ has sub-Gaussian norm

∥B⊤L†
wz(ek − el)∥2

√
4κmax

ij
wij ≤

√
4κLmax

ij
wijΩkl(Lwz),

where the inequality comes from

∥B⊤L†
wz(ek − el)

⊤∥22 = (ek − el)L
†
wzBB⊤L†

wz(ek − el)

= L · (ek − el)L
†
wz(ek − el)

= L · Ωkl(Lwz).
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The second line follows from (11). Taking a union bound on concentration of sub-Gaussian random
variables (see for instance Section 2.5 in Vershynin (2018)), we have that with probability at least
1− n−10, for all k, l ∈ [n],∣∣∣(ek − el)

⊤L†
wzBϵ̂

∣∣∣ ≤ C
√

κLmax
i,j

wij ·Ωkl(Lwz) log(n) ≤
1

2
L ·Bkl (16)

for some constant C.

Controlling (ek − el)
⊤L†

wzrt. We expand the term to get

∣∣∣(ek − el)
⊤L†

wzr
t
∣∣∣ =

∣∣∣∣∣∣
∑

i,j:i>j

wij

[
1

2
σ′′(ζtij)(δ

t
i − δtj)

2(ek − el)
⊤L†

wz(ei − ej)

]∣∣∣∣∣∣
≤ 1

8

∑
i,j:i>j

wij(δ
t
i − δtj)

2
∣∣∣(ek − el)

⊤L†
wz(ei − ej)

∣∣∣ .
For the inequality here we use the fact that σ′′(ζ) ≤ 1/4 for any ζ ∈ R.

Now show the induction step. Assume (13) holds for iteration t, then∣∣∣(ek − el)
⊤L†

wzr
t
∣∣∣ ≤ 1

8

∑
i,j:i>j

wij(δ
t
i − δtj)

2
∣∣∣(ek − el)

⊤L†
wz(ei − ej)

∣∣∣
≤ 1

8

∑
i,j:i>j

wijB
2
ij

∣∣∣(ek − el)
⊤L†

wz(ei − ej)
∣∣∣

=
1

8
Qkl.

Substituting this and (16) into (15),∣∣δt+1
k − δt+1

l

∣∣ ≤ (1− η)
∣∣δtk − δtl

∣∣+ η

L

(∣∣∣(ek − el)
⊤L†

wzr
t
∣∣∣+ L ·

∣∣∣(ek − el)
⊤L†

wzBϵ̂
∣∣∣)

≤ (1− η)Bkl +
η

L

(
1

2
L ·Bkl +

1

8
L ·Qkl

)
≤ Bkl

as long as Qkl ≤ 4Bkl.

B.1.2. PROOF OF LEMMA 20

The proof of this follows a similar strategy to Lemma 1 in Chen (2023). We will only prove the first
part here, i.e. the existence and uniqueness of a solution for (2), as the proof for the second part is
the same as Chen (2023). We first make the following claim that we will prove at the end of this
subsection. This claim is analogous to a classical result in Ford Jr (1957), which states the same
thing but with unweighted MLE.

Claim 1 Instate the assumptions of Lemma 20. Suppose that for any disjoint partition S1 ∪ S2 =

[n], there exists some i ∈ S1, j ∈ S2 such that wij > 0 and y
(l)
ji = 1 for some 1 ≤ l ≤ L. Then

there exists a minimizer θ̂ of (2) that satisfies 1⊤n θ̂ = 0. Furthermore it is unique in the sense that
no other minimizer θ satisfies 1⊤n θ = 0.
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Now it suffices to show that the condition of this claim is true. Suppose for the sake of
contradiction that it is false. That is there exists some disjoint partition S1 ∪ S2 = [n], such that for
all i ∈ S1, j ∈ S2 with wij > 0, yji = (1/L)

∑L
l=1 = y

(l)
ji = 0. By Lemma 19 and the fact that

1⊤n θ
t = 0 for any t ≥ 0, θt ∈ BR := {θ : ∥θ∥∞ ≤ R} for some scalar R that depends on the

observations. Now we consider the minimum size of the gradient in this close ball. Recall

∇L(θ) =
∑

i,j:i>j

wij

{
−yji +

eθi

eθi + eθj

}
(ei − ej).

Consider a vector v = 1S1 that is 1 on all entries for S1 and 0 otherwise. It is easy to see that(ei −
ej)

⊤v = 0 if i, j ∈ S1 or i, j ∈ S2; (ei − ej)
⊤v = 1 if i ∈ S1, j ∈ S2. Then for any θ ∈ BR, one

can rearrange the summation to reach

∇L(θ)⊤v =
∑

i∈S1,j∈S2

wij
eθi

eθi + eθj
(ei − ej)

⊤v

=
∑

i∈S1,j∈S2

wij
eθi

eθi + eθj

(i)
≥

∑
i∈S1,j∈S2

wij
e−R

e−R + eR

(ii)
≥ 1

2
e−2R min{wij : wij > 0}.

Here (i) holds since θ ∈ BR and the function (x, y) 7→ ex/(ex+ey) is increasing in x and decreasing
in y; (ii) holds since we assume the weighted graph to be connected by edges with non-zero weights.
Taking infimum over θ in BR, we have infθ∈BR

∥∇L(θ)∥ > 0.
It now suffices to show ∥∇L(θt)∥ → 0 as t → ∞ which contradicts the claim that infθ∈BR

∥∇L(θ)∥ >
0. Recall Lw is the Laplacian matrix of the weighted graph defined as

∑
(i,j):i>j wij(ei − ej)(ei −

ej)
⊤. Since the graph is connected by edges with non-zero weights, λn−1(Lw) > 0. Consider the

Hessian

∇2L(θ) =
∑

(i,j):i>j

wij
eθieθj

(eθi + eθj )2
(ei − ej)(ei − ej)

⊤.

For any unit vector v ∈ Rn such that v⊤1n = 0,

v⊤∇2L(θ)v =
∑

(i,j):i>j

wij
eθieθj

(eθi + eθj )2
v(ei − ej)(ei − ej)

⊤v

≥
∑

(i,j):i>j

wij
e−ReR

(e−R + eR)2
v(ei − ej)(ei − ej)

⊤v

≥ 1

4e2R
λn−1(Lw).

Here the last inequality follows from the definition of λn−1(Lw). We also have that

λn−1(L
†
wz) = ∥Lwz∥−1 > 0.
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Now consider the precondition gradient descent update

θt+1 = θt − ηL†
wz∇L(θt).

Expanding the gradient difference we have

∇L(θt+1) = ∇L(θt) +

∫ 1

0
∇2L(θ̃(α))(θt+1 − θt)dα

= ∇L(θt)− η

(∫ 1

0
L(θ̃(α))dα

)
L†

wz∇L(θt)

=

(
I − η

(∫ 1

0
L(θ̃(α))dα

)
L†

wz

)
∇L(θt),

where θ̃(α) := (1− α)θt + αθt+1. Since 1⊤n∇L(θt) = 0 and 1⊤nL
†
wz∇L(θt) = 0,

∥∇L(θt+1)∥ ≤
[
1− η

4e2R
λn−1(Lw)λn−1(L

†
wz)
]
∥∇L(θt)∥.

Then for sufficiently small η > 0, ∥∇L(θt)∥ goes to 0 as t → ∞.

Proof of Claim 1. Recall

L(θ) = 1

L

∑
i,j:i>j

L∑
l=1

wij

(
−y

(l)
ji (θi − θj) + log(1 + eθi−θj )

)
.

Observe that since 0 ≤ y
(l)
ji ≤ 1,

−y
(l)
ji (θi − θj) + log(1 + eθi−θj ) ≥ 0 (17)

for each i, j. Since |θ⋆i − θ⋆j | ≤ log κ for any (i, j) ∈ [n]2,

L(θ⋆) =
1

L

∑
i,j:i>j

L∑
l=1

wij

(
−y

(l)
ji (θ

⋆
i − θ⋆j ) + log(1 + eθ

⋆
i −θ⋆j )

)
≤
∑

i,j:i>j

wij (log(κ) + log(1 + κ))

≤
∑

i,j:i>j

wij2 log(2κ). (18)

Let R be a large enough scalar such that

R

nL
min

{i,j:wij>0}
wij >

∑
{i,j:i>j}

wij2 log(2κ). (19)

Now consider any θ with ∥θ∥∞ > R. Assume without loss of generality θ1 ≥ θ2 ≥ · · · ≥ θn.
Since we only consider the case when θ⊤1n = 0, θ1− θn > R−0 and there exists some k ≤ n−1
such that θk − θk+1 > R/n. We then have a natural partition by two non-empty vertex set S1 =
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{i : i > k},S2 = {j : j ≤ k}. By assumption for some i > k, j ≤ k, wij > 0 and there is some l

such that y(l)ji = 1. Then combine this with (17),

L(θ) ≥ 1

L
wij

(
−y

(l)
ji (θi − θj) + log(1 + eθi−θj )

)
≥ 1

L
wij (R/n+ log(1))

≥ R

nL
min

i,j:wij>0
wij . (20)

Putting (18), (19), and (20) together, we see that L(θ⋆) ≤ L(θ) for any θ such that θ⊤1n = 0 and
∥θ∥∞ > R. Then by the continuity of L there must exist a minimizer in the closed and bounded
set {θ : ∥θ∥∞ ≤ R : θ⊤1n = 0}. The restricted uniqueness is guaranteed by the restricted strong
convexity shown earlier, that is for any unit vector v ∈ Rn such that v⊤1n = 0 and ∥θ∥∞ ≤ R,

v⊤∇2L(θ)v ≥ 1

4e2R
λn−1(Lw) > 0.

B.2. Proof of Lemma 7

Recall that Ωkl(Lwz) = (ek − el)
⊤L†

wz(ek − el), which implies

Ωkl(Lwz) ≤ 2∥L†
wz∥ =

2

λn−1(Lwz)
.

Regarding λn−1(Lwz), by definition, one has

λn−1(Lwz) = inf
v∈R,∥v∥=1,v⊥1n

v⊤Lwzv

= inf
v∈R,∥v∥=1,v⊥1n

v⊤

 ∑
(i,j):i>j

wijzij(ei − ej)(ei − ej)
⊤

v

≥ 1

4κ
inf

v∈R,∥v∥=1,v⊥1n

v⊤

 ∑
(i,j):i>j

wij(ei − ej)(ei − ej)
⊤

v

=
1

4κ
λn−1(Lw), (21)

where the inequality follows from Lemma 13.

B.3. Proof of Lemma 8

For readers’ convenience, we copy the key quantity appearing in Lemma 8 below:∑
(i,j):i>j

wij

∣∣∣(ek − el)
⊤L†

wz(ei − ej)
∣∣∣ . (22)

It turns out that this quantity is closely related to the so-called conductance of the weighted
graph defined as follows.
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Definition 21 (Conductance) The conductance of a weighted graph G = (V, E , w) is defined as

Φ(G) := min
S⊂V

∑
i∈S,j∈V\S wij

min{vol(S), vol(V \ S)}
,

where the volume of a vertex set S ⊂ V is

vol(S) :=
∑
i∈S

∑
j∈V:j ̸=i

wij .

The following lemma links the quantity in (22) with graph conductance. This lemma is modified
from Lemma 28 in Kelner et al. (2014). The proof is deferred to Section B.3.1.

Lemma 22 Consider a graph G = (V, E) equipped with two set of weights {wij} and {w̃ij} both
supported on E . Suppose that the minimum {wij}-weighted degree is at least 1. Then one has

∑
(i,j):i>j

wij

∣∣∣(ei − ej)
⊤L†

Gw̃
(ek − el)

∣∣∣ ≤ max
(i,j)∈E

{
wij

w̃ij

}
·
8 log

(∑
(i,j):i>j wij

)
Φ(Gw)2

. (23)

Set w̃ij = wijzij . We can apply Lemma 22 to obtain

∑
(i,j):i>j

wij

∣∣∣(ei − ej)
⊤L†

wz(ek − el)
∣∣∣ ≤ max

(i,j):wij>0

{
wij

wijzij

}
·
8 log

(∑
(i,j):i>j wij

)
Φ(Gw)2

≤ 4κ ·
8 log

(∑
(i,j):i>j wij

)
Φ(Gw)2

,

where the last inequality again follows from Lemma 13.
For the numerator, since wmax ≤ n2, we have log(

∑
(i,j):i>j wij) ≤ 3 log(n). Now we focus

on the denominator, i.e., the graph conductance. It is well known that the graph conductance is
controlled by the eigenvalue of the normalized Laplacian (see Lemma 15), that is

Φ(Gw) ≥
1

2
λn−1

(
D−1/2

w LwD
−1/2
w

)
,

where Dw is a diagonal matrix composed of the weighted degrees. By Sylvester’s law of inertia
(Lemma 17), we further have

λn−1

(
D−1/2

w LwD
−1/2
w

)
≥ λn

(
D−1

w

)
λn−1 (Lw) = (dmax)

−1 · λn−1 (Lw) .

Taking the above bounds collectively yields the desired claim in Lemma 8.
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B.3.1. PROOF OF LEMMA 22

This proof is mostly based on the proof of Lemma 28 in Kelner et al. (2014), which considers the
case with integer weights. Let v = L†

Gw̃
(ek − el), where LGw̃

is the w̃ij-weighted graph Laplacian.
Then we can rewrite the LHS of (23) with∑

(i,j):i>j

wij

∣∣∣(ei − ej)
⊤L†

Gw̃
(ek − el)

∣∣∣ = ∑
(i,j):i>j

wij |vi − vj | .

For the rest of the proof we write (i, j) as edges so (i, j) and (j, i) are the same element. For
any c ∈ R we define two vertex sets:

S>
c := {i ∈ V : vi > c} and S<

c := {i ∈ V : vi < c}.

Recall that the volume of a vertex set S is defined as

vol(S) :=
∑

(i,j)∈E:i∈S

wij .

Let

c̄ := sup
c

{
c : vol(S<

c ) ≤ 1

2
vol(V)

}
and

c := inf
c

{
c : vol(S>

c ) ≤ 1

2
vol(V)

}
.

For any ϵ > 0,
vol(S>

c̄+ϵ) ≤ vol(V)− vol(S<
c̄+ϵ) ≤ vol(V)/2.

By the definition of c, c̄+ ϵ ≥ c. This holds for every ϵ > 0 so c̄ ≥ c. Fix some c⋆ ∈ [c, c], we have
that

vol(S>
c⋆) ≤ 1/2 and vol(S<

c⋆) ≤ 1/2. (24)

For any vertex set S ⊂ V , we denote ∂S := {(i, j) : i ∈ S, v ∈ V \ S}. We also define the flow
and weight of the graph cut corresponding to S as

f(S) :=
∑

(i,j)∈∂S

wij |vi − vj | and w(S) :=
∑

(i,j)∈∂S

wij .

Abusing the notation, for any set of edges F we write w(F) :=
∑

(i,j)∈F wij . Now consider a
sequence of real numbers {ci} defined recursively by c0 := c⋆ and for any t ≥ 0,

ct+1 := ct +∆t for ∆t :=
2f(Ct)
w(Ct)

,

where to simplify the notation we also write Ct := S>
ct . At this point we will use the following fact.

Fact 1 For any vertex subset S ⊂ V , ∑
(i,j)∈∂S

w̃ij(vi − vj) ≤ 1
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In a graph theoretical language, this fact says that the total flow going across any cut is at most the
amount of flow going from source to sink. The exact proof is omitted as it requires the introduction
of a number of notions that are irrelevant to the rest of this paper. Please see Kelner et al. (2014) for
the details. For any t ≥ 0, from the definition of Ct we know that for any i ∈ Ct and j ∈ V \ Ct,
vi ≥ vj . Then using the above fact we have

f(Ct) =
∑

(i,j):i∈Ct,v∈V\Ct

wij |vi − vj |

=
∑

(i,j):i∈Ct,v∈V\Ct

wij(vi − vj)

≤ Z
∑

(i,j):i∈Ct,v∈V\Ct

w̃ij(vi − vj) ≤ Z.

Here Z is a normalized factor defined as Z := maxij{wij/w̃ij}. We now show that vol(Ct)
exponentially decreases with t. Since Ct+1 ⊂ Ct for any t ≥ 0,

vol(Ct+1) ≤ vol(Ct)− w(∂Ct \ ∂Ct+1)

= vol(Ct)− w(∂Ct) + w(∂Ct ∩ ∂Ct+1).

For any (i, j) ∈ ∂Ct∩∂Ct+1, i ∈ Ct+1 and j ∈ V \Ct (or the other way around). Then by the choice
of ∆t,

f(Ct) =
∑

(i,j)∈∂Ct

wij |vi − vj |

≥
∑

(i,j)∈∂Ct∩∂Ct+1

wij |vi − vj |

≥
∑

(i,j)∈∂Ct∩∂Ct+1

wij |ct+1 − ct|

= w(∂Ct ∩ ∂Ct+1) ·∆t

= w(∂Ct ∩ ∂Ct+1) ·
2f(Ct)
w(Ct)

.

Therefore w(∂Ct ∩ ∂Ct+1) ≤ w(Ct)/2 and

vol(Ct+1) ≤ vol(Ct)− w(∂Ct) + w(∂Ct ∩ ∂Ct+1)

≤ vol(Ct)−
w(Ct)
2

≤ vol(Ct)−
1

2
vol(Ct)Φ(Gw),

where the last inequality follows from the definition of the conductance Φ(Gw). Now applying this
recursively and use (24),

vol(Ct) ≤
(
1− 1

2
Φ(Gw)

)t

vol(C0) ≤
1

2

(
1− 1

2
Φ(Gw)

)t

vol(V).
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As
∑

i∈S,j∈V\S wij ≤ vol(S) for any S ⊂ V ,

Φ(Gw) := min
S⊂V

∑
i∈S,j∈V\S wij

min{vol(S), vol(V \ S)}
≤ 1.

So vol(Ct) is decreasing in t and for any t > 2 log(vol(V))/Φ(Gw),

vol(Ct) ≤
1

2

(
1− 1

2
Φ(Gw)

)t

vol(V)

≤ 1

2
e−

1
2
tΦ(Gw)vol(V)

<
1

2
.

By assumption, for any vertex i ∈ V , vol({i}) ≥ dmin ≥ 1, so vol(Ct) < 1/2 implies vol(Ct) = ∅.
Now let r be the smallest integer such that vol(Cr+1) = ∅, we have r ≤ 2 log(vol(V))/Φ(Gw). Let
di :=

∑
j:j ̸=iwij . Then

∑
i∈S>

c⋆

di|vi − c⋆| =
r∑

t=0

∑
i∈Ct\Ct+1

di(vi − c⋆)

(i)
≤

r∑
t=0

∑
i∈Ct\Ct+1

di(ct+1 − c⋆)

(ii)
≤

r∑
t=0

(vol(Ct)− vol(Ct+1))

t∑
s=0

∆s

(iii)
≤

r∑
t=0

vol(Ct)∆t.

Here (i) comes from the definition of Ct+1, (ii) comes from the definition of di and choice of ct+1,
and (iii) comes from rearrangement. Now we control the term vol(Ct)∆t for any t ≥ 0. From the
definition of Φ(Gw) we have that

Φ(Gw) ≤
w(Ct)

min{vol(Ct), vol(V)− vol(Ct)}
≤ w(Ct)

vol(Ct)

where the last inequality follows from (24). Moreover we established earlier in this proof that
f(Ct) ≤ Z, then

vol(Ct)∆t ≤
w(Ct)
Φ(Gw)

· 2Z

w(Ct)
=

2Z

Φ(Gw)
.

Therefore ∑
i∈S>

c⋆

di|vi − c⋆| ≤ 2Zr

Φ(Gw)
.

Similarly we can achieve ∑
i∈S<

c⋆

di|vi − c⋆| ≤ 2Zr

Φ(Gw)
.
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Finally, ∑
(i,j):i>j

wij |vi − vj | ≤
∑

(i,j):i>j

wij (|vi − c⋆|+ |vj − c⋆|)

≤
∑
i∈V

di|vi − c⋆|

≤
∑
i∈S>

c⋆

di|vi − c⋆|+
∑
i∈S<

c⋆

di|vi − c⋆|+
∑

i:vi=c⋆

di|vi − c⋆|

≤ 4Zr

Φ(Gw)
≤ 8Z log(vol(V))

Φ(Gw)2
.

This finishes the proof.

Appendix C. Proofs for SDP-based reweighting

C.1. Proofs for oracles in Section 5

Proof [Proof of Theorem 9] Let c ∈ RESR be defined by cij = ⟨Lij ,X⟩. Then, we are interested
in approximately solving the linear program (LP) minw∈F ⟨c,w⟩. Because c ≥ 0 and the set
F consists of the intersection of the positive quadrant with entrywise non-negative linear upper
bounds, this LP is an instance of a packing LP. This class of programs can be approximately solved
by specialized first-order algorithms. In particular, the solver of Allen-Zhu and Orecchia (2018)
yields a (1− ϵ) multiplicative approximation in time Õ (nnz+n/ϵ), where nnz is the number of non-
zero entries in the matrix defining the constraints. By the construction of F , the sparsity of the
corresponding constraints is simply |ESR|. This complete the proof of the theorem.

Proof [Proof of Theorem 10] Let c ∈ RESR be defined by cij := ⟨Lij ,X⟩. Let d := 2pn. Without
loss of generality, we can assume that d is an integer. We are interested in approximately solving
the following linear program (LP):

max
w

⟨c,w⟩

s.t.
∑

ij∈ESR

wij ≤ d ∀ i ∈ V

0 ≤ wij ≤ 1 ∀ ij ∈ ESR

Notice that this is a relaxation of the maximum weight d-matching problem with weight c over
the graph GSR. We are going to exploit this connection by showing that a greedy maximal-weight d-
matching yields a 1/2-approximation to the optimum of this LP. To bound the value of this optimum,
we will rely on the following dual LP:

min d ·
∑
i∈V

si +
∑

ij∈ESR

ℓij

s.t. si + sj + ℓij ≥ cij ∀ i, j ∈ ESR
ℓij ≥ 0 ∀ i, j ∈ ESR
si ≥ 0 i ∈ V
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The greedy d-matching is constructed in the following way. First all edges are sorted in decreasing
order of weight c. Then, edges are added to the matching in this order as long as their addition does
not cause a degree constraint to become violated. Let M be the resulting matching. We now
construct a feasible dual solution based on M . For each vertex i ∈ V, let si be the weight of the last
matching edge incident to i that was added to M . Notice that some si may be 0 if all edges were
exhausted before the degree constraint was violated. For any edge ij ∈ M, let

ℓij = max{cij − si − sj , 0}. (25)

If ij /∈ M, simply let ℓij = 0.
We now argue that the resulting dual solution is feasible. It suffices to show that all constraints

si + sj + ℓij ≥ cij are satisfied. If ij ∈ M, this is an immediate consequence of Equation 25. If
ij /∈ M, the addition of ij must cause either i or j to violate the degree constraint. Suppose wlog
that this was the case for vertex i. Then, it must be the case that cij ≤ si, as edge ij was considered
after the last matching edge was added to i. This proves that our dual solution is feasible.

Finally, we compare the value of the dual solution to that of the greedy matching. By construction,
each vertex i satisfies:∑

j:ij∈M
cij =

∑
j:ij∈M∧ℓij=0

cij +
∑

j:ij∈M∧ℓij>0

cij

≥
∑

j:ij∈M∧ℓij=0

si +
∑

j:ij∈M∧ℓij>0

si + ℓij/2 = d · si +
1

2

∑
j:ij∈M

ℓij ,

where the last equality uses the fact that si = 0 if the degree of i in M is less than d. Summing over
all vertices then gives the following:

2 ·
∑
ij∈M

cij =
∑
i∈V

∑
j:ij∈M

cij = d ·
∑
i∈V

+
∑
ij∈M

ℓij .

As the right hand side is the dual value of our solution, we have shown that the greedy matching
achieves a primal value that is within a factor of two of the optimal, as required.

C.2. Proofs for the analysis of Algorithms 2

C.2.1. PROOF OF LEMMA 11

To analyze the correctness of Algorithm 2, we first recall the regret bound achieved by applying
MMWU to the vector space RV ⊥ 1.

Theorem 23 (Theorem 3.1 in (Arora and Kale, 2016)) Consider a sequence of loss matrices {L(t) ∈
SV }t∈[T ] with L(t)1 = 0 for all t. Let

W (t) = exp

{
−η

t−1∑
s=0

L(s)

}
, and X(t) =

W (t)

⟨Π⊥1,W (t)⟩
.

Then, we have the regret bound:

min
X∈∆

〈
T−1∑
t=0

L(t),X

〉
≥

T−1∑
t=0

⟨L(t),X(t)⟩ − η

T−1∑
s=0

⟨(L(t))2,X(t)⟩ − log(n)

η
. (26)
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Next, we show that V (t), produced by Algorithm 2, approximate the MMWU updates X(t) in
Theorem 23 when computing the squared distances ⟨Lij ,X

(t)⟩. This is proven in Appendix C.2.2
below.

Lemma 24 Let X̃(t) = V (t)(V (t))T as defined in Algorithm 2. Then, X̃(t) ∈ ∆. Moreover, for
large enough k ∈ O(log(n)/ϵ2), for all pairs (i, j) ∈ V × V , the squared distance ⟨Lij , X̃

(t)⟩ is an
ϵ-multiplicative approximation to the squared distance ⟨Lij ,X

(t)⟩ with high probability.

We can now prove Lemma 11.
Proof [Proof of Lemma 11] Notice that wout ∈ F as it is the average of elements of F and F is
convex. Moreover, we have Lwout = 1/T ·

∑T−1
t=0 Lw(t) = 1/T ·

∑T−1
t=0 L(t). By the regret bound in

Equation (26), we then obtain:

min
X∈∆

⟨Lwout ,X⟩ ≥ 1

T

(
T−1∑
t=0

⟨Lw(t) ,X(t)⟩

)
− η

T

(
T−1∑
s=0

⟨(Lw(t))2,X(t)⟩

)
− log(n)

ηT
. (27)

We can exploit the positive semi-definiteness of Lw(t) to bound the second term as a function of the
first. By the definition of F , the reweighting of G by w(t) ∈ F has maximum degree at most 2pn.
Hence:

Lw(t) ⪯ 2 · 2pn ·Π⊥1 and ⟨(Lw(t))2,X(t)⟩ ≤ 4pn · ⟨Lw(t) ,X(t)⟩.
We can now rewrite Equation (27) as:

min
X∈∆

⟨Lwout ,X⟩ ≥
(
1

T
− 4pn · η

T

)(T−1∑
t=0

⟨Lw(t) ,X(t)⟩

)
− log(n)

ηT
.

For all iterations t, we have:

⟨Lw(t) ,X(t)⟩ ≥ (1− ϵ)⟨Lw(t) , X̃(t)⟩ =(1− ϵ)
∑

ij∈ESR

w
(t)
ij ⟨Lij ,V

(t)(V (t))T ⟩

=(1− ϵ)max
w∈F

⟨Lw, X̃
(t)⟩,

where the first inequality follows from Lemma 24 and the last equality follows from Lines 6 and 7
in Algorithm 2. As X̃(t) ∈ ∆, the maximum in the last expression has value at least OPT. Hence,
for the two oracles of Theorems 9 and 10, we have:

Theorem 9 :⟨Lw(t) ,X(t)⟩ ≥ (1− ϵ)2 ·OPT and Theorem 10 :⟨Lw(t) ,X(t)⟩ ≥ (1− ϵ)

2
·OPT.

Therefore:

min
X∈∆

⟨Lwout ,X⟩ ≥

{
(1− 4pn · η) · (1− ϵ)2 ·OPT− log(n)

ηT

(1− 4pn · η) · (1−ϵ)
2 ·OPT− log(n)

ηT

Substituting the definitions of η = ϵ/4pn yields:

min
X∈∆

⟨Lwout ,X⟩ ≥

{
(1− ϵ)3 ·OPT− 4pn log(n)

ϵT
(1−ϵ)2

2 ·OPT− 4pn log(n)
ϵT

By the lower bound (9), the last term in both expressions can be upper bound by 8OPT log(n)/ϵT . The
statement of the lemma follows from the definition T = 8 log(n)/ϵ2.
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C.2.2. PROOF OF LEMMA 24

In this section, we verify that our use of Johnson–Lindenstrauss preserves the ℓ22-distances up to an ϵ-
multiplicative factor by proving Lemma 24. We first recall the statement of Johnson–Lindenstrauss
provided by Achlioptas (2003). The following can be recovered by setting β = 8, and observing
that ϵ2/2 − ϵ2/3 ≥ ϵ2/6 for all ϵ ∈ [0, 1].

Theorem 25 (Theorem 1.1 in (Achlioptas, 2003)) Suppose A ∈ Rn×d and ϵ ∈ [0, 1] are given.
For any k ≥ 120·logn/ϵ2, let R = {±1/

√
k}n×k be a random matrix with entries sampled independently

and uniformly at random, and set V = AR. If ai ∈ Rd and vi ∈ Rk denote the i-th row of A and
V respectively, then

(1− ϵ) · ∥ai − aj∥2 ≤ ∥vi − vj∥2 ≤ (1 + ϵ) · ∥vi − vj∥2

We will also require a result which approximately computes the action of a matrix exponential
where the matrix is Symmetric and Diagonally Dominant (SDD). Recall that a matrix A ∈ Rn×n

is SDD if it is both symmetric, and for all i ∈ [n], the entries satisfy Aii ≥
∑

j ̸=i|Aij |. In Orecchia
et al. (2012), they apply the Lanczos method to obtain the following guarantee.

Theorem 26 (Theorem 1.2 in (Orecchia et al., 2012)) Given an SDD matrix A ∈ Rn×n, a vector
v ∈ Rn, and δ > 0, there exists an algorithm A which outputs a vector u ∈ Rn satisfying∥∥ exp{−A} · v − u

∥∥
2
≤ δ · ∥v∥2

in time Õ
(
(nnz(A) + n) · log(2 + ∥A∥)

)
. Here, nnz(A) denotes the number of non-zero entries of

A, ∥A∥ denotes its spectral norm, and Õ(·) hides factors of poly(log n) and poly(log 1/δ).

We can now prove Lemma 24.
Proof [Proof of Lemma 24] To show that X̃(t) ∈ ∆, note that X̃(t) ⪰ 0 follows immediately from
X̃(t) being the Gram matrix of V(t). To check that its trace with Π⊥1 is unit, we can compute

〈
Π⊥1, X̃

(t)
〉
=
〈
Π⊥1,V

(t)(V(t))⊤
〉
=

⟨Π⊥1,U
(t)(U(t))⊤⟩

⟨Π⊥1,U(t)(U(t))⊤⟩
= 1

We then show that ⟨Lij , X̃
(t)⟩ is an ϵ-multiplicative factor of ⟨Lij ,X

(t)⟩. Let A ∈ Rn×d be the

Cholesky factorization of the matrix exponential W(t) = exp
{
−η
∑

ij∈ESR w
(t)
ij Lij

}
, i.e. W(t) =

AA⊤. Denote ai ∈ Rd and vi ∈ Rk by the i-th row of A and V respectively. Because Algorithm 2
sets

U (t) = exp

{
− η

∑
ij∈ESR

w
(t)
ij Lij

}
R ,

and k is chosen so that k = O
(
logn/ϵ2

)
, Johnson–Lindenstrauss in Theorem 25 implies

(1− ϵ) · ∥ai − aj∥2 ≤ ∥vi − vj∥2 ≤ (1 + ϵ) · ∥ai − aj∥2

for all (i, j) ∈ V × V . We use this to claim the following bound

(1− ϵ) ·
〈
Π⊥1,AA⊤〉 ≤ 〈Π⊥1,U

(t)(U (t))⊤
〉
≤ (1 + ϵ) ·

〈
Π⊥1,AA⊤〉 . (28)
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One can see the RHS by applying Johnson–Lindenstrauss in this manner:

〈
Π⊥1,U

(t)(U (t))⊤
〉
=

1

n
·
∑
i<j

∥ui−uj∥2 ≤ (1+ ϵ) · 1
n
·
∑
i<j

∥ai−aj∥2 = (1+ ϵ) ·
〈
Π⊥1,AA⊤〉 .

The LHS of inequality (28) then follows by applying the Johnson–Lindenstrauss lower bound.
Now, to finally show that ⟨Lij , X̃

(t)⟩ is an ϵ-multiplicative factor of ⟨Lij ,X
(t)⟩, it suffices to

demonstrate (
1−O(ϵ)

)
· ⟨Lij ,X

(t)⟩ ≤ ⟨Lij , X̃
(t)⟩ ≤

(
1 +O(ϵ)

)
· ⟨Lij ,X

(t)⟩ . (29)

Because Algorithm 2 sets V (t) = U (t)/
√

⟨Π⊥1,U (t)(U (t))T ⟩, we have

⟨Lij , X̃
(t)⟩ =

〈
Lij ,V

(t)(V(t))⊤
〉
=

⟨Lij ,U
(t)(U(t))⊤⟩

⟨Π⊥1,U(t)(U(t))⊤⟩
=

∥ui − uj∥2

⟨Π⊥1,U(t)(U(t))⊤⟩
.

On the other hand, setting A to be the Cholesky factorization of W(t) determines

⟨Lij ,X
(t)⟩ = ⟨Lij ,W

(t)⟩
⟨Π⊥1,W (t)⟩

=
⟨Lij ,AA⊤⟩
⟨Π⊥1,AA⊤⟩

=
∥ai − aj∥2

⟨Π⊥1,AA⊤⟩

The RHS of inequality (29) then follows by applying the upper bound in Johnson–Lindenstrauss,
and the lower bound in inequality (28) to get the following.

⟨Lij , X̃
(t)⟩ = ∥ui − uj∥2

⟨Π⊥1,U(t)(U(t))⊤⟩
≤ 1 + ϵ

1− ϵ
· ∥ai − aj∥2

⟨Π⊥1,AA⊤⟩

≤ (1 + 2ϵ) · ∥ai − aj∥2

⟨Π⊥1,AA⊤⟩
=
(
1 +O(ϵ)

)
· ⟨Lij ,X

(t)⟩

The LHS of inequality (29) can then be derived similarly

⟨Lij , X̃
(t)⟩ = ∥ui − uj∥2

⟨Π⊥1,U(t)
≥ 1− ϵ

1 + ϵ
· ∥ai − aj∥2

⟨Π⊥1,AA⊤⟩

≥ (1− 2ϵ) · ∥ai − aj∥2

⟨Π⊥1,AA⊤⟩
=
(
1−O(ϵ)

)
· ⟨Lij ,X

(t)⟩

as required.

C.2.3. PROOF OF LEMMA 12

We prove Lemma 12 thereby establishing that Algorithm 2 runs in time nearly-linear with respect
to the size of GSR.
Proof [Proof of Lemma 12] We bound the running time by considering each line of Algorithm 2. As
k = O(log/ϵ2), Line 3 only requires nearly-linear time. By Theorem 26, for any graph G = (V,E),
the action of the heat kernel exp{−tLG} for t ≥ 0 can be in computed in nearly-linear time in
the graph size. Line 4 requires k such computations and hence also runs in nearly-linear time. The
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normalization of the embedding U (t) requires computing the inner product ⟨Π⊥1,U
(t)(U (t))T ⟩.

This can be achieved easily by noticing that:

⟨Π⊥1,U
(t)(U (t))T ⟩ = Tr(U (t)(U (t))T )− 1

n
∥U (t)1∥2.

As the dimension of U (t) is n × k, both of these terms can be computed in O(nk) arithmetic
operations, which is nearly-linear in n. Similarly, the computation of each edge gain cij only
requires computing the squared distance between the i and j column of V (t), which can be achieved
in time O(k). Hence, all the gains can be computed in nearly-linear time. Finally, by Theorems 9
and 10, Line 7 also runs in nearly-linear time. Hence, every iteration of the main loop runs in
nearly-linear time. As there are only O(logn/ϵ2) iterations, Algorithm 2 runs in nearly-linear time.

Appendix D. Sampling in clusters

In this section, we consider ranking in a sampling regime structured with underlying clusters.
Suppose that there is an underlying cluster labeling φ : [n] → [k] such that item i belongs to cluster
φ(i). We assume each edge (i, j) in the comparison graph E is drawn independently with probability
pt if φ(i) = φ(j) = t for some t ∈ [k] and probability q if otherwise. Without loss of generality,
we let the first n1 items to be cluster 1, the next n2 items to be cluster 2, etc. To distinguish from
the rest of the paper, we denote the sampled comparison graph as GCL = (V = [n], ECL) where CL
stands for clusters.

We consider the case of pt > q for all t. It is easy to see that this is a special case of semi-random
sampling. The spectral profile of this setting can be vastly different from a Erdős-Rényi comparison
graph. Thus a naive application of Theorem 3 would be unsatisfactory.

Proposition 27 Suppose that there is an underlying cluster labeling φ : [n] → [k] and (i, j) ∈ E
is drawn independently with probability pt if φ(i) = φ(j) = t for some t ∈ [k] and probability q if
otherwise. Let G = (V = [n], E) be the comparison graph, then there exists a subgraph of G that is
an Erdős-Rényi graph.

Proof An equivalent way to write E is the following: let δij ∼ Unif(0, 1) be i.i.d. random variables
and

E = {(i, j) : (δij ≤ pt and φ(i) = φ(j) = t for some t ∈ [k]) or δij ≤ q}.

We also consider another graph G1 = (V, E1) where E1 = {(i, j) : δij ≤ q}. It is easy to see G1 is
an Erdős–Rényi graph with uniform sampling probability q and also a subgraph of G.

In addition to the assumptions in the semi-random setting, we assume ntpt ≥ C log(n) for some
absolute constant C > 0. We are interested in the vanilla, unweighted MLE, i.e. the solution of (3)
with wij = 1(i,j)∈ECL

. The following result shows θ̂ achieves Õ(1/
√
nqL) rate in ℓ∞ error.

Theorem 28
Suppose that nq ≥ C1 log(n) and ntpt ≥ C1 log(n). for some large enough constants C1 > 0.

Suppose nqL ≥ C2κ
4 log3(n) and n2q2L ≥ C2κ

4ntpt log
3(n) for some large enough constant
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C2 > 0. for any t ∈ [n]. Then with probability at least 1−O(n−10), for any (k, l), the unweighted
MLE θ̂ satisfies

∥θ̂ − θ⋆∥∞ ≤ C3κ

√
log(n)

nqL

for some constants C3 > 0. As a result, the top-K items are recovered exactly as long as

n2qL ≥ C4
κ2n log(n)

∆2
K

for some large enough constant C5.

The result of this theorem matches what we can get in Theorem 1 using reweighting, with a slight
difference in the sample complexity requirement. This suggests that at least in some non-uniform
sampling models, reweighting is unnecessary for MLE.

D.1. Proof of Theorem 28

We start by applying Lemma 6 with wij = 1(i,j)∈ECL
. For any k ̸= l, let Bkl, Qkl be some real

number that we will specify later such that

Bkl ≥ C1

√
κ

L
Ωkl(Lz) log(n); (30)

Qkl ≥
∑

(i,j)∈ECL:i>j

B2
ij

∣∣∣(ek − el)
⊤L†

z(ei − ej)
∣∣∣ . (31)

Here C1 > 0 is some large enough constant and

Lz =
∑

(i,j)∈ECL:i>j

zij(ei − ej)(ei − ej)
⊤.

Suppose that Qkl ≤ 4Bkl for any (k, l). By Lemma 6, with probability at least 1 − n−10, we have
for any (k, l), ∣∣∣(θ̂k − θ̂l

)
− (θ⋆k − θ⋆l )

∣∣∣ ≤ Bkl.

We now let

Bkl := C2

√
κ2 log(n)

(ntpt ∨ nq)L

if k, l are both in some cluster t and

Bkl := C2

√
κ2 log(n)

nqL

if k, l are not in the same cluster. We also let

Qkl := C3
κ2 log2(n)

nqL
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Here C2, C3 > 0 are some large enough constants. constant. We denote GB2 as the graph GCL

equipped with weights {B2
ij}.

We now show (30) and (31) hold using the same strategy in the proof of Theorem 3. First,
we control effective resistance and graph conductance with the following lemmas. The proofs are
deferred to Section D.2 and D.3.

Lemma 29 With probability at least 1−O(n−10),

Ωkl(Lz) ≤
κ

ntpt ∨ nq

if k, l are both in some cluster t and
Ωkl(Lz) ≤

κ

nq

if k, l are not in the same cluster.

Lemma 30 Let GB2 be GCL with weights {B2
ij}(i,j)∈ECL

. The graph conductance of GB2 satisfies

Φ(GB2) ≥
1

8
.

From Lemma 29, we can see that (30) is satisfied as long as C2 is large enough. By Lemma 30 we
have that

∑
(i,j)∈ECL:i>j

B2
ij

∣∣∣(ei − ej)
⊤L†

z(ek − el)
∣∣∣ ≤ max

(i,j)∈ECL

{
B2

ij

}
·
8 log

(∑
(i,j)∈ECL:i>j B

2
ij

)
Φ(GB2)2

. (32)

For all (k, l) ∈ [n]2,

B2
kl ≤ C2

2

κ2 log(n)

nqL
≤ 1

as long as nqL ≥ C4κ
4 log3(n) for some large enough constant C4 > 0. Then provided that C3 is

large enough, (32) becomes

∑
(i,j)∈ECL:i>j

B2
ij

∣∣∣(ei − ej)
⊤L†

z(ek − el)
∣∣∣ ≤ C2

2

κ2 log(n)

nqL
· 8 log(n

2)

(1/8)2

≤ C3
κ2 log2(n)

nqL
= Qkl.

This satisfies (31). Using the assumption that nqL ≥ C4κ
4 log3(n) and n2q2L ≥ C5κ

4ntpt log
3(n)

for any t ∈ [n] with some large enough constants C4, C5 > 0, we have that Qkl ≤ 4Bkl for any
(k, l) ∈ [n]2.

Now that we have checked all conditions for Lemma 6, we conclude that

∣∣∣(θ̂k − θ̂l

)
− (θ⋆k − θ⋆l )

∣∣∣ ≤ Bkl = C2κ

√
log(n)

nqL
.
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D.2. Proof of Lemma 29

We consider two subgraphs G1 = (V, E1) and G2 = (V, E2) of G, where E1 consists of all edges
within each cluster, and E2 consists of the edges of an underlying Erdős–Rényi subgraph as in
Proposition 27. Let their unweighted graph Laplacian be L1 and L2. Let their z-weighted graph
Laplacian be Lz,1 and Lz,2. Combining Lemma 7 and 14, for k, l both in some cluster t,

Ωkl(Lz,1) ≤
8κ

λnt−1(L1)
≤ 16κ

ntpt
;

while for any k, l (including those in cluster t), we look at G2 to see

Ωkl(Lz,2) ≤
8κ

λn−1(L2)
≤ 16κ

nq
.

Combining this with Rayleigh’s law of monotonicity (see Lemma 16), we reach the claimed result.

D.3. Proof of Lemma 30

From Lemma 15 we have

Φ(GB2) ≥
1

2
λn−1(D

−1/2
B2 LB2D

−1/2
B2 ). (33)

Here DB2 is the diagonal matrix with [DB2 ]ii =
∑

j:(i,j)∈E B
2
ij and

LB2 =
∑

(i,j)∈ECL,i>j

B2
ij(ei − ej)(ei − ej)

⊤

=
∑

(i,j),i>j

B2
ijδij(ei − ej)(ei − ej)

⊤︸ ︷︷ ︸
=:Lij

,

where δij = 1{(i,j)∈ECL}. To control the right hand side of (33), we give a lower bound of
λn−1(LB2) and an upper bound of the diagonal entries of DB2 in the following lemmas. The
proofs are deferred to the end of this section.

Lemma 31 Instate the assumption of Lemma 30. With probability at least 1−O(n−10),

λn−1(LB2) ≥
Cκ2 log(n)

2L
,

where C is some constant.

Lemma 32 Instate the assumption of Lemma 30. With probability at least 1−O(n−10),

∑
j;(i,j)∈E

B2
ij ≤

4Cκ2 log(n)

L

for all i ∈ [n]. Here C is a constant.
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With these two lemmas, by Sylvester’s law of inertia (Lemma 17),

Φ(GB2) ≥
1

2
λn−1(D

−1/2
B2 LB2D

−1/2
B2 )

≥ 1

2
λn−1(LB2)λn(D

−1
B2)

≥ 1

8
.

Proof of Lemma 31. The proof follows similar strategy to Section 5.3.3 in Tropp (2015). Let
R ∈ R(n−1)×n be a partial isometry such that RR⊤ = In−1 and R1n = 0. Then λn−1(LB2) =
λn−1(RLB2R⊤) and we will use matrix Chernoff to control the latter term.

Recall that
Lij = B2

ijδij(ei − ej)(ei − ej)
⊤.

For all (i, j) such that i > j,

0 ≤ λn−1(RLijR
⊤) ≤ λ1(RLijR

⊤) = λ1(Lij) ≤ 2C2
κ2 log(n)

nqL
.

Because P[Lt
ij = 1 | Rt

ij = 1] ≥ 2κ
(1+κ)2

≥ 1/(2κ),

λn−1(ERLB2R⊤) = λn−1

R
n∑

t=1

∑
i>j

ELijR
⊤


= λn−1

R
n∑

t=1

∑
i>j

B2
ijEδij(ei − ej)(ei − ej)

⊤R⊤


When i, j are in the same cluster t,

B2
ijEδij ≥ C2

ptκ
2 log(n)

(ntpt ∨ nq)L
≥ C2

κ2 log(n)

nL
;

when i, j are not in the same cluster,

B2
ijEδij ≥ C2

qκ2 log(n)

nqL
= C2

κ2 log(n)

nL
.

Then

λn−1(ERLB2R⊤) ≥ C2
κ2 log(n)

nL
· λn−1

R

n∑
t=1

∑
i>j

(ei − ej)(ei − ej)
⊤R⊤


= C2

κ2 log(n)

nL
· λn−1

[
R
(
nIn − 1n1

⊤
n

)
R⊤
]

= C2
κ2 log(n)

nL
· λn−1 [nIn−1]

= C2
κ2 log(n)

L
.
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The second to last line holds since RR⊤ = In−1 and R1n = 0. Then by matrix Chernoff (see e.g.
Theorem 5.1.1 in Tropp (2015)),

P
{
[λn−1(RLB2R⊤)] ≤ C2κ

2 log(n)

2L

}
≤ n ·

[
e−1/2

(1/2)1/2

]nq/2
≤ n−10

as long as nq ≥ C1 log(n) for some large enough constant C1. The nq/2 term in the exponent
comes from the fact that λn−1(ERLB2R⊤)/λ1(Lij) ≥ nq/2.

Proof of Lemma 32. Let φ(i) = t. We split the summation with∑
j:(i,j)∈E

B2
ij =

∑
j:(i,j)∈E,φ(j)=t

B2
ij +

∑
j:(i,j)∈E,φ(j)̸=t

B2
ij

=
C1κ

2 log(n)

L

 ∑
j:(i,j)∈E,φ(j)=t

1

ntpt ∨ nq
+

∑
j:(i,j)∈E,φ(j)̸=t

1

nq

 ,

where C1 > 0 is a constant. By assumption for any t ∈ [k], nq ≥ C2 log(n) and ntpt ≥ C3 log(n),
where C2, C3 > 0 are some constants. Applying standard Chernoff bound, we have that with
probability at least 1− 4n−10, for all i ∈ [n],

1

2
ntpt ≤ |{j : (i, j) ∈ E , φ(j) = t}| ≤ 2ntpt

and
1

2
nq ≤ |{j : (i, j) ∈ E}| ≤ 2nq

as long as C2, C3 are large enough. Then

∑
j:(i,j)∈E

B2
ij ≤ C1

κ2 log(n)

L

[
2ntpt ·

1

ntpt ∨ nq
+ 2nq · 1

nq

]

≤ 4C1
κ2 log(n)

L
.

Appendix E. Experiment setup for Figure 2

To check our result, we implement the Algorithm 1 and apply it to some simulated data generated
with semi-random sampling. Our semi-random graph is generated as follows:

1. Generate a Erdős–Rényi random graph GER with n vertices and edge probability p.

2. Randomly select a subset A of n/3 vertices in the first n/2 vertices, and a subset B of n/3
vertices in the last n/2 vertices.

3. Form GSR by adding all edges between vertices in A and all edges between vertices in B to
GER.
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We then generate the comparison data following the BTL model with latent score θ⋆, where θ⋆i =
∆K for i = 1, . . . ,K and θ⋆i = 0 for i = K + 1, . . . , n. Similar to the example in Figure 1, this
quickly ruins the nice spectral properties observed in uniform sampling.

We choose the parameters to be n = 200,K = 10, L = 10, p = 0.25, and ∆K varying from
0.02 to 0.62. For each set of parameters, we do 50 independent trials. In each trial, we compute two
MLE estimates of θ⋆ and the corresponding top-K items. The first one is the vanilla MLE using
all data on GER and the second one is the weighted MLE given by Algorithm 1. We compare the
top-K recovery accuracy, i.e. the proportion of top-K items that are successfully recovered, under
varying latent score gap ∆K .
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