Settling the Sample Complexity of Online Reinforcement Learning

Zihan ZhangZZ5478@PRINCETON.EDUPrinceton University, Princeton, NJ 08544, USA.YUXINC@WHARTON.UPENN.EDUUniversity of Pennsylvania, Philadelphia, PA 19104, USA.YUXINC@WHARTON.UPENN.EDUJason D. LeeJASONLEE@PRINCETON.EDUPrinceton University, Princeton, NJ 08544, USA.SSDU@CS.WASHINGTON.EDUUniversity of Washington, Seattle, WA 98195, USA.SSDU@CS.WASHINGTON.EDU

Editors: Shipra Agrawal and Aaron Roth

Abstract

A central issue lying at the heart of online reinforcement learning (RL) is data efficiency. While a number of recent works achieved asymptotically minimal regret in online RL, the optimality of these results is only guaranteed in a "large-sample" regime, imposing enormous burn-in cost in order for their algorithms to operate optimally. How to achieve minimax-optimal regret without incurring any burn-in cost has been an open problem in RL theory.

We settle this problem for finite-horizon inhomogeneous Markov decision processes. Specifically, we prove that a modified version of MVP (Monotonic Value Propagation), an optimistic modelbased algorithm proposed by Zhang et al. (2021a), achieves a regret on the order of

 $\min\left\{\sqrt{SAH^3K}, HK\right\},\$

modulo log factors, where S is the number of states, A is the number of actions, H is the horizon length, and K is the total number of episodes. This regret matches the minimax lower bound for the entire range of sample size $K \ge 1$, essentially eliminating any burn-in requirement. It also translates to a PAC sample complexity (i.e., the number of episodes needed to yield ε -accuracy) of $\frac{SAH^3}{\varepsilon^2}$ up to log factor, which is minimax-optimal for the full ε -range. Further, we extend our theory to unveil the influences of problem-dependent quantities like the optimal value/cost and certain variances. The key technical innovation lies in a novel analysis paradigm to decouple complicated statistical dependency — a long-standing challenge facing the analysis of online RL in sample-hungry scenarios.¹

Keywords: online reinforcement learning, sample complexity, minimax regret, model-based algorithms

Acknowledgement

We thank for Qiwen Cui for helpful discussions. Y. Chen is supported in part by the Alfred P. Sloan Research Fellowship, the Google Research Scholar Award, the AFOSR grants FA9550-19-1-0030 and FA9550-22-1-0198, the ONR grant N00014-22-1-2354, and the NSF grants CCF-2221009 and CCF-1907661. J. D. Lee acknowledges support of the ARO under MURI Award W911NF-11-1-0304, the Sloan Research Fellowship, NSF CCF 2002272, NSF IIS 2107304, NSF CIF 2212262, ONR Young Investigator Award, and NSF CAREER Award 2144994. S. S. Du acknowledges the support of NSF IIS 2110170, NSF DMS 2134106, NSF CCF 2212261, NSF IIS 2143493, NSF CCF 2019844, and NSF IIS 2229881.

^{1.} Extended abstract. Full version appears as [arXiv:2307.13586, v3].

References

- Alekh Agarwal, Akshay Krishnamurthy, John Langford, Haipeng Luo, et al. Open problem: Firstorder regret bounds for contextual bandits. In *Conference on Learning Theory*, pages 4–7, 2017.
- Alekh Agarwal, Sham Kakade, and Lin F Yang. Model-based reinforcement learning with a generative model is minimax optimal. In *Conference on Learning Theory*, pages 67–83, 2020.
- Shipra Agrawal and Randy Jia. Optimistic posterior sampling for reinforcement learning: worstcase regret bounds. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, *Advances in Neural Information Processing Systems 30*, pages 1184–1194. Curran Associates, Inc., 2017.
- Zeyuan Allen-Zhu, Sébastien Bubeck, and Yuanzhi Li. Make the minority great again: First-order regret bound for contextual bandits. In *International Conference on Machine Learning*, pages 186–194, 2018.
- Mohammad Gheshlaghi Azar, Rémi Munos, and Hilbert J Kappen. Minimax PAC bounds on the sample complexity of reinforcement learning with a generative model. *Machine learning*, 91(3): 325–349, 2013.
- Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax regret bounds for reinforcement learning. In *Proceedings of the 34th International Conference on Machine Learning*, pages 263–272, 2017.
- Yu Bai, Tengyang Xie, Nan Jiang, and Yu-Xiang Wang. Provably efficient Q-learning with low switching cost. In Advances in Neural Information Processing Systems, pages 8004–8013, 2019.
- Peter L Bartlett and Ambuj Tewari. Regal: a regularization based algorithm for reinforcement learning in weakly communicating mdps. In *Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence (UAI 2009)*, 2009.
- Carolyn L Beck and Rayadurgam Srikant. Error bounds for constant step-size Q-learning. *Systems & control letters*, 61(12):1203–1208, 2012.
- Ronen I. Brafman and Moshe Tennenholtz. R-max a general polynomial time algorithm for nearoptimal reinforcement learning. J. Mach. Learn. Res., 3(Oct):213–231, March 2003. ISSN 1532-4435.
- Qi Cai, Zhuoran Yang, Chi Jin, and Zhaoran Wang. Provably efficient exploration in policy optimization. *arXiv preprint arXiv:1912.05830*, 2019.
- Liyu Chen, Mehdi Jafarnia-Jahromi, Rahul Jain, and Haipeng Luo. Implicit finite-horizon approximation and efficient optimal algorithms for stochastic shortest path. *Advances in Neural Information Processing Systems*, 34, 2021.
- Zaiwei Chen, Siva Theja Maguluri, Sanjay Shakkottai, and Karthikeyan Shanmugam. Finite-sample analysis of contractive stochastic approximation using smooth convex envelopes. *Advances in Neural Information Processing Systems*, 33:8223–8234, 2020.

- Qiwen Cui and Lin F Yang. Minimax sample complexity for turn-based stochastic game. In Uncertainty in Artificial Intelligence, pages 1496–1504, 2021.
- Christoph Dann and Emma Brunskill. Sample complexity of episodic fixed-horizon reinforcement learning. In Advances in Neural Information Processing Systems, pages 2818–2826, 2015.
- Christoph Dann, Tor Lattimore, and Emma Brunskill. Unifying PAC and regret: Uniform PAC bounds for episodic reinforcement learning. Advances in Neural Information Processing Systems, 30, 2017.
- Christoph Dann, Lihong Li, Wei Wei, and Emma Brunskill. Policy certificates: Towards accountable reinforcement learning. In *Proceedings of the 36th International Conference on Machine Learning*, pages 1507–1516, 2019.
- Christoph Dann, Teodor Vanislavov Marinov, Mehryar Mohri, and Julian Zimmert. Beyond valuefunction gaps: Improved instance-dependent regret bounds for episodic reinforcement learning. *Advances in Neural Information Processing Systems*, 34:1–12, 2021.
- Omar Darwiche Domingues, Pierre Ménard, Emilie Kaufmann, and Michal Valko. Episodic reinforcement learning in finite mdps: Minimax lower bounds revisited. In *Algorithmic Learning Theory*, pages 578–598, 2021.
- Kefan Dong, Yuanhao Wang, Xiaoyu Chen, and Liwei Wang. Q-learning with UCB exploration is sample efficient for infinite-horizon MDP. arXiv preprint arXiv:1901.09311, 2019.
- Yonathan Efroni, Nadav Merlis, Mohammad Ghavamzadeh, and Shie Mannor. Tight regret bounds for model-based reinforcement learning with greedy policies. *Advances in Neural Information Processing Systems*, 32, 2019.
- Eyal Even-Dar and Yishay Mansour. Learning rates for Q-learning. *Journal of Machine Learning Research*, 5(Dec):1–25, 2003.
- David A Freedman. On tail probabilities for martingales. *the Annals of Probability*, 3(1):100–118, 1975.
- Ronan Fruit, Matteo Pirotta, Alessandro Lazaric, and Ronald Ortner. Efficient bias-span-constrained exploration-exploitation in reinforcement learning. In *ICML 2018-The 35th International Conference on Machine Learning*, volume 80, pages 1578–1586, 2018.
- Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret bounds for reinforcement learning. *Journal of Machine Learning Research*, 11(Apr):1563–1600, 2010.
- Xiang Ji and Gen Li. Regret-optimal model-free reinforcement learning for discounted MDPs with short burn-in time. *Advances in neural information processing systems*, 2023.
- Nan Jiang and Alekh Agarwal. Open problem: The dependence of sample complexity lower bounds on planning horizon. In *Conference On Learning Theory*, pages 3395–3398, 2018.
- Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan. Is Q-learning provably efficient? In Advances in Neural Information Processing Systems, pages 4863–4873, 2018.

- Chi Jin, Akshay Krishnamurthy, Max Simchowitz, and Tiancheng Yu. Reward-free exploration for reinforcement learning. *International Conference on Machine Learning*, 2020.
- Ying Jin, Zhuoran Yang, and Zhaoran Wang. Is pessimism provably efficient for offline RL? In *International Conference on Machine Learning*, pages 5084–5096, 2021.
- Sham M Kakade. On the sample complexity of reinforcement learning. PhD thesis, University of London London, England, 2003.
- Michael Kearns and Satinder Singh. Finite-sample convergence rates for Q-learning and indirect algorithms. *Advances in neural information processing systems*, 11, 1998a.
- Michael J Kearns and Satinder P Singh. Near-optimal reinforcement learning in polynominal time. In *Proceedings of the Fifteenth International Conference on Machine Learning*, pages 260–268, 1998b.
- J Zico Kolter and Andrew Y Ng. Near-bayesian exploration in polynomial time. In *Proceedings of the 26th annual international conference on machine learning*, pages 513–520, 2009.
- Tor Lattimore and Marcus Hutter. PAC bounds for discounted MDPs. In *International Conference* on Algorithmic Learning Theory, pages 320–334. Springer, 2012.
- Chung-Wei Lee, Haipeng Luo, Chen-Yu Wei, and Mengxiao Zhang. Bias no more: high-probability data-dependent regret bounds for adversarial bandits and mdps. *Advances in neural information processing systems*, 33:15522–15533, 2020.
- Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial, review, and perspectives on open problems. *arXiv preprint arXiv:2005.01643*, 2020.
- Gen Li, Laixi Shi, Yuxin Chen, Yuantao Gu, and Yuejie Chi. Breaking the sample complexity barrier to regret-optimal model-free reinforcement learning. *Advances in Neural Information Processing Systems*, 34, 2021a.
- Gen Li, Yuting Wei, Yuejie Chi, Yuantao Gu, and Yuxin Chen. Sample complexity of asynchronous Q-learning: Sharper analysis and variance reduction. *IEEE Transactions on Information Theory*, 68(1):448–473, 2021b.
- Gen Li, Yuejie Chi, Yuting Wei, and Yuxin Chen. Minimax-optimal multi-agent RL in Markov games with a generative model. *Advances in Neural Information Processing Systems*, 35:15353–15367, 2022.
- Gen Li, Laixi Shi, Yuxin Chen, Yuejie Chi, and Yuting Wei. Settling the sample complexity of model-based offline reinforcement learning. *accepted to the Annals of Statistics*, 2023.
- Gen Li, Changxiao Cai, Yuxin Chen, Yuting Wei, and Yuejie Chi. Is Q-learning minimax optimal? a tight sample complexity analysis. *Operations Research*, 72(1):222–236, 2024a.
- Gen Li, Yuting Wei, Yuejie Chi, and Yuxin Chen. Breaking the sample size barrier in model-based reinforcement learning with a generative model. *Operations Research*, 72(1):203–221, 2024b.

- Gen Li, Yuling Yan, Yuxin Chen, and Jianqing Fan. Minimax-optimal reward-agnostic exploration in reinforcement learning. *Conference on Learning Theory (COLT)*, 2024c.
- Yuanzhi Li, Ruosong Wang, and Lin F Yang. Settling the horizon-dependence of sample complexity in reinforcement learning. In *IEEE Symposium on Foundations of Computer Science*, 2021c.
- Andreas Maurer and Massimiliano Pontil. Empirical Bernstein bounds and sample variance penalization. In Conference on Learning Theory, 2009.
- Pierre Ménard, Omar Darwiche Domingues, Xuedong Shang, and Michal Valko. UCB momentum Q-learning: Correcting the bias without forgetting. In *International Conference on Machine Learning*, pages 7609–7618, 2021.
- Gergely Neu and Ciara Pike-Burke. A unifying view of optimism in episodic reinforcement learning. *arXiv preprint arXiv:2007.01891*, 2020.
- Ian Osband, Daniel Russo, and Benjamin Van Roy. (more) efficient reinforcement learning via posterior sampling. In Advances in Neural Information Processing Systems, pages 3003–3011, 2013.
- Aldo Pacchiano, Philip Ball, Jack Parker-Holder, Krzysztof Choromanski, and Stephen Roberts. On optimism in model-based reinforcement learning. arXiv preprint arXiv:2006.11911, 2020.
- Ashwin Pananjady and Martin J Wainwright. Instance-dependent ℓ_{∞} -bounds for policy evaluation in tabular reinforcement learning. *IEEE Transactions on Information Theory*, 67(1):566–585, 2020.
- Guannan Qu and Adam Wierman. Finite-time analysis of asynchronous stochastic approximation and Q-learning. In *Proceedings of Thirty Third Conference on Learning Theory (COLT)*, 2020.
- Paria Rashidinejad, Banghua Zhu, Cong Ma, Jiantao Jiao, and Stuart Russell. Bridging offline reinforcement learning and imitation learning: A tale of pessimism. Advances in Neural Information Processing Systems, 34:11702–11716, 2021.
- Tongzheng Ren, Jialian Li, Bo Dai, Simon S Du, and Sujay Sanghavi. Nearly horizon-free offline reinforcement learning. Advances in neural information processing systems, 34:15621–15634, 2021.
- Daniel Russo. Worst-case regret bounds for exploration via randomized value functions. In Advances in Neural Information Processing Systems, pages 14433–14443, 2019.
- Laixi Shi, Gen Li, Yuting Wei, Yuxin Chen, and Yuejie Chi. Pessimistic Q-learning for offline reinforcement learning: Towards optimal sample complexity. In *International Conference on Machine Learning*, pages 19967–20025, 2022.
- Laixi Shi, Gen Li, Yuting Wei, Yuxin Chen, Matthieu Geist, and Yuejie Chi. The curious price of distributional robustness in reinforcement learning with a generative model. *Advances in Neural Information Processing Systems*, 2023.

- Aaron Sidford, Mengdi Wang, Xian Wu, Lin Yang, and Yinyu Ye. Near-optimal time and sample complexities for solving Markov decision processes with a generative model. In Advances in Neural Information Processing Systems, pages 5186–5196, 2018a.
- Aaron Sidford, Mengdi Wang, Xian Wu, and Yinyu Ye. Variance reduced value iteration and faster algorithms for solving Markov decision processes. In *Proceedings of the Twenty-Ninth Annual* ACM-SIAM Symposium on Discrete Algorithms, pages 770–787. Society for Industrial and Applied Mathematics, 2018b.
- Max Simchowitz and Kevin G Jamieson. Non-asymptotic gap-dependent regret bounds for tabular MDPs. In Advances in Neural Information Processing Systems, pages 1153–1162, 2019.
- Alexander L Strehl and Michael L Littman. An analysis of model-based interval estimation for markov decision processes. *Journal of Computer and System Sciences*, 74(8):1309–1331, 2008.
- Alexander L Strehl, Lihong Li, Eric Wiewiora, John Langford, and Michael L Littman. PAC modelfree reinforcement learning. In *Proceedings of the 23rd international conference on Machine learning*, pages 881–888. ACM, 2006.
- István Szita and Csaba Szepesvári. Model-based reinforcement learning with nearly tight exploration complexity bounds. In *ICML*, 2010.
- Mohammad Sadegh Talebi and Odalric-Ambrym Maillard. Variance-aware regret bounds for undiscounted reinforcement learning in mdps. arXiv preprint arXiv:1803.01626, 2018.
- Jean Tarbouriech, Runlong Zhou, Simon S Du, Matteo Pirotta, Michal Valko, and Alessandro Lazaric. Stochastic shortest path: Minimax, parameter-free and towards horizon-free regret. *Advances in Neural Information Processing Systems*, 34, 2021.
- Andrea Tirinzoni, Matteo Pirotta, and Alessandro Lazaric. A fully problem-dependent regret lower bound for finite-horizon MDPs. arXiv preprint arXiv:2106.13013, 2021.
- Andrew J Wagenmaker, Yifang Chen, Max Simchowitz, Simon Du, and Kevin Jamieson. Firstorder regret in reinforcement learning with linear function approximation: A robust estimation approach. In *International Conference on Machine Learning*, pages 22384–22429, 2022.
- Martin J Wainwright. Stochastic approximation with cone-contractive operators: Sharp ℓ_{∞} -bounds for Q-learning. *arXiv preprint arXiv:1905.06265*, 2019a.
- Martin J Wainwright. Variance-reduced Q-learning is minimax optimal. *arXiv preprint arXiv:1906.04697*, 2019b.
- Kaiwen Wang, Kevin Zhou, Runzhe Wu, Nathan Kallus, and Wen Sun. The benefits of being distributional: Small-loss bounds for reinforcement learning. arXiv preprint arXiv:2305.15703, 2023.
- Ruosong Wang, Simon S Du, Lin F Yang, and Sham M Kakade. Is long horizon reinforcement learning more difficult than short horizon reinforcement learning? In Advances in Neural Information Processing Systems, 2020.

- Xinqi Wang, Qiwen Cui, and Simon S Du. On gap-dependent bounds for offline reinforcement learning. *Advances in Neural Information Processing Systems*, 35:14865–14877, 2022.
- Tengyang Xie, Nan Jiang, Huan Wang, Caiming Xiong, and Yu Bai. Policy finetuning: Bridging sample-efficient offline and online reinforcement learning. Advances in neural information processing systems, 34:27395–27407, 2021.
- Zhihan Xiong, Ruoqi Shen, Qiwen Cui, Maryam Fazel, and Simon S Du. Near-optimal randomized exploration for tabular markov decision processes. *Advances in Neural Information Processing Systems*, 35:6358–6371, 2022.
- Haike Xu, Tengyu Ma, and Simon Du. Fine-grained gap-dependent bounds for tabular MDPs via adaptive multi-step bootstrap. In *Conference on Learning Theory*, pages 4438–4472, 2021.
- Yuling Yan, Gen Li, Yuxin Chen, and Jianqing Fan. The efficacy of pessimism in asynchronous Q-learning. *IEEE Transactions on Information Theory*, 69(11):7185–7219, 2023.
- Kunhe Yang, Lin Yang, and Simon Du. *Q*-learning with logarithmic regret. In *International Con*ference on Artificial Intelligence and Statistics, pages 1576–1584, 2021.
- Ming Yin, Yaqi Duan, Mengdi Wang, and Yu-Xiang Wang. Near-optimal offline reinforcement learning with linear representation: Leveraging variance information with pessimism. *arXiv* preprint arXiv:2203.05804, 2022.
- Andrea Zanette and Emma Brunskill. Tighter problem-dependent regret bounds in reinforcement learning without domain knowledge using value function bounds. In *International Conference* on Machine Learning, pages 7304–7312, 2019.
- Zihan Zhang, Yuan Zhou, and Xiangyang Ji. Almost optimal model-free reinforcement learning via reference-advantage decomposition. In *NeurIPS*, 2020.
- Zihan Zhang, Xiangyang Ji, and Simon Du. Is reinforcement learning more difficult than bandits? a near-optimal algorithm escaping the curse of horizon. In *Conference on Learning Theory*, pages 4528–4531, 2021a.
- Zihan Zhang, Yuan Zhou, and Xiangyang Ji. Model-free reinforcement learning: from clipped pseudo-regret to sample complexity. In *International Conference on Machine Learning*, pages 12653–12662, 2021b.
- Zihan Zhang, Xiangyang Ji, and Simon Du. Horizon-free reinforcement learning in polynomial time: the power of stationary policies. In *Conference on Learning Theory*, pages 3858–3904, 2022.
- Heyang Zhao, Jiafan He, Dongruo Zhou, Tong Zhang, and Quanquan Gu. Variance-dependent regret bounds for linear bandits and reinforcement learning: Adaptivity and computational efficiency. *arXiv preprint arXiv:2302.10371*, 2023.
- Runlong Zhou, Zhang Zihan, and Simon Shaolei Du. Sharp variance-dependent bounds in reinforcement learning: Best of both worlds in stochastic and deterministic environments. In *International Conference on Machine Learning*, pages 42878–42914, 2023.