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Abstract
A central issue lying at the heart of online reinforcement learning (RL) is data efficiency. While
a number of recent works achieved asymptotically minimal regret in online RL, the optimality of
these results is only guaranteed in a “large-sample” regime, imposing enormous burn-in cost in
order for their algorithms to operate optimally. How to achieve minimax-optimal regret without
incurring any burn-in cost has been an open problem in RL theory.

We settle this problem for finite-horizon inhomogeneous Markov decision processes. Specifi-
cally, we prove that a modified version of MVP (Monotonic Value Propagation), an optimistic model-
based algorithm proposed by Zhang et al. (2021a), achieves a regret on the order of

min
{√

SAH3K, HK
}
,

modulo log factors, where S is the number of states, A is the number of actions, H is the horizon
length, and K is the total number of episodes. This regret matches the minimax lower bound for
the entire range of sample size K ≥ 1, essentially eliminating any burn-in requirement. It also
translates to a PAC sample complexity (i.e., the number of episodes needed to yield ε-accuracy)
of SAH3

ε2 up to log factor, which is minimax-optimal for the full ε-range. Further, we extend
our theory to unveil the influences of problem-dependent quantities like the optimal value/cost
and certain variances. The key technical innovation lies in a novel analysis paradigm to decouple
complicated statistical dependency — a long-standing challenge facing the analysis of online RL
in sample-hungry scenarios.1
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