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Abstract
Multi-distribution learning (MDL), which seeks to learn a shared model that minimizes the

worst-case risk across k distinct data distributions, has emerged as a unified framework in response
to the evolving demand for robustness, fairness, multi-group collaboration, etc. Achieving data-
efficient MDL necessitates adaptive sampling, also called on-demand sampling, throughout the
learning process. However, there exist substantial gaps between the state-of-the-art upper and lower
bounds on the optimal sample complexity. Focusing on a hypothesis class of Vapnik–Chervonenkis
(VC) dimension d, we propose a novel algorithm that yields an ε-optimal randomized hypothesis
with a sample complexity on the order of d+k

ε2 (modulo log factor), matching the best-known lower
bound. Our algorithmic ideas and theory are further extended to accommodate Rademacher classes.
The proposed algorithms are oracle-efficient, which access the hypothesis class solely through an
empirical risk minimization oracle. We also establish the necessity of randomization, revealing a
large sample size barrier when only deterministic hypotheses are permitted. These findings resolve
three open problems presented in COLT 2023 (i.e., Awasthi et al. (2023, Problems 1, 3 and 4)).1
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Jacob Abernethy, Pranjal Awasthi, Matthäus Kleindessner, Jamie Morgenstern, Chris Russell, and
Jie Zhang. Active sampling for min-max fairness. International Conference on Machine Learn-
ing, pages 53–65, 2022.

Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method: a meta-
algorithm and applications. Theory of Computing, 8(1):121–164, 2012.

Hilal Asi, Yair Carmon, Arun Jambulapati, Yujia Jin, and Aaron Sidford. Stochastic bias-reduced
gradient methods. Advances in Neural Information Processing Systems, 34:10810–10822, 2021.

Pranjal Awasthi, Nika Haghtalab, and Eric Zhao. Open problem: The sample complexity of multi-
distribution learning for VC classes. In Conference on Learning Theory (COLT), volume 195,
pages 5943–5949, July 2023.

Avrim Blum, Nika Haghtalab, Ariel D Procaccia, and Mingda Qiao. Collaborative PAC learning.
Advances in Neural Information Processing Systems, 30, 2017.

Avrim Blum, Nika Haghtalab, Richard Lanas Phillips, and Han Shao. One for one, or all for all:
Equilibria and optimality of collaboration in federated learning. In International Conference on
Machine Learning, pages 1005–1014, 2021a.

Avrim Blum, Shelby Heinecke, and Lev Reyzin. Communication-aware collaborative learning. In
AAAI Conference on Artificial Intelligence, volume 35, pages 6786–6793, 2021b.

Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K Warmuth. Learnability and
the Vapnik-Chervonenkis dimension. Journal of the ACM (JACM), 36(4):929–965, 1989.
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