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Abstract

The separability assumption (Donoho &
Stodden, 2003; Arora et al., 2012a) turns
non-negative matrix factorization (NMF)
into a tractable problem. Recently, a new
class of provably-correct NMF algorithms
have emerged under this assumption. In this
paper, we reformulate the separable NMF
problem as that of finding the extreme rays
of the conical hull of a finite set of vec-
tors. From this geometric perspective, we de-
rive new separable NMF algorithms that are
highly scalable and empirically noise robust,
and have several other favorable properties in
relation to existing methods. A parallel im-
plementation of our algorithm demonstrates
high scalability on shared- and distributed-
memory machines.

1. Introduction

A data matrix X of size m × n is said to admit a
Non-negative Matrix Factorization (NMF) with inner-
dimension r, if X can be expressed as X = WH where
W,H are two non-negative matrices of dimensions
m × r and r × n respectively. In many applications,
a compact (i.e., small r) approximate NMF tends to
provide a natural and interpretable part-based decom-
position of the data (Lee & Seung, 1999), which is ap-
pealing in many applications, e.g., modeling topics in
text and hyperspectral image analysis (Cichocki et al.,
2009).
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Figure 1. Geometry of the NMF Problem.

Figure 1 shows the geometry of the NMF problem.
As a point cloud in R

m, all the n columns of X are
contained inside a cone that is generated by r non-
negative vectors in R

m comprising the columns of W.
For any matrix A, let cone(A) denote the set obtained
by taking linear combinations of the columns of A

with non-negative coefficients. Then, the goal is to
find a non-negative matrix W, with just r columns,
such that: cone(X) ⊆ cone(W) ⊆ R

m
+ , where R

m
+

denotes the non-negative orthant in R
m. Such polyhe-

dral nesting problems studied in computational geom-
etry are known to be NP-hard, which makes the exact
and approximate NMF problem also NP-hard (Vava-
sis, 2009). Faced with such results, almost the en-
tire algorithmic focus in the NMF literature, e.g., Ci-
chocki et al. (2009); Lee & Seung (1999); Lin (2007);
Hsieh & Dhillon (2011), has centered on treating the
problem as an instance of general non-convex pro-
gramming, leading to heuristic procedures that lack
optimality guarantees beyond convergence to a sta-
tionary point of the objective function for approxi-
mate NMF. Very recently, in a series of elegant pa-
pers (Arora et al., 2012a;b; Bittorf et al., 2012; Gillis
& Vavasis, 2012; Esser et al., 2012; Elhamifar et al.,
2012), promising alternative approaches have been de-
veloped based on certain separability assumption on
the data which enables the NMF problem to be solved
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exactly. Geometrically, the assumption states the fol-
lowing: all columns of X reside in a cone generated
by a small subset of r columns of X. In algebraic
terms, X = WH = XAH so that the r columns of
W are hidden among the columns of X (indexed by
an unknown subset of indices A). Equivalently, a cor-
responding subset of r columns of H happen to con-
stitute the r × r identity matrix. We refer to these
columns as anchors (Arora et al., 2012a). Informally,
in the context of topic modeling problems where X

is a document-word matrix and W,H are document-
topic and topic-term associations respectively, the sep-
arability assumption equivalently posits the existence
of special anchor words in the vocabulary, whose oc-
curence uniquely identifies the presence of a topic, and
whose usage across the corpus is collectively predictive
of the usage of all the other words. The separability as-
sumption was investigated earlier by Donoho & Stod-
den (2003) in the context of deriving uniqueness con-
ditions for NMF. In order to place our contributions
in the right context, we first briefly provide a flavor of
recently proposed separable NMF algorithms.

Related Work: Assuming that the columns of X

are normalized to have unit l1-norm, the separable
NMF problem reduces to that of finding the extreme
points (that is, points inexpressible as convex com-
binations of other points) of the convex hull of the
columns (Arora et al., 2012a). A Linear Program (LP)
can be setup to attempt to express a given column as
a convex combination of the other columns. If this
LP declares infeasibility, an extreme point is identi-
fied. This approach (Arora et al., 2012a, Section5)
requires solving n feasibility LP’s each involving n− 1
variables which is not scalable for many problems of
interest. A noise-robust version of the procedure fur-
ther requires knowledge of parameters that are hard to
estimate apriori. Bittorf et al. (2012) formulate a single
LP whose solution resolves the exactly separable NMF
problem. An extension is also developed for noise-
robustness. Instead of invoking a general LP solver, a
specialized algorithm is derived based on an incremen-
tal stochastic gradient descent procedure, and its par-
allel (multithreaded) implementation is benchmarked
on large datasets. On the other hand, this algorithm
requires estimates of primal and dual step sizes, con-
verges only asymptotically, and does not explicitly ex-
ploit the sparsity of the final solution. Gillis & Vavasis
(2012) develop a highly scalable approach closely re-
lated to rank-revealing QR factorizations for column
subset selection. A perturbation analysis of this al-
gorithm under noise is also presented. In Esser et al.
(2012), column subset selection is cast essentially as
a form of multivariate regression with row-sparsity in-

ducing norms, e.g., see Bien et al. (2010). Algorithms
derived in this framework are asymptotically conver-
gent, and sensitive to near-duplicate columns, making
it necessary to perform certain adhoc preprocessing
steps.

Contributions: We present a new family of highly
scalable and empirically noise-robust algorithms for
separable NMFs, with several favorable properties:

◦ The algorithms produce a correct solution for the
separable case after exactly r iterations. They re-
quire no additional parameters. They are closely
related to convex and conical hull finding proce-
dures proposed in the computational geometry lit-
erature (Clarkson, 1994; Dula et al., 1998). Com-
putationally, the algorithms bear some resemb-
lence to simultaneous Orthogonal Matching Pur-
suit (Buhlmann & Geer, 2010; Tropp et al., 2006)
for sparse greedy reconstruction of multiple target
variables from the same subset of input variables.
We also derive a variant based on this connection
that performs quite well under noise.

◦ Under controlled noise conditions in synthetic
datasets and on real-world topic modeling problems,
our algorithms consistently outperform other sepa-
rable NMF techniques with respect to multiple per-
formance metrics. Note, however, that a formal
noise analysis in support of these empirical findings
is not provided in the current paper. Our methods
are also highly competitive with existing non-convex
NMF algorithms, but are free of sub-optimal local
minima and associated initialization issues.

◦ The solution for (r−1) target anchors is contained in
the solution for r target anchors (unlike non-convex
NMF methods), which makes it easier to do model
selection on real-world datasets by keeping track of
performance on a validation set.

◦ The algorithms are highly scalable and have small
memory footprint. The sparsity of the data, the
intermediate variables and the final solution is care-
fully exploited in a high-performance parallel and
distributed implementation which scales excellently
on both shared- and distributed-memory machines.
For example, a twitter corpus with 125-thousand
tweets can be factorized for r = 100 in less than
10 seconds on a commodity 8-core machine.

◦ Column normalization, as suggested in prior work,
is not needed in our approach. Such normalization
tends to interfere with the TFIDF weightings rou-
tinely used in text modeling applications, leading to
performance loss.

◦ Unlike Esser et al. (2012), the algorithms do not
require any special preprocessing to eliminate du-
plicate or near-duplicate columns.
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2. Fast Conical Hull Algorithms

An informal description: Figure 2 provides some
geometric intuition underlying the proposed approach.
The algorithm executes r iterations. In each iteration
a new anchor column is identified. This corresponds
to expanding a cone one extreme ray at a time, until
the entire dataset is eventually contained in the cone
defined by the full set of anchors. Figure 2 illustrates
one step of the algorithm where there is an existing
cone defined by three extreme rays (marked 1 to 3).
To identify the next extreme ray, the algorithm picks
a point outside the current cone (a green point) and
projects it to the current cone to compute a residual
vector (we call this the projection step). This resid-
ual vector separates the current cone from at least one
non-selected extreme ray that can be found by maxi-
mizing a specific selection criteria (we call this the de-
tection step). Intuitively, the algorithm picks a face of
the current cone (spanned by rays 1 and 3 in Figure 2)
that “sees” exterior points and rotates this face to-
wards the exterior until it hits the “last” point. In the
example shown in Figure 2, ray 4 is identified as a new
extreme ray. These geometric intuitions are inspired

Figure 2. Geometry of the Conical Hull algorithms

by Clarkson (1994); Dula et al. (1998) who present LP-
based algorithms for general convex and conical hull
problems. Their algorithms are also directly applica-
ble in our NMF setting, provided the data satisfies
the separability assumption exactly. In this case, the
residual of any single exterior point can be used to cor-
rectly expand the cone as described above. However,
anchor detection criteria derived from multiple resid-
uals demonstrates radically superior noise robustness,
as we report in the experimental section. The empha-
sis on scalability and noise-robustness thus leads us to
a new family of algorithms whose implementation (and
associated proof of correctness) is distinct from prior
work.

Cones, Extreme Rays and Projection: Here, we
provide a short background on relevant geometric con-
cepts and set some notation. Recall that a cone C is
a non-empty convex set that is closed with respect

to taking conic combinations (i.e., linear combinations
with non-negative coefficients) of its elements. A ray
in C generated by a vector x 6= 0 ∈ C is the set of
all vectors {tx : t ≥ 0}. A ray R is an extreme ray
if its generators cannot be expressed by taking conic
combinations of elements in C that do not themselves
belong to R. A cone is called finitely generated if its
elements are conic combinations of a finite set of vec-
tors, and pointed if it does not contain both a vector
x as well as its negation −x. A fundamental result
(e.g., see (Nemirovski, 2010)) states: a pointed, finitely
generated cone C possesses a finite and unique set of
extreme rays, and C is the conical hull of the gener-
ators of these extreme rays. Furthermore, the gener-
ators of these extreme rays are a subset of the finite
set of vectors used to originally express the cone. In
the NMF context, note that any cone contained in
R

m
+ is pointed. This implies that cone(X) can also be

described by a minimally compact set of generators,
i.e., cone(X) = cone(XA) where A uniquely indexes
the extreme rays (anchors). Thus, a non-negative ma-
trix X admits a separable NMF with inner-dimension
r if the number of extreme rays of cone(X), i.e. size
of A, coincides with r. A face of a cone is the in-
tersection between the cone and a supporting hyper-
plane. The projection of a point x onto the cone
generated by columns of a matrix W, i.e. comput-
ing z

⋆ = argminz∈cone(W) ‖x − z‖22, can be obtained
by solving a non-negative least squares problem, i.e.,
computing h

⋆ = argminh≥0 ‖x − Wh‖22 and setting
z
⋆ = Wh

⋆. All columns of X can be simultaneously
projected by solving H⋆ = argminH≥0 ‖X − WH‖22.
We will use the notation R to denote the residual ma-
trix after a projection operation, i.e., R = X−WH⋆.
We will use the notation Xi,Ri to denote the ith col-
umn of X and its corresponding residual. The nota-
tion q+ will denote the vector obtained by setting all
negative entries of the vector q to 0.

Numerical Description: Algorithm 1 details the
steps of the proposed family of algorithms which we
call Xray . Each iteration consists of two steps: (i) a
detection step that finds a column(s) of X to be added
as an anchor, and (ii) a projection step where all data
points are projected onto the current cone to get the
residuals. Projection is done by solving simultaneous
nonnegative least squares problem using Algorithm 2.
Every residual vector Ri obtained after the projection
step is normal to one of the faces of the current cone.
In the selection step, we pick a face of the current cone
(identified by its normal Ri), normalize all the data

points to lie on the hyperplane pTx = 1
(

Yj =
Xj

pTXj

)

for a strictly positive vector p, and expand the current
cone by selecting an extreme ray that maximizes the
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Algorithm 1 Xray : Algorithms for Separable NMF

Input: X ∈ R
m×n
+ , inner dimension r

Output: W ∈ Rm×r,H ∈ Rr×n, r indices in A
such that: X = WH, W = XA

Initialize: R← X, A← {}
while |A| < r do

1. Detection Step: Find an extreme ray.
Below, p is a strictly positive vector (not collinear
with Ri):

j
⋆ = argmax

j

RT
i Xj

pTXj

for any i : ‖Ri‖2 > 0 (1)

Some exterior point selection criteria:

rand : any random i : ‖Ri‖2 > 0 (2)

max : i = argmaxk ‖Rk‖2 (3)

dist : i = argmaxk ‖
(

RT
k X

)

+
‖2 (4)

A greedy variant: j∗ = argmaxj

‖(RT
Xj)+‖22

‖Xj‖
2
2

(5)

2. Update: A← A ∪ {j∗} (see Remarks)
3. Projection Step: Project onto current cone.

H = argmin
B≥0

‖X−XAB‖
2
2 (Algorithm 2) (6)

4. Update Residuals (not explicitly): R = X−XAH

end while

inner product RT
i Yj . The selection step can be im-

plemented in various ways - some options are listed in
Algorithm 1.

To show that Xray correctly identifies all the extreme
rays, we need the following lemmas.

Lemma 2.1. The residual matrix R, obtained after
projection of columns of X onto the current cone sat-
isfies RTXA ≤ 0, where XA are the extreme rays of
the current cone.
Proof. Residuals are given by R = X −XAH, where
H = argminB≥0‖X−XAB‖2F.
Forming the Lagrangian for Eq. 6, we get L(B,Λ) =
‖X − XAB‖2F − tr(ΛTB), where the matrix Λ con-
tains the nonnegative Lagrange multipliers. Differ-
entiating w.r.t. B and evaluating at the optimum
B = H, we have the following from the KKT con-
ditions: 2XT

A(XAH−X)−Λ = 0
⇒ −2XT

AR = Λ ≥ 0 ⇒ RTXA ≤ 0

Lemma 2.2. For any point Xi exterior to the current
cone, we have RT

i Xi > 0, where Ri is the residual of
Xi obtained by projecting it onto the current cone.
Proof. Let R = X − XAH, where H =
argminB≥0‖X − XAB‖2F and XA are the extreme
rays of the current cone. From the KKT conditions
(used in the proof of Lemma 2.1) we have 2RTXA =
−ΛT , where Λ are the Lagrange multipliers. Hence,

Algorithm 2 Solver for: argminB≥0 ‖X−XAB‖22

Input: X ∈ R
m×n, Index set A with r indices, Initial

value for warm-starts: Binit ∈ R
r×n

Convergence paramaters tol, maxcycles
Initialize: B = Binit

Set C = XTX ∈ R
n×n, S = CA,A ∈ R

r×r, s = diag(S),
U = BTS ∈ R

n×r

while true do
for i = 1 . . . r (//cyclic coordinate descent) do

b = (BT )i
u = Ui − sib
(BT )i = s−1

i (Ci − u)+
U = U+

(

(BT )i − b
)

ST
i // sparse rank-1 update

end for
objective = ‖X‖2 +

∑r

i=1(Ui +Ci)
T (BT )i

Exit: ∆objective < tol, or #iters > maxcycles.

end while

2RT
i XA = −ΛT

i (ith row of both left and right side
matrices). From the complementary slackness prop-
erty, we have ΛjiHji = 0 ∀ j, i. Hence, 2RT

i XAHi =
−ΛT

i Hi = 0.
Hence we have RT

i Xi = RT
i (Ri +XAHi) = ‖Ri‖

2
2 +

RT
i XAHi = ‖Ri‖

2
2 > 0 since Ri 6= 0.

Using the above two lemmas, we prove the following
theorem regarding the correctness of Algorithm 1.

Theorem 2.1. The data point Xj∗ added at each it-
eration in the Detection step of Algorithm 1, if the
maximizer in Eqn. 1 is unique, is an extreme ray of C
that has not been selected in previous iterations.

Proof. Let the index set A identify all the extreme
rays of C. Under the separability assumption, we have
X = XAH. Let the index set At identify the extreme
rays of the current cone Ct.

Let Yj =
Xj

pTXj
and YA = XA[diag(p

TXA)]
−1 (since

p is strictly positive, the inverse exists). Hence Yj =

YA
[diag(pTXA)]Hj

pTXj
. Let Cj =

[diag(pTXA)]Hj

pTXj
. We also

have pTYj = 1 and pTYA = 1T . Hence, we have
1 = pTYj = pTYACj = 1TCj .

Using Lemma 2.1, Lemma 2.2 and the fact that
p is strictly positive, we have max1≤j≤n RT

i Yj =
maxj /∈At RT

i Yj . Indeed, for all j ∈ At we have
Rt

iYj ≤ 0 using Lemma 2.1 and there is at least one
j = i /∈ At for which Rt

iYj > 0 using Lemma 2.2.
Hence the maximum lies in the set {j : j /∈ At}.

Further, we have maxj /∈At RT
i Yj =

maxj /∈At RT
i YACj ≤ maxj∈(A\At) R

′
iYj . The

second inequality is the result of the fact that
‖Cj‖1 = 1 and Cj ≥ 0. This implies that if there is a
unique maximum at a j∗ = argmaxj /∈At RT

i Yj , then
Xj∗ is generator of an extreme ray of the cone C.
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Remarks: (1) If the maximum occurs at two points
j∗1 and j∗2 , both these points Xj∗1

and Xj∗2
generate the

extreme rays of the cone C. Hence both are added to
anchor set A. If the maximum occurs at more than two
points, some of these are the generators of the extreme
rays of C and others are conic combinations of these
generators. We can identify the extreme rays of this
subset of points by calling Algorithm 1 recursively and
add them to anchor set A. (2) Note that the algorithm
is not influenced by presence of repeated anchors. (3)
In the Algorithm, the vector p simply needs to satisfy
pTxi > 0, i = 1 . . . n. In our implementation, we sim-
ply used p = [1, . . . 1] ∈ R

m, i.e., pTxi = ‖xi‖1. (4)
Note that unlike Gillis & Vavasis (2012), we do not
need XA to be full-rank.

Exterior Point Selection: It can be noted that
residual of any point exterior to the current cone (i.e.,
any Ri 6= 0) can be used in the selection step of Al-
gorithm 1. This gives us multiple ways of expanding
the current cone depending on which i is chosen - all
of which solve the separable problem but may behave
very differently in the presence of noise. Some natural
options are listed in Algorithm 1: choosing a random
exterior point (Eqn. 2), one with maximum residual
norm (Eqn. 3) or one which defines a normal to a sup-
porting hyperplane of the current cone which “sees”
maximum “mass” of points in its positive halfspace,
as measured by Eqn. 4. In the experiments, we will
refer to these variants as Xray (rand), Xray (max)
and Xray (dist) respectively.

A Greedy variation for noisy data: In high dimen-
sional noisy data almost all the points may masquerade
as anchors. A natural choice is to expand the current
cone greedily by selecting a point that best minimizes
the current residual, i.e., j∗ = argminj minb>0‖R −

Xjb
T ‖2F . This selection criterion simplifies to Eqn.5 in

Algorithm 1 (referred as Xray (greedy) henceforth).
One may view this approach as implementing a non-
negative variant of simultaneous orthogonal matching
pursuit (Tropp et al., 2006), which is a greedy ap-
proach to the problem of sparse regression of multi-
ple response variables on the same subset of explana-
tory variables, i.e., for solving minB≥0‖X − XB‖2F
s.t. ‖B‖0,1 = r where ‖B‖0,1 pseudo-norm counts the
number of non-zero rows in B. In the context of sep-
arable NMF, both response variables and explanatory
variables are the columns data matrix X. A relaxed
version of this problem is solved in Esser et al. (2012)
(minB≥0‖X − XB‖2F + λ‖B‖1,∞). It is also possible
to have ‖B‖1,2 penalized variant (Tropp, 2006; Bien
et al., 2010) which is natural for sparse multivariate
regression problems. Note that the greedy approach
is not guaranteed to solve the separable NMF prob-

lem, but may perform well in the noisy settings as we
observe in our experiments. Intuitively, this variant is
concerned with greedily optimizing all residuals on av-
erage at every iteration, instead of making a decision
based on the residual of a single, albeit well-chosen,
exterior point.

Solution Refinement and Model Selection: In
practice, the separable solution (W,H) as obtained
from Algorithm 1 may be further refined with a few
steps of alternating optimization with respect to a di-
vergence measure of interest (e.g., Frobenius recon-
struction ‖X−WH‖2F). Also, in real-world datasets,
the value of r is typically unknown. Since our algo-
rithms build the solution one anchor at a time, r can
be set based on a performance measure evaluated on
held-out data. Alternatively, Algorithm 1 can exit if
the amount of improvement from introducing a new
anchor falls below a prespecified threshold.

Scalability and Parallelization

Here we describe various implementation details that
allow us to gracefully scale to large sparse datasets
(e.g., document-term matrices). The detection step
can be parallelized by scoring the candidate anchors
simultaneously. Likewise, the projection step involves
solving Eqn. 6, which is separable in the columns of B
and hence can be optimized in parallel.

Detection Step: We avoid materializing the dense
residual matrix R in the evaluation of the anchor se-
lection criteria. Instead, we score candidate anchors
on-the-fly as we compute (but not explicitly material-
ize) a matrix Q =

(

RTX
)

+
=

(

C− (CAH)T
)

+
where

C = XTX denotes a covariance matrix (word-by-word
for topic modeling applications). Here, the potential
sparsity, symmetry of the covariance matrix C as well
as the non-negativity of H can be further exploited.
For example, if Cij = 0, the corresponding entry in
the product (CAH) need not be computed, since the
resulting negative value is anyway reset to zero by the
(·)+ thresholding operator. On a P core machine, the

selection criteria may be evaluated in O(nnz(C)r
P ) time

where nnz(C) is the number of non-zeros in C. If C
is dense, we compute Q using parallel dense BLAS-3
operations. The one time computation of C is done
via a parallel aggregation of rank-one outer-product
terms defined by the rows of X.

Projection Step: Algorithm 2 gives the steps of
a cyclic block coordinate descent algorithm orga-
nized around very light-weight incremental sparsity-
exploiting updates for solving Eqn. 6 (derivation omit-
ted for brevity). The algorithm can be invoked in par-
allel on columns of X to compute the corresponding
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columns ofB. The previous value ofB is used to warm
start the optimization and typically a very small num-
ber of iterations is needed for convergence.

3. Empirical Observations

Here, we report extensive comparisons on synthetic
and medium-scale topic modeling problems, and
benchmark our parallel implementation on large text
datasets on multicore machines and distributed sys-
tems. We compare with the methods proposed in Bit-
torf et al. (2012) (abbrv. as Hottopixx ) and Gillis
& Vavasis (2012) (abbrv. as GV), as well as tra-
ditional NMFs based on alternating optimization(Ci-
chocki et al., 2009). The source codes for Hottopixx
and GV were taken from the respective authors’ web-
sites. In comparisons with Esser et al. (2012), it was
observed that it tends to select near-duplicate anchors,
as also mentioned in Esser et al. (2012). This charac-
teristic causes it to consistently perform less favorably
compared to other methods unless the data is prepro-
cessed in an adhoc fashion to remove similar columns
ofX; hence we do not include it in our list of baselines.
We also do not compare with Arora et al. (2012a) since
Hottopixx reportedly performs better (Bittorf et al.,
2012) and the algorithm requires parameters which are
hard to guess apriori.

3.1. Synthetic experiments

We perform a synthetic experiment that injects con-
trolled amount of noise to corrupt the separable struc-
ture. Each entry of the matrix W ∈ R

200×20
+ is gen-

erated i.i.d. according to a uniform distribution be-
tween 0 and 1. The matrix H ∈ R

20×210
+ is taken to

be [I20×20 H′] where each column of H′ ∈ R
20×190
+ is

generated according to a Dirichlet distribution whose
parameters are chosen uniformly in [0, 1]. The data
matrix X is set to WH+N where each entry of noise
matrix N is generated i.i.d. according to a Gaussian
distribution with zero mean and std. dev. δ. Fig. 3
plots the fraction of correctly recovered anchors (aver-
aged over 10 runs for each value of δ) against the noise
level δ ranging from 0 to 1.5. The proposed Xray

(max) shows the best noise-robustness in terms of an-
chor recovery, followed by Xray (dist) and GV. Al-
though Xray (greedy) does not perfectly resolve the
separable NMF problem (δ = 0), it performs better
than Hottopixx and is competitive with GV for near-
separable case (δ > 0). As described below, on real
datasets it turns out to be highly competitive. Xray

(rand), although solves the separable problem (δ = 0),
degrades significantly under noise, which shows that
proper selection of an exterior point to expand the
current cone is crucial for noise-robustness.
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Figure 3. Anchor recovery rate versus noise level (best
viewed in color)

3.2. Medium-scale Topic modeling problems

We evaluate the proposed methods on three human-
labeled text datasets that are commonly used in topic
modeling literature: TDT-2 (TDT2) (m = 9394, n =
19528, r = 30), BBC (Greene & Cunningham, 2006)
(m = 2225, n = 9635, r = 5) and Reuters (Reuters)
(m = 7285, n = 18221, r = 10). We used standard
tf-idf representation with document frequency thresh-
olding in constructing the data matrix X. As required
in Hottopixx and GV, we use ℓ1-normalized columns of
X (referred as matrix X(ℓ1) henceforth) to identify the
anchor column indices A(ℓ1), and use the unnormal-
ized data X (and the corresponding anchor columns
XA(ℓ1)) for classification and clustering tasks. The use

of X
(ℓ1)
A in clustering and classification (for any in-

dex set A) resulted in significantly worse performance
uniformly for all methods so these results are not re-
ported. For the sake of clarity in the figures, we do
not show the results for Xray (max) which performed
almost similar to Xray (dist) in these experiments.
For an illustration of topics and anchor words recov-
ered from these text datasets, the reader is referred to
(Kumar et al., 2012).

Classification experiments: Figure 4 shows the
classification accuracy results obtained with the fea-
tures (columns of the document-term matrix restricted
to anchor words) selected by different methods on the
three datasets. Black dotted line is the classifica-
tion accuracy with full features (all the words). We
use 5% of the documents for training and the rest 95%
for testing to emulate a semi-supervised learning sce-
nario where we view various methods as inducing a
topical representation based on all (unlabeled) data.
We use multiclass SVM classifier as implemented in
LIBLINEAR (Fan et al., 2008) and use four-fold cross
validation to select the parameter C. Among sepa-
rable NMF techniques, the proposed Xray (greedy)
and Xray (dist) (with exception on Reuters) outper-
form Hottopixx and GV on all the three datasets, more
so on TDT. On average, traditional NMFs with local
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Figure 4. Classification Accuracy using selected features on TDT, BBC and Reuters datasets (best viewed in color)
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Figure 5. Clustering Performance on TDT, BBC and Reuters datasets (best viewed in color)

optimization perform quite well on these datasets es-
pecially when r is small, but can show significant per-
formance variance (shown as error bars) with respect
to initialization. As the number of topics increases,
the performance gap between the proposed methods
and the local optimization method rapidly diminishes.
In this regime our techniques are a viable alternative
to local optimization methods, and have the advan-
tage of being local-minima-free, i.e., eliminating un-
certainty with respect to initialization and therefore
not requiring multiple runs.

Clustering experiments: We also evaluated clus-
tering performance by assigning a cluster label to each
document based on the maximum element in the cor-
responding row of W. We refine the solution with a
few iterations of alternating optimization. Figure 5
shows the clustering performance in terms of Normal-
ized Mutual Information (NMI) as these iterations pro-
ceed. We also show the NMI obtained with local search
method after it has converged to a local optimum (av-
eraged NMI from ten runs with different random ini-
tializations is shown; error-bar indicates the variation
around the average). Again, the proposedXray meth-
ods are among the best performing methods in terms
of clustering performance and do not require multiple
runs as traditional NMFs do.

Effect of column normalization: It can be
seen from Table 1 that anchors selected using the un-

normalized X (i.e., pure tf-idf features) achieve signif-
icantly better classification accuracy than anchors se-
lected using ℓ1-normalized version of X. These empir-
ical results suggest that discarding the norm informa-
tion by explicit ℓ1 normalization can adversely affect
the predictive quality of the selected anchors. Such
normalization is not required by our approach. We
advocate that previous algorithms, which ignore this
issue, should be carefully modified accordingly.

Table 1. Effect of word normalization (r=100).
Xray (dist) Xray (greedy)

ℓ1 ℓ2 None ℓ1 ℓ2 None
TDT 21.06 83.04 84.52 31.69 90.05 91.87
BBC 58.59 84.36 87.73 75.41 82.18 87.82
REUT 51.88 76.88 64.46 55.65 81.28 83.02

3.3. Large-scale Experiments

We implemented a shared- and distributed-memory
parallel version of Xray in C++. That is, our im-
plementation can exploit parallelism when running
on multi-core machines, or on clusters of multi-core
machines. For shared-memory parallelism, we use
PFunc (Kambadur et al., 2009), a lightweight and
portable library that provides C and C++ APIs to ex-
press task parallelism. For distributed-memory par-
allelism, we use MPI1, a popular library specification
for message-passing that is used extensively in high-

1http://www.mpi-forum.org/

http://www.mpi-forum.org/
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Table 2. Datasets used for large-scale experiments. Times are for r = 100 on eight cores on daniel.
Name #documents #words nnz(X) nnz(XTX) Sparsity(XTX) Time(r = 100) Memory
RCV1 781265 43001 59.16e06 172.3e06 5% 409 secs 3.6 GB
PPL2 351849 44739 19.43e06 1.99e09 99.8% 1147 secs 30.2 GB
IBMT 124708 25998 1.03e06 1.77e06 0.2% 9.8 secs 1 GB

Table 3. Running times of Xray versus Hottopixx on 8 threads for r topics and E epochs.

Dataset
Xray (secs) Hottopixx (secs)

E=5 E=10
r=25 r=50 r=100 r=25 r=50 r=100 r=25 r=50 r=100

IBMT 0.38 1.78 9.8 338.6 337.2 327.7 642.1 668.5 636.9
RCV1 15.4 67.2 409 2026.8 1938.3 1883.6 3769 3774.7 3888.9
PPL2 196 443.8 1147 1818.1 1935.5 1892.8 3725.2 3895.5 3913.7
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Figure 6. Multi-core speedup of RCV1, IBMT, and PPL2
datasets when running on daniel. All times are for R=100.

performance computing.

To test the shared-memory performance and scala-
bility of Xray , we ran experiments on daniel, a
dual-socket, quad-core Intel R© XeonTM X5570 ma-
chine with 64GB of RAM running Linux Kernel
2.6.35-24 (total 8 cores). For compilation, we
used GCC v4.4.5 with: “-O3 -fomit-frame-pointer

-funroll-loops” in addition to PFunc 1.02, Open-
MPI 1.4.5 and untuned ATLAS BLAS. We ran large-
scale experiments on three datasets: RCV1 (Lewis
et al., 2004), co-occurence matrix of people and places
from ClueWeb09 dataset (Lemur), and IBM Twitter
(IBMT) dataset. The statistics relating to these three
large datasets are presented in Table 2.We report scal-
ability results for Xray (greedy) - other variants are
computationally very similar.

Figure 6 depicts the multi-threaded performance of our
implementation on daniel while detecting 100 topics.
Our implementation is able to factorize RCV1 in 409
seconds on 8 cores and achieve 4.2x speedup over 8
threads when compared to the sequential implemen-
tation. Similarly, for IBMT we achieve 4.5x speedup,
while completing the factorization in 9.8 seconds on 8
cores. For the dense XTX case, we are able to factor-
ize PPL2 in 1147 seconds with just 8 cores. We believe
that further speedup improvements can be demon-

strated on these problems by (a) optimizing the data
layout of various sparse matrices to alleviate memory
contention amongst threads, and (b) in dense problems
such as PPL2, by using a version of BLAS tuned to
our architecture and by reorganizing our implementa-
tion around more BLAS-3 operations that have better
memory to compute ratio than BLAS-1 or 2 opera-
tions. Our implementation showed good scalability on
distributed-memory machines as well (details omitted
for brevity).

To compare our performance against the state-of-
the-art Hottopixx algorithm (Bittorf et al., 2012),
we ran their algorithm on daniel with the options
“--dual 0.01 --epochs 10 --splits 8 --hott

<R> --normse 1 --primal 1e-6” set in close con-
sultation with the authors. A detailed comparison is
shown in Table 3.2. Note that a head-to-head compar-
ison is difficult because of the different performance
characteristics of Hottopixx and Xray . For example,
Hottopixx ’s per-epoch runtime is not dependent on r,
the number of topics, but it’s accuracy is dependent
on E, the number of epochs, while our methods
execute exactly r iterations, where each iteration has
a superlinear dependence on r. Nonetheless, for all
three datasets with r = 25, 50, 100, we see that Xray

performs better than Hottopixx even when Hottopixx
is run only for 5 epochs. In particular, for the sparse
datasets IBMT and RCV1, in comparison to Hottopixx
, Xray runs to completion in significantly shorter
amount of time.
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