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Abstract
We study linear control problems with quadratic
losses and adversarially chosen tracking targets.
We present an efficient algorithm for this prob-
lem and show that, under standard conditions on
the linear system, its regret with respect to an op-
timal linear policy grows as O(log2 T ), where T
is the number of rounds of the game. We also
study a problem with adversarially chosen tran-
sition dynamics; we present an exponentially-
weighted average algorithm for this problem, and
we give regret bounds that grow as O(

√
T ).

1. Introduction
Consider a robot that controls an electron microscope to
track a microorganism. Given the entire trajectory of the
microorganism and the dynamics of the system, the opti-
mal control can be computed. The trajectory, however, is
not known in advance and the target might behave in an ar-
bitrary fashion. In such situations, designing a controller
based on some prior knowledge about the target location
might be sub-optimal. It is important to take the behavior
of the target into account.

We consider problems with linear transition functions and
quadratic tracking losses. When the target trajectory
is known in advance, the problem is called the linear
quadratic (LQ) problem in the control community. The LQ
problem is one of the most studied problems in the con-
trol literature and is widely applied in practice (Lai and
Wei, 1982; 1987; Chen and Guo, 1987; Chen and Zhang,
1990; Fiechter, 1997; Lai and Ying, 2006; Campi and Ku-
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mar, 1998; Bittanti and Campi, 2006; Abbasi-Yadkori and
Szepesvári, 2011). By principles of dynamic programming
the optimal controller can be computed analytically. The
solution is obtained by computing value functions, starting
from the last round and recursing backward. This method
needs to know the entire target sequence from the begin-
ning and its computational complexity scales linearly with
the length of the trajectory. It turns out that the optimal con-
troller is linear in the state vector, and the value functions
are quadratic in state and action.

As we discussed earlier, the assumption that the entire tra-
jectory is known in advance is not always realistic. But
what would tracking mean without a reference trajectory?
To make the problem well-defined, we fix a class of map-
pings from states to actions (also known as policies) as our
competitors. Our objective is to track the trajectory nearly
as well as the best policy in the comparison class in hind-
sight. The standard dynamic programming procedures are
not applicable when the entire sequence is not known in
advance. We show that we can still have an effective track-
ing algorithm even if the sequence is not known in advance.
The proposed algorithm is perhaps the first tracking method
that can deal with infinite and unknown sequences.

We study the adversarial version of the LQ problem where
an adversary designs the trajectory of the target and reveals
the target location only at the end of each round. Formally,
we study problems with transition dynamics and loss func-
tions

xt+1 = Axt +Bat ,

`t(xt, at) = (xt − gt)>Q(xt − gt) + a>t at ,

where xt ∈ Rn is the state at round t; at ∈ Rd is the action;
gt is the target location; `t : Rn × Rd → R is the loss
function; and A,B,Q are known matrices.1 The matrix Q
is symmetric and positive definite. The learner observes the

1We can also use this formulation for loss functions of the
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sequence of states (xt)t. We make no assumptions on the
trajectory sequence (gt)t, apart from its boundedness. The
sequence might even be generated by an adversary. An LQ
problem is defined by a 4-tuple (A,B,Q,G), where G is
an upper bound on the norm of vectors gt.

Let T be a time horizon, xπt be the state of the system if we
run policy π for t rounds, and Π be a class of policies. Let

ρT (g1, . . . , gT ) =

T∑
t=1

`t(xt, at)−min
π∈Π

T∑
t=1

`t(x
π
t , π(xπt )) .

The objective of the learner is to suffer low loss. The per-
formance is measured by the regret defined by

RT (A,B,Q,G, x1,Π) = sup
g1,...,gT :‖gt‖≤G

ρT (g1, . . . , gT ) .

where ‖ · ‖ denotes the 2-norm. In what follows, we use
RT

def
= RT (A,B,Q,G, x1,Π). For simplicity, we assume

that x1 = 0. As the optimal policy for the classical problem
with a constant target is linear (strictly speaking, affine), a
reasonable choice for the class of competitors is the set of
linear (affine) policies.

The problem that we describe is an instance of Markov De-
cision Process (MDP) problems with fixed and known dy-
namics, and changing loss functions. Note that the loss
function depends on the target location, which can change
in an arbitrary fashion. Such MDP problems were pre-
viously studied by Even-Dar et al. (2009) and Neu et al.
(2010b;a). However, these papers provide results for fi-
nite MDP problems and are not applicable to problems
with large state/action spaces. Our key finding is that the
algorithm of Even-Dar et al. (2009) can be modified to
be applicable in adversarial LQ problems. Interestingly,
the resultant algorithm is identical with a Policy Iteration
method (see, for example, (Howard, 1960)) with changing
loss functions. Another interesting observation is that the
gain matrix is independent of target vectors (see Lemma 4).
This simplifies the design and analysis of our algorithm.
We prove that the regret of the algorithm is logarithmic in
the number of rounds of the game.

Finally, we also study a more adversarial problem:

xt+1 = Atxt +Btat,

`t(xt) = (xt − gt)>Q(xt − gt) + a>t at .

Here, the time-varying transition matrices At and Bt and
the target vector gt are chosen by an adversary. In this prob-
lem, we show that under a uniform stability assumption,

form `t(xt, at) = (xt− gt)
>Q(xt− gt) + a>t Rat for a positive

definite matrixR, by writing xt+1 = Axt+(BR−1/2)R1/2at =

Axt + B̃ãt and `t(xt, at) = (xt − gt)
>Q(xt − gt) +

a>t R
1/2R1/2at = (xt − gt)

>Q(xt − gt) + ã>t ãt.

an exponentially-weighted average algorithm recently pro-
posed by Abbasi-Yadkori et al. (2013) enjoys an O(

√
T )

regret bound with respect to the class of linear policies.

2. Notation
We use σmin(M) and σmax(M) to denote the minimum
and maximum eigenvalues of the positive semidefinite ma-
trix M , respectively. We use ‖ · ‖ to denote the 2-norm of
matrices and vectors, where the 2-norm of a matrix M is
defined by ‖M‖ =

√
σmax(M>M). We use M � 0 to

denote that M is positive definite, while we use M � 0 to
denote that it is positive semidefinite. We useMij to denote
a block of matrix M . The indices and the dimensionality
of the block will be understood from the context. Similarly,
vi denotes a block of vector v.

3. Tracking Adversarial Targets
Even-Dar et al. (2009) study finite state MDP problems
with fixed and known transition functions and adversar-
ial loss functions. Their algorithm (MDP-E) in its present
form is not applicable to our problem with a continuous
state space. Somewhat surprisingly, we can design a variant
of the MDP-E algorithm that is applicable to our tracking
problem with continuous state and action spaces.

The MDP-E algorithm, shown in Figure 1, maintains an
expert algorithm in each state; that is, it treats each state
as a separate problem of prediction with expert advice,
where each action corresponds to an expert. At round t, the
product of expert recommendations over the state space de-
fines the policy, denoted by πt. The algorithm takes action
at ∼ πt(xt) and observes the loss function `t. It computes
the value function Vπt,`t defined by the Bellman Optimality
Equation

∃λ,∀x, a, λ+ Vπt,`t(x, a) = `t(x, a)

+ Ex′∼m(.|x,a) [Vπt,`t(x
′, πt(x

′))] ,

where m defines the state transition probabilities.2 Then,
the algorithm feeds the expert algorithm in state x with
Vt(x, .) = Vπt,`t(x, .) as the loss function at time t. Thus,
the computational cost of the MDP-E algorithm per round
is O(W + |X |), where W is the cost of obtaining the value
function and X is the finite state space.

Applied to the LQ problem, the value functions are defined

2In the Bellman Optimality Equation, scalar λ is the aver-
age loss of policy πt, and Vπt,`t(x, a) is the relative goodness
of state-action pair (x, a) under policy πt. Note that under cer-
tain assumptions, the average loss is independent of the initial
state, however, some states are more favorable as the policy in-
curs lower losses during the transient phase, starting from those
states.



Tracking Adversarial Targets

Initialize an expert algorithm in each state
for t := 1, 2, . . . do

Let πt(xt) be the prediction of the expert algorithm
in state xt
Take action at ∼ πt(xt)
Observe loss function `t
Compute Vt = Vπt,`t
For all x, feed the expert algorithm in state x with
loss Vt(x, .)

end for

Figure 1. The MDP-E Algorithm

by

∃λ,∀x, a, λ+ Vt(x, a) = `t(x, a) (1)
+ Vt(Ax+Ba, πt(Ax+Ba)) ,

where we use the notation Vt = Vπt,`t . The linear struc-
ture allows us to compute Vt implicitly for all states, thus
overcoming the difficulty of the infinite state space. As we
will show, a suitable expert algorithm for our problem is the
Follow The Leader (FTL) algorithm that we define next.

Consider an online quadratic optimization problem where
at round t the adversary chooses a quadratic loss function ft
that is defined over a convex set D ∈ Rk. Simultaneously,
the learner makes a prediction pt ∈ D, suffers loss ft(pt)
and observes the loss function ft. The regret of the learner
is defined by BT =

∑T
t=1 ft(pt) − minp∈D

∑T
t=1 ft(p).

The FTL algorithm makes the prediction

pt = argmin
p∈D

t−1∑
s=1

fs(p) .

The FTL algorithm enjoys the following regret bound for
quadratic losses (Cesa-Bianchi and Lugosi, 2006, Theorem
3.1):

Theorem 1 (FTL Regret bound). Assume ft is convex,
maps to [0, C1], is Lipschitz with constant C2, and is twice
differentiable everywhere with Hessian H � C3I . Then
the regret of the Follow The Leader algorithm is bounded
by BT ≤ 4C1C

2
2

C3
(1 + log T ).

Figure 2 shows the FTL-MDP algorithm for the linear
quadratic tracking problem. It corresponds to the MDP-E
algorithm, with FTL as the expert algorithm for each state.
The algorithm starts at state x1 = 0 and the first policy is
chosen to be π1(x) = −K∗x, where K∗ is a gain matrix
that will be defined later.3 The algorithm computes the to-
tal loss in each state, shown by V ′(x, .) =

∑t−1
s=1 Vs(x, .).

3Adopting a convention from feedback control, we represent
linear policies with a negative sign.

x1 = 0
∀x, π1(x) = −K∗x (6)
for t := 1, 2, . . . do

Take action at = πt(xt) and suffer the loss
`t(xt, at)
Move to the state xt+1 = Axt +Bat
Compute the value function Vt = Vπt,`t (2)
Let V ′ =

∑t
s=1 Vs

Obtain the policy by solving ∇aV ′(x, a) = 0:
πt+1(x) = −Kt+1x+ ct+1

end for

Figure 2. FTL-MDP: The Follow the Leader Algorithm for
Markov Decision Processes

The FTL strategy chooses the greedy action in each state,
which is obtained by minimizing V ′(x, .). As the next
lemma shows, value functions computed in the FTL-MDP
algorithm are always quadratic and thus, the function V ′

is always quadratic in state and action. This implies that
policies are linear in state.

Lemma 2. Consider the MDP-E algorithm applied to the
adversarial LQ problem (A,B,Q,G). Let the expert algo-
rithm be the FTL strategy. Assume the first policy is chosen
to be an arbitrary linear policy, π1(x) = −K1x+c1. Then,
for appropriate matrices Pt and Lt, the value function at
time t has the form of

Vt(x, a) =
(
x> a>

)
Pt

(
x
a

)
+ L>t

(
x
a

)
,

and the policy chosen by the algorithm at time t is πt(x) =

−Ktx+ ct, where Kt = (
∑t−1
s=1 Ps,22)−1

∑t−1
s=1 Ps,21 and

ct = −(
∑t−1
s=1 Ps,22)−1

∑t−1
s=1 Ls,2/2 and Ps,ij and Ls,i

are the ijth and ith blocks of matrix Ps and vector Ls,
respectively. (Here the block structure naturally appears
as components corresponding to the state and action.)

The proof uses the following lemma that shows that the
value of a linear policy is quadratic.

Lemma 3. Consider the LQ problem (A,B,Q,G) with
fixed target g∗. Let K be a matrix such that ‖A−BK‖ <
1. The value function of policy π(x) = −Kx + c has a
quadratic form

Vπ,`(x, a) =
(
x> a>

)
P

(
x
a

)
+ L>

(
x
a

)
, (2)

where P = P (K) and L are solutions to equations

P =

(
A>

B>

)(
I −K>

)
P

(
I
−K

)(
A B

)
+

(
Q 0
0 I

)
(3)
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and

L> =
(
L> + 2

(
0 c>

)
P
)( I
−K

)(
A B

)
−
(
2g>∗ Q 0

)
.

(4)
Further, the loss in the limiting state xπ∞ is

λ = g>∗ Qg∗ + c>P22c+ L>2 c . (5)

The proof can be found in Appendix A.

Proof of Lemma 2. We prove the lemma by induction. By
Lemma 3, the value of the first policy, π1(x) = −K1x+c1,
has the form of

V1 = Vπ1,`1(x, a) =
(
x> a>

)
P1

(
x
a

)
+ L>1

(
x
a

)
,

for some matrices P1 and L1. This establishes the base
case.

Next assume the value functions up to time t − 1 are all
quadratic. Because we use a FTL strategy as our expert
algorithm in states, the policy in state x in round t can be
computed by

πt(x) = argmin
a

t−1∑
s=1

Vs(x, .) .

We obtain the policy by setting ∇a
∑t−1
s=1 Vs(x, .) = 0.

Letting

Vs(x, a) =
(
x> a>

)
Ps

(
x
a

)
+ L>s

(
x
a

)
for s = 1 . . . (t− 1), we get that

V ′(x, a) =

t−1∑
s=1

Vs(x, a) =
(
x> a>

)
P̃t

(
x
a

)
+L̃>t

(
x
a

)
,

where P̃t =
∑t−1
s=1 Ps and L̃t =

∑t−1
s=1 Ls. Taking the

gradient with respect to the second argument and setting to
zero, we get that,

∇aV ′(x, a) = 2P̃t,21x+ 2P̃t,22a+ L̃t,2 = 0

and thus,

a = −P̃−1
t,22P̃t,21x−

1

2
P̃−1
t,22L̃t,2 .

Thus, the policy can be compactly written as

∀x, πt(x) = −Ktx+ ct ,

where Kt = P̃−1
t,22P̃t,21 and ct = −P̃−1

t,22L̃t,2/2. Given this
linear policy, we get the quadratic value function Vt from
Equation (2).

Lemma 2 implies that the MDP-E algorithm can be effi-
ciently implemented in the adversarial LQ problem.

Before stating the main result of this paper, we describe
certain assumptions and definitions from the control litera-
ture. (See, for example, (Bertsekas, 2001)).

Definition 1. A pair (A,B), where A is an n × n matrix
and B is an n × d matrix, is said to be controllable if the
n × nd matrix [B AB . . . An−1B] has full rank. A pair
(A,C), where A is an n × n matrix and C is an d × n
matrix, is said to be observable if the pair (A>, C>) is
controllable.

Roughly speaking, controllability implies that the state can
be moved arbitrarily by changing the actions, while observ-
ability implies that the state can be externally measured.
We assume that the system is controllable and observable.
These assumptions are standard in the literature, and will
allow a closed form expression for the optimal control law.

Assumption A1. (Controllability and observability) The
pair (A,B) is controllable and the pair (A,Q1/2) is observ-
able.

Under this assumption, the gain matrix is stable, i.e. there
exists ρ ∈ (0, 1) such that ‖A−BK∗‖ ≤ ρ < 1, where

K∗ = (I +B>SB)−1B>SA (6)

is the gain matrix (Bertsekas, 2001), and S is the solution
of the Riccati equation

S = Q+A>SA−A>SB(I +B>SB)−1B>SA .

Interestingly, as the next lemma shows, all gain matrices
are equal. The proof can be found in Appendix A.

Lemma 4. Consider the FTL-MDP algorithm. Let P∗ =
P (K∗) as defined by (3). If we choose K1 = K∗, then all
gain matrices are equal, K∗ = K1 = K2 = K3 = . . . ,
and hence P∗ = P1 = P2 = P3 = . . . .

Lemma 4 shows that gain matrices are independent of tar-
get vectors and can be computed by assuming that all target
vectors are zero. Given the fixed gain matrix, the system is
driven to a desired target position by changing the bias term
of the linear policy.

We represent the linear policy π(x) = −Kx+c by the pair
π = (K, c). The class of (K ′, C ′)-bounded, ρ-stable linear
policies is defined by Π = {π = (K, c) : ‖A−BK‖ ≤
ρ, ‖K‖ ≤ K ′, ‖c‖ ≤ C ′}.
Theorem 5. For a controllable, observable LQ
problem (A,B,Q,G), the regret of the FTL-MDP
algorithm with respect to the class of (K ′, C ′)-
bounded, ρ-stable linear policies is O(log2 T ),
where the hidden constants are polynomials in
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‖A‖ , ‖B‖ , ‖Q‖ , G, S, ‖P∗‖ , 1/λmin(P∗), ‖K∗‖ ,K ′, C ′,
and 1/(1− ρ).

The hidden constants are all small order polynomials. As
we will show in the next section, a careful asymptotic anal-
ysis gives us an asymptotic O(log T ) bound. It is an open
problem to show a finite-time O(log T ) regret bound with
polynomial constants.

4. Analysis
Let xπ∞ = limt→∞ xπt be the limiting state under (K ′, C ′)-
bounded and ρ-stable linear policy π = (K, c). In
Lemma 6 we show that this limit exists. Let λt(π) =
`t(x

π
∞, π(xπ∞)) be the loss of policy π in state xπ∞. We

decompose the regret

RT =
T∑
t=1

`t(xt, at)−
T∑
t=1

`t(x
π
t , π)

=

T∑
t=1

`t(xt, at)−
T∑
t=1

λt(πt) +

T∑
t=1

λt(πt)

−
T∑
t=1

λt(π) +

T∑
t=1

λt(π)−
T∑
t=1

`t(x
π
t , π)

Let

αT =

T∑
t=1

`t(xt, at)−
T∑
t=1

λt(πt) ,

βT =

T∑
t=1

λt(πt)−
T∑
t=1

λt(π) ,

γT =

T∑
t=1

λt(π)−
T∑
t=1

`t(x
π
t , π) .

The terms αT and γT correspond to the difference between
the losses of the policies between their stationary and tran-
sient states. The term βT measures the regret with respect
to the optimal policy. The rest of this section is devoted to
providing bounds on these terms.

4.1. Bounding αT

To bound αT , we need to show that sum of terms
`t(xt, at) − λt(πt) is small. Let xπt∞ = lims→∞ xπts .
We will show that this limit exists. Because λt(πt) =
`t(x

πt
∞, πt(x

πt
∞)) and `t(xt, at) = `t(xt, πt(xt)), we need

to show that xπt∞ is close to xt. This is done in a number
of steps. First, we obtain the limiting state xπt∞ (Lemma 6
and the discussion after that). Then, we show that the cho-
sen policy is slowly changing. Given these two results, we
bound ‖xt − xπt∞‖, which is then used to bound αT .

First, we study the behavior of the state vector under any
bounded and stable policy. We show that the policy con-
verges to its stationary state exponentially fast.
Lemma 6. The limiting state xπ∞ = limt→∞ xπt under a
(K ′, C ′)-bounded and ρ-stable linear policy π = (K, c)
exists and is equal to xπ∞ = (I −A+BK)−1Bc. Further,
we have that ‖xπt ‖ ≤ ‖B‖C ′/(1− ρ) and∥∥xπt+1 − xπ∞

∥∥ ≤ ρt ∥∥(I −A+BK)−1Bc
∥∥ .

Proof. We have that

xπt+1 = (A−BK)xπt +Bc

= (A−BK)2xπt−1 + (A−BK)Bc+Bc

= . . .

= (A−BK)tx1 +

t∑
s=1

(A−BK)t−sBc

= 0 +

t−1∑
s=0

(A−BK)sBc ,

where we used x1 = 0 in the last equality. Thus, as t goes
to infinity, xπt → (I − A + BK)−1Bc. This also implies
that ‖xπt ‖ ≤ ‖B‖C ′/(1− ρ). It is also easy to see that∥∥xπt+1 − xπ∞

∥∥ =

∥∥∥∥∥
∞∑
s=0

(A−BK)sBc−
t−1∑
s=0

(A−BK)sBc

∥∥∥∥∥
=
∥∥(A−BK)t(I −A+BK)−1Bc

∥∥
≤ ‖A−BK‖t

∥∥(I −A+BK)−1Bc
∥∥

≤ ρt
∥∥(I −A+BK)−1Bc

∥∥ .
Note that even if π = (K, c) /∈ Π, but (A−BK) is stable,
the above argument is still valid and we get a similar result.
In particular,

xπt∞ = (I −A+BK∗)
−1Bct . (7)

Letting C be an upper bound on ‖ct‖ for t ≤ T , with a
similar argument we can also show that

‖xt‖ ≤
‖B‖C
1− ρ

. (8)

In what follows, we use X to denote the upper bound on
the norm of state vector, X def

= ‖B‖C
1−ρ . Next, we prove that

the chosen policy is slowly changing and the bias term in
policies is bounded by C, where

C = ‖D‖GH ′ ,
D = P−1

∗,22B
>(I −A+BK∗)

−>Q ,

H ′′ =

√
1 + ‖K∗‖2 ‖B‖2 /(1− ρ)2 +

‖K∗‖ ‖B‖
1− ρ

,

H ′ = H ′′
√

1 + ‖K∗‖2 ‖B‖2 /(1− ρ)2 ,
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where P∗ denotes the solution to Equation (3), correspond-
ing to gain matrix K∗. The proof can be found in Ap-
pendix A.

Lemma 7. We have that

(i). ‖ct‖ ≤ C , (ii). ‖ct − ct−1‖ ≤
‖D‖G+ 2C

t− 1
.

Next, we show that the limiting state of policy πt (i.e.
lims→∞ xπts ) is close to the state at time t. The proof can
be found in Appendix A.

Lemma 8. If t > dlog(T − 1)/ log(1/ρ)e, then

‖xt − xπt∞‖ ≤
‖B‖ (‖D‖G+ 2C)

1− ρ

(
1 + log(t− 1)

t− 1

+
log(t− 1)

log(1/ρ)

(
1

t− log(t− 1)/ log(1/ρ)

))

+ ρt−1 ‖B‖C
1− ρ

.

Also, we have that

T∑
t=1

‖xt − xπt∞‖ ≤
1

1− ρ

(
4 ‖B‖C

⌈
log T

log(1/ρ)

⌉
+
‖B‖C
1− ρ

+ ‖B‖ (‖D‖G+ 2C)(1 + log T )

×

(
1 + log T +

log T

log(1/ρ)

))
.

Remark 9. This lemma shows an O(log2 T ) bound on∑T
t=1 ‖xt − xπt∞‖. As we will see, this leads to an

O(log2 T ) regret bound. Let εt = ‖xt − xπt∞‖. To get an
O(log T ) regret bound, we need to show that εt = H1/t for
a constant H1. A careful examination of proof of Lemma 8
reveals that εt = H2

∑t−1
s=1 ρ

s/(t − s) + H3 for constants
H2 and H3. Let f(t) =

∑t−1
s=1 ρ

s/(t − s). We want that
f(t) = H4/t for a constant H4 so that we get an O(log T )
regret bound.

To show this, we argue as follows: first establish the sim-
ple recurrence f(t + 1) = ρf(t) + ρ/t. This implies that
f(t) → 0 as t → ∞. Now, define g(t + 1) = tf(t + 1).
Thus g(t + 1) = ρg(t) + ρf(t) + ρ. Since ρ < 1 and
limt→∞ f(t) = 0, limt→∞ g(t) exists and a simple calcu-
lation shows that this is ρ/(1− ρ). This in fact implies that
f(t)→ ρ/(t(1− ρ)) asymptotically, which in turn implies
that regret is O(log T ) asymptotically.

Now we are ready to bound αT .

Lemma 10. Let

Z1 = 2(C ‖K∗‖+G ‖Q‖) + 2(‖Q‖+
∥∥K2
∗
∥∥)
‖B‖C
1− ρ

,

Z2 = 4 ‖B‖C
⌈

log T

log(1/ρ)

⌉
+
‖B‖C
1− ρ

Z3 = ‖B‖ (‖D‖G+ 2C)(1 + log T )

×
(

1 + log T +
log T

log(1/ρ)

)
.

Then we have that

αT ≤ Z1(Z2 + Z3)/(1− ρ) .

Proof. For policy π = (K, c), we have

`t(x, π) = x>(Q+K>K)x

− 2(c>K + g>t Q)x+ c>c+ g>t Qgt .

For policy πt = (Kt, ct) = (K∗, ct), define St = Q +
K>∗ K∗ and dt = 2(c>t K∗ + g>t Q). We write

αT =

T∑
t=1

(
x>t Stxt − dtxt

)
−

T∑
t=1

(
xπt>∞ Stx

πt
∞ − dtxπt∞

)
=

T∑
t=1

dt(x
πt
∞ − xt) +

T∑
t=1

(∥∥∥S1/2
t xt

∥∥∥− ∥∥∥S1/2
t xπt∞

∥∥∥)
×
(∥∥∥S1/2

t xt

∥∥∥+
∥∥∥S1/2

t xπt∞

∥∥∥)
≤

T∑
t=1

dt(x
πt
∞ − xt) +

T∑
t=1

∥∥∥S1/2
t (xt − xπt∞)

∥∥∥
×
(∥∥∥S1/2

t xt

∥∥∥+
∥∥∥S1/2

t xπt∞

∥∥∥)
≤

T∑
t=1

(
‖dt‖+

∥∥∥S1/2
t

∥∥∥(∥∥∥S1/2
t xt

∥∥∥+
∥∥∥S1/2

t xπt∞

∥∥∥))
× ‖xπt∞ − xt‖

≤ Z1

T∑
t=1

‖xπt∞ − xt‖

≤ Z1(Z2 + Z3)/(1− ρ) .

where we used Lemma 8 in the last step.

4.2. Bounding βT

The term βT is bounded by showing a reduction to regret
minimization algorithms (in this case, the FTL algorithm).
To use the regret bound of the FTL algorithm (Theorem 1),
we need to show boundedness of the value functions.

Lemma 11. Let X ′ = ‖B‖C ′/(1 − ρ), U =
max{‖K∗‖ ,K ′}max{X,X ′} + max{C,C ′}, V =
‖P∗‖ (X ′+U)2 + 2

1−ρ (G ‖Q‖+ ρC ‖P∗‖) (X ′+U), and
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F = 2 ‖P∗,22‖U+‖P∗,21‖X ′+ 2
1−ρ (G ‖Q‖+ ρC ‖P∗‖).

For any t, and any (K ′, C ′)-bounded, ρ-stable linear pol-
icy π = (K, c),

(i). ‖at‖ ≤ U ,
(ii). ‖−Kxπ∞ + c‖ ≤ U ,
(iii). ‖−K∗xπ∞ + ct‖ ≤ U .

For any action such that ‖a‖ ≤ U ,

(iv). Vt(x
π
∞, a) ≤ V .

Further, Vt(xπ∞, .) is Lipschitz in its second argument with
constant F . Finally, the Hessians of the value functions are
positive definite and H(Vt(x

π
∞, .)) � 2I .

The proof can be found in Appendix A.

Lemma 12. We have

βT ≤ 2V F 2(1 + log T ) .

Proof. To bound βT , first note that

Vπ,`(x
π′

∞, π
′) = `(xπ

′

∞, π
′)− λπ,` + Vπ,`(x

π′

∞, π)

= λπ′,` − λπ,` + Vπ,`(x
π′

∞, π) .

Thus,

λπ,` − λπ′,` = Vπ,`(x
π′

∞, π)− Vπ,`(xπ
′

∞, π
′) .

Thus,

βT ≤
T∑
t=1

(Vπt,`t(x
π
∞, πt)− Vπt,`t(xπ∞, π)) .

Now notice that Vπt,`t(x
π
∞, .) is the loss function that is fed

to the FTL strategy in state xπ∞. Lemma 11 shows that con-
ditions of Theorem 1 are satisfied. Thus, we get the result
from the regret bound for the FTL algorithm (Theorem 1):

βT ≤ 2V F 2(1 + log T ) .

4.3. Bounding γT

Finally, we bound γT . The proof is similar to the proof of
Lemma 10 and can be found in Appendix A.

Lemma 13. Let Z ′1 = (CK ′ + G ‖Q‖) + (‖Q‖ +
K ′2) ‖B‖C ′/(1− ρ). Then we have that

γT ≤
2Z ′1 ‖B‖C ′

(1− ρ)2
.

4.4. Putting Everything Together

Proof of Theorem 5. The regret bound follows from Lem-
mas 10, 12, and 13.

5. Adversarially Chosen Transition Matrices
Our results can be extended to LQ problems with adversar-
ial transition matrices,

xt+1 = Atxt +Btat, (9)

`t(xt, at) = (xt − gt)>Q(xt − gt) + a>t at .

Here, transition matrices At and Bt and the target vector
gt are chosen by an adversary. Once again, we measure the
regret with respect to the class of linear policies. Thus,
any policy π is identified by some pair (K, c) such that
π(x) = −Kx+ c.

The only no-regret algorithm for this setting is the re-
sult of Abbasi-Yadkori et al. (2013) who propose an
exponentially-weighted average algorithm and analyze it
under a mixing assumption. Similarly, we make the fol-
lowing assumption:

Assumption A2. (Uniform Stability) The choices of the
learner and the adversary are restricted to sets K × C ⊂
Rd×n × Rd and A × B ⊂ Rn×n × Rn×d, respectively.
There exists 0 < ρ < 1 such that for any A ∈ A and
B ∈ B, and any K ∈ K,

‖A−BK‖ < ρ .

Further, there exits K ′, C ′ > 0 such that for any K ∈ K
and c ∈ C, ‖K‖ ≤ K ′ and ‖c‖ ≤ C ′.

The proposed algorithm for the LQ problem (9) is shown
in Figure 3. The algorithm maintains a distribution over
policies. The distribution has the form of

qt(π) ∝ e−η
∑t−1
s=1 `s(x

π
s ,π) , η > 0 . (10)

The following theorem bounds the regret of this algorithm.

Theorem 14. Consider a uniformly stable system. The re-
gret of the algorithm in Figure 3 with respect to a class of
policies |Π| is bounded by O(

√
T log |Π|+ log |Π|).

Proof. We prove the theorem by showing that conditions
of Theorem 1 in (Abbasi-Yadkori et al., 2013) are satisfied.

Uniform mixing assumption: Let P (π,A,B) be the transi-
tion probability matrix of policy π = (K, c) ∈ K×C under
transition dynamics (A,B) ∈ A×B. Let p1 and p′1 be two
distributions over the state space and p2 = p1P (π,A,B)
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q0: the uniform distribution over Π, η = 1/
√
T

for t := 1, 2, . . . do
With probability βt = wπt−1,t−1/wπt−1,t−2 choose
the previous policy, πt = πt−1, while with probabil-
ity 1− βt, choose πt based on the distribution qt.
Learner takes the action at = −Ktxt + ct. Simul-
taneously, adversary chooses transition matrices At
and Bt and target vector gt.
Learner suffers loss `t(xt, at) and observes
At, Bt, gt.
Update state: xt+1 = Atxt +Btat.
Update the distribution qt(π) ∝ wπ,t, where wπ,t =

e−η
∑t
s=1 E[`s(x

π
s ,π)]

end for

Figure 3. The Exponentially Weighted Algorithm for Linear
Quadratic Problems

and p′2 = p′1P (π,A,B). Let 1 ≤ k ≤ n be rank of M =
(A−BK). LetM ′ be a k×k matrix whose eigenvalues are
the nonzero eigenvalues ofM . For x ∈ Rn, let xr(x) ∈ Rk
be a parameterization of the component of x that is on the
row space of M . Similarly, define xn(x) ∈ Rn−k that cor-
responds to the orthogonal component on the null space of
M . For u ∈ Rk and v ∈ Rn−k, let x(u, v) be a vector in
Rn such that xr(x(u, v)) = u and xn(x(u, v)) = v. Fi-
nally, let pr(u) =

∫
Rn−k p1(x(u, v))dv. Using integration

by substitution, we get that

‖p2 − p′2‖1 =

∫
Rk
|p2(y)− p′2(y)| dy

=

∫
Rk
|pr(u)− p′r(u)| |det(M ′)| du

≤ ρk
∫
Rk
|pr(u)− p′r(u)| du

≤ ρk
∫
Rk

∣∣∣∣∣
∫
Rn−k

p1(x(u, v))dv

−
∫
Rn−k

p′1(x(u, v))dv

∣∣∣∣∣du
≤ ρ

∫
Rk

∫
Rn−k

|p1(x(u, v))− p′1(x(u, v))| dvdu

= ρ

∫
Rn
|p1(x)− p′1(x)| dx = ρ ‖p1 − p′1‖1 .

This shows that the uniform mixing assumption of Abbasi-
Yadkori et al. (2013) is satisfied with the choice of mixing
time τ = 1/ log(1/ρ).

Bounded losses: With an argument similar to the proof of
Lemma 6, we can show that the state is bounded. This,
together with the boundedness of sets K and C, give that
the action is bounded. Thus, all losses are bounded.

Results of Abbasi-Yadkori et al. (2013) also apply to the
simpler setting of Section 3. However, sampling from
the distribution (10) can be computationally expensive,
whereas the FTL-MDP algorithm is computationally effi-
cient.

6. Conclusions and Future Work
We studied the problem of controlling linear systems with
adversarial quadratic tracking losses, competing with the
family of policies that compute actions as linear functions
of the state. We presented an algorithm whose regret, with
respect to such linear policies, is logarithmic in the num-
ber of rounds of the game. An interesting direction for fu-
ture work is to consider more complex families of policies,
such as the class of linear policies with a limited number of
switches.

Existing tracking algorithms require the target sequence to
be known in advance. Also their computational complex-
ity scales linearly with the length of the trajectory. The
main difficulty in the setting studied here, is the adversar-
ial nature of target vectors, which is very different from the
classical setting. The key advance is to show how the idea
of Even-Dar et al. (2009) (instantiating expert algorithms
in all states) can be applied to the LQ problem, which has
a continuous and unbounded state space. This is done by
showing that the sequence of value functions and policies
will be quadratic and linear respectively, if we choose the
right expert algorithm (FTL). The compact representation
of value functions and policies allows an efficient imple-
mentation of the FTL algorithm.

We showed how a related approach can be applied to ad-
versarially chosen changing linear dynamics. Unfortu-
nately, this algorithms is computationally expensive. A
more challenging problem is to design efficient algorithms
for the case of adversarially chosen changing transition ma-
trices. An interesting open problem is whether there is an
efficient no-regret algorithm, or whether a computational
lower bound can be established.

It might be possible to extend our results to LQ problems
with fixed, but unknown transition matrices of the form:

xt+1 = Axt +Bat + wt+1,

`t(xt, at) = (xt − gt)>Q(xt − gt) + a>t at ,

where wt+1 is a sub-Gaussian noise and matrices A and
B are unknown. We expect this extension to be fairly
straighfoward using techniques from (Neu et al., 2012) and
(Abbasi-Yadkori and Szepesvári, 2011). Our approach is
similar to Neu et al. (2012), with the difference that we use
FTL instead of FPL.
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adversarial stochastic shortest path problem with un-
known transition probabilities. In AISTATS, 2012.


