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Abstract

Can we make Bayesian posterior MCMC sam-
pling more efficient when faced with very large
datasets? We argue that computing the likelihood
for N datapoints in the Metropolis-Hastings
(MH) test to reach a single binary decision is
computationally inefficient. We introduce an ap-
proximate MH rule based on a sequential hypoth-
esis test that allows us to accept or reject samples
with high confidence using only a fraction of the
data required for the exact MH rule. While this
method introduces an asymptotic bias, we show
that this bias can be controlled and is more than
offset by a decrease in variance due to our ability
to draw more samples per unit of time.

1. Introduction

Markov chain Monte Carlo (MCMC) sampling has been
the main workhorse of Bayesian computation since the
1990s. A canonical MCMC algorithm proposes samples
from a distribution ¢ and then accepts or rejects these pro-
posals with a certain probability given by the Metropolis-
Hastings (MH) formula (Metropolis et al., 1953; Hastings,
1970). For each proposed sample, the MH rule needs to
examine the likelihood of all data-items. When the number
of data-cases is large this is an awful lot of computation for
one bit of information, namely whether to accept or reject
a proposal.

In today’s Big Data world, we need to rethink our Bayesian
inference algorithms. Standard MCMC methods do not
meet the Big Data challenge for the reason described above.
Researchers have made some progress in terms of making
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MCMC more efficient, mostly by focusing on paralleliza-
tion. Very few question the algorithm itself: is the standard
MCMC paradigm really optimally efficient in achieving its
goals? We claim it is not.

Any method that includes computation as an essential in-
gredient should acknowledge that there is a finite amount
of time, 7, to finish a calculation. An efficient MCMC
algorithm should therefore decrease the “error” (properly
defined) maximally in the given time 7". For MCMC algo-
rithms, there are two contributions to this error: bias and
variance. Bias occurs because the chain needs to burn in
during which it is sampling from the wrong distribution.
Bias usually decreases fast, as evidenced by the fact that
practitioners are willing to wait until the bias has (almost)
completely vanished after which they discard these “burn-
in samples”. The second cause of error is sampling vari-
ance, which occurs because of the random nature of the
sampling process. The retained samples after burn-in will
reduce the variance as O(1/T).

However, given a finite amount of computational time, it is
not at all clear whether the strategy of retaining few unbi-
ased samples and accepting an error dominated by variance
is optimal. Perhaps, by decreasing the bias more slowly we
could sample faster and thus reduce variance faster? In this
paper we illustrate this effect by cutting the computational
budget of the MH accept/reject step. To achieve that, we
conduct sequential hypothesis tests to decide whether to
accept or reject a given sample and find that the majority
of these decisions can be made based on a small fraction
of the data with high confidence. A related method was
used in Singh et al. (2012), where the factors of a graphical
model are sub-sampled to compute fixed-width confidence
intervals for the log-likelihood in the MH test.

Our “philosophy” runs deeper than the algorithm proposed
here. We advocate MCMC algorithms with a “bias-knob”,
allowing one to dial down the bias at a rate that optimally
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balances error due to bias and variance. We only know
of one algorithm that would also adhere to this strategy:
stochastic gradient Langevin dynamics (Welling & Teh,
2011) and its successor stochastic gradient Fisher scoring
(Ahn et al., 2012). In their case the bias-knob was the step-
size. These algorithms do not have an MH step which re-
sulted in occasional samples with extremely low probabil-
ity. We show that our approximate MH step largely re-
solves this, still avoiding O(N ) computations per iteration.

In the next section we introduce the MH algorithm and dis-
cuss its drawbacks. Then in Section 3, we introduce the
idea of approximate MCMC methods and the bias variance
trade-off involved. We develop approximate MH tests for
Bayesian posterior sampling in Section 4 and present a the-
oretical analysis in Section 5. Finally, we show our experi-
mental results in Section 6 and conclude in Section 7.

2. The Metropolis-Hastings algorithm

MCMC methods generate samples from a distribution
So(!) by simulating a Markov chain designed to have
stationary distribution Sp(!'). A Markov chain with a
given stationary distribution can be constructed using the
Metropolis-Hastings algorithm (Metropolis et al., 1953;
Hastings, 1970), which uses the following rule for transi-
tioning from the current state ! ; to the next state ! ;+1 :

1. Draw a candidate state ! ' from a proposal distribution
a(t'I'e)

2. Compute the acceptance probability:

So(!a('el')
P, = min 1 _— 1
So(T a1 0
3. Draw u ! Uniform[0,1]. Ifu < Pgset!y " 1Y
otherwise set !4 " 4.

Following this transition rule ensures that the stationary
distribution of the Markov chain is Sp(!). The samples
from the Markov chain are usually used to estimate the ex-
pectation of a function f (!) with respect to Sp(!). To do
th|s we collect T samplg@ and approximate the expectation
| = #%,asP= 2" T f(!). Since the stationary
distribution of the Markov chain is So, P is an unbiased
estimator of | (if we ignore burn-in).

The variance of Pis V = E[(#f %, % %# ),
where the expectation is over multiple simulations of the
Markov chain. It is well known that V & " 2 s, #/T , where
"f s, Isthe variance of f with respect to So and #is the in-
tegrated auto-correlation time, which is a measure of the in-
terval between independent samples (Gamerman & Lopes,
2006). Usually, it is quite difficult to design a chain that

mixes fast and therefore, the auto-correlation time will be
quite high. Also, for many important problems, evaluating
So(!) to compute the acceptance probability P, in every
step is so expensive that we can collect only a very small
number of samples (T) in a realistic amount of computa-
tional time. Thus the variance of O can be prohibitively
high, even though it is unbiased.

3. Approximate MCMC and the
Bias-Variance Tradeoff

Ironically, the reason MCMC methods are so slow is that
they are designed to be unbiased. If we were to allow
a small bias in the stationary distribution, it is possible
to design a Markov chain that can be simulated cheaply
(Welling & Teh, 2011; Ahn et al., 2012). That is, to esti-
mate | = # $,, we can use a Markov chain with stationary
distribution S; where $is a parameter that can be used to
control the;plas in the algorithm. Then | can be estimated
as P = Ti =1 F(!t), computed using samples from S,
instead of Sg.

As$' 0, S, approaches Sy (the distribution of interest)
but it becomes expensive to simulate the Markov chain.
Therefore, the bias in Pis low, but the variance is high be-
cause we can collect only a small number of samples in
a given amount of computational time. As $ moves away
from O, it becomes cheap to simulate the Markov chain but
the difference between S, and Sy grows. Therefore, Pwill
have higher bias, but lower variance because we can collect
a larger number of samples in the same amount of compu-
tational time. This is a classical bias-variance trade-off and
can be studied using the risk of the estimator.

The risk can be defined as the mean squared error in o]
i.e. R = E[(I %09?], where the expectation is taken over
multiple simulations of the Markov chain. Itis easy to show
that the risk can be decomposed as R = B2 + V, where
B is the bias and V is the variance. If we ignore burn-
in, it can be shown that B = # %, % # %, and V =
E[(f S5 %2 (1))2] & "2 g #IT .

The optimal setting of $that minimizes the risk depends on
the amount of computational time available. If we have an
infinite amount of computational time, we should set $to
0. Then there is no bias, and the variance can be brought
down to O by drawing an infinite number of samples. This
is the traditional MCMC setting. However, given a finite
amount of computational time, this setting may not be op-
timal. It might be better to tolerate a small amount of bias
in the stationary distribution if it allows us to reduce the
variance quickly, either by making it cheaper to collect a
large number of samples or by mixing faster.

It is interesting to note that two recently proposed algo-
rithms follow this paradigm: Stochastic Gradient Langevin
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Dynamics (SGLD) YVelling & Teh, 2011 and Stochas- the Kennedy-Bhanot estimatdrif et al., 2000 have very

tic Gradient Fisher Scoring (SGFSAKn et al, 2012. high variance for large datasets. Because of this, once we
These algorithms are biased because they omit the requiregt a very high estimate of the likelihood, almost all pro-
Metropolis-Hastings tests. However, in both cases, a knolposed moves are rejected and the algorithm gets stuck.

I (the step-size of the proposal distribution) is available

to control the bias. Ad ! 0, the acceptance prob- Thus, we should be willing to tolerate some error in the

ability P, | 1 and the bias from not conducting MH stationary dlstnbufuon if we yvant faster_accept/reject tests.
. . ; If we can offset this small bias by drawing a large number
tests disappears. However, wherh 0 the chain mixes . .
i . of samples cheaply and reducing the variance faster, we can
very slowly and the variance increases because the autg- . ; L i
. T . establish a potentially large reduction in the risk.
correlation time" ! . As! is increased fron®, the
auto-correlation, and therefore the variance, reduces. But)e will now show how to develop such approximate
at the same time, the acceptance probability reduces artdsts by reformulating the MH test as a statistical deci-
the bias from not conducting MH tests increases as well. sion problem. It is easy to see that the original MH test

(Egn. 1) is equivalent to the following procedure: Draw

In the next section, we will develop another class of ap- : ;
proximate MCMC algorithms for the case where the targetu $ Uniform[0, 1] and accept the proposélif the average

; . L . differencep in the log-likelihoods of# and# is greater
Sy is a Bayesian posterior distribution given a very large .
; ) : ¥ ~than a thresholdy, i.e. compute
dataset. We achieve this by developing an approximate

Metropolis-Hastings test, equipped with a knob for con- 1 $(#t)q(#!|#t)#

trolling the bias. Moreover, our algorithm has the advan- Mo = 109 USE) Q) and (2)
tage that it can be used with any proposal distribution. For

example, our method allows approximate MCMC methods , _ 1 ) o UTIN .

to be applied to problems where it is impossible to com- SN - li where i =log p(xi;#) %logp(xi; #)
pute gradients (which is necessary to apply SGLD/SGFS). ©)
Or, we can even combine our method with SGLD/SGFS, to

obtain the best of both worlds. Then ifu > W o, accept the proposal and skt; & #.

If ' o, reject the proposal and s#t., & #. This

4. Approximate Metropolis-Hastings Test for reformulation of the MH test makes it very easy to frame
Bayesian Posterior Sampling it as a statistical hypothesis test. Givgg and a random

sample(li,, ..., li, } drawn without replacement from the
An important method in the toolbox of Bayesian infer- population{ls, ..., Iy}, can we decide whether the popu-
ence is posterior sampling. Given a datasellaihdepen-  lation meary is greater than or less than the threshaj@
dent observationXy = {X1,...,Xn}, Which we model The answer to this depends on the precision in the random

using a distributionp(x;#) parameterized by, debned sample. If the difference between the sample nféand
on a spacd with measure” , and a prior distribution Ho is signiPcantly greater than the standard deviasiaf
$(#), the task is to sample from the posterior distribution @ we can make the decision to accept or reject the proposal
So(#) # $(#) iN:1 p(xi;#). conbdently. If not, we should draw more data to increase

o ) . the precision of(reduces) until we have enough evidence
If the dataset has a billion datapoints, it becomes veryy make a decision.

painful to computeSy(.) in the MH test, which has to

be done for each posterior sample we generate. Spendlore formally, we test the hypothesels : > po vsH3 :

ing O(N ) computation to get just bit of information, i.e. H < Ho. To do this, we proceed as follows: We compute
whether to accept or reject a sample, is likely not the bes#je sample meafland the sample standard deviat@r=

use of computational resources. (12%(A2) 15 . Then the standard deviation @¢an be

But, if we try to develop accept/reject tests that satisfy de-8stimated as: & —

tailed balance exactly with respect to the posterior distribu- s= & 1% n%1 (4)
tion using only sub-samples of data, we will quickly see the % n N %1

no free lunch theorem kicking in. For example, the pseudQNhere OW the bnite population correction term
marginal MCMC methodAndrieu & Roberts 2009 and NT L '
the method developed hyin et al. (2000 provide a way

is applied because we are drawing the subsample without

to conduct exact accept/reject tests using unbiased estimgPlacement from a pnite-sized population. Then, we com-
tors of the likelihood. However, unbiased estimators of thePUte the test statistic:
likelihood that can be computed from mini-batches of data,

such as the Poisson estimat&eérnhead et al2008 or

t = Po% po
~ s

®)
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Algorithm 1 Approximate MH test P R S S S 0
Ensure: accept R T T S

1: Initialize estimated mear@ OandiZ! 0 goz

2: Initializen! 0O, done! false 01

3: Drawu " Uniform[0,1]
4: while not donedo

5:  Draw mini-batchX of size min (n, N # n) without T 10 0 10 20
replacement fronX y andseiXy | Xy \ X ' Standardized Mean, y

6: UpdatePandl? usingX,andn! n+ [X|
7.  Estimate st using Eqr!A':p ny Figure 1.Error E estimated using simulation (blue cross with 1

w P " error bar) and dynamic programming (red line). An upper bound
8 Computef! 1#$yy w0 (black da)shed nﬁe) is algo sghown. . : PP
9: if#< "then
10: accept! true if P>y g andfalseotherwise
11 done! true cally before running the algorithm to avoid such patholog-
12:  endif ical situations. The sequential hypothesis testing method
13: end while can also be used to speed-up Gibbs sampling in densely

connected Markov Random Fields. We explore this idea
brieRRy in SectiorF of the supplementary.

If n is large enough for the central limit theorem (CLT) to

hold, the test statisti¢ follows a standard Student-t dis- 5, Error Analysis and Test Design

tribution with n # 1 degrees of freedom, whan =

(see Fig7 in supplementary for an empirical veribcation). In 5.1, we study the relation between the paramétehe
Then, we computé = 1 # $,- 1(|t]) where$,- 1(.) isthe  errork of the complete sequential test, the erroiin the

cdf of the standard Student-t distribution wit 1 degrees acceptance probability and the error in the stationary distri-
of freedom. If## < " (a bxed threshold) we can conpdently bution. In5.2, we describe how to design an optimal test
say thatu is signibcantly different fronpo. In this case, if ~ that minimizes data usage given a bound on the error.

P> 1 o, we decidau > | o, otherwise we decidg < [ ¢. If

#$ ", we do not have enough evidence to make a decisiorb.1. Error Analysis and Estimation

In this case, we draw more data to reduce the uncertainty, The parametet is an upper-bound on the error of a sin-

in the sample meaf We keep drawing more data until we :
. . . gle test and not the error of the complete sequential test.
have the required conbdence (i.e. u#tik "). Note, that . .
: : . To compute this error, we assume ra)is large enough
this procedure will terminate because when we have use o . . .
at thet statistics can be approximated with statis-

all the available data, i.en = N, the standafld deviation tics, and b) the joint distribution of thEs corresponding

to different mini-batches used in the test is multivariate
normal. Under these assumptions, we can show that the
test statistic at different stages of the sequential test fol-
lows a Gaussian Random Walk process. This allows us
to compute the error of the sequential t&$fisq, M, "),
The advantage of our method is that often we can makand the expected proportion of the data required to reach
conbdent decisions with < N datapoints and save on a decision#{s;q, M, "), using an efbcient dynamic pro-
computation, although we introduce a small bias in the stagramming algorithm. Note thaE and % depend on!,
tionary distribution. But, we can use the computational'' andu only through the Ostandardizeg meanO debned as
time we save to draw more samples and reduce the vari- n det (UL, T # po(t,!hu) N#1L
ance. The bias-variance trade-off can be controlled by ad st (ut,t) = &1 where
justing the knob". When" is high, we make decisions & is the true standard deviation of th€s. See Sectidn
without sufbcient evidence and introduce a high bias. Aof the supplementary for a detailed derivation and an em-
" 9% 0, we make more accurate decisions but are forced tirical validation of the assumptions.
examine more data which results in high variance.

s is 0, the sample meah= p and# =0 < ". So, we
will make the same decision as the original MH test would
make. Pseudo-code for our test is shown in Algorithm
Here, we start with a mini-batch of size for the brst test
and increase it byn datapoints when required.

Fig. 1 shows the theoretical and actual errorldf00 se-
Our algorithm will behave erratically if the CLT does not quential tests for the logistic regression model described
hold, e.g. with very sparse datasets or datasets with extreme Section6.1. The errorE(ps, M, ") is highest in the
outliers. The CLT assumption can be easily tested empiriworst case whep = o. ThereforeE(0, m, ") is an upper-
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bound onE. Since the error decreases sharplyiaaoves of the exact transition kernel, which is difbcult to compute.
away frompg, we can get a more useful estimatesaf we A more practical choice is a bound on the effroin the ac-
have some knowledge about the distributioqugf; Os that  ceptance probability, since the erroSnincreases linearly
will be encountered during the Markov chain simulation. with ! . Since! is a function of(!,!'), we can try to con-
Now, letP,., (1, 1") be the actual acceptance probability of trol theI average value of over the empir_ical _distrib_ution
= def of (1,1) that would be encountered while simulating the
our algorithm and let (!,!") = Pa(!,!")! Pa(!,!")be  Markov chain. Given a tolerande” on this average error,
the error inPy,,. In SectionB of the supplementary, we e can bnd the optimah and" by solving the following

show that for any!,!"): optimization problem (e.g. using grid search) to minimize
b 'p, the average data usage :
I'=  E(Hsw(u))du! E(Hsta (u))du  (6)
Pe ° min E- 1 [Eu®(Hsia(u, 1,1, m, )]

Thus, the errors corresponding to differertds partly can-
cel each other. As a result, although(!,!")| is upper-
bounded by the worst-case ers{0, m, ") of the sequen-
tial test, the actual error is usually much smaller. For
any given(!,!"), ! can be computed easily using 1-
dimensional quadrature.

SLE- |l (m," 1" 1 (7)

In the above equation, we estimate the average data usage,
E,[#8], and the error in the acceptance probability, us-

ing dynamic programming with one dimensional numerical
guadrature omi. The empirical distribution for computing
Finally, we show that the error in the stationary distributionthe expectation with respect ¢b,!') can be obtained us-

is bounded linearly by max=sup. . |! (!,! ]. As noted ing a trial run of the Markov chain. Without a trial run the
above,! max " E(0,m,") but is usually much smaller. bestwe can do is to control the worst case eB(@, m, ")

Let d, (P, Q) denote the total variation distarfceetween  (which is also an upper-bound on) in each sequential test
two distributions,P andQ. If the transition kernely of by solving the following minimization problem:

the exact Markov chain satispes the contraction condition

dy(PTo, So) " #dy (P, Sp) for all probability distributions min (0, m,") s.t. EO,m,")" ! " (8)

P with a constan# # [0, 1), we can prove (see supplemen- m!

tary SectionC) the following upper bound on the error in gyt this leads to a very conservative design as the worst
the stationary distribution: case error is usually much higher than the average case er-
Theorem 1. The distance between the posterior distribu- ror. We illustrate the sequential design in Experimésst

tion Sg and the stationary distribution of our approximate More details and a generalization of this method is given in
Markov chainS, is upper bounded as: supplementary SectidD.

! max
d(So.S) " 174 6. Experiments

5.2. Optimal Sequential Test Design 6.1. Random Walk - Logistic Regression

We now brieRy describe how to choose the parameters of /€ Prst test our method using a random walk proposal
the algorithm:", the error of a single test amd, the mini- (' '['t) = N ('+, %,y ). Although the random walk pro-
batch size. A very simple strategy we recommend is tgPosal is not efPcient, it is very useful for illustrating our
choosem $ 50050 that the Central Limit Theorem holds 2lgorithm because the proposal does not contain any in-
and keep' as small as possible while maintaining a low formation about the target distribution, unlike Langevin or

average data usage. This rule works well in practice and i§tamiltonian methods. So, the responsibility of converging
used in Experiments.1- 6.4 to the correct distribution lies solely with the MH test. Also
. . - . . sinceq is symmetric, it does not appear in the MH test and
The more discerning practitioner can design an optimal teSje can uselp = Ni log [u&(! )/ & ")].
that minimizes the data used while keeping the error below o ) _
a given tolerance. Ideally, we want to do this based on a tol] "€ target distribution in this experiment was the poste-
erance on the error in the stationary distributn Unfor-  Tior for a logistic regression model trained on the MNIST
tunately, this error depends on the contraction paramééter, dataset for classifying digits 7 vs 9. The dataset consisted
of 12214 datapoints and we reduced the dimensionality
The total variation dista_mce between two dis_tributi@nand from 784 to 50 using PCA. We chose a zero mean spherical
Q, that are absplutely continuous w.r.t. measurds dePned as g gyssian prior with precision = 10, and 8&ty = 0.01.
d(P,Q) € 17 [fe(l)! fo()ld! (1) wherefp andfq _ , o _
are their respective densities (or Radon-Nikodym derivatives tdn Fig. 2, we show how the logarithm of the risk in esti-
be more precise). mating the predictive mean, decreases as a function of wall
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Figure 2.Logistic Regression: Risk in predictive mean. 1351000 2000 3000 4000 5000 6000 7000
Wall Clock Time (secs)

clock time. The predictive mean of a test pokit is de- Figure 3.ICA: Risk in mean of Amari distance
Pned a1 x )[p(x’ [')]. To calculate the risk, we brst
estimate the true predictive mean using a long run of Hy-

brid Monte Carlo. Then, we compute multiple estimates Ofyor i the estimate from each Markov chain, over the 10
the predictive mean from our approximate algorithm andchains. This is shown in Fig. Note that even after 6400
obtain the risk as the mean squared error in these estimateg,cs the variance dominates the bias. as evidenced by the
We plot the average risk of 2037 datapoints in the test selyj|| decreasing risk, except for the most biased algorithm

. . "2 .
Since theriskR = B2+ V = B2 + % we expectitto  with " = 0.2. Also, the lowest risk at 6400 secs is obtained
decrease as a function of time until the bias dominates th@ith * = 0.1 and not the exact MH algorithni € 0). But
variance. The pbgure shows that even after collecting a lojye expect the exact algorithm to outperform all the approx-

of samples, the risk is still dominated by the variance andmate algorithms if we were to run for an inPnite time.
the minimum risk is obtained with> 0.

6.3. Variable selection in Logistic Regression
6.2. Independent Component Analysis ] o
Now, we apply our MH test to variable selection in a lo-

Next, we use our algorithm to sample from the posteriorgistic regression model using the reversible jump MCMC
distribution of the unmixing matrix in Independent Com- algorithm of Green(1995. We use a model that is simi-
ponent Analysis (ICA) Klyvarinen & Oja 2000. When  [ar to the Bayesian LASSO model for linear regression de-
using prewhitened data, the unmixing matvik! R°" P scribed inChen et al(2011). Specibcally, giverd input

is constrained to lie on the Stiefel manifold of orthonor- features, our parametér = {#,$} where# is a vector
mal matrices. We choose a prior that is uniform overof D regression coefpcients afids aD dimensional bi-
the manifold and zgro elsewhere. We model the data agary vector that indicates whether a particular feature is in-
p(x|W) = |de(W)| e 4CO.Sﬁ.(%WjT X) = wherew;  cluded in the modelgor notg,The prior we choose #ois

are the rows ofVV. Since the prior is zero outside the man-é)(#j 15,9 = Lexp # % if$ =1. If$ =0, #

ifold, the same is true for the posterior. Therefore we us ] N in th del He';(' hrink
a random walk on the Stiefel manifold as a proposal distri- 0€s not appear In the model. @s a shrinkage pa-
rameter that pusheg towards 0, and we choose a prior

bution Ouyang 2008. Since this is a symmetric proposal 0 ! . .
distribution, it does not appear in the MH test and we canD( NS U% V\k/e also place a right truncated Poisson prior

useplo = - log [u]. p($|& $ 8b—k| on $ to control the size of the model,
L k!

To perform a large scale experiment, we created a synthetilg _ (o $ We sei& = 10* 10 in this experiment
| - .

dataset by mixing 1.95 million samples of 4 sources: (a)
a Classical music recording (b) street / trafbc noise (c) &Denoting the likelihood of the data byiy (#,9$),

(d) 2 independent Gaussian sources. To measure the cdhe posterior distribution after integrating oW is
rectness of the sampler, we measure the risk in estimating(#, $|Xn,yn, &) $ In (#,$)%% & B (k,D # k + 1)

I = Epw x) [da (W, Wp)] where the test functiods is  whereB(.,.) is the beta function. Instead of integrating
the Amari distanceAmari et al, 1996 andW is the true  out & we use it as a parameter to control the size of the
unmixing matrix. We computed the ground truth using amodel. We use the same proposal distribution aimef
long run (T = 100K samples) of the exact MH algorithm. et al, 2011) which is a mixture of 3 type of moves that are
Then we ran each algorithm 10 times, each timé' f@&400  picked randomly in each iteration: an update move, a birth
secs. We calculated the risk by averaging the squared emove and a death move. A detailed description is given in
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N
N (0 5#0 { ) S, toapxi +1og 969 | 3 ).
—1 =0, T =24583
—1-001,T=137375 The proposed stat# is always accepted (without con-

. :gj?f";fggggs ducting any MH test). Since the acceptance probability
approaches as we reduc#, the bias from not conducting

the MH test can be kept under control by usidg! O.
However, we have to use a reasonably lafgeo keep
the mixing rate high. This can be problematic for some
distributions, because SGLD relies solely on gradients of
-8 the log density and it can be easily thrown off track by
large gradients in low density regions, unié&sk O.

0 1600 2600 3600 4600
Wall Clock Time (secs) . . .
As an example, consider an L1-regularized linear regres-

Figure 4.RIMCMC: Risk in predictive mean sion model. Given a datasgt;, yi}zil Wher?xi are pre-
dictors andy; are targets, we use a Gaussian error model
p(y[x, #) $ exp{%3(y %#"x)?} and choose a Laplacian
prior for the parametens(#) $ exp(%&y&#&,). For peda-
Supplementary Sectidg gogical reasons, we will restrict oursc_alves t.o a toy version
of the problem wheré& andx are one dimensional. We use
We applled this to the MiniBooNE dataset from the UCI a Synthetic dataset witN = 10000 datapoints generated
machine learning repositofgache & Lichman 2013.  asy, = 0.5x; + ' where' " A/(0, 1/ 3). We choos& = 3
Here the task is to classify electron neutrinos (signal) fromand&, = 4950, so that the prior is not washed out by the
muon neutrinos (background). There are 130,065 dataikelihood. The posterior density and the gradient of the log

points (28% in +ve class) with 50 features to which we posterior are shown in bgurég)and5(b) respectively.
add a constant feature of 10s. We randomly split the data
into a training (80%) and testing (20%) set. To compute

ground truth, we collected T=400K samples using the ex- «
act reversible jump algorithm (= 0). Then, we ran the «

approximate MH algorithm with different values bffor g
around 3500 seconds. We plot the risk in predictive mean g«
of test data (estimated from 10 Markov chains) in Fg. %

Again we see that the lowest risk is obtained with 0. B
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The acceptance rates for the birth/death moves starts off

at! 20% but dies down td 2% once a good model is

found. The acceptance rate for update moves is kept a*

' 50%. The model also suffers from local minima. For  « il

the plot in Fig.4, we started with only one variable and _*°

we ended up learning models with around 12 features, giv- §

ing a classibcation errdr 15%. But, if we initialize the T

sampler with all features included and initializeto the .

MAP value, we learn models with around 45 features, but SIS, LT e,

with a lower classibcation errdér 10%. Both the exact re- ! :

versible jump algorithm and our approximate version suffer (c) SGLD (d) SGLD + MH,! =0.5.

from this problem. We should bear this in mind when in-

terpreting Oground truthO. However, we have observed that Figure 5.Pitfalls of using uncorrected SGLD

when initialized with the same values, we obtain similar o ) ) ]

results with the approximate algorithm and the exact algo£A €mpirical histogram GO_f samples obtained by running

rithm (see e.g. Figl3in supplementary). SGLD W|th$ =5"' 10 |s_shoyvn in Fig5(c). The ef-
fect of omitting the MH test is quite severe here. When the

sampler reaches the mode of the distribution, the Langevin
noise occasionally throws itinto the valley to the left, where
Finally, we apply our method to Stochastic Gradi- the gradient is very high. This propels the sampler far off
ent Langevin Dynamic¥{elling & Teh, 2011). In to the right, after which it takes a long time to bnd its way
each iteration, we randomly draw a mini-batch back to the mode. However, if we had used an MH accept-
X, of size n, and propose# " q(.|#AX,) = reject test, most of these troublesome jumps into the valley

(a) Posterior density (b) Gradient of log posterior

6.4. Stochastic Gradient Langevin Dynamics



Austerity in MCMC Land: Cutting the Metropolis-Hastings Budget

would be rejected because the density in the valley is much
lower than that at the mode.

To apply an MH test, note that the SGLD proposal
q(6’|0) can be considered a mixture of component kernels
q(0'6, X,,) corresponding to different mini-batches. The
mixture kernel will satisfy detailed balance with respect to
the posterior distribution if the MH test enforces detailed
balance between the posterior and each of the component
kernels (6’|, X,,). Thus, we can use an MH test with
o = 1 log UP(@)(J(@’I%%) ]
N p(0")q(0:]0", Xy)

The result of running SGLD (keeping o = 5 x 1076
as before) corrected using our approximate MH test, with
e = 0.5, is shown in Fig. 5(d). As expected, the MH test
rejects most troublesome jumps into the valley because the
density in the valley is much lower than that at the mode.
The stationary distribution is almost indistinguishable from
the true posterior. Note that when € = 0.5, a decision is al-
ways made in the first step (using just m = 500 datapoints)
without querying additional data sequentially.
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Figure 6. Test average error in P, and data usage E, [7] for the
ICA experiment using average design over both m and € (Q),
with fixed m = 600 (A), and worst-case design ().

6.5. Optimal Design of Sequential Tests

We illustrate the advantages of the optimal test design pro-
posed in Section 5.2 by applying it to the ICA experiment
described in Section 6.2. We consider two design methods:

the ‘average design’ (Eqn. 7) and the ‘worst-case design’
(Eqn. 8). For the average design, we collected 100 samples
of the Markov chain to approximate the expectation of the
error over (,6’). We will call these samples the training
set. The worst case design does not need the training set as
it does not involve the distribution of (6, 6). We compute
the optimal m and e using grid search, for different val-
ues of the target training error, for both designs. We then
collect a new set of 100 samples (6,6’) and measure the
average error and data usage on this test set (Fig. 6).

For the same target error on the training set, the worst-case
design gives a conservative parameter setting that achieves
a much smaller error on the test set. In contrast, the average
design achieves a test error that is almost the same as the
target error (Fig. 6(a)). Therefore, it uses much less data
than the worst-case design (Fig. 6(b)).

We also analyze the performance in the case where we fix
m = 600 and only change e. This is a simple heuristic we
recommended at the beginning of Section 5.2. Although
this usually works well, using the optimal test design en-
sures the best possible performance. In this experiment,
we see that when the error is large, the optimal design uses
only half the data (Fig. 6(b)) used by the heuristic and is
therefore twice as fast.

7. Conclusions and Future Work

We have taken a first step towards cutting the compu-
tational budget of the Metropolis-Hastings MCMC algo-
rithm, which takes O(N) likelihood evaluations to make
the binary decision of accepting or rejecting a proposed
sample. In our approach, we compute the probability that a
new sample will be accepted based on a subset of the data.
We increase the cardinality of the subset until a prescribed
confidence level is reached. In the process we create a bias,
which is more than compensated for by a reduction in vari-
ance due to the fact that we can draw more samples per
unit time. Current MCMC procedures do not take these
trade-offs into account. In this work we use a fixed deci-
sion threshold for accepting or rejecting a sample, but in
theory a better algorithm can be obtained by adapting this
threshold over time. An adaptive algorithm can tune bias
and variance contributions in such a way that at every mo-
ment our risk (the sum of squared bias and variance) is as
low as possible. We leave these extensions for future work.
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