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Abstract

We consider online learning when the time hori-
zon is unknown. We apply a minimax analysis,
beginning with the fixed horizon case, and then
moving on to two unknown-horizon settings, one
that assumes the horizon is chosen randomly ac-
cording to some distribution, and the other which
allows the adversary full control over the hori-
zon. For the random horizon setting with re-
stricted losses, we derive a fully optimal mini-
max algorithm. And for the adversarial horizon
setting, we prove a nontrivial lower bound which
shows that the adversary obtains strictly more
power than when the horizon is fixed and known.
Based on the minimax solution of the random
horizon setting, we then propose a new adap-
tive algorithm which “pretends” that the hori-
zon is drawn from a distribution from a special
family, but no matter how the actual horizon is
chosen, the worst-case regret is of the optimal
rate. Furthermore, our algorithm can be com-
bined and applied in many ways, for instance,
to online convex optimization, follow the per-
turbed leader, exponential weights algorithm and
first order bounds. Experiments show that our
algorithm outperforms many other existing algo-
rithms in an online linear optimization setting.

1. Introduction

We study online learning problems with unknown time
horizon with the aim of developing algorithms and ap-
proaches for the realistic case that the number of time steps
is initially unknown.

We first adopt the standard Hedge setting (Freund &
Schapire, 1997) where the learner chooses a distribution
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over N actions on each round, and the losses for each ac-
tion are then selected by an adversary. The learner incurs
loss equal to the expected loss of the actions in terms of the
distribution it chose for this round, and its goal is to mini-
mize the regret, the difference between its cumulative loss
and that of the best action after 7" rounds.

Various algorithms are known to achieve the optimal (up to
a constant) upper bound O(v/T' In N) on the regret. Most
of them assume that the horizon 7" is known ahead of time,
especially those which are minimax optimal (Cesa-Bianchi
et al., 1997; Abernethy et al., 2008b). When the horizon is
unknown, the so-called doubling trick (Cesa-Bianchi et al.,
1997) is a general technique to make a learning algorithm
adaptive and still achieve O(v/T In N) regret uniformly for
any 7. The idea is to first guess a horizon, and once the ac-
tual horizon exceeds this guess, double it and restart the
algorithm. Although, in theory, it is widely applicable,
the doubling trick is aesthetically inelegant, and intuitively
wasteful, since it repeatedly restarts itself, entirely forget-
ting all the preceding information. Other approaches have
also been proposed, as we discuss shortly.

In this paper, we study the problem of learning with un-
known horizon in a game-theoretic framework. We con-
sider a number of variants of the problem, and make
progress toward a minimax solution. Based on this ap-
proach, we give a new general technique which can also
make other minimax or non-minimax algorithms adaptive
and achieve low regret in a very general online learning set-
ting. The resulting algorithm is still not exactly optimal, but
it makes use of all the previous information on each round
and achieves much lower regret in experiments.

We view the Hedge problem as a repeated game between
the learner and the adversary. Abernethy et al. (2008b), and
Abernethy & Warmuth (2010) proposed an exact minimax
optimal solution for a slightly different game with binary
losses, assuming that the loss of the best action is at most
some fixed constant. They derived the solution under a very
simple type of loss space; that is, on each round only one
action suffers one unit loss. We call this the basis vector
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loss space. As a preliminary of this paper, we also derive
a similar minimax solution under this simple loss space for
our setting where the horizon 7' is fixed and known to the
learner ahead of time (see Theorem 1).

We then move on to the primary interest of this paper, that
is, the case when the horizon is unknown to the learner.
We study this unknown horizon setting in the minimax
framework, with the aim of ultimately deriving game-
theoretically optimal algorithms. Two types of models are
studied. The first one assumes the horizon is chosen ac-
cording to some known distribution, and the learner’s goal
is to minimize the expected regret. We show the exact mini-
max solution for the basis vector loss space in this case (see
Theorem 2). It turns out that the distribution the learner
should choose on each round is simply the conditional ex-
pectation of the distributions the learner would have chosen
for the fixed horizon case.

The second model we study gives the adversary the power
to decide the horizon on the fly, which is possibly the most
adversarial case. In this case, we no longer use the regret as
the performance measure. Otherwise the adversary would
obviously choose an infinite horizon. Instead, we use a
scaled regret to measure the performance. Specifically, we
scale the regret at time ¢ by the optimal regret under fixed
horizon ¢. The exact optimal solution in this case is unfortu-
nately not found and remains an open problem, even for the
extremely simple case. However, we give a lower bound for
this setting to show that the optimal regret is strictly greater
than the one in the fixed horizon game. That is, the adver-
sary does obtain strictly more power if allowed to pick the
horizon (see Theorem 3).

We then propose our new adaptive algorithm based on the
minimax solution in the random horizon setting. One might
doubt how realistic a random horizon is in practice. Even if
the true horizon is indeed drawn from a fixed distribution,
how can we know this distribution? We address these prob-
lems at the same time. Specifically, we prove that no matter
how the horizon is chosen, if we assume it is drawn from a
distribution from a special family, and let the learner play
in a way similar to the one in the random horizon setting,
then the worst-case regret at any time 7" (not the expected
regret) can still be of the optimal order. In other words,
although the learner is behaving as if the horizon is ran-
dom, its regret will be small even if the horizon is actually
controlled by an adversary. Moreover, the results hold for
not just the Hedge problem, but a general online learning
setting—online convex optimization— that includes many
interesting problems (see Theorem 5).

Our idea can be combined not only with the minimax algo-
rithm, but also the “follow the perturbed leader” algorithm
and the exponential weights algorithm (see Theorem 7 and
8). In addition, our technique can not only deal with un-

known horizon, but also other unknown information such
as the loss of the best action, thus leading to a first order re-
gret bound that depends on the loss of the best action (see
Theorem 9). Like the doubling trick, this seems to be a
quite general way to make an algorithm adaptive. Further-
more, we conduct experiments showing that our algorithm
outperforms many existing algorithms, including the dou-
bling trick, in an online linear optimization setting within
an {5 ball where our algorithm has an explicit closed form.

The rest of the paper is organized as follows. We define the
Hedge setting formally in Section 2, and derive the mini-
max solution for the fixed horizon setting as the prelimi-
nary of this paper in Section 3. In Section 4, we study two
unknown horizon settings in the minimax framework. We
then turn to a general online learning setting and present
our new adaptive algorithm in Section 5. Implementation
issues, experiments, and applications are discussed in Sec-
tion 6. We omit most of the proofs due to space limitations,
but all details can be found in the supplementary material.

Related work Besides the doubling trick, other adaptive
algorithms have been studied (Auer et al., 2002; Gentile,
2003; Yaroshinsky et al., 2004; Chaudhuri et al., 2009;
de Rooij et al., 2013). Auer et al. (2002) showed that for al-
gorithms such as the exponential weights algorithm (Little-
stone & Warmuth, 1994; Freund & Schapire, 1997; 1999),
where a learning rate 7 should be set as a function of the

horizon, typically in the form \/(bIn N)/T for some con-

stant b, one can simply set 7 adaptively as 1/(bln N)/t,
where t is the current number of rounds. In other words,

this algorithm always pretends the current round is the
last round. Although this idea works with the exponen-
tial weights algorithm, we remark that assuming the current
round is the last round does not always work. Specifically,
one can show that it will fail if applied to the minimax al-
gorithm (see Section 6.4). In another approach to online
learning with unknown horizon, Chaudhuri et al. (2009)
proposed an adaptive algorithm based on a novel potential
function reminiscent of the half-normal distribution.

Other performance measures different from the usual re-
gret were studied before. Foster & Vohra (1998) introduced
internal regret comparing the loss of an online algorithm
to the loss of a modified algorithm which consistently re-
places one action by another; Herbster & Warmuth (1995),
and Bousquet & Warmuth (2003) compared the learner’s
loss with the best k-shifting expert; Hazan & Seshadhri
(2007) studied the usual regret within any time interval;
Chernov & Zhdanov (2010) considered discounted losses.
To the best of our knowledge, the form of scaled regret that
we study is new. Lower bounds on anytime regret in terms
of the quadratic variations for any loss sequence (instead of
the worst case sequence this paper considers) were studied
by Gofer & Mansour (2012).
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2. Repeated Games

We first consider the following repeated game between a
learner and an adversary. The learner has access to IV ac-
tions. On eachround ¢t = 1,..., T, (1) the learner chooses
a distribution P; over the actions; (2) the adversary reveals
the loss vector Z; = (Z;1,...,Zy n) € LS, where Z, ; is
the loss for action ¢ for this round, and the loss space LS is
a subset of [0, 1]%V; (3) the learner suffers loss ¢; = P - Z;
for this round.

Notice that the adversary can choose the losses on round ¢
with full knowledge of the history P.; and Z;.;_1, that is,
all the previous choices of the learner and the adversary (we
use notation ay.; to denote the multiset {ay,...,a:}). We
also denote the cumulative loss up to round ¢ for the learner
and the actions by L; = Y., £y and M, = 31, Zys
respectively. The goal for the learner is to minimize the
difference between its total loss and that of the best action
at the end of the game. In other words, the goal of the
learner is to minimize Reg(Lr, M7 ), where we define the
regret function Reg(L, M) £ L—min; M;, for L € R and
M < RY. The number of rounds 7T is called the horizon.

Regarding the loss space LS, perhaps the simplest one is
{e1,...,en}, the N standard basis vectors in N dimen-
sions. Playing with this loss space means that on each
round, the adversary chooses one single action to incur one
unit loss. In order to show the intuition of our main results,
we mainly focus on this basis vector loss space in Sections
3 and 4, but we return to the most general case [0, 1] later.

3. Minimax Solution for Fixed Horizon

Although our primary interest in this paper is the case when
the horizon is unknown to the learner, we first present
some preliminary results on the setting where the horizon is
known to both the learner and the adversary ahead of time.
These will later be useful for the unknown horizon case.

If we treat the learner as an algorithm Alg that takes the in-
formation of previous rounds as inputs, and outputs a distri-
bution P; = Alg(Py.;_1,Z1..—1) that the learner is going
to play with, then finding the optimal solution in this fixed
horizon setting can be viewed as solving the minimax ex-
pression

inf sup Reg(Lp, Mr). (D

AlgZi.7

Alternatively, we can recursively define:
V(M,0) £ —min M; ;

V(M,r) & min max (P-Z+V(M+Z,r—1)),
PEA(N) ZELS

where M € R¥ is a loss vector, r is a nonnegative inte-
ger, and A(N) is the N dimensional simplex. By a simple

argument, one can show that the value of V (M, ) is the
regret of a game with r rounds starting from the situation
that each action has initial loss M;, and assuming both the
learner and the adversary will play optimally. In fact, the
value of Eq. (1) is exactly V' (0, T), and the optimal learner
algorithm is the one that chooses the P* which realizes the
minimum in the definition of V(IM, r) when the actions’
cumulative loss vector is M and there are r rounds left. We
call V(0,T) the value of the game.

As a concrete illustration of these ideas, we now consider
the basis vector loss space!, that is, LS = {ej,...,en}.
It turns out that under this loss space, the value function
V' has a nice closed form. Similar to the results from
Cesa-Bianchi et al. (1997) and Abernethy et al. (2008b),
we show that V' can be expressed in terms of a random
walk. Suppose R(M, r) is the expectation of the loss of the
best action if the adversary chooses each e; uniformly ran-
domly for the remaining 7 rounds, starting from loss vector
M. Formally, R(M, r) can be defined in a recursive way:
R(M,0) £ min; M, ; R(M,r) £ % Zf\il RM-+e;,r—
1). The connection between V' and R, and the optimal al-
gorithm are then shown by the following theorem.

Theorem 1. IfLS = {ey,...,en}, then for any vector M
and integer v > 0, we have V(M,r) = r/N — R(M, ).
Let cy = ++/2(N —1)In N. Then the value of the game
satisfies

V(0,T) < enVT. )

Moreover, on round t, the optimal learner algorithm is the
one that chooses weight P, ; =V (M;_1,7) — V(M;_1 +
e;,r — 1) for each action i, where My_1 is the current
cumulative loss vector and v is the number of remaining
rounds, thatis, r =1 —t + 1.

Theorem 1 tells us that under the basis vector loss space,
the best way to play is to assume that the adversary is play-
ing uniformly randomly, since /N and R(M,r) are ex-
actly the expected losses for the learner and for the best ac-
tion respectively. Note that cy is decreasing when N > 4
(with maximum value about 0.72). So contrary to the
O(VT In N) regret bound for the general loss space [0, 1]V
which is increasing in IV, here V' (0, T') is of order O(v/T).

4. Playing without Knowing the Horizon

We turn now to the case in which the horizon 7" is unknown
to the learner, which is often more realistic in practice.
There are several ways of modeling this setting. For ex-
ample, the horizon can be chosen ahead of time according
to some fixed distribution, or it can even be chosen by the
adversary. We will discuss these two variants separately.

"For other loss spaces, finding minimax solutions seems diffi-
cult. However, we show the relation of the values of the game for
different loss spaces in the supplementary file, see Theorem 10.
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4.1. Random Horizon

Suppose the horizon T is chosen according to some fixed
distribution @ which is known to both the learner and the
adversary. Before the game starts, a random 7' is drawn,
and neither the learner nor the adversary knows the actual
value of T'. The game stops after 7" rounds, and the learner
aims to minimize the expectation of the regret. Using our
earlier notation, the problem can be formally defined as

inf sup Er.g[Reg(Ly, M7)],
Alg Zl:oo

where we assume the expectation is always finite. We
sometimes omit the subscript 7' ~ @ for simplicity.

Continuing the example in Section 3 of the basis vector
loss space, we can again show the exact minimax solution,
which has a strong connection with the one for the fixed
horizon setting.

Theorem 2. IfLS = {e1,...,en}, then

inf sup Erg[Reg(Ly, Mr)]
AlgZ;.

= Erg[inf sup Reg(Ly, Mr)].
AlgZy.7

3)

Moreover, on round t, the optimal learner plays with the
distribution Py = Ero[PT|T > t], where P is the op-
timal distribution the learner would play if the horizon is T,
that is, Pg; = V(Mt_l,T7t+1) 7V(Mt_1 +ei,T7t).

Eq. (3) tells us that if the horizon is drawn from some dis-
tribution, then even though the learner does not know the
actual horizon before playing the game, as long as the ad-
versary does not know this information either, it can still do
as well as the case when they are both aware of the horizon.

However, so far this model does not seem to be quite use-
ful in practice for several reasons. First of all, the horizon
might not be chosen according to a distribution. Even if it
is, this distribution is probably unknown. Secondly, what
we really care about is the performance which holds uni-
formly for any horizon, instead of the expected regret. Last
but not least, one might conjecture that the similar result
stated in Theorem 2 should hold for other more general loss
spaces, which is in fact not true (see Example 1 in the sup-
plementary file), making the result seem even less useful.

Fortunately, we address all these problems and develop new
adaptive algorithms based on the result in this section. We
discuss these in Section 5 after first introducing the fully
adversarial model.

4.2. Adversarial Horizon

The most adversarial setting is the one where the horizon
is completely controlled by the adversary. That is, we let

the adversary decide whether to continue or stop the game
on each round according to the current situation. However,
notice that the value of the game is increasing in the hori-
zon. So if the adversary can determine the horizon and its
goal is still to maximize the regret, then the problem would
not make sense because the adversary would clearly choose
to play the game forever and never stop leading to infinite
regret. One reasonable way to address this issue is to scale
the regret by the value of the fixed horizon game V (0, T),
so that the scaled regret Reg(Lz, Mr)/V (0, T) indicates
how many times worse is the regret compared to the one
that is optimal given the horizon. Under this setting, the
corresponding minimax expression is

~ . Reg(LT, MT)
V = inf sup sup ———F—+——=
Alg Tp ZIE V(0,T)

“4)

Unfortunately, finding the minimax solution to this setting
seems to be quite challenging, even for the simplest case
N = 2. It is clear, however, that V is at most some con-
stant due to the existence of adaptive algorithms such as the
doubling trick, which can achieve the optimal regret bound
up to a constant without knowing 7. Another clear fact is
V > 1, since it is impossible for the learner to do better
than the case when it is aware of the horizon. Below, we
derive a nontrivial lower bound that is greater than 1, thus
proving that the adversary does gain strictly more power
when it can stop the game whenever it wants.

Theorem 3. If N = 2 and LS = [0,1)2, then V > /2.
That is, for every algorithm, there exists an adversary and a
horizon T" such that the regret of the learner after T rounds
is at least \/2V (0, T).

5. A New General Adaptive Algorithm

We study next how the random-horizon algorithm of Sec-
tion 4.1 can be used when the horizon is entirely unknown
and furthermore, for a much more general class of online
learning problems. In Theorem 2, we proposed an algo-
rithm that simply takes the conditional expectation of the
distributions we would have played if the horizon were
given. Notice that even though it is derived from the ran-
dom horizon setting, it can still be used in any setting as
an adaptive algorithm in the sense that it does not require
the horizon as a parameter. However, to use this algorithm,
we should ask two questions: What distribution should we
use? And what can we say about the algorithm’s perfor-
mance for an arbitrary horizon instead of in expectation?

As a first attempt, suppose we use a uniform distribution
over 1,...,7Ty, where Ty is a huge integer. From what
we observe in some numerical calculations, E[P} [T > ]
tends to be a uniform distribution in this case. Clearly
it cannot be a good algorithm if for each round, it just
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places equal weights for each action regardless of the ac-
tions’ behaviors. In fact, one can verify that the exponen-
tial distribution (that is, Pr[T" = t] oc o for some constant
0 < a < 1) also does not work. These examples show that
even though this algorithm gives us the optimal expected
regret, it can still suffer a big regret for a particular trial of
the game, which we definitely want to avoid.

Nevertheless, it turns out that there does exist a family of
distributions that can guarantee the regret to be of order
O(V/T) for any T. Moreover, this is true for a very general
online learning problem that includes the Hedge setting we
have been discussing. Before stating our results, we first
formally describe this general setting, which is sometimes
called the online convex optimization problem (Zinkevich,
2003; Shalev-Shwartz, 2011). Let .S be a compact convex
set, and F be a set of convex functions defined on S. On
eachround ¢ = 1,...,7T: (1) the learner chooses a point
x; € S; (2) the adversary chooses a loss function f; € F;
(3) the learner suffers loss f;(x;) for this round. The regret
after T' rounds is defined by

T
th Xt) glelgtz:;ft(x)

It is clear that the Hedge problem is a special case of the
above setting with S being the probability simplex, and F
being a set of linear functions defined by a point in the loss
space, that is, 7 = {f(x) = x - w : w € LS}. Similarly,
to study the minimax algorithm we define the following
Vs, 7 function of the multiset M of loss functions we have
encountered and the number of remaining rounds 7:

,meZf

fem

Reg(x1.7, f1.1) =

Vs, 7(M,0)

Ve (M, ) 2 minmax (f(x) + Vs s (M {f},r — 1),

xeS feF

where W denotes multiset union. We omit the subscript of
Vs, + whenever there is no confusion. Let x] be the output
of the minimax algorithm on round ¢. In other words, x!
realizes the minimum in the definition of V(f1.4—1,T —
t + 1). We will adapt the idea in Section 4.1 and study
the adaptive algorithm that outputs E7q[x! |T > t] € S
on round ¢ for a distribution ) on the horizon. One mild
assumption needed is

Assumption 1. VM andr > 0, V(M,r) > V(M,0).

Roughly speaking, this assumption implies that the game
is in the adversary’s favor: playing more rounds leads to
greater regret. It holds for the Hedge setting with basis
vector loss space (see Property 7 in the supplementary file).
In fact, it also holds as long as F contains the zero function
fo(x) = 0. To see this, simply observe that

VI(M,7) = min max (f(x) + VM@ {f},r—1))

VMY {fo},m—1)

>
> 2 VM {fo,...

afO}?O) =

So the assumption is mild and will hold for all the examples
we consider.

V(M,0).

Below, we first give a general upper bound on the regret
that holds for any distribution and has no dependence on the
choices of the adversary. After that we will show what the
appropriate distributions are to make this bound O(v/T).

Theorem 4. Let V(M) = E7q[V(M,T—t+1)|T > ]
and ¢ = Prpg[T = t|T > t|. Suppose Assump-
tion 1 holds, and on round t the learner chooses x; =
Er~q[x! [T > t] where x] is the output of the mini-
max algorithm for horizon T as described above. Then
for any T, the regret after Ty rounds is at most V1 () +

ZtTil @ Vi1 (0).
To prove Theorem 4, we first show the following lemma.

Lemma 1. For any r > 0 and multiset My and Mo,

V(M1 H’JMQ,T‘) - V(Ml,O) S V(Mg,’r‘). (5)

Proof. If r = 0, then Eq. (5) holds since

mln Z f(x —|—m1n Z f(x xE.S

< min
fe./\/h feMZ

> ).

fEMiUM2

Now assume Eq. (5) holds for » — 1. By induction one has

V(Ml (] Mg,’r‘) — V(Ml,O)
=minmax (f(x) + VIMi W Mo {f},r — 1))

xeS feF

—V(M4,0)
< minmax () + V(M {f},r 1)) = V(Ma,7),
concluding the proof. O

Proof of Theorem 4. By definition of x! , we have

V(fl:tflaT —t+ 1)
= r}1€a}<(f(xtT) +V(fru1W{f}), T 1)

>fi(x]) + V(fie, T — 2).

Therefore, by the convexity of f; and the fact that Pr[T =
VIT >t =(1—q)Pr[T =¢|T >t+1]forany ¢’ > t,
the loss of the algorithm on round ¢ is

fi(xe) = fo(B[x]|T > #]) <E[fy(x])|T > ]
<E[V(fiu-1,T =t +1) = V(f1.e, T = t)|T > 1]
=Vi(fre-1) — @V (f14,0) — (1 — @) Vi1 (f12)
<Vi(fri-1) = Vig1 (f1) + @ Vesa (0),
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where the last equality holds because Vi i(fi.¢) —
V(fl:tao) = E[V<f1:t;T _é) - V(fl:t70)‘T >t+ 1] <
EV(0,T—t)|T > t+1] = V;41(0) by Lemma 1. We con-
clude the proof by summing up fi(x;) overt = 1,..., T
and pointing out that Vr 1 (fi.r.) = E[V(fi.r,,T —
THIT > Ts + 1] > E[V(frr,,0)[T > Ts + 1] =
—minges ZtT;‘l f+(x¢) by Assumption 1. O

As a direct corollary, we now show an appropriate choice
of (). We assume that the optimal regret under the fixed
horizon setting is of order O(+/T'). That is:

Assumption 2. For any T, V(0,T) < cyVT for some
constant cy that might depend on N.

This is proven to be true in the literature for all examples
we consider, especially when JF contains linear functions.

Theorem 5. Under Assumption 2 and the same conditions
of Theorem 4, if Pr[T = t] o 1/t% with constant d > 3,
then for any Ty, the regret after T rounds is at most

%(d —1)%en /7T + o(\/Ts),

where T is the gamma function. Choosing d =~ 2.35 ap-
proximately minimizes the main term in the bound, leading

to regret approximately 3cy+/Ts + o(\/Ts).

Theorem 5 tells us that pretending that the horizon is drawn
from the distribution Pr[T = t] < 1/t¢ (d > 3/2) can al-
ways achieve low regret, even if the actual horizon T is
chosen adversarially. Also notice that the constant 3 in the
bound for the term ¢ /T is less than the one for the dou-
bling trick with the fixed horizon optimal algorithm, which
is2+v2 (Cesa-Bianchi & Lugosi, 2006). We will see in
Section 6.1 an experiment showing that our algorithm per-
forms much better than the doubling trick.

It is straightforward to apply our new algorithm to differ-
ent instances of the online convex optimization framework.
Examples include Hedge with basis vector loss space, pre-
dicting with expert advice (Cesa-Bianchi et al., 1997), on-
line linear optimization within an /5 ball (Abernethy et al.,
2008a) or an {., ball (McMahan & Abernethy, 2013).
These are examples where minimax algorithms for fixed
horizon are already known. In theory, however, our algo-
rithm is still applicable when the minimax algorithm is un-
known, such as Hedge with the general loss space [0, 1]V .

6. Implementation and Applications

In this section, we discuss the implementation issue of our
new algorithm, and also show that the idea of using a “pre-
tend prior distribution” is much more applicable in online
learning than we have discussed so far.

6.1. Closed Form of the Algorithm

Among the examples listed at the end of Section 5, we are
especially interested in online linear optimization within an
{5 ball since our algorithm enjoys an explicit closed form in
this case. Specifically, we consider the following problem
(all the norms are /5 norms): take S = {x € RV : ||x|| <
1}, and F = {f(x) = x-w : w € S}. In other words, the
adversary also chooses a point in .S on each round, which
we denote by w;. Abernethy et al. (2008a) showed a simple
but exact minimax optimal algorithm for the fixed horizon
setting (for N > 2): on each round ¢, choose

Xl = Wt [VIWA P+ (T —t+1),  ©

where W; = Zi/:l wy . This strategy guarantees the re-
gret to be at most v/7'. To make it adaptive, we again as-
sign a distribution over the horizon. However, in order to
get an explicit form, a continuous distribution on 7 is nec-
essary. It does not seem to make sense at first glance since
the horizon is always an integer, but keep in mind that the
random variable 7" is merely an artifact of our algorithm,
and Eq. (6) is well defined with T" > ¢ being a real number.
As long as the output of the learner is in the set .S, our al-
gorithm is valid. The analysis for our algorithm also holds
with minor changes. Specifically, we show the following:

Theorem 6. Let T' > 1 be a continuous random vari-
able with probability density f(T) o< 1/T2. If the learner
chooses x; = E[x]|T > t] on round t, where x} is de-
fined by Eq. (6), then the regret after Ts rounds is at
most 7\/Ts + o(\/Ts) for any T,. Moreover, with ¢ =

1+ [[Wy_1]|% Xt has the following explicit form
t-tanh ™! (/1—t/c z .
X, = (M—ﬂ)wt1 ifc#t,

2t
— 3077 Wi-1 else.

(7

The algorithm we are proposing in Eq. (7) looks quite in-
explicable if one does not realize that it comes from the ex-
pression E[x] |T' > t] with an appropriate distribution. Yet
the algorithm not only enjoys a low theoretic regret bound
as shown in Theorem 6, but also achieves very good per-
formance in simulated experiments.

To show this, we conduct an experiment that compares the
regrets of four algorithms at any time step within 1000
rounds against an adversary that chooses points in .S uni-
formly at random (N = 10). The results are shown in
Figure 1, where each data point is the maximum regret over
1000 randomly generated adversaries for the correspond-
ing algorithm and horizon. The four algorithms are: the
minimax algorithm (OPT) in Eq. (6) with 7" fixed to 1000;
the one we proposed in Theorem 6 (DIST); online gradi-
ent descent (OGD, with parameter 7; being JT/U, a gen-
eral algorithm for online optimization (Zinkevich, 2003);
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and the doubling trick (DOUBLE) with the minimax algo-
rithm. Note that OPT is not really an adaptive algorithm: it
“cheats” by knowing the horizon 7" = 1000 in advance, and
thus performs best at the end of the game. We include this
algorithm merely as a baseline. Figure 1 shows that our al-
gorithm DIST achieves consistently much lower regret than
any other adaptive algorithm, including OGD which seems
to enjoy a better constant in the regret bound (2/275, see
Zinkevich, 2003). Moreover, for the first 450 rounds or so,
our algorithm performs even better than OPT, implying that
using the optimal algorithm with a large guess on the hori-
zon is inferior to our algorithm. Finally, we remark that
although the doubling trick is widely applicable in theory,
in experiments it is beaten by most of the other algorithms.

o
ol 7 —OPT
Q -o- DIST
51 -+ OGD
4 . . . |~ Douse
0 100 200 300 400 500 600 700 800 900 1000
Horizon

Figure 1. Comparison of four algorithms.

6.2. Randomized Play and Efficient Implementation

Implementation is an issue for our algorithm if E[x!|T >
t] has no closed form, which is usually the case. One way
to address this problem is to compute the sum of the first
sufficient number of terms in the series to serve as a good
estimate, since the weight for each term decreases rapidly.

However, there is another more natural way to deal with the
implementation issue when we are in a similar setting but
allowed to play randomly. Specifically, consider a modi-
fied Hedge setting where on each round ¢, the learner can
bet on one and only one action I, and then the loss vector
Z; € [0,1]" isrevealed with the learner suffering loss Z; 1,
for this round. It is well known that in this kind of prob-
lem, randomization is necessary for the learner to achieve
sub-linear regret (see for example Cover, 1967). That is,
I; is a random variable and Z; is decided without know-
ing the actual draw of I;. In addition, suppose P, the
conditional distribution of I; given the past, only depends

on Zi.;_1, and the learner achieves sub-linear regret in the
usual Hedge setting (sometimes called pseudo-regret):

T
Z P, -Z; — min Mp; < eyVT (8)

t=1

(recall M; = Zi,zl Z,/) for any Z1.7 and a constant cy.
Then the learner also achieves sub-linear regret with high
probability in the randomized setting. That is, with proba-
bility at least 1 — ¢, the actual regret satisfies:

T
> Zig, —minMp; < enVT 44/ In 9)

t=1

T
2

S

We refer the interested reader to Lemma 4.1 of Cesa-
Bianchi & Lugosi (2006) for more details.

Therefore, in this setting we can implement our algorithm
in an efficient way: on round ¢, first draw a horizon T" > ¢
according to distribution Pr[T" = #'] o< 1/t'4, then draw I;
according to P Itis clear that the marginal distribution of
I; of this process is exactly E[PT|T > t]. Hence, Eq. (8)
is satisfied by Theorem 5 and as a result Eq. (9) holds.

6.3. Combining with the FPL algorithm

Even if we have an efficient randomized implementation,
or sometimes even have a closed form of the output, it is
still too constrained if we can only apply our technique to
minimax algorithms since they are usually difficult to de-
rive and sometimes even inefficient to implement. It turns
out, however, that the “pretend prior distribution” idea is
applicable for many other non-minimax algorithms, which
we will discuss from this section on.

Continuing the randomized setting discussed in the previ-
ous section, we study the well-known “follow the perturbed
leader (FPL)” algorithm (Kalai & Vempala, 2005), which
chooses I; € argmin;(M;_1,; + & ;) where & € RN isa
random variable drawn from some distribution. This distri-
bution sometimes requires the horizon 7" as a parameter. If
this is the case, applying our technique would have a sim-
ple Bayesian interpretation: put a prior distribution on an
unknown parameter of another distribution. Working out
the marginal distribution of &; would then give an adaptive
variant of FPL.

Kalai & Vempala (2005) and Devroye et al. (2013) showed
different choices of & that lead to optimal regrets. Here,
for simplicity, we only consider drawing &/ uniformly at
random from the hypercube [0, A7]Y, which gives a sub-
optimal pseudo-regret 2v/TN for Ap = VTN (see Cesa-
Bianchi & Lugosi, 2006, Chapter 4.3). Now again let
T > 1 be a continuous random variable with probability
density f(T) oc 1/T%(d > 3/2), and &; be obtained by
first drawing 7" given T > t, and then drawing a point uni-
formly from [0, Ar]™. We show the following:



Towards Minimax Online Learning with Unknown Time Horizon

Lemma 2. If A; = VbtN for some constant b > 0, the
marginal density function of &, is

0 ifmin; & < 0
fi(§) x min{1,< A, >2d—2+N} .

€]l
(10)
The normalization factor is &;}V/Q AN

Theorem 7. Suppose on round t, the learner chooses
I; € arg Inl.in(Mt—l,i +&i)s

where &, is a random variable with density function (10).
Then the pseudo-regret after T rounds is at most

Vb(d — 1)?
T 37 )2 T,N.

d—1
Vb(d —1/2)
Choosing b = % andd =1+ § minimizes the
main term in the bound, leading to about 4.6~/ TsN.

By the exact same argument, the actual regret is bounded

by the same quantity plus 4/ % In % with probability 1 — 4.

6.4. Generalizing the Exponential Weights Algorithm

Now we come back to the usual Hedge setting and con-
sider another popular non-minimax algorithm (note that it
is trivial to generalize the results to the randomized setting).
When dealing with the most general loss space [0, 1]V, the
minimax algorithm is unknown even for the fixed hori-
zon setting. However, generalizing the weighted major-
ity algorithm of Littlestone & Warmuth (1994), Freund
& Schapire (1997; 1999) presented an algorithm using
exponential weights that can deal with this general loss
space and achieve the O(v/T'In N) bound on the regret.
The algorithm takes the horizon T as a parameter, and
on round ¢, it simply chooses P;; o exp(—nMi_1,),
where n = /(81n N)/T is the learning rate. It is shown
that the regret of this algorithm is at most /(7 1ln N)/2.
Auer et al. (2002) proposed a way to make this algorithm
adaptive by simply setting a time-varying learning rate
n = /(8InN)/t, where ¢ is the current round, leading
to a regret bound of /7 In IV for any T (see Chapter 2.5 of
Bubeck, 2011). In other words, the algorithm always treats
the current round as the last round. Below, we show that
our “pretend distribution” idea can also be used to make
this exponential weights algorithm adaptive, and is in fact
a generalization of the adaptive learning rate algorithm by
Auer et al. (2002).

Theorem 8. Let LS = [0, 1]V, Pr[T = t] oc 1/t¢ (d >
3/2) and ny = +/(bIn N)/T, where b is a constant. If on

round t, the learner assigns weight Ex.q|[P1|T > t] to

each action i, where Pg; o exp(—nrMi_1 ;), then for any
Ts, the regret after T rounds is at most

Vo(d —1) d—1
TsIn N+o(n/TsIn N).
(4(d 1/2) © (d—3/2)Vb ( )
Setting b = ;fg/é minimizes the main term, which ap-

proaches 1 as d — oo.

Note that if d — oo, our algorithm simply becomes the
one of Auer et al. (2002), because Pr[T" = 7|T > t] is 1
if 7 = ¢ and 0 otherwise. Therefore, our algorithm can be
viewed as a generalization of the idea of treating the cur-
rent round as the last round. However, we emphasize that
the way we deal with unknown horizon is more applicable
in the sense that if we try to make a minimax algorithm
adaptive by treating each round as the last round, one can
construct an adversary that leads to linear— and therefore
grossly suboptimal—regret, whereas our approach yields
nearly optimal regret. (See Example 2 and 3 in the supple-
mentary file for details.)

6.5. First Order Regret Bound

So far all the regret bounds we have discussed are in
terms of the horizon, which are also called zeroth order
bounds. More refined bounds have been studied in the
literature (Cesa-Bianchi & Lugosi, 2006). For example,
the first order bound for Hedge, that depends on the loss
of the best action m™* at the end of the game, usually
is of order O(vm*In N). Again, using the exponential
weights algorithm with a slightly different learning rate
17 =In(14++/(21n N)/m*), one can show that the regret is
at most v2m* In N + In N. Here, m™ is prior information
on the loss sequence similar to the horizon. To avoid ex-
ploiting this information that is unavailable in practice, one
can again use techniques like the doubling trick or the time-
varying learning rate. Alternatively, we show that the “pre-
tend distribution” technique can also be used here. Again
it makes more sense to assign a continuous distribution on
the loss of the best action instead of a discrete one.
Theorem 9. Let LS = [0, 1]V, my; = min; My ; +1, n, =
V(InN)/m, and m > 1 be a continuous random variable
with probability density f(m) oc 1/m? (d > 3/2). If on
round t, the learner assigns weight E[P{"[m > m;_1] to
each action i, where P’} o exp(—nmMi_1,;), then for any
Ty, the regret after T rounds is at most

3(d—7/6)(d—1) —
d—3/2)d—1/2) " n N

+(14+(d—-1)In(m* +1))In N + o(Vm*In N),

where m* = min; Mr_; is the loss of the best action after
T rounds. Settingd = 5/2+ /2 minimizes the main term,

which becomes (3/2 + v/2)v/m* In N.
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