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Abstract
This paper advocates a new ML-based program-
ming framework, called Programming by Feed-
back (PF), which involves a sequence of interac-
tions between the active computer and the user.
The latter only provides preference judgments on
pairs of solutions supplied by the active com-
puter. The active computer involves two com-
ponents: the learning component estimates the
user’s utility function and accounts for the user’s
(possibly limited) competence; the optimization
component explores the search space and returns
the most appropriate candidate solution. A proof
of principle of the approach is proposed, showing
that PF requires a handful of interactions in or-
der to solve some discrete and continuous bench-
mark problems.

1. Introduction
There is emerging evidence that the art of programming
could be revisited in the light of the current state of the art
in machine learning and optimization. While the notion of
formal specifications has been at the core of software sci-
ences for over three decades, the relevance of ML-based
approaches has been demonstrated in the domain of pat-
tern recognition since the early 90s. In domains such as
e.g. hard combinatorial problems, a new trend dubbed Pro-
gramming by Optimization advocates algorithm portfolios
endowed with a control layer such that determining what
works best in a given use context [could be] performed
automatically, substituting human labor by computation
(Hoos, 2012). In the domain of e.g. image classification,
it is suggested that the state of the art can be improved by
configuring existing techniques better rather than invent-
ing new learning paradigms (Snoek et al., 2012). All the
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above approaches rely on learning surrogate models, pre-
dicting the performance yielded by a portfolio algorithm or
an algorithm configuration depending on the context, and
using sequential model-based optimization (Lizotte, 2008)
to determine the best configuration for the particular prob-
lem instance.

Another trend is investigated in the ML field, specifi-
cally aimed at information retrieval (Viappiani & Boutilier,
2010; Yue & Joachims, 2009; Shivaswamy & Joachims,
2012) and reinforcement learning (Wilson et al., 2012;
Akrour et al., 2012; Knox et al., 2013; Jain et al., 2013)
(more in section 2). This trend, thereafter generally re-
ferred to as Interactive Learning and Optimization (ILO),
implements an iterative 2-step process, with the active com-
puter providing some input to the user, and the user provid-
ing a response (preference judgment, modification or sug-
gestion to the active computer) until getting a satisfactory
solution. In all of the above, the user and the active com-
puter cooperate and achieve some division of labor between
the exploration and the exploitation parts of the search pro-
cess.

In practice however, ILO faces critical difficulties during
the beginning and the ending phases of a run. In the be-
ginning− the bootstrapping phase− the input provided by
the active computer is hardly relevant and the user is easily
driven into considering that all active computer suggestions
are equally irrelevant. In the ending phase inversely, very
relevant suggestions are provided and the user might easily
make judgment errors; according to e.g. the Plackett-Luce
model (Luce, 1959), the probability of misranking two so-
lutions exponentially increases as their difference in qual-
ity decreases. In both phases, the user might be deterred
by getting insufficient returns, inducing him to behave in
an inconsistent way, and getting even more inconsistent re-
turns as a result.

It has long been suggested that the cooperation between
intelligent partners is better supported by each partner hav-
ing a model of the other one (see e.g. Lörincz et al., 2007).
A step toward such a cooperation between the active com-
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puter and the user is presented in this paper, referred to as
Programming by Feedback (PF) framework. PF addresses
the above ILO limitation by adaptively approximating the
user’s utility function and accounting for her inconsisten-
cies. Note that the active computer cannot make any differ-
ence between the user’s competence (her preferences are
consistent with her goal) and the user’s consistency (her
preferences are consistent); at any rate, accounting for the
user’s possibly limited competence enables the active com-
puter to better exploit the user’s instant feedback.

The paper is organized as follows. After discussing related
work (section 2), an overview of PF is presented in sec-
tion 3. Section 4 provides a proof-of-concept of the ap-
proach, showing that PF requires a handful of interactions
to solve state-of-art benchmark problems in simulation, and
to achieve on-board programming of the Nao robot (Alde-
baran, 2013). The paper concludes with perspectives for
further research.

2. Related Work
Interactive Learning and Optimization has mostly been ap-
plied to information retrieval and reinforcement learning.
Still, to our best knowledge the ILO frame was first inves-
tigated by Brochu et al. (2007; 2010) to achieve interactive
optimization.

2.1. ILO for Interactive Optimization

Brochu et al. (2007) are interested in exploring the im-
age synthesis hyper-parameter search space and finding as
quickly as possible a suitable visual rendering. The user
is placed in the loop due to the lack of any computable
function characterizing satisfactory visual rendering1. The
user utility function is learned as a Gaussian process using
a binomial probit regression model, trained from the user’s
ranking of pairs of visual renderings. The optimization
component proceeds by returning the best solution out of a
finite sample of the search space, according to the expected
improvement criterion over the current best solution. While
the authors are content with a satisfactory solution, they
also note that finding the optimal solution, e.g. using the
expected global improvement criterion (Jones et al., 1998)
with a branch-and-bound method, raises technical issues in
large search spaces.

2.2. ILO for Information Retrieval

Two early ILO approaches focussing on information re-
trieval are (Yue & Joachims, 2009) and (Viappiani &
Boutilier, 2010). Yue & Joachims (2009) assume the ex-
istence of a parametric utility function on the information

1See also (Lin et al., 2010) in the domain of interactive text
summarization.

retrieval search space, defined from parameter vector w∗.
Iteratively, the current estimate wt is compared to a pertur-
bation w′t thereof. The feedback−whether w′t improves on
wt, i.e. derives a better utility function − is provided via
the interleaving method (Radlinski et al., 2008), thus con-
sidering an ensemble of users. This feedback is interpreted
as an estimate of the performance gradient at wt, with a
sublinear convergence toward w∗ within the so-called du-
eling bandit framework.

In (Viappiani & Boutilier, 2010), the goal is to determine a
basket of items optimally suited to the user. The system it-
eratively provides the user with a choice query, that is a set
of solutions, of which the user selects the one she prefers.
The ranking constraints are used to learn a parametric util-
ity function wt, linear on the search space X = IRD.
Within the Bayesian setting, the uncertainty about the util-
ity function is expressed through a belief θ defining a dis-
tribution over the space of possible utility functions, equiv-
alent to the unit sphere of IRD. The optimal next query
ideally maximizes the Expected Posterior Utility of selec-
tion (EPU); a much cheaper criterion, the Expected Utility
of Selection (EUS) can however be used, at the expense
of a bounded loss (Viappiani & Boutilier, 2010) (more in
Section 3).

2.3. ILO for Reinforcement Learning

RL-ILO resumes the celebrated Inverse Reinforcement
Learning (IRL) approach (Abbeel, 2008; Konidaris et al.,
2010), except for one key difference. In IRL the active part
is the expert’s, demonstrating a few target behaviors. Quite
the contrary, in ILO the behaviors are demonstrated by the
agent and thereafter ranked by the expert, thereby relaxing
the strong expertise requirement of RL and IRL: the expert
is only required to comparatively assess the agent behav-
iors, as opposed to, demonstrate a (near) optimal behavior.

In (Fürnkranz et al., 2012) the motivation is to extend the
RL scope beyond the use of numerical rewards. For in-
stance in medical application domains, a numerical reward
must be associated to events such as the patient death; while
this reward value is admittedly fairly arbitrary, its impact on
the optimal policy is hard to investigate, except by trial and
error. The proposed alternative is to use preference learn-
ing in replacement of classification algorithms in roll out
classification-based policy iteration (RCPI) (Dimitrakakis
& Lagoudakis, 2008), thereby ordering the actions condi-
tionally to a state and a policy. With same motivations, the
TAMER framework (Knox et al., 2013) learns the reward
function on (state action) pairs from the expert’s feedback,
using a credit assignment on the recent state-action pairs to
account for the delays in human evaluation.

In (Wilson et al., 2012; Akrour et al., 2012), an active
preference-based policy learning (PPL) scheme is pro-
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posed, exploiting pairwise preferences among trajectories
demonstrated by the agent. While PPL relaxes the strong
expertise requirement of RL and IRL, it still assumes ded-
icated experts, taking the time to look at the agent demon-
strations and reliably rank them. The expert burden is
limited in (Wilson et al., 2012) by only considering short
demonstrations, assuming that i) the initial states can be
sampled after some prior distribution in order to enforce
inspecting interesting regions of the behavioral space; ii)
the user can compare sub-behaviors. In (Akrour et al.,
2012), an active selection of the demonstrations is used, by
optimizing an expected posterior utility criterion inspired
from (Viappiani & Boutilier, 2010), reducing the number of
demonstrations required to achieve a satisfactory behavior.

Both approaches suffer from different limitations. Wilson
et al. (2012) assume that quite some expertise about the
problem domain is available, through an informative prior
about interesting initial states. Akrour et al. (2012) require
the expert to look at long demonstrations, increasing the
chances of ranking noise.

Another scheme called co-active policy learning (CPL)
is presented by Jain et al. (2013). Like (Wilson et al.,
2012; Akrour et al., 2012), CPL proceeds by asking the
expert to iteratively rank pairs of demonstrations of the
agent. The expert however plays a more active role in CPL
than in PPL, either re-ranking the suggested trajectories
or directly refining the agent demonstrations along the co-
active mechanism (Shivaswamy & Joachims, 2012). For-
mally, the expert is in charge of the exploration part, while
the learning agent does the exploitation part (extracting a
model of the expert’s preferences, a.k.a. utility function,
and optimizing it to the extent permitted by computational
constraints). CPL thus avoids the main bottleneck of in-
teractive optimization, that is, getting trapped into a local
optimum due to insufficient exploration, by delegating the
exploration component to the human expert.

2.4. Discussion

The ILO schemes implemented in IRL, PPL and CPL
achieve different trade-offs among two interdependent is-
sues: the level of expertise required from the expert and
the level of autonomy endowed to the agent. In decreasing
expertise order, the expert is required: i) to associate a re-
ward to any state in the state space (RL); ii) to demonstrate
a solution behavior (IRL); iii) to correct and improve an
agent demonstration (CPL); iv) to rank two demonstrations
(PPL,CPL).

Meanwhile, in increasing autonomy order, the agent:
i) computes the optimal policy based on the instant re-
wards (RL); ii) imitates verbatim the expert’s demonstra-
tion (IRL); iii) imitates the expert’s demonstrations with
some generalization and variants (IRL); iv) learns the ex-

Solution space X

Demonstration space Y

x x

y = Phi(x )

t t+1

t

OPTIMISATION

EVALUATION

Figure 1. Programming by Feedback: Solution and demonstration
search spaces

pert’s utility function and produces a (near) optimal demon-
stration according to this function (CPL, IRL); v) learns
the expert’s utility function and produces a (near) optimal
demonstration in the sense of the information gained about
the utility function and its impact on the overall solution
quality (expected posterior utility) (PPL).

Note that the ILO goal significantly differs from that of ac-
tive ranking: active ranking is interested in learning the true
preference function, whereas ILO only aims at its optimum.

A third issue regards the modelling of the uncertainty and
priors on the expert’s utility function. In (Brochu et al.,
2007), the utility function is learned as a GP, thus provid-
ing both a utility estimate and the confidence thereof. Inter-
estingly however, Brochu et al. (2010) note that ILO being
a ”small data“ problem, does not provide enough evidence
to accurately tune the GP hyper-parameters. The process
thereby suffers a loss of performance due to under-optimal
utility estimate.

3. Programming by Feedback
This section presents the PF framework, introducing the
notations and the overview of the algorithm, before de-
scribing the learning and optimization components.

3.1. Overview

Two search spaces are distinguished (Fig. 1): the search
spaceX (analogous to the policy space in the RL context) is
referred to as solution space. The evaluation space Y (anal-
ogous to the trajectory space in RL) is referred to as demon-
stration space. The user only sees a realization y = Φ(x) of
a program x. In contrast with the direct policy learning set-
ting (e.g. Deisenroth et al., 2013), no continuity assumption
regarding the stochastic mapping Φ from the solution to the
demonstration space can be assumed (clearly, small mod-
ifications of a program can result in significantly different
behaviors).

The true (unknown) user’s utility function U is a linear
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Algorithm 1 Programming by Feedback
Input: prior θ0 on the utility function space W
Init:
Generate x0 in X
Demonstrate y0 = Φ(x0); y∗0 = y0

Archive Ut= {y0}
repeat

Optimize: Generate xt+1 from θt (Section 3.4
Demonstrate yt+1 = Φ(xt+1)Discussion
Receive the user’s feedback 1y

t+1
�y∗

t

Update Ut= Ut∪{yt+1, 1y
t+1
�y∗

t
}

Learn posterior θt+1 from Ut (Section 3.2)
until User stops
Return: Generate x from θ

function on demonstration space Y , parameterized as w∗:

U(y) = 〈w∗, y〉

Like ILO, PF is an iterative two-step process. At time step
t, the active computer i) selects a solution xt and demon-
strates yt = Φ(xt); ii) receives the user’s feedback, ranking
yt comparatively to the previous best demonstration2 noted
y∗t ; iii) updates its model of the user’s utility function.

3.2. Learning the Utility Function

Let W denote the space of normalized linear functions on
Y . Given a uniform prior on W, the active computer learns
by computing its posterior distribution θt from evidence
Ut = {y0, y1, . . . , yt; (yi1 � yi2), i = 1 . . . t} including all
demonstrations and user’s preferences up to the t-th time
step. Given θt, the estimated utility U(θt, y) of a demon-
stration y is defined as:

U(θt, y) = IEθt [〈w, y〉] (1)

As already said, the utility function must account for the
preference noise. Given two demonstrations y and y′, and
w∗ denoting the true (unknown) utility of the user, the ob-
served user’s preference is usually modeled as a pertur-
bation of his true preference 〈w∗, (y− y′)〉, considering a
Gaussian perturbation (Chu & Ghahramani, 2005; Wilson
et al., 2012) or following the Luce-Shepard model (Luce,
1959; Shepard, 1957). In both cases, the noise magnitude is
calibrated using one hyper-parameter, respectively the stan-

2Two settings are considered, referred to as oblivious and non-
oblivious. In the oblivious setting, the user is presented with two
demonstrations in each time step, and ranks them comparatively
to each other. In the non-oblivious setting, the user is presented
with a single demonstration in each iteration, which he ranks com-
paratively to (his memory of) the best former demonstration. The
non-oblivious setting has been considered in the experiments as it
is less demanding for the user.

dard deviation of the Gaussian perturbation or the temper-
ature of the Luce-Shepard rule.

A ridge noise model is considered in PF, calibrated from a
hyper-parameter δ (δ ∈ IR+). Given the preference margin
z = 〈w∗, (y− y′)〉, the observed preference is bound to
coincide with the true preference if |z| > δ; otherwise the
observed preference y � y′ is set to 1 with probability δ+z

2δ .

P (y � y′ | w∗, δ) =


0 if z < −δ
1 if z > δ
δ+z
2δ otherwise

(2)

The user’s competence is thus modeled through parameter
δ. A first option is to consider that the user’s competence is
characterized by a hidden but fixed δ∗. A second option is
to consider that δ might vary along time. The drawback of
the former option is that one abnormally large mistake can
prevent the active computer from identifying an otherwise
consistent utility function. Inversely, the latter option be-
ing more cautious could slow down the identification of the
user’s utility function. This latter option is however more
appropriate to accommodate the cases where the task (or
the user’s understanding thereof, or his preferences) might
change over time. Not only can the user change his mind;
in the general case, one PF run might involve several users,
responsible for the successive feedbacks.

Working hypothesis. For the sake of robustness, the noise
parameter δ is assumed to be uniform on [0,M ].

Under these assumptions, the posterior distribution θt on
the utility function space can be expressed in closed form.

Lemma 1 Given evidence Ut, the posterior distribution on
the utility function space reads:

θt(w) ∝
∏
i=1,t P (yi1 � yi2 | w)

=
∏
i=1,t

(
1
2 + zi(w)

2M

(
1 + log M

|zi(w)|

))
(3)

where zi(w) is set to 〈w, (yi1 − yi2)〉 if it is not greater
(resp. lower) than M (resp. −M ) in which case it takes the
value M (resp. −M ).
Proof: For a given Ut and w∗, for any y, y′ with z =
〈w, (y− y′)〉, and using the ridge model (2), it comes∫M

0
P (y � y′ | w∗, δ)dδ

=
∫ |z|

0
P (y � y′ | w∗, δ)dδ +

∫M
|z| P (y � y′ | w∗, δ)dδ

=
∫ |z|

0
1z>0dδ +

∫M
|z| (

1
2 + z

2δ )dδ

= |z| · 1z>0 + 1
2 (M − |z|) + z

2 (log(M)− log(|z|))
= 1

2 (M + z) + z
2 log(M|z| )

hence the result, normalizing total mass from M to 1. �

Comparatively to the Gaussian or the Luce-Shepard noise
models, the ridge noise model enables a straightforward in-
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terpretation and calibration: the upper bound M is homo-
geneous to a utility, as there is no noise when the preference
margin is higher than M .

3.3. Optimization in the Demonstration Space

Conditionally to Ut, the expected utility of selection of
a pair of demonstrations y, y′ to be demonstrated to the
user is defined as follows, where θ+

t (respectively θ−t ) de-
notes the posterior distribution on Y based on evidence
Ut ∪ {(y � y′)} (resp Ut ∪ {(y ≺ y′)}):

EUS(y, y′) = IEθt [〈w, y− y′〉 > 0] . U(θ+
t , y)

+IEθt [〈w, y− y′〉 < 0] . U(θ−t , y′)
(4)

Viappiani & Boutilier (2010) advocate the use of the ex-
pected posterior utility, defined as the expected utility of
the best behavior y∗ (respectively y′∗) conditionally to the
user preferring y to y′ (resp. y′ to y):

EPU(y, y′) = IEθt [〈w, y− y′〉 > 0] . maxyU(θ+, y)
+IEθt [〈w, y− y′〉 < 0] . maxyU(θ−, y)
= IEθt [〈w, y− y′〉 > 0] . U(θ+, y∗)
+IEθt [〈w, y− y′〉 < 0] . U(θ−, y′∗)

(5)
By construction EUS(y, y′) ≤ EPU(y, y′); and
EPU(y, y′) ≤ EUS(y∗, y′∗) (Viappiani & Boutilier,
2010). The optimization of the highly computationally
demanding EPU criterion (since computing EPU(y,y’) re-
quires solving two optimization problems) can therefore be
replaced with the optimization of the EUS criterion:

max{EUS(y, y′)} = max{EPU(y, y′)}

The proposed noise model has an impact on both the EUS
and the EPU criteria. Let us first bound its impact on the
EUS criterion. In the following, the noiseless, NL (respec-
tively, noisy, N) subscript indicates that y is preferred to y′
for every utility w such that 〈w, y〉 > 〈w, y′〉 (resp. with
probability defined by Eq. 2). Note that in both cases, the
expectation is taken w.r.t. the posterior distribution on the
W utility space given by Eq. 3, thus accounting for the
user’s noise. Then,

Lemma 2 For any pair of demonstrations y, y′, and for any
archive Ut, the difference between their expected utility of
selection under the noisy and noiseless models is bounded
as follows:

EUSNL(y, y′)− L ≤ EUSN (y, y′) ≤ EUSNL(y, y′)

With L = M
2λ (1 − 1+lnλ

λ ), λ = e−
1
2−W−1(− 1

2 e
− 1

2 ) and
W−1 is the lower branch of the Lambert W function. Ap-
proximatively, L ≈ M

19.6433 .

Proof: from Lemma 1 and (Viappiani & Boutilier, 2010).

Note that the lower bound is tight; it corresponds to the
adverse case where the preference margin is intermediate:
sufficiently low to entail a high chance of error and suffi-
ciently high to entail a significant loss of utility. The impact
of the noise model on the EPU criterion is finally bounded
as follows. Let EPU∗,Nt (respectively EUS∗,Nt ) denote
the optimum of the noisy EPU (resp. EUS) criterion condi-
tionally to Ut; let likewise EUS∗,NLt denote the optimum
of the noiseless EUS. Then:

Proposition 1

EUS∗,NLt − L ≤ EPU∗,Nt ≤ EUS∗,NLt + L

Proof: One first shows using Lemma 1 and adapting the
proof sketch in (Viappiani & Boutilier, 2010), that

EUS∗,Nt ≤ EPU∗,Nt ≤ EUS∗,Nt + L

The result then follows from Lemma 2.
PF thus proceeds by optimizing the noiseless EUS with a
bounded loss of performance compared to the noisy EPU.

3.4. Optimization in the Solution Space

At time step t, PF tackles the optimization problem defined
on X as:

Find argmax Ft(x) = IEΦ[EUSNLt (Φ(x), y∗t )] (6)

with EUSNLt the expected utility of selection under θt
(where the user’s noise is taken into account when updating
the posterior θt) and y∗t the best-so-far demonstration. As
discussed in Section 3.1, this non-oblivious setting is meant
to decrease the computational cost and the user’s cognitive
fatigue. While the performance loss compared to the obliv-
ious setting is limited3, its bounding is left for further work
(section 5).

A main issue is that Eq. 6 defines a noisy black-box op-
timization problem: On the one hand, Ft(x) is defined as
an expectation; on the other hand, as Φ is not expressed in
closed form in the general case, the expectation needs be
approximated by an empirical average over demonstrations
drawn from Φ(x).

Two steps are taken to handle this optimization problem.
Firstly, Ft is replaced by a lower bound thereof. The
expected utility of selection of the average demonstration
IE[Φ(x)], noted ȳ in the following, is a lower bound of the
utility of selection expectation on Φ(x), due to the convex-
ity of the max operator on W and the Jensen inequality:

IEΦ[EUSNL(Φ(x), y∗t )] ≥ EUSNL(ȳ, y∗t )
3Due to the sub-modularity of EUSNL, selecting y0 with

maximal expected utility and y1 = argmaxEUSNL(y0, y) yields
a bounded loss compared to the maximization of EUSNL(y, y′);
and by construction y∗t has a high expected utility.
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Secondly, a sequence of solutions with increasing
EUSNLt (ȳ, y∗t ) is built as follows. Let x1 be the solution
with optimal expected utility according to some w0 drawn
according to θt:

x1 = argmax {G1(x) = 〈w0, ȳ〉}

For i ≥ 1, let ȳi denote the average demonstration of xi,
and θi denote the posterior on W from Ut∪{(ȳi � y∗t )};
the i+ 1-th optimization problem is defined as:

xi+1 = argmax {Gi+1(x) = 〈IEθi [w], ȳ〉}

Proposition 2
The expected utility of selection of (ȳi, y∗t ) monotonically
increases with i:

EUSNLt (ȳi, y∗t ) ≤ EUSNLt (ȳi+1, y∗t )

Proof: By construction of xi+1,∫
W,ȳ

i
�y∗t
〈w, ȳi〉dθt(w) ≤

∫
W,ȳ

i
�y∗t
〈w, ȳi+1〉dθt(w)

Hence (omitting domain W for clarity)

EUSNLt (ȳi; y∗t )
=
∫

max(〈w, ȳi〉, 〈w, y∗t 〉)dθt(w)
=
∫
ȳ

i
�y∗t 〈w, ȳi〉dθt(w) +

∫
ȳ

i
≺y∗t 〈w, y

∗
t 〉dθt(w)

≤
∫
ȳ

i
�y∗t 〈w, ȳi+1〉dθt(w) +

∫
ȳ

i
≺y∗t 〈w, y

∗
t 〉dθt(w)

≤
∫

max(〈w, ȳi+1〉, 〈w, y∗t 〉)dθt(w)
= EUSNLt (yi+1, y∗t ) �

As this sequence of optimization problems leads to a local
optimum of EUSNLt , multiple restarts are used with dif-
ferent samples w0 and the best solution is retained.

Overall, the elementary optimization component in PF is
concerned with optimizing 〈w̄, ȳ〉 on X . Different imple-
mentations of this optimization component are considered
depending on X (next Section). As w̄ is the average util-
ity function under distribution θt, this requires to integrate
over W once, thus with tractable cost. In the experiments,
less than 10 iterations are needed to find a local optimum,
and 10 multiple restarts were considered.

4. Experimental results
A proof of concept of the PF framework is presented and
discussed comparatively to (Wilson et al., 2012) on well
studied benchmark RL problems, on discrete and continu-
ous solution spacesX , with a generative model (the bicycle
problem) or without (the cartpole, the gridworld, the Nao
robot). The computational time is less than 1 minute per
run on a 2.4Ghz Intel processor for all problems except the
Nao problem (10 mns).

4.1. Discrete Case, no Generative Model

A stochastic grid world problem is considered, with 25
states and 5 actions (up, down, left, right or stay motion-
less). The transition model involves a 50% probability of
staying motionless (100% if the selected action would send
the agent in the wall). It is estimated from 1,000 random
triplets. The reward function (true utility w∗) is shown
in Fig. 2.(a). The core optimization component (Section
3.4) implements a vanilla policy iteration algorithm, with
γ = .95. Time horizon is set to H = 300. Results are
averaged over 21 runs.

A first goal of experiment is to analyze the sensitivity
of the PF framework w.r.t. the hyper-parameters of the
noise model. The user’s feedback is emulated using hyper-
parameter ME (the higher ME , the less competent the
user); MA is the hyper-parameter of the user’s noise model
estimated by the active computer (the higher MA, the more
the active computer underestimates the user’s competence),
with ME and MA ranging in {1, .5, .25} s.t. MA ≥ME .
The performance indicator is the true utility of policy xt in
each PF time step (unknown to the active computer). Fig.
2.(b) shows that the performance primarily depends on the
user’s competenceME , and secondarily on the active com-
puter estimate MA of the user’s competence. However,
Fig. 2.(c) shows that the number of the emulated user’s
mistakes most surprisingly increases as the active computer
underestimates the user’s competence (highMA), irrespec-
tive of the user’s true competence ME . This unexpected
finding is explained as the error rate does not only depend
on the user’s competence but also on the relevance of the
demonstrations he is provided with. For MA = .25, the ac-
tive computer learns faster, thus submitting more relevant
demonstrations to the user, thus priming a virtuous educa-
tional process. This also explains the fast decrease of the
error rate for ME = .25,MA = .25 which seems to fol-
low a different regime (empirically faster than linear) than
ME = .25,MA = 1. Fig 2.(c) also supports the claim that
PF most critical stage is the initial one, where the demon-
strated trajectories are of low utility, making them harder to
compare and increasing the probability of user’s mistakes.
The target behavior is reached in 30 PF interactions in a
25-state space. This relatively slow convergence is blamed
on the poor representation of the demonstrations, associat-
ing to a demonstration the time spent in each state and thus
poorly reflecting the adjacency structure of the state space.

A second experiment (discrete space, no simulator) trains
the Nao robot, a 58 cm high humanoid robot (Aldebaran,
2013) to reach a target state (e.g., raise hand, see Fig.
2.(g)). The transition matrix is estimated from 1,000 ran-
dom (s, a, s′) triplets. The trajectory length is 10; the initial
state is fixed.

The action space includes 3 actions. Fig. 2.(h) (average
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bicycle (right, averaged over 21 runs). All plots are enlarged in the supplementary material.

results on 5 runs) shows that 10 PF interactions are re-
quired to reach a target state in a 13-state space (the shortest
demonstration reaching the target state is 5-action long),
versus 24 interactions for a 20-state space (the shortest
demonstration reaching the target state is 10-action long).

4.2. Continuous Case, no Generative Model

The cartpole problem is concerned with balancing a pole
fixed to a movable cart (Fig. 2.(d)). Same setting as in
(Lagoudakis & Parr, 2003) is used, with state space IR2

(the angle and angular velocity of the pendulum) and 3 ac-
tions; the demonstration space Y is IR9, where each feature
corresponds to a Gaussian N(µ,Σ) in the IR2 state space.
The transition model is estimated from 33,000 (s, a, s′)
triplets. The user’s feedback is emulated by considering
that the best demonstration is the longest one, subject to
the noise model with hyper-parameter ME . Each demon-
stration y is represented in IR9 by computing for each fea-
ture the discounted sum of

∑
s γ

sp(u(s)|N(µ,Σ)), where
u(s) is the cartpole state at time s. This discounted sum is
computed using LSTD (with reward r(u) = p(u|N(µ,Σ)).

The PF core optimization component (Section 3.4) imple-
ments LSPI (Lagoudakis & Parr, 2003).

The demonstration length is 3,000. The true utility is the
fraction of the demonstration where the cartpole is in equi-
librium.

The results show that only two PF interactions are required
on average to solve the cartpole problem, irrespective of the
noise model hyper-parameters MA and ME (Fig. 2.(e)).
These results favorably compare to Wilson et al. (2012),
where ca 15 queries are required to maintain the cartpole
in equilibrium more than 1,400 time steps. Fig. 2.(f), dis-
playing the estimated utility vector in parallel coordinates,
shows that the feature closest to the equilibrium position
gets the highest weight.

4.3. Continuous Case, with Generative Model

The bicycle problem is concerned with riding the bicycle
and preventing it from falling down. The generative model
is the simulator used by Lagoudakis & Parr (2003). The
state space is IR4 (the angle and angular velocity of the bi-
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cycle, the angle and angular velocity of the handlebars); the
action space is IR2 (the torque applied to the handlebars and
the displacement of the rider on the saddle). The solution
space X is set to IR210 (weight vector of a 1-layer feedfor-
ward NN with 4 input, 29 hidden neurons and 2 output).

The maximum demonstration length is 30,000 time steps;
however controllers tend to either fall down before 300
time steps, or to maintain the bicycle until the end of the
trajectory. The true utility is 1 - the squared angle of the
bicycle, averaged on the whole demonstration.

The goal of the experiments is to investigate the scalabil-
ity of the approach w.r.t. the dimensionality of the solu-
tion space. The PF core optimization component (Section
3.4) implements the CMA-ES black-box optimization al-
gorithm4 (Hansen & Ostermeier, 2001).

The results show that 15 PF interactions are required on av-
erage to solve the bicycle problem for the low noise setting
(ME = MA = 1), and that the results gracefully degrade
as the noise increases (Fig. 2.(i)). These results favorably
compare to those in (Wilson et al., 2012), where circa 20
queries are required to reach the equilibrium although the
setting only involves 5 discrete actions. The improvement
is explained as (Wilson et al., 2012) operates in the pol-
icy parameter space whereas PF operates on the trajectory
utility space, thus reducing5 the number of parameters by a
factor 5.

5. Conclusion and Perspectives
The main contribution of the paper is to propose a new pro-
gramming paradigm, where the active computer programs
itself using a few binary feedback from the human user. A
proof of concept of the validity of the PF approach is pro-
vided on the cart-pole, bicycle and grid-world problems.
Compared to (Wilson et al., 2012; Knox et al., 2013), lit-
tle prior knowledge is assumed: the user’s feedback eval-
uates long behavioral sequences, whereas short “interest-
ing“ sequences are considered in (Wilson et al., 2012), and
whereas the user’s feedback is related to the last few state-
action pairs in (Knox et al., 2013). The experiment on the
Nao robot confirms the feasibility of teaching simple be-
haviors in a matter of minutes.

A key feature of the PF approach is to enable the active

4In preliminary experiments, LSPI failed to deliver a decent
controller when using the estimated utility function. This failure
is blamed on the fact that the Q-value is learned using a mean-
square error criterion, whereas the LSPI efficiency depends on
the L∞ error (see discussion in (Munos, 2003)).

5A more compact policy representation could have been used,
considering e.g. the weights of a neural network instead of the Q
value function. However such a compact representation tends to
yield a highly non-smooth optimization landscape.

computer to account for, and deal with, the unavoidable
user’s mistakes. A most interesting lesson learned from the
experiments regards the intricate interplay between the ac-
tive computer and the user, and specifically, how the ac-
tive computer opinion of the user’s competence impacts
the actual user’s consistency. A cumulative (dis)advantage
phenomenon is observed. On the one hand, a pessimistic
competence estimate leads the active computer to present
the user with poorly informative queries, thereby increas-
ing the probability for the user to make errors and be in-
consistent everything else being equal. On the other hand,
when the active computer trusts a competent user, its skills
steadily improve while the user’s error rate stays low. Over-
all, the importance of a good educational start is witnessed:
poor initial demonstrations lead to a poor utility model,
leading itself to poorly informative queries.

Further experiments focusing on continuous action and
state spaces will be conducted to investigate the limitations
of the PF framework, examining for instance whether the
Nao can learn to grasp a soft plastic glass; the challenge is
whether the user’s feedback together with the Nao camera
can palliate the lack of touch sensors (this will be a chal-
lenge for the user, too).

The PF framework opens several avenues for further re-
search. The instant optimization criterion (section 3.4),
which can be viewed as the ”intrinsic motivation“ of the
active computer, will be extended to take into account the
variance of the demonstration utility, either as a constraint,
or in a multi-objective perspective. The performance loss
between the noisy and noiseless expected utilities of selec-
tion will be theoretically and empirically studied, establish-
ing bounds and directly tackling EUSN using black-box
optimization. Along the same line, the oblivious setting
will be investigated and compared to the non-oblivious one.

Another perspective inspired from (Wilson et al., 2012) is
to identify sub-behaviors in the active computer behavioral
sequences; the motivation is that a negative user’s feed-
back is in general related to one or a few sub-behaviors
in a possibly long behavioral sequence. This identification
might allow the active computer to ask direct questions to
the user (e.g., what is it that you don’t like, my dancing
or my running?), expectedly speeding up the active com-
puter progress. The identification of the behavioral sub-
sequences responsible for the user’s feedback can be for-
malized in terms of multiple instance ranking (Bergeron
et al., 2008), considering a long behavior as a set of sub-
behaviors where a few sub-behaviors are responsible for
the user’s preferences. Furthermore, the multiple instance
setting will mitigate the influence of the initial conditions
of the demonstrations on the PF performances.
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