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1. Proof of Theorem 2 in Section 3.2

Proof. Let us consider the limit when T — oco. According to (3), based on the second-order statistical information, one
can uniquely determine AF and A’*, that is,

AF = Ak ShH
We can then determine the error term €;. Then the corresponding random vector € follows both the representation (5) and
e=1L'¢, (52)
where
L' =[TAA”. .. A% (S3)
and e/ = (e’go), cey e’ﬁ?), e’gl), cny e’g,,l), cny e’gk_l), ceey e’glk_l))T with e’gl), l =0,...,k — 1, having the same distribution
Pe: -

i

According to Proposition 1, each column of L’ is a scaled version of a column of L. Denote by L;,14, 1 = 0,...,k — 1;
i = 1,...,n, the (In + 4)th column of L, and similarly for L;, , ;. According to the Uniqueness Theorem in (Eriksson &
Koivunen, 2004) (which directly follows (ii) of Lemma 1), we know that under condition A2, for each ¢, there exists one and
®

only one j such that the distribution of ¢; ”, I = 0, ..., k—1 (which have the same distribution), is the same as the distribution

of e’gl), 1 =0,...,k — 1, up to changes of location and scale. As a consequence, the columns {L;nﬂ |l=0,..,k—1}
correspond to {Ly;4; | I = 0,....k — 1} up to the permutation and scaling arbitrariness. We now show that Lj,

corresponds to L, 4+; and that j = 1.

According to assumption Al, all eigenvalues of A have modulus smaller than one, and hence the eigenvalues of AAT are
smaller than 1. Then we know that for any n-dimensional vector v,

[[Av]] < [[A[[- [[oll = VIIAAT]| - [[o]] < [[o]].

According to the structure of L, L41yn+s = ALjpy;. Considering Ly, y; as v in the above equation, one can see
L@ 41ynil| < [|Lin+ill, and similarly we have ||’ ;1 1)n ]| < [|L'1n+;]|- Hence, Ly, , ; is proportional to Lj;,;; more
specifically, we have L] 4= AiiLin+i, where V [, A\;; have the same absolute value but possibly different signs. In
particular, L;- = Ao;L;. Bearing in mind that L; and L; must be columns of I, as implied by the structure of L and L/, we
can see that \op; = 1 and that ¢ = j. Consequently, for I > 0, A\;; must be 1 or —1. Also considering the structures of L (4)
and L’ (S3), we see that VI > 0, A’ L' = A'D,, where D; are diagonal matrices with 1 or —1 as their diagonal entries. If

both A’ and A have positive diagonal entries, D must be the identity matrix, i.e., A’ = A. Therefore statement (i) is true.

We have shown that
Liyti = NiLin, S4)

where \g; = 1 and for [ > 0, A;; are 1 or —1. We are now ready to prove (ii). If each p., is asymmetric, e; and —e; have
different distributions. Consequently, the representation (S2) does not hold any more if one changes the signs of a subset
of, but not all, non-zero elements of {L;,, j |l =0,...,k — 1}. This implies that for non-zero L;,,1;, Aj;, including Ay,
have the same sign, and they are therefore 1 since Ag; = 1. Setting [ = 1 in (S4) gives A’ = A. That is, (ii) is true.

Let us now show that (iii) holds. If £ = 1, this statement trivially holds. Now consider the case where & > 1. Because of
(S1), we have

AFIA = AFTIA (S5)
Since A is of full rank, A*~1 is also invertible. Recall A" = A'D,. Denote by d; ; the (i, 7)th entry of D;. Multiplying
both sides of the above equation with A~(*~1) from the left gives A = Dy_1ADq,ie, Vi & j, aij = asjdi—1,:d1;.
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Thus, V i & j with a;; # 0 we have di_1,;d1; = 1. Since a;; are not zero, we have di_,; = d;;. Consequently,
aij = aijdid1y, and V ¢ & j with a;; # 0, disd1; = 1, or di; = di ;. Furthermore, since the graph implied by
A is weakly connected, for any two nodes i’ and j’, we know that there is a undirected path connecting them, such that
d1,i = di jo. In words, Dy is either I or —I. Finally, if £ > 1 is odd, AR = (AD;)*~! = A*~!, and then (S5) implies
that A’ = A. (iii) then holds. O

2. Proof of Theorem 3 in Section 3.3

Proof. Suppose the model of Granger causality with instantaneous effects, (2), holds, the VAR error terms of X; can be
written as a linear transformation of n independent variables; denote by W this linear transformation.

On the other hand, the error terms €; admit the representation (5). Since A is not diagonal, L contains at least (n + 1)
columns none of which is proportional to each other. Since all of e;; are non-Gaussian, Lemma 1 (i) implies that all
columns in L are proportional to some columns in W. This implies that W has at least (n + 1) columns none of which is
proportional to each other; however, W has only n columns, resulting in a contradiction. Therefore the model of Granger
causality with instantaneous effects does not hold. [

3. Details of the EM Algorithm in Section 4.1

Instead of directly maximizing the data log-likelihood ) _, In p(X;|X;_1, ©), the EM algorithm maximizes the lower bound
of the data log-likelihood, i.e.,

Xt, € Xt—1,0
:ZZ/q(zt,ét)lnp(xt’et’zt|z(t 19 e, (S6)
Pl (2, €:)
with respect to the distribution ¢(z¢, &;) and the parameters © alternately until convergence.

E step In the E step, given the parameters ©' from the previous M step, the lower bound is maximized with
respect to ¢(z¢,€;). The maximum lower bound is obtained when ¢(z:,&:;/©’) equals the posterior distribution
p(2¢|Xe, Xe—1, O')p(&¢|2z¢, X¢, X1 —1, O"). The posterior distribution is obtained as

p(it |)~(t—17 zt)p(zt)

Z¢|Xy, Xi_1,0') = — , (S7)
p( t| ty Xt—1 ) Zz; p(Xt|Xt71,Z2)p(Z2)
P(&¢]z¢, X4, Xy —1,0") =N (&¢]f1z, + i;tLT(LithT +A)7
(% — AF%,_y — Lfi,,), 55, — 3],
LT(LY, LT+ A)"'LY,,), (S8)

y — (0 e 3 — i =2 =2
Where lu'zt - (MLZt,l’ A lu‘nk7zt,nk).r and Zzt - dlag(al,zt,l’ ot O.nk,zt)nk)'

M step In the M step, given the posterior distributions (S7) (S8) from the E step, the parameters are updated by maxi-
mizing the lower bound with respect to ©. The lower bound can be decompsed into four terms each of which only contains
a subset of the parameters, i.e.,

L(q,0) = L1(q,w) + La(q, u,0) + L3(q, A) + L4(q). (S9)
The four terms are calculated as

ZZ Z (2,i[%¢, Xe—1,0") Inp(2e,4) ZZ Z p(zeiX

i=1 z¢,;=1 i=1 z¢ ;=1

.CQ_ZZ z/

i=1 z¢,;=1

1 € — flis, )2
722 Z / (0, 204|%, %e_1,0') <(62“) —|—1n27r—|—21n&i’zt,i> déy ;, (S11)

i=1 z¢,;=1 1,2t,4

it,1,9/> h’l’lI)i)zt’i, (SIO)

il Xe, Xe—1,0") Inp(@y |25 )des s

[\3
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L3 = Z/P(ét|5<t75<t—17@/)lﬁp(idit—l,ét)dét,
t

p(€¢|%¢,%X¢-1,0"))

_ _% S — AR )TAT R - AR )] - 2(% - A )AL (&)

Ty (LTA—IL (étég)p(étlihit_h@/)) +In|A|+ nln27r} , (S12)
£4 = - ZZ/p(Ztyét‘it,iFh 9/) lnp(zhét'itaf{tfh@/)dét’ (813)
t Z¢

where (£(6)),) = [ p(e)f (e)de.

Due to the zero mean constraints on the noises, fi; . and w; . are updated by maximize £; + Lo with the constraints

m m . . . . . . .
> Wie = 1,30 Wicptie = 0,4 = 1,...,n. This is a constrained nonlinear programming problem and we solve it
using interior point methods.

After updating f1; . and w; ., o can be updated by maximizing £L,, which gives

ko /s -
Dot 2 -1 <et2,i+n(j—1) - 2F‘i,cet,i+n(j—1)>

. p(ét,i+7b(j—1)7Zt,i+n(j—1):c‘xt7xt*1) + 2 (514)
Zt Zj:l p(zt,z!kn(jfl) = c|x¢,X¢-1)

1,C7

2
Ji,c

Since there is no analytic solution to A, we update A using conjugate gradient descent algorithm. The gradient of L3 with
respect to A is given by

k—1
—2(A7N (R — ARR )R] )T ATJZ’J’A’“”}

r=0

k—1
~(ATL @) x)TY ATJijAk‘l"”]
r=0

k=1 L
+ ZTT (A%, — AFxy ) <étT,z>)T Z ATJijAl—l_r‘| }
=1 <
oU
o <<étég> A ) } ’ (S15)
ij

where U = LTA~'L and J¥ is a matrix whose 7j-th element is 1 and all the other elements are 0. U is composed of k * k
blocks of n * n matrices. Each sub-matrix is U, = (A™)TA"*A" m =0,....,k — 1,n = 0,...,k — 1. The gradient of
each sub-matrix U,,,, is

;
OUmn)rt O((A™TATA), \ | 9A™
oAy (ma% oAy, A
i'j
;
I((A™TATTA™) | OA™
+Tr <matilj, GAZEJ,, oA,
Tl g
=1r (mati’j/ (5kj/(A_1An)i'l)> > ATJ”Am_l_Tl
r=0
" g
+Tr (matzxj/ (‘Slj’ ((Am)TA_l)ki')) Z ArJz]An—l—r‘| ’ (S16)
r=0

where mati/j/f(i/,j/) is a matrix whose i j -th element is f(i', 7 ).
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