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Abstract
We present Vector-Space Markov Random Fields
(VS-MRFs), a novel class of undirected graphi-
cal models where each variable can belong to an
arbitrary vector space. VS-MRFs generalize a re-
cent line of work on scalar-valued, uni-parameter
exponential family and mixed graphical models,
thereby greatly broadening the class of exponen-
tial families available (e.g., allowing multinomial
and Dirichlet distributions). Specifically, VS-
MRFs are the joint graphical model distributions
where the node-conditional distributions belong
to generic exponential families with general vec-
tor space domains. We also present a sparsis-
tent M -estimator for learning our class of MRFs
that recovers the correct set of edges with high
probability. We validate our approach via a set
of synthetic data experiments as well as a real-
world case study of over four million foods from
the popular diet tracking app MyFitnessPal. Our
results demonstrate that our algorithm performs
well empirically and that VS-MRFs are capable
of capturing and highlighting interesting struc-
ture in complex, real-world data. All code for our
algorithm is open source and publicly available.

1. Introduction
Undirected graphical models, also known as Markov Ran-
dom Fields (MRFs), are a popular class of models for prob-
ability distributions over random vectors. Popular para-
metric instances include Gaussian MRFs, Ising, and Potts
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models, but these are all suited to specific data-types: Ising
models for binary data, Gaussian MRFs for thin-tailed con-
tinuous data, and so on. Conversely, when there is prior
knowledge of the graph structure but limited information
otherwise, nonparametric approaches are available (Sud-
derth et al., 2010). A recent line of work has considered
the challenge of specifying classes of MRFs targeted to
the data-types in the given application, when the struc-
ture is unknown. For the specific case of homogeneous
data, where each variable in the random vector has the
same data-type, (Yang et al., 2012) proposed a general sub-
class of homogeneous MRFs. In their construction, they
imposed the restriction that each variable conditioned on
other variables belong to a shared exponential family dis-
tribution, and then performed a Hammersley-Clifford-like
analysis to derive the corresponding joint graphical model
distribution, consistent with these node-conditional distri-
butions. As they showed, even classical instances belong to
this sub-class of MRFs; for instance, with Gaussian MRFs
and Ising models, the node-conditional distributions fol-
low univariate Gaussian and Bernoulli distributions respec-
tively.

Yang et al. (2014) then proposed a class of mixed MRFs that
extended this construction to allow for random vectors with
variables belonging to different data types, and allowing
each node-conditional distribution to be drawn from a dif-
ferent univariate, uni-parameter exponential family mem-
ber (such as a Gaussian with known variance or a Bernoulli
distribution). This flexibility in allowing for different uni-
variate exponential family distributions yielded a class of
mixed MRFs over heterogeneous random vectors that were
capable of modeling a much wider class of distributions
than was previously feasible, opening up an entirely new
suite of possible applications.

To summarize, the state of the art can specify MRFs over
heterogeneous data-typed random vectors, under the re-
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striction that each variable conditioned on others belong
to a uni-parameter, univariate exponential family distribu-
tion. But in many applications, such a restriction would
be too onerous. For instance, a discrete random variable
is best modeled by a categorical distribution, but this is a
multi-parameter exponential family distribution, and does
not satisfy the required restriction above. Other multi-
parameter exponential family distributions popular in ma-
chine learning include gamma distributions with unknown
shape parameter and Gaussian distributions with unknown
variance. Another restriction above is that the variables be
scalar-valued; but in many applications the random vari-
ables could belong to more general vector spaces, for ex-
ample a Dirichlet distribution.

As modern data modeling requirements evolve, extending
MRFs beyond such restrictive paradigms is becoming in-
creasingly important. In this paper, we thus extend the
above line of work in (Yang et al., 2012; 2014). As opposed
to other approaches which merely cluster scalar variables
(Vats & Moura, 2012), we allow node-conditional distri-
butions to belong to a generic exponential family with a
general vector space domain. We then perform a subtler
Hammersley-Clifford-like analysis to derive a novel class
of vector-space MRFs (VS-MRFs) as joint distributions
consistent with these node-conditional distributions. This
class of VS-MRFs provides support for the many mod-
elling requirements outlined above, and could thus greatly
expand the potential applicability of MRFs to new scien-
tific analyses.

We also introduce an M -estimator for learning this class
of VS-MRFs based on the sparse group lasso, and show
that it is sparsistent, and that it succeeds in recovering the
underlying edges of the graphical model. To solve the M -
estimation problem, we also provide a scalable optimiza-
tion algorithm based on Alternating Direction Method of
Multipliers (ADMM) (Boyd et al., 2011). We validate our
approach empirically via synthetic experiments measuring
performance across a variety of scenarios. We also demon-
strate the usefulness of VS-MRFs by modeling a real-world
dataset of over four million foods from the MyFitnessPal
food database.

The remainder of this paper is organized as follows. Sec-
tion 2 provides background on mixed MRFs in the uni-
parameter, univariate case. Section 3 details our general-
ization of the mixed MRF derivations to the vector-space
case. Section 4 introduces our M -estimator and derives its
sparsistency statistical guarantees. Section 5 contains our
synthetic experiments and the MyFitnessPal case study. Fi-
nally, Section 6 presents concluding remarks and potential
future work.

2. Background: Scalar Mixed Graphical
Models

LetX = (X1, X2, · · ·Xp) be a p-dimensional random vec-
tor, where each variable Xr has domain Xr. An undirected
graphical model or a Markov Random Field (MRF) is a
family of joint distributions over the random vector X that
is specified by a graphG = (V,E), with nodes correspond-
ing to each of the p random variables {Xr}pr=1, and edges
that specify the factorization of the joint as:

P(X) ∝
∏

C∈C(G)

ψC(XC),

where C(G) is the set of fully connected subgraphs
(or cliques) of the graph G, XC = {Xs}s∈C de-
notes the subset of variables in the subset C ⊆ V ,
and {ψC(XC)}C∈C(G) are clique-wise functions, each of
which is a “local function” in that it only depend on the
variables in the corresponding clique, so that ψC(XC) only
depends on the variable subset XC .

Gaussian MRFs, Ising MRFs, etc. make particular para-
metric assumptions on these clique-wise functions, but a
key question is whether there exists a more flexible speci-
fication of the form of these clique-wise functions that is
targeted to the data-type and other characteristics of the
random vector X .

For the specific case where the variables are scalars, so
that the domains Xr ⊆ R, in a line of work, (Yang
et al., 2012; 2014) used the following construction to de-
rive a subclass of MRFs targeted to the random vector
X . Suppose that for variables Xr ∈ Xr, the follow-
ing (single-parameter) univariate exponential family distri-
bution P (Xr) = exp{θrBr(Xr) + Cr(Xr) − Ar(θr)},
with natural parameter scalar θ, sufficient statistic scalar
Br(Xr), base measure Cr(Xr) and log normalization con-
stant Ar(θ), serves as a suitable statistical model. Suppose
that we use these univariate distributions to specify condi-
tional distributions:

P (Xr|X−r) = exp{ Er(X−r)Br(Xr)+
Cr(Xr)−Ar(X−r)}

, (1)

where Er(·) is an arbitrary function of the rest of the vari-
ablesX−r that serves as the natural parameter. Would these
node-conditional distributions for each node r ∈ V be con-
sistent with some joint distribution for some specification
of these functions {Er(·)}r∈V ? Theorem 1 from Yang
et al. (2014) shows that there does exist a unique joint MRF
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distribution with the form:

P (X; θ) = exp

{∑
r∈V

θrBr(Xr)

+
∑
r∈V

∑
t∈N(r)

θrtBt(Xt)Br(Xr) + . . .

+
∑

(t1,...,tk)∈C

θt1...tk(X)

k∏
j=1

Btj (Xtj )

+
∑
r∈V Cr(Xr)−A(θ)

}
, (2)

where A(θ) is the log-normalization constant. Their proof
followed an analysis similar to the Hammersley-Clifford
Theorem (Lauritzen, 1996), and entailed showing that for
a consistent joint, the only feasible conditional parameter
functions Er(·) had the following form:

Er(X−r) = θr +
∑

t∈N(r)

θrtBt(Xt) + . . .

+
∑

t2,...,tk∈N(r)

θrt2...tk(X)

k∏
j=2

Btj (Xtj )
,

(3)
where θr· := {θr, θrt, . . . , θrt2...tk} is a set of parameters,
and N(r) is the set of neighbors of node r.

While their construction allows the specification of targeted
classes of graphical models for heterogeneous random vec-
tors, the conditional distribution of each variable condi-
tioned on the rest of the variables is assumed to be a single-
parameter exponential family distribution with a scalar suf-
ficient statistic and natural parameter. Furthermore, their
Hammersley-Clifford type analysis and sparsistency proofs
relied crucially on that assumption. However in the case
of multi-parameter and multivariate distributions, the suf-
ficient statistics are a vector; indeed the random variables
need not be scalars at all but could belong to a more general
vector space. Could one construct classes of MRFs for this
more general, but prevalent, setting? In the next section,
we answer in the affirmative, and present a generalization
of mixed MRFs to the vector-space case, with support for
more general exponential families.

3. Generalization to the Vector-space Case
LetX = (X1, X2, · · ·Xp) be a p-dimensional random vec-
tor, where each variable Xr belongs to a vector space Xr.
As in the scalar case, we will assume that a suitable statis-
tical model for variables Xr ∈ Xr is an exponential family
distribution

P (Xr) = exp{
mr∑
j=1

θrjBrj(Xr) +Cr(Xr)−Ar(θ)}, (4)

with natural parameters {θrj}mr
j=1, and sufficient statis-

tics {Brj}mr
j=1, base measure Cr(Xr) and log normaliza-

tion constant Ar(θ). We assume the sufficient statistics
Brj : Xr 7→ R lie in some Hilbert space Hs, and more-
over specify a minimal exponential family so that:

mr∑
j=1

αjBrj(Xr) 6= c , (5)

for any constant c and any vector α 6= 0. We note that
even though the variables {Xr} could lie in general vec-
tor spaces, the exponential family distribution above is
finite-dimensional. However, it has multiple parameters,
which is the other facet that distinguishes it from the single-
parameter univariate setting of (Yang et al., 2012; 2014).
We defer a generalization of our framework to infinite-
dimensional exponential families to future work.

Suppose we use these general exponential family distribu-
tions to specify node-conditional distributions of variables
Xr conditioned on the rest of the random variables:

P (Xr|X−r) = exp{
∑mr

j=1Erj(X−r)Brj(Xr)

+Cr(Xr)−Ar(X−r)} ,
(6)

where {Erj(X−r)}mr
j=1 are arbitrary functions of the rest of

the variables that serve as natural parameters for the con-
ditional distribution of Xr. As before, we ask the question
whether these node-conditional distributions can be con-
sistent with some joint distribution for some specification
of the parameter functions {Erj(X−r)}mr

j=1; the following
theorem addresses this very question.

Theorem 1. Let X = (X1, X2, . . . , Xp) be a p-
dimensional random vector with node-conditional distri-
bution of each random vector Xr conditioned on the
rest of random variables as defined in (6). These node-
conditionals are consistent with a joint MRF distribution
over the random vector X , that is, Markov with respect to
a graph G = (V,E) with clique-set C, and with factors of
size at most k, if and only if the functions {Er()}r∈V spec-
ifying the node-conditional distributions have the form:

Eri(X−r) =θri +
∑

t∈N(r)

mt∑
j=1

θri;tjBtj(Xt) + . . .

+
∑

t2,...,tk
∈N(r)

∑
i2=1...mt2...
ik=1...mtk

θri;...;tkik

k∏
j=2

Btjij (Xtj )
, (7)

where θr· = {θri, θri;tj , θri;...;tkik} is a set of parame-
ters, mt is the dimension of the sufficient statistic vector
for the tth node-conditional distribution, and N(r) is the
set of neighbors of node r in graph G. The corresponding
consistent joint MRF distribution has the following form:
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P (X|θ) = exp

{∑
r∈V

mr∑
i=1

θriBri(Xr) + . . .

+
∑

t1,...,tk∈C

∑
i1=1...mt1...
ik=1...mtk

θt1i1;...;tkik

k∏
j=1

Btjij (Xtj )

+
∑
r∈V

Cr(Xr)−A(θ)

}
. (8)

We provide a Hammersley-Clifford type analysis as proof
of this theorem in the supplementary material, which how-
ever has subtleties not present in (Yang et al., 2012; 2014),
due to the arbitrary vector space domain of Xr, and the
multiple parameters in the exponential families, which con-
sequently entailed leveraging the geometry of the corre-
sponding Hilbert spaces {Hs{s ∈ V } underlying the suffi-
cient statistics {Bsj}.

The above Theorem 1 provides us with a general class
of vector-space MRFs (VS-MRFs), where each variable
could belong to more general vector space domains, and
whose conditional distributions are specified by more gen-
eral finite-dimensional exponential families. Consequently,
many common distributions can be incorporated into VS-
MRFs that were previously unsupported or lacking in
(Yang et al., 2012; 2014). For instance, gamma and Gaus-
sian nodes, though univariate, require vector-space param-
eters in order to be fully modeled. Additionally, multivari-
ate distributions that were impossible to use with previous
methods, such as the multinomial and Dirichlet distribu-
tions are now also available.

3.1. Pairwise conditional and joint distributions

Given the form of natural parameters in (7), the conditional
distribution of a node Xr given all other nodes X−r for the
special case of pairwise MRFs (i.e. k = 2) has the form

P (Xr|X−r, θr, θrt) = exp


mr∑
i=1

θriBri(Xr)

+
∑

t∈N(r)

mr∑
i=1

mt∑
j=1

θri;tjBtj(Xt)Bri(Xr)

+Cr(Xr)−Ar(X−r, θr·)


= exp


〈
Br(Xr), θr +

∑
t∈N(r)

θrtBt(Xt)

〉

+Cr(Xr)−Ar

θr +
∑

t∈N(r)

θrtBt(Xt)

 

, (9)

where θr is a vector formed from scalars {θri}mr
i=1, θrt is a

matrix of dimension mr ×mt obtained from scalars θri;tj

and 〈., .〉 represents dot product between two vectors. Thus,
the joint distribution has the form

P (X|θ) =

exp

∑
r∈V

〈
Br(Xr), θr +

∑
t∈N(r)

θrtBt(Xt)

〉

+
∑
r∈V

Cr(Xr)−A(θ)

} , (10)

with the log-normalization constant A(θ) =
log
∫
X exp{

∑
r∈V 〈Br(Xr), θr +

∑
t∈N(r) θrtBt(Xt)〉 +∑

r∈V Cr(Xr)}. Since A(θ) is generally intractable to
calculate, we next present an efficient approach to learning
the structure of VS-MRFs.

4. Learning VS-MRFs
To avoid calculation of the log-normalization constant, we
approximate the joint distribution in (10) with the inde-
pendent product of node conditionals, also known as the
pseudo-likelihood,

P (X|θ) ≈
∏
r

P (Xr|X−r, θr, θrt) . (11)

Let θr· = {θr, θ\r} be the set of parameters related to
the node-conditional distribution of node r, where θ\r =
{θrt}t∈V \r. Since Ar() is convex for all exponential fami-
lies (Wainwright & Jordan, 2008), this gives us a loss func-
tion that is convex in θr·:

`(θr·;D) = − 1
n

n∑
i

〈Br(X(i)
r ), θr +

∑
t∈V \r

θrtBt(X
(i)
t )

〉

− Ar

θr +
∑
t∈V \r

θrtBt(X
(i)
t )

 .

(12)
We then seek to find a sparse solution in terms of both edges
and individual parameters by employing the sparse group
lasso regularization penalty (Friedman et al., 2010; Simon
et al., 2013):

R(θr·) = λ1
∑
t∈V \r

√
νrt ||θrt||2 + λ2

∣∣∣∣θ\r∣∣∣∣1 , (13)

where νrt = mr ×mt is the number of parameters in the
pseudo-edge from node r to node t (i.e., the edge (r, t) in
the rth node-conditional). This yields a collection of inde-
pendent convex optimization problems, one for each node-
conditional.

minimize
θr·

`(θr·;D) +R(θr·) (14)
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We next present an approach to solving this problem based
on Alternating Direction Method of Multipliers (ADMM)
(Boyd et al., 2011).

4.1. Optimization Procedure

We first introduce a slack variable z into (14) to adhere to
the canonical form of ADMM. For notational simplicity,
we omit the data parameter D from the loss function and
the subscripts in θr· and Ar since it is clear we are dealing
with the optimization of a single node-conditional.

minimize
θ

`(θ) +R(z)

subject to θ = z
, (15)

where length(θ) = τ . The augmented Lagrangian is

Lα(θ, z, ρ) = `(θ) +R(z) + ρT (θ− z) + (α/2) ||θ − z||22 .
(16)

Defining the residual of the slack r = θ − z, we instead
use the scaled form with u = (1/α)ρ. ADMM proceeds in
an alternating fashion, performing the following updates at
each iteration:

θk+1 = argmin
θ

(
`(θ) + (α/2)

∣∣∣∣θ − zk + uk
∣∣∣∣2
2

)
(17)

zk+1 = argmin
z

(
R(z) + (α/2)

∣∣∣∣θk+1 − z + uk
∣∣∣∣2
2

)
(18)

uk+1 = uk + θk+1 − zk+1 (19)

Updating θk+1. The jth subgradient of θ is gj(θ) =
−Bj + ∇jA(θ) + α(θj + zkj − ukj ). Note that the log-
partition function, A(η), over the natural parameters, η =
Bθ, is available in closed form for most commonly-used
exponential families. Thus, ∇2A(θ) is a weighted sum
of rank-one matrices. In cases where the number of sam-
ples is much less than the total number of parameters (i.e.
n << τ ), we can efficiently calculate an exact Newton
update in O(τ) by leveraging the matrix inversion lemma
(Boyd & Vandenberghe, 2009). Otherwise, we use a di-
agonal approximation of the Hessian and perform a quasi-
Newton update.

Updating zk+1. We can reformulate (18) as the proximal
operator (Parikh & Boyd, 2013) of R(z):

proxR/α(y) = argmin
z

(
R(z) + (α/2) ||z − y||22

)
, (20)

where y = θk+1 + uk. From Friedman et al. (2010), it is
straightforward to show that the update has a closed-form
solution for each jth block of edge parameters,

zk+1
j =

(
||S(α(yj), λ2)||2 −

√
νjλ1

)
+
S(α(yj), λ2)

α ||S(α(yj), λ2)||2 +
√
νjλ1(1− α)

,

(21)

where S(x, λ) is the soft-thresholding operator on x with
cutoff at λ.

Updating uk+1. Per ADMM, closed-form is given in
(19).

We iterate each of the above update steps in turn until con-
vergence, then AND pseudo-edges when stitching the graph
back together.

4.2. Domain constraints

Many exponential family distributions require parameters
with bounded domain. These bounds correspond to affine
constraints on subsets of θ in the ADMM algorithm.1

Often these constraints are simple implicit restrictions to
R+ or R−. In these cases the log-normalization function
A(η) serves as a built-in log-barrier function. For in-
stance, a normal distribution with unknown mean µ and
unknown variance σ2 has natural parameters η1 = µ

σ2

and η2 = − 1
2σ2 , implying η2 < 0. However, since

A(η) = − η21
4η2
− 1

2 ln(−2η2), this constraint will be effec-
tively enforced so long as we are given a feasible starting
point for η. Such a feasible point can always be discovered
using a standard phase I method (Boyd & Vandenberghe,
2009). In the case of equality requirements, such as cate-
gorical and multinomial distributions, we can directly in-
corporate the constraints into the ADMM algorithm and
solve an equality-constrained Newton’s method when up-
dating θ.

4.3. Sparsistency

We next provide the mathematical conditions that ensure
with high probability our learning procedure recovers the
true graph structure underlying the joint distribution. Our
results rely on similar sufficient conditions to those im-
posed in papers analyzing the Lasso (Wainwright, 2009)
and the l1/l2 penalty in (Jalali et al., 2011). Before stat-
ing the assumptions, we introduce the notation used in the
proof.

4.3.1. NOTATION

Let N(r) = {t : θ∗rt 6= 0} be the true neighbourhood
of node r and let dr be the degree of r, i.e, dr = |N(r)|.
And Sr be the index set of parameters {θ∗rj;tk : t ∈ N(r)}
and similarly Scr be the index of parameters {θ∗rj;tk : t /∈
N(r)}. From now on we will overload the notation and
simply use S and Sc instead of Sr and Scr . Let S(ex)

r =
{θ∗rj;tk : θ∗rj;tk 6= 0 ∧ t ∈ N(r)}.

1Note that these subsets are different than the edge-wise
groups that are L2-penalized. Rather, these constraints apply to
the sum of the ith value of each edge parameter and the ith bias
weight.
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Let Qnr = ∇2`(θ∗r·;D) be the sample Fischer Information
matrix at node r. As before, we will ignore subscript r and
use Qn instead of Qnr . Finally, we write QnSS for the sub-
matrix indexed by S.

We use the group structured norms defined in (Jalali et al.,
2011) in our analysis. The group structured norm ||u||G,a,b
of a vector u with respect to a set of disjoint groups G =
{G1, . . . , GT } is defined as ||(||uG1

||b , . . . , ||uGT
||b)||a. We

ignore the group G and simply use ||u||a,b when it is
clear from the context. Similarly the group structured
norm ||M ||(a,b),(c,d) of a matrix Mp×p is defined as∣∣∣∣∣∣(∣∣∣∣M1

∣∣∣∣
c,d
, . . . , ||Mp||c,d)

∣∣∣∣∣∣
a,b

. In our analysis we always

use b = 2, d = 2 and to minimize the notation we use
||M ||a,c to denote ||M ||(a,2),(c,2). And we define ||M ||max
as max

i,j
|Mi,j |, i.e, element wise maximum of M.

4.3.2. ASSUMPTIONS

Let us begin by imposing assumptions on the sample Fisher
Information matrix Qn.
Assumption 1. Dependency condition: Λmin(QnSS) ≥
Cmin.
Assumption 2. Incoherence condition:∣∣∣∣QnScS(QnSS)−1

∣∣∣∣
∞,2 ≤

mmin

mmax

(1−α)√
dr

for some α ∈ (0, 1] ,
where mmax = max

t
mt, mmin = min

t
mt.

Assumption 3. Boundedness:
Λmax(E[B

(
XV \r

)
B
(
XV \r

)T
]) ≤ Dmax < ∞,

where B
(
XV \r

)
is a vector such that B

(
XV \r

)
=

{Bt(Xt)}t∈V \r.

Note that the sufficient statistics {Bri(Xr)}mr
i=1 of node r

need not be bounded. So to analyze the M-estimation prob-
lem, we make the following assumptions on log-partition
functions of joint and node-conditional distributions. These
are similar to the conditions imposed for sparsistency anal-
ysis of GLMs.
Assumption 4. The log partition function of the joint dis-
tribution satisfies the following conditions: for all r ∈ V
and i ∈ [mr]

1. there exists constants km, kv such that E[Bri(Xr)] ≤
km and E[Bri(Xr)

2] ≤ kv ,

2. there exists constant kh such that
maxu:|u|≤1

∂2A(θ)
∂θ2ri

(θ∗ri + u, θ∗r·) ≤ kh,

3. for scalar variable η , we define a function Ār,i as:

Ār,i(η; θ) = log
∫
Xp

exp
{
ηBri(Xr)

2 +
∑
s∈V Cs(Xs)

+
∑
s∈V

〈
Bs(Xs), θs +

∑
t∈N(s)

θstBt(Xt)

〉}
d(x)

(22)

Then, there exists a constant kh such that
maxu:|u|≤1

∂2Ar,i(η;θ
∗
r·)

∂η2 (u) ≤ kh.

Assumption 5. For all r ∈ V , the log-partition function
Ar(.) of the node wise conditional distribution satisfy that
there exists functions k1 (n, p) and k2 (n, p) such that for
all feasible pairs θ and X ,

∣∣∣∣∇2Ar (a)
∣∣∣∣
max

≤ k1 (n, p)
where a ∈ [b, b+ 4 k2 (n, p) max {log (n) , log (p)}1] for
b := θr +

∑
t∈V \r θrtBt(Xt), where for vectors u and v

we define [u, v] := ⊗i[ui, vi]. Moreoever, we assume that∣∣∣∣∇3Ar (b)
∣∣∣∣
max
≤ k3 (n, p) for all feasible pairs X and θ.

4.3.3. SPARSISTENCY THEOREM

Given these assumptions in 4.3.2 we are now ready to state
our main sparsistency result.

Theorem 2. Consider the vector space graphical model
distribution in (10) with true parameters θ∗, edge setE and
vertex set V such that the assumptions 1-5 hold. Suppose
that θ∗ satisfies min

(r,t)∈E
||θ∗rt||2 ≥ 10 mmax

Cmin
(λ1 + λ2)

and regularization parameters λ1, λ2 satisfy

M1
2−α
α

mmax

mmin

√
k1 (n, p)

√
log(pm2

max)
n ≤ λ1 + λ2 ≤

M2
2−α
α k1 (n, p) k2 (n, p) for positive constants M1

and M2 and λ2 <
(

α
2−α+2 mmax/mmin

)
λ1. Then,

there exists constants L, c1, c2 and c3 such that if n ≥
max

{
L
m9

max

mmin
d2 k1 (n, p) (k3 (n, p))

2
(logp′)2 log

(
pm2

max

)
,

4 log(pm2
max)

k1(n,p) k4 k2(n,p)
2 ,

8 k2h
k24

log (
∑
tmt)

}
, with probability at

least 1 − c (p′)
−3

(
∑
tmt) − exp(−c2 n) − exp(−c3 n),

the following statements hold.

• For each node r ∈ V , the solution of the M-estimation
problem (14) is unique

• Moreover, for each node r ∈ V the M-estimation
problem recovers the true neighbourhood exactly.

wheremmax = max
t
mt, mmin = min

t
mt , p′ = max(n, p).

The proof of Theorem 2 follows along similar lines to the
sparsistency proof in (Yang et al., 2014), albeit with a sub-
tler analysis to support general vector-spaces. It is based
on the primal dual witness proof technique and relies on
the previous results. We refer the interested reader to the
supplementary material for additional details regarding the
proofs.

5. Experiments
We demonstrate the effectiveness of our algorithm on both
synthetic data and a real-world dataset of over four million
foods logged on the popular diet app, MyFitnessPal.

5.1. Synthetic experiments

The synthetic experiments were run on a vector-space
mixed MRF consisting of eight Bernoulli, eight gamma
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Figure 1. ROC curves for our synthetic experiments. The top left
and bottom left plots show both edge as well as within-edge-
parameter recovery performance respectively, for graphs with a
high degree of sparsity. The two right plots show the same per-
formance measures, but for graphs with a relatively low degree of
sparsity. The low sparsity scenario is more challenging, requiring
more data to recover the majority of the graph.

(with unknown shape and rate), eight Gaussian (with un-
known mean and variance), and eight Dirichlet (k=3)
nodes. The choice of these node-conditional distributions
is meant to highlight the ability of VS-MRFs to model
many different types of distributions. Specifically, the
Bernoulli represents a univariate, uni-parameter distribu-
tion that would still be possible to incorporate into ex-
isting mixed models. The gamma and Gaussian distri-
butions are both multi-parameter, univariate distributions
which would have required fixing one parameter (e.g. fix-
ing the Gaussians’ variances) to be compatible with previ-
ous approaches. Finally, the Dirichlet distribution is multi-
parameter and multivariate, thereby making VS-MRFs
truly unique in their ability to model this joint distribution.

For each experiment, we conducted 30 independent tri-
als by generating random weights and sampling via Gibbs
sampling with a burn-in of 2000 and thinning step size
of 10. We consider two different sparsity scenarios: high
(90% edge sparsity, 50% intra-edge parameter sparsity) and
low (50% edge sparsity, 10% intra-edge parameter spar-
sity). Edge recovery capability is examined by fixing λ2
to a small value and varying λ1 over a grid of values in
the range [0.0001, 0.5]; parameter recovery is examined
analogously by fixing λ1 and varying λ2. We use AND
graph stitching and measure the true positive rate (TPR)
and false positive rate (FPR) as the number of samples in-
creases from 100 to 25K.

Figure 5 shows the ROC curves at both the edge and pa-
rameter levels. The results demonstrate that our algorithm
improves well as the dataset size scales. They also illustrate
that graphs with a higher degree of sparsity are easier to re-
cover with fewer samples. In both the high and low sparsity
graphs, the algorithm is better able to recover the coarse-
grained edge structure than the more fine-grained within-
edge parameter structure, though both improve favourably
with the size of the data.

5.2. MyFitnessPal Food Dataset

MyFitnessPal2 (MFP) is one of the largest diet-tracking
apps in the world, with over 80M users worldwide. MFP
has a vast crowd-sourced database of food data, where each
food entry contains a description, such as “Trader Joe’s Or-
ganic Carrots,” and a vector of sixteen macro- and micro-
nutrients, such as fat and vitamin C.

We treat these foods entries as random vectors with an un-
derlying VS-MRF distribution, which we learn treating the
food entries in the database as samples from the underlying
VS-MRF distribution. The text descriptions are tokenized,
resulting in a dictionary of approximately 2650 words; we
use a Bernoulli distribution to model the conditional distri-
bution of each word. The conditional distribution of each
nutrient (on a per-calorie basis) is generally gamma dis-
tributed, but contains spikes at zero3 and large outlier val-
ues.4 The gamma distribution is undefined at zero, and
the outlier values can result in numerical instability dur-
ing learning, which thus suggests using a distribution other
than the vanilla gamma distribution. Such zero-inflated
data are common in many biostatistics applications, and
are typically modeled via a mixture model density of the
form p(Z) = π δ0 + (1 − π) g(z), where δ0 is the dirac
delta at zero, and g(z) is the density of the non-zero-valued
data. Unfortunately, such mixture models are not generally
representable as exponential families.

To overcome this, we introduce the following class of
point-inflated exponential family distributions. For any
random variable Z ∈ Z , consider any exponential family
P (Z) = exp(ηTB(Z) + C(Z) − A(η)), with sufficient
statistics B(·), base measure C(·), and log-normalization
constant A(·). We consider an inflated variant of this
random variable, inflated at some value j; note that this
could potentially lie outside the domain Z , in which case
the domain of the inflated random variable would become
Z ∪ {j}. We then define the corresponding point-inflated

2http://myfitnesspal.com
3This is common in foods since many dishes are marketed as

“fat free” or contain low nutrient density (e.g. soda).
4This occurs when foods contain few calories but a large

amount of some micro-nutrient (e.g. multi-vitamins)

http://myfitnesspal.com


Vector-Space MRFs via Exponential Families

fat

italian

cheddar

nonfat

butter

peanut
beer

dressing

bacon

chips

sausagepizza

cookies

saturated fat

bar

trans fat

beef

cholesterol

sodium

egg
turkey

chickenbreast

cheese

ham

milk

yogurt

lightsoup

fruitsauce

chocolate

cream

ice

potassium value

great

carbs
lean

rice

wheat

sweet

pasta

beans

subway

corn
potato

blueberry

bread

grain

baked

fiber

sugar

vanilla

protein

vinaigrettepork

whey

grilled

lettuce

roasted

black

protein

creamer

steaksandwich

powder

tuna

balsamic

tomato

vitamin Avitamin C

fresh

calcium
fat

Figure 2. The top 100 edges in the MyFitnessPal food graph. Purple rectangular nodes correspond to macro- and micro-nutrients; green
oval nodes correspond to food description terms. Edge color is determined by the approximate effect of the edge on the means of the
node-conditionals: darker, blue edges represent lower means; brighter, orange edges represent higher means; thickness corresponds to
the norm of the edge weight.

exponential family distribution as:

Pinfl(Z) = exp
{
η0I(Z = j)+ηT1 B(z)+C(z)−Ainfl(η)

}
,

where Ainfl(η) is the log-normalization constant of the
point-inflated distribution which can be expressed in terms
of the log-normalization constant A(·) of the uninflated ex-
ponential family distribution: Ainfl(η) = log

(
exp{η0} −

exp{ηT1 B(j)I(j ∈ Z)} + exp{A(η1)}
)
. Thus, as long as

we have a closed formA(·) for the log-partition function of
the base distribution, we can efficiently calculate Pinfl(Z).
The definition also permits an arbitrary number of inflated
points by recursively specifying the base distribution as an-
other point-inflated model. We model each of the MFP
nutrients via a two-point-inflated gamma distribution, with
points at zero and a winsorized outlier bucket.

Due to the size of the overall graph, presenting it in closer
detail here is not feasible. To give a qualitative perspective
of the relationships captured by our algorithm, we selected
the top 100 edges in the MFP food graph by ranking the
edges based on their L2-norm. We then calculated their
approximate contribution to the mean of their correspond-
ing node-conditionals to determine edge color and thick-
ness. Figure 2 shows the results of this process, with edges
that contribute positively colored in orange and edges that
contribute negatively colored in blue; edge thickness corre-
sponds to the magnitude of the contribution. A high-level
view of the entire learned graph is available in the supple-
mentary materials.

Several interesting relationships can be discovered, even
from just this small subset of the overall model. For
instance, the negative connection between “peanut” and
sodium may seem counter-intuitive, given the popularity
of salted nuts, yet on inspection of the raw database it
appears that indeed many peanut-based foods are actually

very low in sodium on a per-calorie basis. As another ex-
ample, “chips” are often thought of as a high-carb food,
but the graph suggests that they actually tend to be a bigger
indicator of high fat. In general, we believe there is great
potential for wide-ranging future uses of VS-MRFs in nu-
trition and other scientific fields, with the MFP case study
only scratching the surface of what can be achieved.

6. Conclusion
We have presented vector-space MRFs as a flexible and
scalable approach to modeling complex, heterogeneous
data. In particular, we generalize the concept of mixed
MRFs to allow for node-conditional distributions to be dis-
tributed according to a generic exponential family distri-
bution, that is potentially multi-parameter and even mul-
tivariate. Our VS-MRF learning algorithm has reassuring
sparsistency guarantees and was validated against a variety
of synthetic experiments and a real-world case study. We
believe that the broad applicability of VS-MRFs will make
them a valuable addition to the scientific toolbox. All code
for our VS-MRF implementation is publicly available.5
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