
DP-space: Bayesian Nonparametric Subspace Clustering

A. Proof of Proposition 1
Proof. We only prove the proposition for µ = 0. If µ 6= 0, we could simply take the mapping x → x − µ, y → y − µ
and complete the proof in a similar manner.

When W is full rank, it is well known that the projected vector y ∈ S ⊆ RD has the following form:

y = W(W>W)−1W>x = (UdU
>
d )x.

Next, note that
UdU

>
d = Udiag(Id,O)U>. (32)

Therefore,

‖x− y‖2=‖x− (UdU
>
d )x‖2

=‖x−Udiag(1, · · · , 1, 0, · · · , 0)U>x‖2

=‖U>x− diag(1, · · · , 1, 0, · · · , 0)U>x‖2

=
D∑

j=d+1

[U>x]2j .

B. Technical details of SVA analysis
B.1. Derivation of the update rule for z

For creating a new cluster, we use Laplace approximation to approximate the integration. We first write the conditional
distribution as

p(zi = knew|X, ρ, a, b, r, α) =
α

Z

D∑

d=1

p0(d|r)
∫
p(xi|W,µ, σ2)dp0(W,µ|d, ρ, a, b) =:

1

Z

D∑

d=1

p0(d|r)Jd. (33)

Subsequently, the scaled conditional distribution can be written as

p(zi = knew|X, ρ, a, b, r, α, β) =
α

Z

D∑

d=1

p0(d|r, β′)Jd(β), (34)

where
Jd(β) =

∫
p(xi|W,µ, σ2, β)dp0(W,µ|d, ρ, a, b, β). (35)

Define θd := (W,µ) with W ∈ RD×d and

fd,β(θd) := β−1 · p(xi|W,µ, σ2, β)p0(W,µ|d, a, b, ρ, β). (36)

Using Laplace’s approximation, we have (as β →∞)

Jd(β) =

∫
exp(−βfd,β(θd))dθd =

exp(−βfd,β(θ̂d))

(2π/β)−D(d+1)/2

(∣∣∣∣
∂2fd,β(θ̂d)

∂θ∂θ>

∣∣∣∣
−1/2

+ o(1)

)
, (37)

where θ̂d = argminθd
fd,β(θd). Note that 7

lim
β→∞

fd,β(θd) = exp


−σ−2 ·

D∑

j=d+1

[U>(xi − µ)]2j


 = exp

(
−d(xi, S)2

σ2

)
. (38)

7Recall that limx→∞ f(x) = g(x) means limx→∞
f(x)
g(x)

= 1.
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As a result, fd,β(θ̂d) = 0 (taking µ = xi) and

lim
β→∞

Jd(β) = (2π/β)D(d+1)/2 · gd(xi), (39)

where gd(xi) only depends on d and xi. Therefore,

lim
β→∞

p(zi = knew) = lim
β→∞

α

Z

D∑

d=0

exp(−β′d+ o(β)) =
α

Z
exp(o(β)). (40)

B.2. Derivation of the update rule for Wk

Define
Kdk(β) :=

∫
p(X|W,µ, z, σ2, β)p0(W|dk, a, b, β)dW. (41)

Then the (scaled) posterior distribution of dk can be written as

p(dk|X, z,µ, a, b, r, β) =
1

Z(X)
p0(dk|r, β′)Kdk(β). (42)

Next, define
Fdk,β(W) := β−1p(X|W,µ, z, σ2, β)p0(W|dk, a, b, β). (43)

Using Laplace approximation, we have

Kdk(β) =

∫
exp(−βFdk,β(W))dW =

exp(−βFdk,β(Ŵ))

(2π/β)−Ddk/2

(∣∣∣∣
∂2Fdk,β(Ŵ)

∂W∂W>

∣∣∣∣
−1/2

+ o(1)

)
, (44)

where Ŵ is the minimizer of Fdk,β(·). Note that for any full-rank W ∈ RD×dk ,

lim
β→∞

Fdk,β(W) = exp


−

n∑

i=1

1[zi=k]

D∑

j=dk+1

[U>(xi − µk)]2j
σ2

−
dk∑

j=1

l−1
j

b


 . (45)

Taking lj →∞, it is then clear that

lim
β→∞

Fdk,β(Ŵ)= exp


− inf

U

n∑

i=1

1[zi=k]

D∑

j=dk+1

[U>(xi − µk)]2j
σ2


 (46)

= exp

(
− inf

W∈RD×dk

n∑

i=1

1[zi=k] ·
d(xi, S(W,µk))2

σ2

)
. (47)

Here the second equation is due to the fact that d(·, S(W,µ)) does not depend on eigenvalues of W, and hence optimiza-
tion over U is equivalent to optimization over W.

B.3. Proof of Theorem 1

Proof. We first prove that for each cluster k ∈ [K], after updating the subspace projection matrix Wk (along with its
dimension dk) and the offset µk, the loss function L does not increase. When subspace dimension dk = d is fixed, the
update rule

µk =
1

nk

∑

zi=k

xi, U
(k)
dk

= Ad (48)

is exactly the same with principle component analysis (PCA) for the top dk principle directions.. As a result, the sub-
space Sk given by S(Wk,µk) minimizes the total squared distance of data points and Sk within the k-th cluster (i.e.,
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∑
zi=k

d(xi, Sk)2). Note again that the distance d(xi, S(W k,µk)) only depends on µk and the orthogonal matrix U
(k)
d

associated with Wk. The eigenvalues of Wk do not affect the distance.

We have proved that given dk = d, the update rule given in Eq. (48) chooses Wk and µk that minimizes the total squared
distance for each instance. The update rule for dk given in Eq. (27) shows that we want to select the dimension d that
minimizes the sum of total squared distance and a linear penalty term s · d. This is consistent with the deterministic loss
function L shown in Eq. (31). So after updates of W, d and µ the loss function does not increase.

Next, we turn to the update of cluster assignments z. We want to prove that after each update of zi for some data point
xi the loss function does not increase. This part of analysis resembles the analysis of K-means and DP-means algorithm
(Kulis & Jordan, 2012). When we assign zi to an existing cluster it is clear the distance d(xi, Sk) does not increase and
neither does the total loss. When zi is assigned to a new cluster, we lose a d(xi, Sk) cost and gains a λ cost because of
creating a new cluster. This does not increase the total loss function L, however, by the definition of Qi(k) and the update
rule of zi shown in Eq. (23). Note that the new cluster will have a dimension of zero, so no extra penalty term is incurred.

C. Details of Hopkins-155 experiments
C.1. Some statistics of the Hopkins-155 dataset

Table 4 gives some statistics of the Hopkins-155 dataset, including the number of sequences (n), the number of points (P )
and the number of frames (F ) per sequence. In Table 4 the notation Check-2 refers to all checker board video sequences
that contain 2 motions.

Table 4. Some statistics of the Hopkins 155 dataset (Tron & Vidal, 2007)

Dataset n P F
Check-2 78 291 28
Check-3 26 437 28
Traffic-2 31 241 30
Traffic-3 7 332 31
Articul.-1 11 155 40
Articul.-2 2 122 31
All 155 vary vary

C.2. Detailed performance comparison

In Table 5 we provide detailed performance comparison for the DP-space algorithm and its competitors, including both the
mean and median classification error on each of the video sequence groups. Note that the results for EM-MPPCA-m are
only included for reference because they are not directly comparable with other performance results.

Table 5. Classification error (%) of several algorithms on the Hopkins 155 dataset

Check-2 Check-3 Traffic-2 Traffic-3 Articul.-2 Articul.-3 All
Mean Med. Mean Med. Mean Med. Mean Med. Mean Med. Mean Med. Mean Med.

GPCA (5) 6.09 1.03 31.95 32.93 1.41 0.00 19.83 19.55 2.88 0.00 16.85 16.85 10.34 2.54
GPCA (4N) 4.78 0.51 36.99 36.26 1.63 0.00 39.68 40.92 6.18 3.20 29.62 29.62 11.55 1.36
RANSAC (5) 6.52 1.75 25.78 26.00 2.55 0.21 12.83 11.45 7.25 2.64 21.38 21.38 9.76 3.21
ALC (5) 2.56 0.00 6.78 0.92 2.83 0.30 4.01 1.35 6.90 0.89 7.25 7.25 3.76 0.26
ALC (SP) 1.49 0.27 5.00 0.66 1.75 1.51 8.86 0.51 10.70 0.95 21.08 21.08 3.37 0.49
EM-MPPCA (5,a) 18.13 17.48 29.07 30.10 12.84 13.32 18.98 20.32 13.54 15.21 23.49 23.49 18.56 17.56
EM-MPPCA (4N,a) 24.85 24.75 37.01 38.07 18.46 18.15 29.03 26.04 12.90 14.11 32.11 32.11 24.88 23.44
DP-space (5) 2.13 0.48 9.86 7.26 0.53 0.20 4.31 2.57 3.79 1.90 1.75 1.75 3.32 0.53
DP-space (4N) 2.08 0.38 8.77 3.94 1.33 0.78 7.01 7.27 2.07 0.43 16.95 16.95 3.29 0.57
EM-MPPCA (5,m) 2.95 0.00 10.76 10.37 0.52 0.00 1.96 0.99 0.46 0.00 9.33 9.33 3.49 0.00
EM-MPPCA (4N,m) 6.56 3.55 19.35 19.96 0.81 0.00 12.03 9.39 0.18 0.00 16.14 16.14 7.28 1.09


