DP-space: Bayesian Nonparametric Subspace Clustering

A. Proof of Proposition 1

Proof. We only prove the proposition for g = 0. If g # 0, we could simply take the mappingx — € — pu, y >y — i
and complete the proof in a similar manner.

When W is full rank, it is well known that the projected vector y € S C R¥ has the following form:
y=WW' W) 'W'z = (U,U, ).
Next, note that
U,U, = Udiag(I;,0)U". (32)
Therefore,
lz — y[*=llz — (UsUy )z
=)z — Udiag(1,---,1,0,---,0)U " |
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B. Technical details of SVA analysis
B.1. Derivation of the update rule for =

For creating a new cluster, we use Laplace approximation to approximate the integration. We first write the conditional
distribution as

D

(2 = knew|X, p,a,b,7, @) =5 Zpo d|r) / (x| W, p, 0?)dpo(W, pld, p, a, b) z_: o(d|r)dJ, (33)
Subsequently, the scaled conditional distribution can be written as
ol
p(2i = kpew|X, p,a, b7, 0, B) = Edz:: o(d|r, B)Ja(B), 34)
where
Jd(ﬁ) :/p(mi|w7lj’a0276)dp0(w7u|d7p7a’abaﬁ)' (35)

Define 8, := (W, ) with W € RP*9 and

fd.ﬂ(ed) = 671 "p(mi‘wvuﬂazaﬂ)pO(WaI”da a, b»p76) (36)

Using Laplace’s approximation, we have (as § — o)

60) (19505000
5a(3) = [ exp(=p1ap(6a)0s = G Tus0) (\ o)l Ty 0(1)> , @7
where 04 = argming, fq,5(64). Note that ’
D )2
Jim fa(8a) = exp | —077 > [UT(@i—p)? | =exp (—d(‘"”af)) (38)

j=d+1

"Recall that lim, o f(z) = g(z) means limg o0 ﬁEQ =1
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As aresult, f;3(04) = 0 (taking p = @;) and
Jim Ju(8) = (2n/8)P D/ - g (a,), (39)

where g4(x;) only depends on d and ;. Therefore,

«
Jim p(zi = knew) = Jim - Z exp(—f'd + o(8)) = — exp(o(B)). (40)
B.2. Derivation of the update rule for 17},
Define
K (8)i= [ pXIW, 12,07 S)po(Wld. 0,5, 5)AW. o)
Then the (scaled) posterior distribution of d;, can be written as
1
p(dk|X7 zZ, 1, a, b7 T, ﬂ) = mpo(dk‘/n Bl)de (ﬁ) (42)
Next, define
deﬁ(w) = Bilp(X|W7 M, 2, 027 ﬂ)pO(W|dk7 a, ba 6) (43)

Using Laplace approximation, we have

Sy (—1/2
exp(—BFu, 5(W)) (|0%Fa, 5(W)
Kaq,(8) = /exp(—ﬁde,g(W))dW = (27 /B) kD[jik/2 3Wkgﬁva +o(1) |, (44)
where W is the minimizer of Fj;, 5(-). Note that for any full-rank W & RP %k
D T dr 1—1
. [U (.’Bi - l;
5151010 Fy, 3(W) =exp Z Lzi= Z L _ Z JT . (45)
j=dr+1 j=1
Taking [; — oo, it is then clear that
n D T 2
. . : (U (@i — )]
ﬁhﬁrrolo Fy, s(W)=exp | — 1%f Z - Z Tj (46)
i=1 j=d+1
. ~ d(wiaS(Wap’k:))Z
=exp (— Welﬂg,fxdk ; L=k - o2 : (47)

Here the second equation is due to the fact that d(-, S(W, u)) does not depend on eigenvalues of W, and hence optimiza-
tion over U is equivalent to optimization over W.

B.3. Proof of Theorem 1

Proof. We first prove that for each cluster k& € [K], after updating the subspace projection matrix Wy, (along with its

dimension dj) and the offset p,,, the loss function £ does not increase. When subspace dimension dj, = d is fixed, the
update rule

i UP =A 48

= Zk zi, Uy =Ag 48)

is exactly the same with principle component analysis (PCA) for the top dj, principle directions.. As a result, the sub-

space Sy given by S(Wy, p;,) minimizes the total squared distance of data points and Sy, within the k-th cluster (i.e.,
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> e A, Si)?). Note again that the distance d(x;, S(W, u;,)) only depends on g, and the orthogonal matrix Ugc)
associated with Wy,. The eigenvalues of W, do not affect the distance.

We have proved that given dj, = d, the update rule given in Eq. (48) chooses W, and p,, that minimizes the total squared
distance for each instance. The update rule for dj given in Eq. (27) shows that we want to select the dimension d that
minimizes the sum of total squared distance and a linear penalty term s - d. This is consistent with the deterministic loss
function £ shown in Eq. (31). So after updates of W, d and u the loss function does not increase.

Next, we turn to the update of cluster assignments z. We want to prove that after each update of z; for some data point
x; the loss function does not increase. This part of analysis resembles the analysis of K-means and DP-means algorithm
(Kulis & Jordan, 2012). When we assign z; to an existing cluster it is clear the distance d(x;, Sy;) does not increase and
neither does the total loss. When z; is assigned to a new cluster, we lose a d(x;, S;) cost and gains a A cost because of
creating a new cluster. This does not increase the total loss function £, however, by the definition of Q;(k) and the update
rule of z; shown in Eq. (23). Note that the new cluster will have a dimension of zero, so no extra penalty term is incurred.

O

C. Details of Hopkins-155 experiments
C.1. Some statistics of the Hopkins-155 dataset

Table 4 gives some statistics of the Hopkins-155 dataset, including the number of sequences (n), the number of points (P)
and the number of frames (F') per sequence. In Table 4 the notation Check-2 refers to all checker board video sequences
that contain 2 motions.

Table 4. Some statistics of the Hopkins 155 dataset (Tron & Vidal, 2007)

Dataset n P F
Check-2 78 291 28
Check-3 26 437 28
Traffic-2 31 241 30
Traffic-3 7 332 31
Articul.-1 11 155 40
Articul.-2 2 122 31
All 155 vary vary

C.2. Detailed performance comparison

In Table 5 we provide detailed performance comparison for the DP-space algorithm and its competitors, including both the
mean and median classification error on each of the video sequence groups. Note that the results for EM-MPPCA-m are
only included for reference because they are not directly comparable with other performance results.

Table 5. Classification error (%) of several algorithms on the Hopkins 155 dataset

Check-2 Check-3 Traffic-2 Traffic-3 Articul.-2 Articul.-3 All

Mean Med. Mean Med. Mean Med. Mean Med. Mean Med. Mean Med. Mean Med.
GPCA (5) 6.09 1.03 3195 3293 141 0.00 19.83 1955 2.88 0.00 1685 16.85 10.34 254
GPCA (4N) 4.78 0.51 36.99 36.26 1.63 0.00 39.68 4092 6.18 320 29.62 29.62 11.55 1.36
RANSAC (5) 6.52 1.75 2578 26.00 2.55 0.21 12.83 1145 17.25 2.64 2138 2138 976 3.21
ALC (5) 256  0.00 6.78 092 283 0.30  4.01 1.35 690 089 7.25 7.25 376 0.26
ALC (SP) 149 027 5.00 0.66 1.75 1.51 886 0,51 10.70 095 21.08 21.08 337 049
EM-MPPCA (5,a) 18.13 17.48 29.07 30.10 12.84 1332 1898 20.32 13.54 1521 2349 2349 18.56 17.56
EM-MPPCA (4N,a) 24.85 2475 37.01 38.07 18.46 18.15 29.03 26.04 1290 14.11 32.11 32.11 2488 23.44
DP-space (5) 2.13 0.48 9.86 726 053 020 4.31 2.57 3.79 1.90 1.75 1.75 332 053
DP-space (4N) 2.08 0.38 8.77 3.94 1.33  0.78 7.01 727 207 043 1695 1695 329 0.57

EM-MPPCA (5,m) 295 0.00 1076 1037 052 0.00 196 099 046 0.00 933 933 349 0.00
EM-MPPCA 4N,m) 6.56 3.55 1935 1996 0.81 0.00 1203 939 0.18 000 16.14 16.14 7.28 1.09




