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Abstract
We study the following generalized matrix rank
estimation problem: given an n × n matrix and
a constant c ≥ 0, estimate the number of eigen-
values that are greater than c. In the distributed
setting, the matrix of interest is the sum ofmma-
trices held by separate machines. We show that
any deterministic algorithm solving this problem
must communicate Ω(n2) bits, which is order-
equivalent to transmitting the whole matrix. In
contrast, we propose a randomized algorithm
that communicates only Õ(n) bits. The up-
per bound is matched by an Ω(n) lower bound
on the randomized communication complexity.
We demonstrate the practical effectiveness of the
proposed algorithm with some numerical experi-
ments.

1. Introduction
Given a parameter c ≥ 0, the generalized rank of an n× n
positive semi-definite matrix A corresponds to the num-
ber of eigenvalues that are larger than c. It is denoted
by rank(A, c), with the usual rank corresponding to the
special case c = 0. Estimating the generalized rank of
a matrix is useful for many applications. Many machine
learning algorithms require knowledge of the approximate
rank of the data matrix in order to set hyper-parameters.
In the context of large-scale principal component analy-
sis (PCA) (Eckart & Young, 1936; Jolliffe, 2005), it is
overly expensive to compute the full eigen-decomposition
before deciding when to truncate it. Thus, an important
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first step is to estimate the rank of the matrix of interest
in order to determine how many dimensions will be suf-
ficient to describe the data. The rank also provides use-
ful information for determining the tuning parameter of
robust PCA (Candès et al., 2011) and collaborative filter-
ing algorithms for personalized recommendation (Sarwar
et al., 2001; Rendle et al., 2009). In the context of nu-
merical linear algebra, a number of eigensolvers (Schofield
et al., 2012; Polizzi, 2009; Sakurai & Sugiura, 2003) for
large-scale scientific applications are based on divide-and-
conquer paradigms. It is a prerequisite of these algorithms
to know the approximate number of eigenvalues located in
a given interval. Estimating the generalized rank of a ma-
trix is also needed in the context of sampling-based meth-
ods for randomized numerical linear algebra (Halko et al.,
2011; Mahoney, 2011). For these methods, the rank of a
matrix determines the number of samples required for a de-
sired approximation accuracy.

Motivated by large-scale data analysis problems, in this pa-
per we study the generalized rank estimation problem in a
distributed setting, in which the matrix A can be decom-
posed as the the sum of m matrices

A :=

m∑
i=1

Ai, (1)

where each matrix Ai is stored on a separate machine i.
Thus, a distributed algorithm needs to communicate be-
tween m machines to perform the estimation. There are
other equivalent formulations of this problem. For exam-
ple, suppose that machine i has a design matrix Xi ∈
Rn×Ni and we want to determine the rank of the aggre-
gated design matrix

X := (X1, X2, . . . , Xm) ∈ Rn×N where N :=
∑m
i=1Ni.

Recall that the singular values of matrix X are equal to the
square root of the eigenvalues of the matrix XXT . If we
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define Ai := XiX
T
i , then equation (1) implies that

A =

m∑
i=1

Ai =

m∑
i=1

XiX
T
i = XXT .

Thus, determining the generalized rank of the matrix X
reduces to the problem of determining the rank of the ma-
trix A. In this paper, we focus on the formulation given by
equation (1).

The standard way of computing the generalized matrix
rank, or more generally of computing the number of eigen-
values within a given interval, is to exploit Sylvester’s law
of inertia (Golub & Van Loan, 2012). Concretely, if the
matrix A− cI admits the decomposition A− cI = LDLT ,
where L is unit lower triangular andD is diagonal, then the
number of eigenvalues of matrixA that are greater than c is
the same as the number of positive entries in the diagonal
of D. While this method yields an exact count, in the dis-
tributed setting it requires communicating the entire matrix
A. Due to bandwidth limitations and network delays, the
Θ(n2) communication cost is a significant bottleneck on
the algorithmic efficiency. For a matrix of rank r, the power
method (Golub & Van Loan, 2012) can be used to compute
the top r eigenvalues, which reduces the communication
cost to Θ(rn). However, this cost is still prohibitive for
moderate sizes of r. Recently, Napoli et al. (2013) stud-
ied a more efficient randomized approach for approximat-
ing the eigenvalue counts based on Chebyshev polynomial
approximation of high-pass filters. When applying this al-
gorithm to the distributed setting, the communication cost
is Θ(pn), where p is the degree of Chebyshev polynomials.
However, the authors note that polynomials of high degree
can be necessary.

In this paper, we study the communication complexity of
distributed algorithms for the problem of generalized rank
estimation, in both the deterministic and randomized set-
tings. We establish upper bounds by deriving practical,
communication-efficient algorithms, and we also establish
complexity-theoretic lower bounds. Our first main result
shows that no deterministic algorithm is efficient in terms
of communication. In particular, communicating Ω(n2)
bits is necessary for all deterministic algorithms to approxi-
mate the matrix rank with constant relative error. That such
algorithms cannot be viewed as efficient is due to the fact
that by communicating O(n2) bits, we are able to com-
pute all eigenvalues and the corresponding eigenvectors. In
contrast to the inefficiency of deterministic algorithms, we
propose a randomized algorithm that approximates matrix
rank by communicating Õ(n) bits. When the matrix is of
rank r, the relative approximation error is 1/

√
r. Under

the same relative error, we show that Ω(n) bits of com-
munication is necessary, establishing the optimality of our
algorithm. This is in contrast with the Ω(rn) communica-
tion complexity lower bound for randomized PCA (Kan-

nan et al., 2014). The difference shows that estimating the
eigenvalue count using a randomized algorithm is easier
than estimating the top r eigenpairs.

The research on communication complexity has a long
history, dating back to the seminal work of Yao (1979)
and Abelson (1980). Characterizing the communication
complexity of linear algebraic operations is a fundamen-
tal question. For the problem of rank testing, Chu and
Schnitger (1991; 1995) prove the Ω(n2) communication
complexity lower bound for deterministically testing the
singularity of integer-valued matrices. A successful al-
gorithm for this task is required to distinguish two types
of matrices—the singular matrices and the non-singular
matrices with arbitrarily small eigenvalues—a requirement
that is often too severe for practical applications. Luo and
Tsitsiklis (1993) prove an Ω(n2) lower bound for comput-
ing one entry of A−1, applicable to exact algorithms (with
no form of error allowed). In contrast, our deterministic
lower bound holds even if we force the non-zero eigenval-
ues to be bounded away from zero and allow for approxi-
mation errors, making it more widely applicable to the in-
exact algorithms used in practice. For randomized algo-
rithms, Sun et al. (2012) and Li et al. (2014) prove Ω(n2)
lower bounds for the problems of rank testing, computing
a matrix inverse, and solving a set of linear equations over
finite fields. To the best of our knowledge, it is not known
whether the same lower bounds hold for matrices in the real
field. In other related work, Clarkson and Woodruff (2009)
give an Ω(r2) space lower bound in the streaming model
for distinguishing between matrices of rank r and r − 1.
However, such a space lower bound in the streaming model
does not imply a communication complexity lower bound
in the two-way communication model studied in this paper.

2. Background and problem formulation
In this section, we begin with more details on the prob-
lem of estimating generalized matrix ranks, as well as some
background on communication complexity.

2.1. Generalized matrix rank

Given an n × n positive semidefinite matrix A, we use
σ1(A) ≥ σ2(A) ≥ · · · ≥ σn(A) ≥ 0 to denote its ordered
eigenvalues. For a given constant c ≥ 0, the generalized
rank of order c is given by

rank(A, c) =

n∑
k=1

I[σk(A) > c], (2)

where I[σk(A) > c] is a 0-1-valued indicator function for
the event that σk(A) is larger than c. Since rank(A, 0) is
equal to the usual rank of a matrix, we see the motivation
for using the generalized rank terminology. We assume that
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‖A‖2 = σ1(A) ≤ 1 so that the problem remains on a stan-
dardized scale.

In an m-machine distributed setting, the matrix A can be
decomposed as a sum A =

∑m
i=1Ai, where the n × n

matrix Ai is stored on machine i. We study distributed
protocols, to be specified more precisely in the following
section, in which each machine i performs local compu-
tation involving the matrix Ai, and the machines then ex-
change messages so to arrive at an estimate r̂(A) ∈ [n] :=
{0, . . . , n}. Our goal is to obtain an estimate that is close
to the rank of the matrix in the sense that

(1− δ)rank(A, c1) ≤ r̂(A) ≤ (1 + δ)rank(A, c2), (3)

where c1 > c2 ≥ 0 and δ ∈ [0, 1) are user-specified con-
stants. The parameter δ ∈ [0, 1) upper bounds the relative
error of the approximation. The purpose of assuming dif-
ferent thresholds c1 and c2 in bound (3) is to handle the
ambiguous case when the matrix A has many eigenvalues
smaller but very close to c1. If we were to set c1 = c2,
then any estimator r̂(A) would be strictly prohibited to
take these eigenvalues into account. However, since these
eigenvalues are so close to the threshold, distinguishing
them from other eigenvalues just above the threshold is ob-
viously difficult (but for an uninteresting reason). Setting
c1 > c2 allows us to expose the more fundamental sources
of difficulty in the problem of estimating generalized ma-
trix ranks.

2.2. Basics of communication complexity

To orient the reader, here we provide some very basic
background on communication complexity theory; see the
books (Lee & Shraibman, 2009; Kushilevitz & Nisan,
1997) for more details. The standard set-up in multi-
party communication complexity is as follows: suppose
that there are m players (equivalently, agents, machines,
etc.), and for i ∈ {1, . . . ,m}, player i holds an input string
xi. In the standard form of communication complexity, the
goal is to compute a joint function F (x1, . . . , xm) of all
m input strings with as little communication between ma-
chines as possible. In this paper, we analyze a communi-
cation scheme known as the public blackboard model, in
which each player can write messages on a common black-
board to be read by all other players. A distributed protocol
Π consists of a coordinated order in which players write
messages on the blackboard. Each message is constructed
from the player’s local input and the earlier messages on
the blackboard. At the end of the protocol, some player
outputs the value of F (x1, . . . , xm) based on the informa-
tion she collects through the process. The communication
cost of a given protocol Π, which we denote by C(Π), is the
maximum number of bits written on the blackboard given
an arbitrary input.

In a deterministic protocol, all messages must be determin-
istic functions of the local input and previous messages.
The deterministic communication complexity computing
function F , which we denote by D(F ), is defined by

D(F ) := min
{
C(Π) : Π is a deterministic protocol

that correctly computes F
}
. (4)

In other words, the quantity D(F ) is the communication
cost of the most efficient deterministic protocol.

A broader class of protocols are those that allow some form
of randomization. In the public randomness model, each
player has access to an infinite-length random string, and
their messages are constructed from the local input, the ear-
lier messages and the random string. Let Pε(F ) be the set
of randomized protocols that correctly compute the func-
tion F on any input with probability at least 1−ε. The ran-
domized communication complexity of computing function
F with failure probability ε is given by

Rε(F ) := min
{
C(Π) | Π ∈ Pε(F )

}
. (5)

In the current paper, we adopt the bulk of the framework
of communication complexity, but with one minor twist
in how we define “correctness” in computing the func-
tion. For our problem, each machine is a player, and the
ith player holds the matrix Ai. Our function of interest is
given by F (A1, . . . , Am) = rank(

∑m
i=1Ai). The public

blackboard setting corresponds to a broadcast-free model,
in which each machine can send messages to a master node,
then the master node broadcasts the messages to all other
machines without additional communication cost.

Let us now clarify the notion of “correctness” used in this
paper. In the standard communication model, a protocol Π
is said to correctly compute the function F if the output of
the protocol is exactly equal to F (A1, . . . , Am). In this pa-
per, we allow approximation errors in the computation, as
specified by the parameters (c1, c2), which loosen the ma-
trix rank to the generalized matrix ranks, and the tolerance
parameter δ ∈ (0, 1). More specifically, we say:

Definition 1. A protocol Π correctly computes the rank of
the matrix A up to tolerances (c1, c2, δ) if the output r̂(A)
satisfies inequality (3).

Given this definition of correctness, we denote the deter-
ministic communication complexity of the rank estimation
problem by D(c1, c2, δ), and the corresponding random-
ized communication complexity byRε(c1, c2, δ). The goal
of this paper is to study these two quantities, especially
their dependence on the dimension n of matrices.

In addition to allowing for approximation error, our
analysis—in contrast to most classical communication
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complexity—allows the input matrices {Ai}mi=1 to take real
values. However, doing so does not make the problem sub-
stantially harder. Indeed, in order to approximate the ma-
trices in elementwise `∞-norm up to τ rounding error, it
suffices to discretize each matrix entry using O(log(1/τ))
bits. As we discuss in more detail in the sequel, this type of
discretization has little effect on the communication com-
plexity.

3. Communication complexity of
deterministic algorithms

We begin by studying the communication complexity of
deterministic algorithms. Here our main result shows that
the trivial algorithm—the one in which each machine trans-
mits essentially its whole matrix—is optimal up to logarith-
mic factors. In the statement of the theorem, we assume
that the n-dimensional matrix A is known to have rank in
the interval1 [r, 2r] for some integer r ≤ n/4.

Theorem 1. For matrices A with rank in [r, 2r]:

(a) For all 0 ≤ c2 < c1 and δ ∈ (0, 1), we have

D(c1, c2, δ) = O
(
mrn log

(
mrn
c1−c2

))
.

(b) For two machines m = 2, constants 0 ≤ c2 < c1 <
1/20 and δ ∈ (0, 1/12), we have D(c1, c2, δ) =
Ω(rn).

When the matrix A has rank r that grows proportionally
with its dimension n, the lower bound in part (b) shows
that deterministic communication complexity is surpris-
ingly large: it scales as Θ(n2), which is as large as trans-
mitting the full matrices. Up to logarithmic factors, this
scaling is matched by the upper bound in part (a). It is
proved by analyzing an essentially trivial algorithm: for
each index i = 2, . . . ,m, machine i encodes a reduced
rank representation of the matrix Ai, representing each
matrix entry by log2

(
12mrn
c1−c2

)
bits. It sends this quan-

tized matrix Ãi to the first machine. Given these received
messages, the first machine then computes the matrix sum
Ã := A1 +

∑m
i=2 Ãi, and it outputs r̂(A) to be the largest

integer k such that σk(Ã) > (c1 + c2)/2.

Next, we provide a proof sketch for the lower bound. In
order to prove the lower bound, we consider a two-party
rank testing problem. Consider two agents holding ma-
trices A1 and A2, respectively, such that the matrix sum
A := A1 + A2 has operator norm at most one. Suppose
that exactly one of the two following conditions are known
to hold:

1We use an interval assumption, as the problem becomes triv-
ial if the rank is fixed exactly.

• the matrix A has rank r, or

• the matrix A has rank between 6r
5 and 2r, and in

addition its (6r/5)th eigenvalue is lower bounded as
σ 6r

5
(A) > 1

20 .

The goal is to decide which case is true by exchanging the
minimal number of bits between the two agents. Denoting
this problem by RankTest, the proof of part (a) proceeds
by showing that D(RankTest) = Ω(rn), and then re-
ducing from the RankTest problem to the matrix rank
estimation problem.

To show that D(RankTest) = Ω(rn), we construct a
set S of n × n matrices. We prove that there exist a con-
struction such that |S| = 2Ω(rn), and for any two matrices
A1, A2 ∈ S, the sum matrix A := A1 + A2 satisfies the
following property:

• If A1 = A2, then the matrix A has rank r.

• If A1 6= A2, then the matrix A has rank between
6r
5 and 2r, and in addition its (6r/5)th eigenvalue is

lower bounded as σ 6r
5

(A) > 1
20 .

It is well known that in the two-party communication
model, determining the equality of two element in a set
of cardinality 2Ω(rn) requires at least Ω(rn) bits of com-
munication. On the other hand, our construction reduces
the equality determination problem to the RankTest
problem, thus establishes the Ω(rn) lower bound for
RankTest. The rigorous proof of Theorem 1 is included
in the long version of this paper (Zhang et al., 2015).

It is worth noting that we cannot use the same argument to
prove an Ω(rn) lower bound for randomized algorithms.
Although the reduction argument also works for random-
ized algorithms, the randomized communication complex-
ity of determining the equality of two element in a set
of cardinality 2Ω(rn) is no longer Ω(rn). Instead, the
randomized communication complexity of that problem is
Θ(log(rn)). This fact suggests that the randomized algo-
rithm might be substantially more efficient than determinis-
tic algorithms. In the next section, we confirm this intuition
by presenting a communication-efficient randomized algo-
rithm for estimating the matrix rank, and provide a tight
lower bound for randomized algorithms.

4. Communication complexity of randomized
algorithms

We now turn to the study of randomized algorithms, for
which we see that the communication complexity is sub-
stantially lower. In Section 4.1, we propose a random-
ized algorithm with Õ(n) communication cost, and in Sec-
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Figure 1. An illustration of the function x 7→ Hc1,c2(x) with
c1 = 0.5 and c2 = 0.1.

tion 4.3, we establish a lower bound that matches this upper
bound in various regimes.

4.1. Upper bound via a practical algorithm

In this section, we present an algorithm based on uni-
form polynomial approximations for estimating the gen-
eralized matrix rank. Let us first provide some intuition
for the algorithm before defining it more precisely. For a
fixed pair of scalars c1 > c2 ≥ 0, consider the function
Hc1,c2 : R→ [0, 1] given by

Hc1,c2(x) :=


1 if x > c1

0 if x < c2
x−c2
c1−c2 otherwise.

(6)

As illustrated in Figure 1, it is a piecewise linear approx-
imation to a step function. The squared function H2

c1,c2
is useful in that it can be used to sandwich the general-
ized ranks of a matrix A. In particular, given a positive
semi-definite matrix A with ordered eigenvalues σ1(A) ≥
σ2(A) ≥ . . . ≥ σn(A) ≥ 0, observe that we have

rank(A, c1) ≤
n∑
i=1

H2
c1,c2(σi(A)) ≤ rank(A, c2). (7)

Our algorithm exploits this sandwich relation in estimating
the generalized rank.

In particular, suppose that we can find a polynomial func-
tion f : R → R such that f ≈ Hc1,c2 , and which is ex-
tended to a function on the cone of PSD matrices in the
standard way. Observe that if σ is an eigenvalue of A,
then the spectral mapping theorem (Bhatia, 1997) ensures
that f(σ) is an eigenvalue of f(A). Consequently, letting
g ∼ N(0, In×n) be a standard Gaussian vector, we have
the useful relation

E
[
‖f(A)g‖22

]
=

n∑
i=1

f2(σi(A)) ≈
n∑

i=1

H2
c1,c2(σi(A)). (8)

Combined with the sandwich relation (7), we see that a
polynomial approximation f to the function Hc1,c2 can be
used to estimate the generalized rank.

If f is a polynomial function of degree p, then the vec-
tor f(A)g can be computed through p rounds of commu-
nication. In more detail, in one round of communica-
tion, we can first compute the matrix-vector product Ag =∑m
i=1Aig. Given the vector Ag, a second round of com-

munication suffices to compute the quantity A2g. Iterating
a total of p times, the first machine is equipped with the
collection of vectors {g,Ag,A2g, . . . , Apg}, from which
it can compute f(A)g.

Let us now consider how to obtain a suitable polynomial
approximation of the function Hc1,c2 . The most natural
choice is a Chebyshev polynomial approximation of the
first kind: more precisely, since Hc1,c2 is a continuous
function with bounded variation, classical theory (Mason
& Handscomb, 2010, Theorem 5.7) guarantees that the
Chebyshev expansion converges uniformly to Hc1,c2 over
the interval [0, 1]. Consequently, we may assume that there
is a finite-degree Chebyshev polynomial q1 of the first kind
such that

sup
x∈[0,1]

|q1(x)−Hc1,c2(x)| ≤ 0.1. (9)

By increasing the degree of the Chebyshev polynomial, we
could reduce the approximation error (set to 0.1 in the ex-
pansion (9)) to an arbitrarily small level. However, a very
high degree could be necessary to obtain an arbitrary ac-
curacy. Instead, our strategy is to start with the Cheby-
shev polynomial q1 that guarantees the 0.1-approximation
error (9), and then construct a second polynomial q2 such
that the composite polynomial function f = q2 ◦ q1 has
an approximation error, when measured over the intervals
[0, c2] and [c1, 1] of interest, that converges linearly in the
degree of function f . More precisely, consider the polyno-
mial of degree 2p+ 1 given by

q2(x) =
1

B(p+ 1, p+ 1)

∫ x

0

tp(1− t)pdt (10)

where B(·, ·) is the Beta function.

Lemma 1. Consider the composite polynomial f(x) :=
q2(q1(x)), where the base polynomials q1 and q2 were pre-
viously defined in equations (9) and (10) respectively. Then
f(x) ∈ [0, 1] for all x ∈ [0, 1], and moreover

|f(x)−Hc1,c2(x)| ≤ 2−p for x ∈ [0, c2] ∪ [c1, 1]. (11)
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Figure 2. Comparison of the composite polynomial approximation in Algorithm 2 with the Chebyshev polynomial expansion. The error
is measured with the `∞-norm on the interval [0, c2] ∪ [c1, 1]. The composite polynomial approximation achieves a linear convergence
rate as the degree is increased, while the Chebyshev expansion converges at a much slower rate.

See Zhang et al. (2015) for the proof.

Figure 2 provides a comparison of the error in approximat-
ing Hc1,c2 for the standard Chebyshev polynomial and the
composite polynomial. In order to conduct a fair compar-
ison, we show the approximations obtained by Chebyshev
and composite polynomials of the same final degree, and
we evaluate the `∞-norm approximation error on interval
[0, c2] ∪ [c1, 1]—namely, for a given polynomial approxi-
mation h, the quantity

Error(h) := sup
x∈[0,c2]∪[c1,1]

|h(x)−Hc1,c2(x)|.

As shown in Figure 2 shows, the composite polynomial
function achieves a linear convergence rate with respect to
its degree. In contrast, the convergence rate of the Cheby-
shev expansion is sub-linear, and substantially slower than
that of the composite function. The comparison highlights
the advantage of our approach over the method only based
on Chebyshev expansions.

Given the composite polynomial f = q2 ◦ q1, we first eval-
uate the vector f(A)g in a two-stage procedure. In the
first stage, we evaluate q1(A)g, q2

1(A)g, . . ., q2p+1
1 (A)g

using the Clenshaw recurrence (Clenshaw, 1955), a pro-
cedure proven to be numerically stable (Mason & Hand-
scomb, 2010). The details are given in Algorithm 1. In the
second stage, we substitute the coefficients of q2 so as to
evaluate q2(q1(A))b. The overall procedure is summarized
in Algorithm 2.

The following result provides a theoretical guarantee for
the overall procedure (combination of Algorithm 1 and Al-
gorithm 2). Roughly speaking, if the degree p is chosen by
p = dlog2(2n)e, the function f will be sufficiently close to
the function Hc1,c2 . As a consequence, inequality (7) and

Algorithm 1 Evaluation of Chebyshev Polynomial
Input: m machines hold A1, A2, . . . , Am ∈ Rn×n; vec-
tor v ∈ Rd; Chebyshev polynomial expansion q(x) =
1
2a0T0(x) +

∑d
i=1 aiTi(x).

Output: matrix-vector product q(A)v.

1. Initialize vector bd+1 = bd+2 = 0 ∈ Rn.

2. For j = d, . . . , 1, 0: the first machine broadcasts bj+1

to all other machines. Machine i computes Aibj+1

and sends it back to the first machine. The first ma-
chine computes

bj :=
(

4

m∑
i=1

Aibj+1

)
− 2bj+1 − bj+2 + ajv.

3. Output 1
2 (a0v + b1 − b3);

equation (8) imply that ‖f(A)g‖22 provides a nearly unbi-
ased estimator to the generalized matrix rank.

Theorem 2. For any 0 ≤ δ < 1, with probability at least
1−2 exp

(
−Tδ

2rank(A,c1)
32

)
, the output of Algorithm 2 sat-

isfies the bounds

(1− δ)rank(A, c1)− 1 ≤ r̂(A)

≤ (1 + δ)(rank(A, c2) + 1). (12)

Moreover, we have the following upper bound on the ran-
domized communication complexity of estimating the gen-
eralized matrix rank.

Rε
(
c1, c2, 1/

√
rank(A, c1)

)
= Õ(mn). (13)
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Algorithm 2 Randomized Algorithm for Rank Estimation
Input: m machines hold matrices A1, A2, . . . , Am ∈
Rn×n. Tolerance parameters (c1, c2), polynomial degree
p, and number of repetitions T .

Output: rank estimate r̂(A).

1. [(a)]

Find a Chebyshev expansion q1 of the function
Hc1,c2 satisfying the uniform bound (9).

(a)(b) Define the degree 2p+ 1 polynomial function q2

by equation (10).

2. [(a)]

Generate random Gaussian vector
g ∼ N(0, In×n).

(a)(b) Apply Algorithm 1 to compute q1(A)g, and se-
quentially apply the same algorithm to compute
q2
1(A)g, . . . , q2p+1

1 (A)g.
(c) Evaluate the vector y := f(A)g = q2(q1(A))g

on the first machine.

3. Repeat Step 2 for T times, obtaining a collection of n-
vectors {y1, . . . , yT }, and output the estimate r̂(A) =
1
T

∑T
i=1 ‖yi‖22.

The rigorous proof of Theorem 2 is included in the long
version of this paper (Zhang et al., 2015).

We show in Section 4.3 that the upper bound (13) is unim-
provable up to the logarithmic pre-factors. For now, let
us turn to the results of some numerical experiments us-
ing Algorithm 2, which show that in addition to being an
order-optimal algorithm, it is also practically useful.

4.2. Numerical experiments

Given m = 2 machines, suppose that machine i (for
i = 1, 2) receives Ni = 1000 data points of dimension
n = 1000. Each data point x is independently generated as
x = a+ε, where a ∼ N(0, λΣ) and ε ∼ N(0, σ2In×n) are
random Gaussian vectors. Here Σ ∈ Rn×n is a low-rank
covariance matrix of the form Σ :=

∑r
i=1 uiu

T
i , where

{ui}ri=1 are an orthonormal set of vectors in Rn drawn uni-
formly at random. The goal is to estimate the rank r from
the observed N1 +N2 = 2000 data points.

Let us now describe how to estimate the rank using the
covariance matrix of the samples. Notice that E[xxT ] =
λ2Σ + σ2In×n, of which there are r eigenvalues equal to
λ+ σ2 and the remaining eigenvalues are equal to σ2. Let-
ting xi,j ∈ Rn denote the j-th data point received by ma-
chine i, that machine can compute the local sample covari-

ance matrix

Ai =
1

N1 +N2

Ni∑
j=1

xi,jx
T
i,j , for i = 1, 2.

The full sample covariance matrix is given by the sumA :=
A1 +A2, and its rank can be estimated using Algorithm 2.

In order to generate the data, we choose the parameters
r = 100, λ = 0.4 and σ2 = 0.1. These choices motivate
the thresholds c1 = λ + σ2 = 0.5 and c2 = σ2 = 0.1
in Algorithm 2. We illustrate the behavior of the algo-
rithm for three different choices of the degree parameter
p—specifically, p ∈ {0, 1, 5}—and for a range of repeti-
tions T ∈ {1, 2, . . . , 30}. Letting r̂(A) denote the out-
put of the algorithm, we evaluate the mean squared error,
E[(r̂(A) − r)2], based on 100 independent runs of the al-
gorithm.

We plot the results of this experiment in Figure 3. Panel (a)
shows the distribution of eigenvalues of the matrix A. In
this plot, there is a gap between the large eigenvalues gener-
ated by the low-rank covariance matrix Σ, and small eigen-
values generated by the random Gaussian noise, showing
that the problem is relatively easy to solve in the centralized
setting. Panel (b) shows the estimation error achieved by
the communication-efficient distributed algorithm; notice
how the estimation error stabilizes after T = 30 repetitions
or iterations. We compare our algorithm for p ∈ {0, 1, 5},
corresponding to polynomial approximations with degree
in {4, 12, 44}. For the case p = 0, the polynomial approx-
imation is implemented by the Chebyshev expansion. For
the case p = 1 and p = 5, the approximation is achieved
by the composite function f . As a baseline method, we
also implement Napoli et al.’s algorithm (2013) in the dis-
tributed setting. In particular, their method replaces the
function f in Algorithm 2 by a Chebyshev expansion of the
high-pass filter I(x ≥ c1+c2

2 ). It is observed that both the
Chebyshev expansion with p = 0 and the baseline method
incur a large bias in the rank estimate, while the composite
function’s estimation errors are substantially smaller. After
T = 30 iterations, Algorithm 2 with p = 1 achieves a mean
squared error close to 10, which means that the relative er-
ror of the estimation is around 3%.

4.3. Lower bound

It is natural to wonder if the communication efficiency of
Algorithm 2 is optimal. The following theorem shows that,
in order to achieve the same 1/

√
r relative error, it is neces-

sary to send Ω(n) bits. As in our upper bound, we assume
that the matrix A satisfies the spectral norm bound ‖A‖2 ≤
1. Given an arbirary integer r in the interval [16, n/4], sup-
pose that the generalized matrix ranks satisfy the sandwich
relation r ≤ rank(A, c1) ≤ rank(A, c2) ≤ 2r. Under
these conditions, we have the following guarantee:
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Figure 3. Panel (a): distribution of eigenvalues of matrix A. Panel (b): mean squared error of rank estimation versus the number
of iterations for the baseline method by Napoli et al. (Di Napoli et al., 2013), and three versions of Algorithm 2 (with parameters
p ∈ {0, 1, 5}).

Theorem 3. For any c1, c2 satisfying c1 < 2c2 ≤ 1 and
any ε ≤ ε0 for some numerical constant ε0, we have

Rε
(
c1, c2, 1/

√
r
)

= Ω(n). (14)

We prove Theorem 3 by reducing the 2-SUM problem
(Woodruff & Zhang, 2014) to the generalized rank esti-
mation problem. The former problem is known to have
Θ(n) randomized communication complexity. See Zhang
et al. (2015) for the rigorous proof of Theorem 3.

According to Theorem 3, for matrices with true rank in the
interval [16, n/2], the communication complexity for esti-
mating the rank with relative error 1/

√
r is lower bounded

by Ω(n). This lower bound matches the upper bound pro-
vided by Theorem 2. In particular, choosing r = 16 yields
the worst-case lower bound

Rε(c1, c2, 1/4) = Ω(n),

showing that Ω(n) bits of communication are necessary for
achieving a constant relative error. This lower bound is not
trivial relative to the coding length of the correct answer:
given that the matrix rank is known to be between r and
2r, this coding length scales only as Ω(log r).

There are several open problems suggested by the result
of Theorem 3. First, it would be interesting to strengthen
the lower bound (14) from Ω(n) to Ω(mn), incorporating
the natural scaling with the number of machines m. Do-
ing so requires a deeper investigation into the multi-party
structure of the problem. Another open problem is to lower
bound the communication complexity for arbitrary values
of the tolerance parameter δ, say as small as δ = 0. When

δ = 0, communicating O(mn2) bits is an obvious up-
per bound, and we are not currently aware of better upper
bounds. On the other hand, whether it is possible to prove
an Ω(n2) lower bound for small δ remains an open ques-
tion.

5. Conclusions
In this paper, we have studied the problem of estimating
the generalized rank of matrices. Our main results are to
show that in the deterministic setting, sending Θ(n2) bits is
both necessary and sufficient in order to obtain any constant
relative error. In contrast, when randomized algorithms are
allowed, this scaling is reduced to Θ̃(n).

There are many interesting open problems in the study of
distributed computing for linear algebraic functions. In
Section 4.3, we have proposed an open question asking
if there is a communication-efficient algorithm which es-
timates the matrix rank with tolerance parameter δ = 0.
In the long version of this paper (Zhang et al., 2015), we
have shown that if this question could be answered, then
we will be able to tightly bound the communication com-
plexity of a broad class of important problems, including
the matrix singularity test problem, the problem of solving
linear equations and the problem of convex optimization.
We view the conclusion of this paper as a step towards ex-
ploring this research direction.
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