Supplement to: Loss factorization, weakly supervised
learning and label noise robustness

A Proofs

A.1 Proof of Lemma 5

We need to show the double implication that defines sufficiency for y.

=) By Factorization Theorem (3), Rs ¢(h) — Rs' ¢(h) is label independent only if the odd part cancels out.
<) If pg = pyg then Rs ¢(h) — Rss ¢(h) is independent of the label, because the label only appears in the
mean operator due to Factorization Theorem (3).

A.2 Proof of Lemma 6

Consider the class of LOLs satisfying ¢(x) — ¢(—x) = 2ax. For any element of the class, define ¢.(z) =
¢(x) — ax, which is even. In fact we have

le(—z) =l(—2) 4+ ax = l(z) — 2ax + ax = l(x) — ax = L.(T) .

A.3 Proof of Theorem 7

We start by proving two helper Lemmas. The next one provides a bound to the Rademacher complexity
computed on the sample So, = {(x;,0),i € [m],Vo € Y}.

Lemma 1 Suppose m even. Suppose X = {x : ||x||a < X} be the observations space, and H = {0 : ||0]|2 <
B} be the space of linear hypotheses. Let Y?™ = x jel2m)d- Then the empirical Rademacher complexity
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Proof Suppose without loss of generality that z; = @, ;. The proof relies on the observation that Yo € Y™,

arg Sgﬁ){ {Es[o(x)(0,x)]} = QL arg sup {Z (0 a:)}
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Now, remark that whenever 0; = —0,,+, «; disappears in the sum, and therefore the max norm for the sum

may decrease as well. This suggests to split the 22™ assignations into 2™ groups of size 2", ranging over the
possible number of observations taken into account in the sum. They can be factored by a weighted sum of
contributions of each subset of indices J C [m] ranging over the non-duplicated observations:
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The /2 factor appears because of the fact that we now consider only the observations of 8. Now, for any fixed

J, we renumber its observations in [|J|] for simplicity, and observe that, since v/1 + 2 < 1 + /2,
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Plugging this in eq. (5) yields
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We get
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The second Lemma is a straightforward application of McDiarmid ’s inequality [McDiarmid, 1998] to evaluate
the convergence of the empirical mean operator to its population counterpart.

Lemma 2 Suppose R? D X = {x : ||z|l2 < X < oo} be the observations space. Then for any § > 0 with
probability at least 1 — ¢

d d
i — sl < X -1 L 10g (5) .

Proof Let 8 and 8’ be two learning samples that differ for only one example (x;,y;) # (@i, yir). Let first
consider the one-dimensional case. We refer to the k-dimensional component of g with . For any 8,8’ and
any k € [d] it holds
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This satisfies the bounded difference condition of McDiarmid’s inequality, which let us write for any k& € [d]
and any € > 0 that

2
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and the multi-dimensional case, by union bound
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Then by negation
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which implies that for any § > 0 with probability 1 — §
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This concludes the proof. |

‘We now restate and prove Theorem 7.

Theorem 7 Assume { is a-LOL and L-Lipschitz. Suppose R? O X = {x : ||z < X < oo} be the
observations space, and H = {0 : ||0]]2 < B < oo} be the space of linear hypotheses. Let ¢(X,B) =
maxycy {(yX B). Let @ = argmingcqc Rs ¢(0). Then for any 6 > 0, with probability at least 1 — &
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Proof Let 0* = argming 4 Rp ¢(6). We have

o 1 A 1
Rop.¢(8) = Rpe(67) = 5 R, 0(0) +a(f, pp) — 3 B2, 0(07) — a(07, o) 1)
1 N
= 5 (B2, 0(0) = Ry, 1(67)) +a(0 — 6%, i)
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+ 5 (R0ar 0(0) = R, (0) = Ripa, 1(6%) + Rspp n(69) JA1 . (22)

Step 21 is obtained by the equality Rp ¢(6) = 2 Rop,, ¢(0) + a(0, pp) for any 6. Now, rename Line 22 as
Aj. Applying the same equality with regard to S, we have

Rp ¢(0) — Rp 4(6%) < Rs 4(0) — Rs ¢(0%) +alb — 0", pup — ps) +A; .

A2 AS

Now, Aj is never more than 0 because  is the minimizer of Rs ¢(0). From the Cauchy-Schwarz inequality
and bounded models it holds true that

A3 < af Hé -

o, <1,

We could treat A; by calling standard bounds based on Rademacher complexity on a sample with size 2m
[Bartlett and Mendelson, 2002]. Indeed, since the complexity does not depend on labels, its value would be
the same —modulo the change of sample size— for both § and 85, as they are computed with same loss and
observations. However, the special structure of 85, allows us to obtain a tighter structural complexity term, due
to some cancellation effect. The fact is proven by Lemma 1. In order to exploit it, we first observe that
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0cH



which by standard arguments [Bartlett and Mendelson, 2002] and the application of Lemma 1 gives a bound
with probability at least 1 — §, 6 > 0
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where ¢(X, B) = maxycy {(yXB) and because  + 31/3 — L < (‘/\5/%1> , Ym > 0. We combine the
results and get with probability at least 1 — J, § > O that
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This proves the first part of the statement. For the second one, we apply Lemma 2 that provides the probabilistic
bound for the norm discrepancy of the mean operators. Consider that both statements are true with probability
at least 1 — §/2. We write

P< {%,Aé) R (67) < (ﬁ; 1) - ng g B L, (ﬁ) +2lalB - [l - st}
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and therefore with probability 1 — §

R (6) = Rop,0(6”) < <\/§2+ 1) : )f/l;f + C(XéB)L : m-F 2la|X B - \/m .

A.4 Unbiased estimator for the mean operator with asymmetric label noise

Natarajan et al. [2013, Lemma 1] provides an unbiased estimator for a loss ¢(z) computed on z of the form:

i(y(0, @) = L= P=v) 'E(iej.ff)f - U={8,2:))

We apply it for estimating the mean operator instead of, from another perspective, for estimating a linear
(unhinged) loss as in van Rooyen et al. [2015]. We are allowed to do so by the very result of the Factorization
Theorem, since the noise corruption has effect on the linear-odd term of the loss only. The estimator of the
sufficient statistic of a single example yx is
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and its average, i.e. the mean operator estimator, is

. —(p= +
s = Es [yl(pm)w]
—P- — P+

such that in expectation over the noisy distribution it holds E4[2] = pup. Moreover, the corresponding risk
enjoys the same unbiasedness property. In fact

Rp o(0) = = R, 1(6) + g, [al6, 2)]

= - Rp,, «(0) +a(0, 15) (25)

where we have also used the independency on labels (and therefore of label noise) of R, ¢.

A.5 Proof of Theorem 8

This Theorem is a version of Theorem 7 applied to the case of asymmetric label noise. Those results differ in
three elements. First, we consider the generalization property of a minimizer 6 that is learnt on the corrupted
sample 8. Second, the minimizer is computed on the basis of the unbiased estimator of fi5 and not barely 3.
Third, as a consequence, Lemma 2 is not valid in this scenario. Therefore, we first prove a version of the bound
for the mean operator norm discrepancy while considering label noise.

Lemma 3 Suppose RY D X = {x : ||x||y < X < oo} be the observations space. Let § is a learning sample
affected by asymmetric label noise with noise rates (p4,p—) € [0,1/2). Then for any § > 0 with probability

at least 1 — §
| <L ilo é
27 1—p_—py m e\s) "

Proof Let S and 8’ be two learning samples from the corrupted distribution D that differ for only one example
(x4, 7:) # (i, §ir). Let first consider the one-dimensional case. We refer to the k-dimensional component of
p with . For any 8, 8’ and any k € [d] it holds
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and the multi-dimensional case, by union bound

2

. R me
P (3k € [d] : |[afy — ] > €) < dexp (—(1—p_ —p+)22X2>

Then by negation

2
P (Vk € [d] : |;lfj’3— | <€) >1—dexp <—(1—p_—p+)2;n;2) ,

which implies that for any § > 0 with probability 1 — ¢

X 2 d

oo 0w () = o — sl = 4 asn — sl
(1—p-—py) 0 ?

This concludes the proof. |

The proof of Theorem 8 follows the structure of Theorem 7’s and elements of Natarajan et al. [2013, Theorem
3]’s. Let @ = argmingc g RD ((0) and 0* = argming. 4 Rp ¢(0). We have

Ry (0) — Rp +(0%) = Ry, ,(0) — Ry, ,(6) (26)
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Step 26 is due to unbiasedness shown in Section A.4. Again, rename Line 27 as A;, which this time is bounded
directly by Theorem 7. Next, we proceed as within the proof of Theorem 7 but now exploiting the fact that

1 Rs,, 1(0) = Rg ,(0) — a6, jrs)

Ry ¢(6) — Rp +(0%) < Rg ,(6) — R ,(6*) +a(b — 6%, fuj, — fug) +A; .

Ay As

Now, A, is never more than 0 because 6 is the minimizer of I%g ,(8). From the Cauchy-Schwarz inequality
and bounded models it holds true that

A3 < af Hé — 0

ol = s, < 2pl s — s @

for which we can call Lemma 3. Finally, by a union bound we get that for any § > 0 with probability 1 —
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A.6 Proof of Theorem 10

We now restate and prove Theorem 8. The reader might question the bound for the fact that the quantity on
the right-hand side can change by rescaling g by X, i.e. the max Lo norm of observations in the space X.
Although, such transformation would affect ¢-risks on the left-hand side as well, balancing the effect. With this




in mind, we formulate the result without making explicit dependency on X.

Theorem 10 Assume {6 € K : ||0||s < B}. Let (6*,6*) respectively the minimizers of (Rp(0), R ,(0))
in 3. Then every a-LOL is e-ALN. That is

Ry, ,(0%) = R, ,(6%) < 4la|Bmax(p—,py) - |po> -

Moreover: ~
1. If ||po||2 = 0 for D then every LOL is ALN for any D. .
2. Suppose that { is also once differentiable and ~-strongly convex. Then ||0* — 0*||3 < 2¢/~ .

Proof The proof draws ideas from Manwani and Sastry [2013]. Let us first assume the noise to be symmetric,
i.e. py = p_ = p. For any 6 we have

Ry (07) = Ry, ,(0) = (1 = p) (R (07) — R 0(6))

+p(Rpe(0%) — Rp ¢(0) + 2a(0" — 6, up)) (29)
< (Rp,¢(6*) — Rp ¢(0)) + 4la| Bp||po |2 (30)
< 4la|Bp|lppll2 - (31

We are working with LOLs, which are such that ¢(x) = ¢(—z) + 2ax and therefore we can take Step 29. Step
30 follows from Cauchy-Schwartz inequality and bounded models. Step 31 is true because 8* is the minimizer
of Rp ¢(@). We have obtained a bound for any 6 and so for the supremum with regard to 6. Therefore:

sup (Ry (6%) = Rp (8)) = Ry ,(6%) — R, 1(6) .
0cIH

To lift the discussion to asymmetric label noise, risks have to be split into losses for negative and positive
examples. Let Rp+ , be the risk computed over the distribution of the positive examples D and Ry~ , the
one of the negatives, and denote the mean operators pp+, ftp— accordingly. Also, define the probability of
positive and negative labels in D as 71 = P(y = £1). The same manipulations for the symmetric case let us
write

R (6") — Ry, ((8) =7 (Rp- ¢(6") — Rp— (8)) + 74 (Rp+ (8) — R+ 4(6))
+2ap_m_(0" — 0, pp-) + 2ap; (0" — 0, pp+)
< (Rp(0”) — Rp(0)) +2a(0" — 0, p_pp- + pipp+)
<4la|B - [lp-T-pp- +pimipp+|2
< 4fa|Bmax(p—, p1) - [|7-pp- + 7 pp+ |2
= 4|a|Bmax(p—,p+) - [|punl2 -

Then, we conclude the proof by the same argument for the symmetric case. The first corollary is immediate.
For the second, we first recall the definition of a function f strongly convex.

Definition 4 A differentiable function f(x) is y-strongly convex if for all x,x’ € Dom(f) we have
Y 2
fo) — 1) > (V) x— ')+ L= o]

If ¢ is differentiable once and ~y-strongly convex in the 8 argument, so it the risk 5 , by composition with



linear functions. Notice also that V R, Z(ON*) = 0 because 6* is the minimizer. Therefore:

€= R@,e(e*) - Ri),z(é*)
2

~ ~ "y ~
> - * * _ po* 7) * _ po*
> (VR ,(6%),0" = 6" )+ |lo* = 6"
- 12
> 2o -e|
2 2
which means that
. A2 2€
‘0 e <=,
2 Y

A.7 Proof of Lemma 11

Covs[z,y] = Esyx] — Es[y|Es[z]

—ps— | = S 1L 3 1) Bl

i:y; >0 m 1:y; <0
=ps — (2my — 1) Eg[x] .

The second statement follows immediately.

B Factorization of non linear-odd losses

When /,, is not linear, we can find upperbounds in the form of affine functions. It suffices to be continuous and
have asymptotes at -oc.

Lemma 5 Let the loss { be continuous. Suppose that it has asymptotes at 00, i.e. there exist ¢1,co € R and
dy,ds € R such that

lim #(x) —cz—dy =0, m {(z)—cox —dy =0

li
T—+00 T——00
then there exists q € R such that l,(z) < 942z +q .
Proof One can compute the limits at infinity of ¢, to get

c1+ e dy —do
Tr =

lim ¢,(x) —
r—1>r—&{loo (Jj) 2 2
and b —d
. c1+C2 2 — a1
lim 4,(x) — = .
imfo(@) 5 ¢ 2
Then g = sup{/,(z) — 952z} < +00 as £, is continuous. Thus £, (z) — <22 < g. [ |

The Lemma covers many cases of practical interest outside the class of LOLs, e.g. hinge, absolute and Huber
losses. Exponential loss is the exception since ¢,(x) = —sinh(z) cannot be bounded. Consider now hinge loss:

10



¢(x) = [1 — z]4 is not differentiable in 1 nor proper [Reid and Williamson, 2010], however it is continuous
with asymptotes at +co. Therefore, for any 6 its empirical risk is bounded as

1 1
RS,hinge(O) § iRSQZ,hinge(a) - §<03 H) + q,

since ¢c; = 0 and co = 1. An alternative proof of this result on hinge is provided next, giving the exact value of
g = 1/2. The odd term for hinge loss is

lo(w) = 5 (1 —aly — L +2l4)

> = N =

—(2z+|1—z|—1+2|)
due to an arithmetic trick for the max function: max(a,b) = (a +b)/2 + |b — a|/2. Then for any x

11—z <|z|+1,
[1+z| > |z| -1

and therefore

1 1
lo(z) < Z(—2x+ |z +1—|z|+1)= 5(1 —1) .

We also provide a “if-and-only-if” version of Lemma 5 fully characterizing which family of losses can be
upperbounded by a LOL.

Lemma 6 Letl: R — R a continuous function. Then there exists c1,dy,ds € R such that

limsup 4,(x) — iz —dy =0 (32)
T ——+00
and
limsup¥,(z) —c1z —da =0, (33)
Tr—r—00

if and only if there exists q,q" € R such that £,(x) < ¢’z + q for every z € R.
Proof =) Suppose that such limits exist and they are zero for some ¢y, dy, ds. Let prove that ¢, is bounded

from above by a line.

q=sup {lo(x) — 12} < 00 ,
rzeR

because /¢, is continuous. So for every x € R
ly(z) <crxz+q .

In particular we can take c; as the angular coefficient of the line.

<) Vice versa we proceed by contradiction. Suppose that there exists ¢, ¢’ € R such that ¢, is bounded from
above by ¢(x) = ¢’x + ¢. Suppose in addition that the conditions on the asymptotes (32) and (33) are false.
This implies either the existence of a sequence z,, — +00 such that

lim 4y(z,) — ¢'wp — 00 |

n—o0

or the existence of another sequence x], — —co

lim 4,(y,) — ¢z, — 400 .

n— oo

11



On one hand, if at least one of these two limits is +o0o then we already reach a contradiction, because ¢, (z) is
supposed to be bounded from above by ¢(x) = ¢’x + . Suppose on the other hand that x,, — +o00 is such that

lim {,(x,) — ¢'xpy — —00 .

n—-+oo
Then defining 2/, = —x,, we have
lim 4, (w,) —mx), — +oo ,
n—-+o0o
and for the same reason as above we reach a contradiction. |

C Factorization of square loss for regression

We have formulated the Factorization Theorem for classification problems. However, a similar property holds
for regression with square loss: f((8,x;),y) = ({8, z;) — y;)? factors as

Es[((8,z) —y)*] = Es [(6,2)?] + Es [y°] —2(0, ) .
Taking the minimizers on both sides we obtain

arg;nin]Eg [f({(0,2),y)] = argéninEg [(6,x)%] —2(0, p)

= argmin || X " 0|2 — 2(0, ) .
0

D The role of LOLSs in du Plessis et al. [2015]

Let 7y = P(y = 1) and let D and D_ respectively the set of positive and negative examples in D. Consider
first

E(z,)~o [((—(0,2))] = 71 Ez,)nn, [((—(0, )] + (1 = 74 )E@ )un [((—(0,x))] (34)
Then, it is also true that
E(,y)~n [((y(0, )] = 71 Eg y)~n, [((y(0, )] + (1 — 71 )Em y)n_ [((y(0,))] 35)

Now, solve Equation 34 for (1 — 74 )E 5 o _ [((y(0,2))] = (1 = 74 )E(z y)~o_ [4(—(0,))] and substi-
tute it into Equation 35 so as to obtain:

E(e )~ (Y0, )] = 11 B pyon, [E(y(0, )] + E(m D (=0, )] — T B(g, ), [((—(0,x))]

=74 (E@y~n, [((+H0,2)] = E yun, [U(—(0,2))]) + Egm o [((—(6, )]
7r
= S5 E@y~n lo(+(0,2))] + By [((—(0,2))] (36)
by our usual definition of ¢,(z) = % (¢(x) — ¢(—x)). Recall that one of the goals of the authors is to conserve

the convexity of this new crafted loss function. Then, du Plessis et al. [2015, Theorem 1] proceeds stating that
when £, is convex, it must also be linear. And therefore they must focus on LOLs. The result of du Plessis et al.
[2015, Theorem 1] is immediate from the point of view of our theory: in fact, an odd function can be convex
or concave only if it also linear. The resulting expression based on the fact ¢(x) — ¢(—z) = 2ax simplifies into

Bz g~ [((9(0,2))] = 0m4 B gy om  [3(6,2)] + By [((—(0, 2))]
=amypp, +Eg yon [((—(0,2))] .

where pp, is a mean operator computed on positive examples only. Notice how the second term is instead
label independent, although it is not an even function as in the Factorization Theorem.
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E Additional examples of loss factorization

’ ‘ loss even function £, odd function [,
generic {(z) 2 (0(x) + (—x)) 2 (0(x) — U(—x))
01 1{z <0} 1—{z #0} — 3 sign(x)
exponential | e~ * cosh(z) — sinh(z)
hinge | [1— 7). I —a], — [ —aly) | S —al, — [ +a)
LOL 4(x) 2 (l(x) + U(—x)) —azx
p-loss plz| —px +1 plz| +1 —pz (p>0)
unhinged 1—2z 1 —x
perceptron | max(0, —x) x sign(x) —x
2-hinge max(—z,1/2max(0,1 — x)) Tt —x
SPL a + (=) /by ar + g (I*(2) + 1* (1)) —z/(2by)
logistic log(1+e™ %) 1log(2+€” +e7%) —x/2
square (1—-x)2 1+ 22 —2z
Matsushita | 1+ 22 — V1+ a2 —x

Table 1: Factorization of losses in light of Theorem 12. TThe odd term of hinge loss is upperbounded by

(1 —2)/2inB. T = max(—=,1/2max(0,1 — z)) + max(z, 1/2max(0, 1 + x)).
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— Vi+al-z
1 4 — L(2)
—_ lo(x)
0] 2
—_— L
-1 —_— () O Femmmmmmm e
G
—2 —2
—2 —1 0 1 2 —2 —1 0 1 2
(a) O-1 loss (b) Matsushita loss

(c) p-loss, p=1 (d) Huber loss
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