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Abstract
We present an algorithm that achieves almost optimal pseudo-regret bounds against adversarial and
stochastic bandits. Against adversarial bandits the pseudo-regret is O

(
K
√
n log n

)
and against

stochastic bandits the pseudo-regret is O (
∑

i(log n)/∆i). We also show that no algorithm with
O (log n) pseudo-regret against stochastic bandits can achieve Õ (

√
n) expected regret against

adaptive adversarial bandits. This complements previous results of Bubeck and Slivkins (2012)
that show Õ (

√
n) expected adversarial regret with O

(
(log n)2

)
stochastic pseudo-regret.

1. Introduction

We consider the multi-armed bandit problem, which is the most basic example of a sequential
decision problem with an exploration-exploitation trade-off. In each time step t = 1, 2, . . . , n, the
player has to play an arm It ∈ {1, . . . ,K} from this fixed finite set and receives reward xIt(t) ∈
[0, 1] depending on its choice1. The player observes only the reward of the chosen arm, but not
the rewards of the other arms xi(t), i 6= It. The player’s goal is to maximize its total reward∑n

t=1 xIt(t), and this total reward is compared to the best total reward of a single arm,
∑n

t=1 xi(t).
To identify the best arm the player needs to explore all arms by playing them, but it also needs to
limit this exploration to often play the best arm. The optimal amount of exploration constitutes the
exploration-exploitation trade-off.

Different assumptions on how the rewards xi(t) are generated have led to different approaches
and algorithms for the multi-armed bandit problem. In the original formulation (Robbins, 1952) it
is assumed that the rewards are generated independently at random, governed by fixed but unknown
probability distributions with means µi for each arm i = 1, . . . ,K. This type of bandit problem
is called stochastic. The other type of bandit problem that we consider in this paper is called non-
stochastic or adversarial (Auer et al., 2002b). Here the rewards may be selected arbitrarily by
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1. We assume that the player knows the total number of time steps n.
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an adversary and the player should still perform well for any selection of rewards. An extensive
overview of multi-armed bandit problems is given in (Bubeck and Cesa-Bianchi, 2012).

A central notion for the analysis of stochastic and adversarial bandit problems is the regretR(n),
the difference between the total reward of the best arm and the total reward of the player:

R(n) = max
1≤i≤K

n∑
t=1

xi(t)−
n∑
t=1

xIt(t).

Since the player does not know the best arm beforehand and needs to do exploration, we expect
that the total reward of the player is less than the total reward of the best arm. Thus the regret
is a measure for the cost of not knowing the best arm. In the analysis of bandit problems we are
interested in high probability bounds on the regret or in bounds on the expected regret. Often it is
more convenient, though, to analyze the pseudo-regret

R(n) = max
1≤i≤K

E

[
n∑
t=1

xi(t)−
n∑
t=1

xIt(t)

]

instead of the expected regret

E [R(n)] = E

[
max

1≤i≤K

n∑
t=1

xi(t)−
n∑
t=1

xIt(t)

]
.

While the notion of pseudo-regret is weaker than the expected regret with R(n) ≤ E [R(n)],
bounds on the pseudo-regret imply bounds on the expected regret for adversarial bandit problems
with oblivious rewards xi(t) selected independently from the player’s choices. The pseudo-regret
also allows for refined bounds in stochastic bandit problems.

1.1. Previous results

For adversarial bandit problems, algorithms with high probability bounds on the regret are
known (Bubeck and Cesa-Bianchi, 2012, Theorem 3.3): with probability 1− δ,

Radv(n) = O
(√

n log(1/δ)
)
.

For stochastic bandit problems, several algorithms achieve logarithmic bounds on the pseudo-regret,
e.g. Auer et al. (2002a):

Rsto(n) = O (log n) .

Both of these bounds are known to be best possible.
While the result for adversarial bandits is a worst-case — and thus possibly pessimistic — bound

that holds for any sequence of rewards, the strong assumptions for stochastic bandits may sometimes
be unjustified. Therefore an algorithm that can adapt to the actual difficulty of the problem is of great
interest. The first such result was obtained by Bubeck and Slivkins (2012), who developed the SAO
algorithm that with probability 1− δ achieves

Radv(n) ≤ O
(

(log n)
√
n log(n/δ)

)
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regret for adversarial bandits and

Rsto(n) = O
(
(log n)2

)
pseudo-regret for stochastic bandits.

It has remained as an open question if a stochastic pseudo-regret of order O
(
(log n)2

)
is nec-

essary or if the optimal O (log n) pseudo-regret can be achieved while maintaining an adversarial
regret of order

√
n.

1.2. Summary of new results

We give a twofold answer to this open question. We show that stochastic pseudo-regret of order
O
(
(log n)2

)
is necessary for a player to achieve high probability adversarial regret of order

√
n

against an oblivious adversary, and to even achieve expected regret of order
√
n against an adap-

tive adversary. But we also show that a player can achieve O (log n) stochastic pseudo-regret and
Õ (
√
n) adversarial pseudo-regret at the same time. This gives, together with the results of (Bubeck

and Slivkins, 2012), a quite complete characterization of algorithms that perform well both for
stochastic and adversarial bandit problems.

More precisely, for any player with stochastic pseudo-regret bound of order O
(
(log n)β

)
, β <

2, and any ε > 0, α < 1, there is an adversarial bandit problem for which the player suffers Ω(nα)
regret with probability Ω(n−ε). Furthermore, there is an adaptive adversary against which the player
suffers Ω(nα) expected regret. Secondly, we construct an algorithm with

Rsto(n) = O (log n)

and
Radv(n) = O

(√
n log n

)
.

At first glance these two results may appear contradictory for α− ε > 1/2, as the lower bound
seems to suggest a pseudo-regret of Ω(nα−ε). This is not the case, though, since the regret may also
be negative. Indeed, consider an adversarial multi-armed bandit that initially gives higher rewards
for one arm, and from some time step on gives higher rewards for a second arm. A player that
detects this change and initially plays the first arm and later the second arm, may outperform both
arms and achieve negative regret. But if the player misses the change and keeps playing the first
arm, it may suffer large regret against the second arm.

In our analysis we use both mechanisms. For the lower bound on the pseudo-regret we show
that a player with little exploration (which is necessary for small stochastic pseudo-regret) will miss
such a change with significant probability and then will suffer large regret. For the upper bound we
explicitly compensate possible large regret that occurs with small probability by negative regret that
occurs with sufficiently large probability. For the lower bound on the expected regret we construct
an adaptive adversary that prevents such negative regret. Consequently, our results exhibit one of the
rare cases where there is a significant gap between the achievable pseudo-regret and the achievable
expected regret.

2. Statement of results

We consider multi-armed bandit problems with rewards xi(t) ∈ [0, 1] with arms i = 1, . . . ,K and
time steps t = 1, . . . , n. We assume that the number of time steps n is known to the player.

3
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In stochastic multi-armed bandit problems the rewards are generated independently at random
with a fixed average reward µi = E [xi(t)] for each arm i. An important quantity is the gap ∆i =
µ∗ − µi which is the distance to the optimal average reward µ∗ = maxi µi. The goal of the
player is to achieve low pseudo-regret which for a stochastic bandit problem can be written as
Rsto(n) =

∑K
i=1 ∆iE [Ti(n)], where Ti(n) is the total number of plays of arm i.

In adversarial bandit problems the rewards are selected by an adversary. If this is done before
the player interacts with the environment, then the adversary is called oblivious. If the selection of
rewards xi(t), 1 ≤ i ≤ K, depends on the player’s previous choices, then the adversary is called
adaptive.

Theorem 1 Let α < 1, ε > 0, β < 2, and C > 0. Consider a player that achieves pseudo-regret

Rsto(n) ≤ C(log n)β

for any stochastic bandit problem with two arms and gap ∆ = 1/8. Then for large enough n there
is an adversarial bandit problem with two arms and an oblivious adversary such that the player
suffers regret

Robl(n) ≥ nα/8− 4
√
n log n

with probability at least 1/(16nε) − 2/n2. Furthermore, there is an adversarial bandit problem
with two arms and an adaptive adversary such that the player suffers expected regret

E [Rada(n)] ≥ nα−ε

128
− 3
√
n log n.

Theorem 2 There are constants Csto and Cadv, such that for large enough n and any δ > 0, our
SAPO algorithm (Stochastic and Adversarial Pseudo-Optimal) achieves the following bounds on
the pseudo-regret:

• For stochastic bandit problems with gaps ∆i such that
∑

i:∆i>0
log(n/δ)

∆i
≤
√
nK log(n/δ),

Ti(n) ≤ Csto
log(n/δ)

∆2
i

with probability 1− δ for any arm i with ∆i > 0, and thus

Rsto(n) ≤ Csto

∑
i:∆i>0

log(n/δ)

∆i
+ δn.

• For adversarial bandit problems

Rada(n) ≤ CadvK
√
n log(n/δ) + δn.

Our bound for stochastic bandits is optimal up to a constant. The linear dependency on K of
our bound for adversarial bandits is an artifact of our current analysis and can be improved to
O
(√

nK log(n/δ)
)

. This bound is optimal up to a factor
√

log n.
Our SAPO algorithm follows the general strategy of the SAO algorithm (Bubeck and Slivkins,

2012) by essentially employing an algorithm for stochastic bandit problems that is equipped with

4



NEARLY OPTIMAL PSEUDO-REGRET FOR STOCHASTIC AND ADVERSARIAL BANDITS

additional tests to detect non-stochastic arms. A different approach is taken in (Seldin and Slivkins,
2014): here the starting point is an algorithm for adversarial bandit problems that is modified by
adding an additional exploration parameter to achieve also low pseudo-regret in stochastic bandit
problems. While this approach has not yet allowed for the tight O (log n) regret bound in stochastic
bandit problems (they achieve aO

(
log3 n

)
bound), the approach is quite flexible and more generally

applicable than the SAO and SAPO algorithms.
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