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Aurélien Garivier AURELIEN.GARIVIER@MATH.UNIV-TOULOUSE.FR
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Abstract
We study an original problem of pure exploration in a strategic bandit model motivated by Monte Carlo
Tree Search. It consists in identifying the best action in a game, when the player may sample random
outcomes of sequentially chosen pairs of actions. We propose two strategies for the fixed-confidence
setting: Maximin-LUCB, based on lower- and upper- confidence bounds; and Maximin-Racing, which
operates by successively eliminating the sub-optimal actions. We discuss the sample complexity of both
methods and compare their performance empirically. We sketch a lower bound analysis, and possible
connections to an optimal algorithm.
Keywords: multi-armed bandit problems, games, best-arm identification, racing, LUCB

1. Setting: A Bandit Model for Two-Player Zero-Sum Random Games

We study a statistical learning problem inspired by the design of computer opponents for playing games.
We are thinking about two-player zero sum full information games like Checkers, Chess, Go (Silver et al.,
2016) . . . , and also games with randomness and hidden information like Scrabble or Poker (Bowling
et al., 2015). At each step during game play, the agent is presented with the current game configuration,
and is tasked with figuring out which of the available moves to play. In most interesting games, an
exhaustive search of the game tree is completely out of the question, even with smart pruning.

Given that we cannot consider all states, the question is where and how to spend our computational
effort. A popular approach is based on Monte Carlo Tree Search (MCTS) (Gelly et al., 2012; Browne
et al., 2012). Very roughly, the idea of MCTS is to reason strategically about a tractable (say up to some
depth) portion of the game tree rooted at the current configuration, and to use (randomized) heuristics
to estimate values of states at the edge of the tractable area. One way to obtain such estimates is by
‘rollouts’: playing reasonable random policies for both players against each other until the game ends
and seeing who wins.

MCTS methods are currently applied very successfully in the construction of game playing agents
and we are interested in understanding and characterizing the fundamental complexity of such ap-
proaches. The existing picture is still rather incomplete. For example, there is no precise characteri-
zation of the number of rollouts required to identify a close to optimal action. Sometimes, cumulated
regret minimizing algorithms (e.g. UCB derivatives) are used, whereas only the simple regret is relevant
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Figure 1: Game tree when there are two actions per player (K =K1 =K2 = 2).

here. As a first step in this direction, we investigate in this paper an idealized version of the MCTS
problem for games, for which we develop a theory that leads to sample complexity guarantees.

More precisely, we study perhaps the simplest model incorporating both strategic reasoning and
exploration (see Figure 1 for an example). We consider a two-player two-round zero-sum game, in
which player A has K available actions. For each of these actions, indexed by i, player B can then
choose among Ki possible actions, indexed by j. When player A chooses action i ∈ {1, . . . ,K} and then
player B chooses action j ∈ {1, . . . ,Ki}, the probability that player A wins is µi,j . We investigate the
situation from the perspective of player A, who wants to identify a maximin action

i∗ ∈ argmax
i∈{1,...,K}

min
j∈{1,...,Ki}

µi,j .

Assuming that player B is strategic and picks, whatever A’s action i, the action j minimizing µi,j , this is
the best choice for A.

The parameters of the game are unknown to player A, but he can repeatedly choose a pair P = (i, j)
of actions for him and player B, and subsequently observe a sample from a Bernoulli distribution with
mean µi,j . At this point we imagine the sample could be generated e.g. by a single rollout estimate in
an underlying longer game that we consider beyond tractable strategic consideration. Note that, in this
learning phase, player A is not playing a game: he chooses actions for himself and for his adversary, and
observes the random outcome.

The aim of this work is to propose a dynamic sampling strategy for player A in order to minimize
the total number of samples (i.e. rollouts) needed to identify i∗. Denoting the possible move pairs by

P = {(i, j) ∶ 1 ≤ i ≤K,1 ≤ j ≤Ki},

we formulate the problem as the search of a particular subset of arms in a stochastic bandit model with
K = ∑

K
i=1Ki Bernoulli arms of respective expectations µP , P ∈ P . In this bandit model, parametrized

by µ = (µP )P ∈P , when the player chooses an arm (a pair of actions) Pt at round t, he observes a sample
Xt drawn under a Bernoulli distribution with mean µPt .

In contrast to best arm identification in bandit models (see, e.g., Even-Dar et al. (2006); Audibert
et al. (2010)), where the goal is to identify the arm(s) with highest mean, argmaxP µP , here we want
to identify as quickly as possible the maximin action i∗ defined above. For this purpose, we adopt a
sequential learning strategy (or algorithm) (Pt, τ, ı̂). Denoting by Ft = σ(X1, . . . ,Xt) the sigma-field
generated by the observations made up to time t, this strategy is made of
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• a sampling rule Pt ∈ P indicating the arm chosen at round t, such that Pt is Ft−1 measurable,

• a stopping rule τ after which a recommendation is to be made, which is a stopping time with
respect to Ft,

• a final guess ı̂ for the maximin action i∗.

For some fixed ε ≥ 0, the goal is to find as quickly as possible an ε-maximin action, with high probability.
More specifically, given δ ∈]0,1[, the strategy should be δ-PAC, i.e. satisfy

∀µ, Pµ ( min
j∈{1...Ki∗}

µi∗,j − min
j∈{1...Kı̂}

µı̂,j ≤ ε) ≥ 1 − δ, (1)

while keeping the total number of samples τ as small as possible. This is known, in the best-arm identifi-
cation literature, as the fixed-confidence setting; alternatively, one may consider the fixed-budget setting
where the total number of samples τ is fixed in advance, and where the goal is to minimize the probability
that ı̂ is not an ε-maximin action.

Related Work. Tools from the bandit literature have been used in MCTS for around a decade (see
Munos (2014) for a survey). Originally, MCTS was used to perform planning in a Markov Decision
Process (MDP), which is a slightly different setting with no adversary: when an action is chosen, the
transition towards a new state and the reward observed are generated by some (unknown) random pro-
cess. A popular approach, UCT (Kocsis and Szepesvári, 2006) builds on Upper Confidence Bounds
algorithms, which are useful tools for regret minimization in bandit models (e.g., Auer et al. (2002)). In
this slightly different setup (see Bubeck and Cesa-Bianchi (2012) for a survey), the goal is to maximize
the sum of the samples collected during the interaction with the bandit, which amounts in our setting to
favor rollouts for which player A wins (which is not important in the learning phase). This situation is
from a certain perspective a little puzzling and arguably confusing, because as shown by Bubeck et al.
(2011), regret minimization and best arm identification are incompatible objectives in the sense that no
algorithm can simultaneously be optimal for both.

More recently, tools from the best-arm identification literature have been used by Szorenyi et al.
(2014) in the context of planning in a Markov Decision Process with a generative model. The proposed
algorithm builds on the UGapE algorithm of Gabillon et al. (2012) to decide for which action new tra-
jectories in the MDP starting from this action should be simulated. Just like a best arm identification
algorithm is a building block for such more complex algorithms to perform planning in an MDP, we
believe that understanding the maximin action identification problem is a key step towards more general
algorithms in games, with provable sample complexity guarantees. For example, an algorithm for max-
imin action identification may be useful for planning in a competitive Markov Decision Processes (Filar
and Vrieze, 1996) that models stochastic games.

Contributions. In this paper, we propose two algorithms for maximin action identification in the fixed-
confidence setting, whose sample complexity is presented in Section 2. These algorithms are inspired by
the two dominant approaches used in best arm identification algorithms. Our first algorithm, Maximin-
LUCB, is described in Section 3: it relies on the use of Lower and Upper Confidence Bounds. The
second, Maximin-Racing, is described in Section 4: it proceeds by successive elimination of sub-optimal
arms. We prove that both algorithms are δ-PAC, and give upper bounds on their sample complexity.
Our analysis contrasts with that of classical BAI procedures, and exhibits unexpected elements that are
specific to the game setting. Along the way, we also propose some avenues of improvement that are
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illustrated empirically in Section 5. Finally, we propose in Section 6 for the two-action case a lower
bound on the sample complexity of any δ-PAC algorithm, and sketch a strategy that may be optimal with
respect to this lower bound. Most proofs are deferred to the Appendix.

2. Notation and Summary of the Results

To ease the notation, in the rest of the paper we assume that the actions of the two players are re-ordered
so that for each i, µi,j is increasing in j, and µi,1 is decreasing in i (so that i∗ = 1 and µ∗ = µ1,1).
These assumptions are illustrated in Figure 2. With this notation, the action ı̂ is an ε-maximin action if
µ1,1−µı̂,1 ≤ ε. We also introduce Pi = {(i, j), j ∈ {1, . . . ,Ki}} as the group of arms related to the choice
of action i for player A.

×

µ1,1

×

µ1,2 ×

µ1,3

×

µ2,1

×

µ2,2

×

µ2,3

×

µ3,1

×

µ3,2 ×

µ3,3

Figure 2: Example ‘normal form’ mean configuration. Arrows point to smaller values.

We propose in the paper two algorithms with a sample complexity of order Eµ[τ] ≃H
∗(µ) log(1/δ),

where
H∗

(µ) ∶= ∑
(1,j)∈P1

1

(µ1,j − µ2,1)
2
+ ∑

(i,j)∈P∖P1

1

(µ1,1 − µi,1)2 ∨ (µi,j − µi,1)2
.

This complexity term is easy to interpret:

• each arm (1, j) in the optimal group P1 should be drawn enough to be discriminated from µ2,1

(roughly of order (µ1,j − µ2,1)
−2 log(1/δ) times)

• each other arm (i, j) inP∖P1 should be drawn enough to either be discriminated from the smallest
arm in the same group, µi,1, or so that µi,1 is discriminated from µ1,1.

Our Theorems 4 and 8 respectively lead to (asymptotic) upper bounds featuring two complexity terms
H∗

1 (µ) and H∗
2 (µ) that are very close to H∗(µ). When there are two actions per player, Theorem 5
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shows that the sample complexity of M-LUCB is asymptotically upper bounded by 16H∗(µ) log(1/δ).
We discuss sample complexity lower bounds and their connection to future algorithms in Section 6.

It is to be noted that such a sample complexity cannot be attained by a naive use of algorithms for best
arm identification. Indeed the most straightforward idea would be to follow the tree structure bottom-up;
recursively identifying alternately best and worst arms. For two levels, we would first perform worst-arm
identification on j for each i, followed by best-arm identification on the obtained set of worst arms. To see
why such modular approaches fail, recall that the sample complexity of best and worst arm identification
scales with the sum of the inverse squared gaps (see e.g. Kalyanakrishnan et al. (2012)). But many of
these gaps, however small, are irrelevant for finding i∗. For a simple example consider µ1,1 = µ1,2 ≫

µ2,1 = µ2,2. Hierarchical algorithms find such equal means (zero gap) within actions arbitrarily hard,
while our methods fare fine: only the large gap between actions appears in our complexity measure H∗.
We now explain in Section 3 and 4 how to carefully use best arm identification tools to come up with
algorithms whose sample complexity scales with H∗(µ).

3. First Approach: M-LUCB

We first describe a simple strategy based on confidence intervals, called Maximin-LUCB (M-LUCB).
Confidence bounds have been successfully used for best-arm identification in the fixed-confidence setting
(Kalyanakrishnan et al., 2012; Gabillon et al., 2012; Jamieson et al., 2014). The algorithm proposed in
this section for maximin action identification is inspired by the LUCB algorithm of Kalyanakrishnan
et al. (2012), based on Lower and Upper Confidence Bounds.

For every pair of actions P ∈ P , let IP (t) = [LP (t),UP (t)] be a confidence interval on µP built
using observations from arm P gathered up to time t. Such a confidence interval can be obtained by
using the number of draws NP (t) ∶= ∑

t
s=1 1(Ps=P ) and the empirical mean of the observations for this

pair µ̂P (t) ∶= ∑ts=1Xs1(Ps=P )/NP (t) (with the convention µ̂P (0) = 0). The M-LUCB strategy aims
at aligning the lower confidence bounds of arms that are in the same group Pi. Arms to be drawn are
chosen two by two: for any even time t, defining for every i ∈ {1, . . . ,K}

ci(t) = argmin
1≤j≤Ki

L(i,j)(t) and ı̂(t) = argmax
1≤i≤K

min
1≤j≤Ki

µ̂i,j(t) ,

the algorithm draws at rounds t + 1 and t + 2 the arms Pt+1 =Ht and Pt+2 = St where

Ht = (ı̂(t), cı̂(t)(t)) and St = argmax
P ∈{(i,ci(t))}i≠ı̂

UP (t).

This is indeed a regular LUCB sampling rule on a time-dependent set of arms each representing one
action: {(i, ci(t))}i∈{1,...,K}. When there are two actions for each player, one may alternatively draw at
each time t the arm Pt+1 = argminP ∈{Ht,St} NP (t) only.

The stopping rule, which depends on the parameter ε ≥ 0 (that can be set to zero if µ1,1 > µ2,1) is

τ = inf {t ∈ 2N ∶ LHt(t) > USt(t) − ε} . (2)

Then arm ı̂ = ı̂(τ), the empirical maximin action at that time, is recommended to player A. The
stopping rule is illustrated in Figure 3. The choice of the representative arms {(i, ci(t))i∈{1,...,K} is
crucial, and it can be understood from the proof of Lemma 11 in Appendix A why aligning the lower
confidence bounds inside each action is a good idea.
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}ε

Figure 3: Stopping rule (2). The algorithm stops because the lower bound of the green arm beats up to
slack ε the upper bound for at least one arm (marked red) in each other action, the one with
smallest LCB. In this case action ı̂ = 2 is recommended.

3.1. Analysis of the Algorithm

We analyze the algorithm under the assumptions µ1,1 > µ2,1 and ε = 0. We consider the Hoeffding-type
confidence bounds

LP (t) = µ̂P (t) −

¿
Á
ÁÀ β(t, δ)

2NP (t)
and UP (t) = µ̂P (t) +

¿
Á
ÁÀ β(t, δ)

2NP (t)
, (3)

where β(t, δ) is some exploration rate. A choice of β(t, δ) that ensures the δ-PAC property (1) is given
below. In order to highlight the dependency of the stopping rule on the risk level δ, we denote it by τδ.

Theorem 1 Let

H∗
1 (µ) =

K1

∑
j=1

1

(µ1,j −
µ1,1+µ2,1

2
)

2
+ ∑

(i,j)∈P∖P1

1

(
µ1,1+µ2,1

2 − µi,1)
2
∨ (µi,j − µi,1)2

.

On the event
E = ⋂

P ∈P
⋂
t∈2N

{µP ∈ [LP (t),UP (t)]} ,

the M-LUCB strategy returns the maximin action and uses a total number of samples upper-bounded by

T (µ, δ) = inf {t ∈ N ∶ 4H∗
1 (µ)β(t, δ) < t}.

According to Theorem 1, the exploration rate should be large enough to control Pµ(E), and as small as
possible so as to minimize T (µ, δ). The self-normalized deviation bound of Cappé et al. (2013) gives
a first solution (Corollary 2), whereas Lemma 7 of Kaufmann et al. (2015) yields Corollary 3. In both
cases, explicit bounds on T (µ, δ) are obtained using the technical Lemma 12 stated in Appendix A.
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Corollary 2 Let α > 0 and C = Cα be such that

eK
∞

∑
t=1

(log t)(log(Ct1+α))

t1+α
≤ C ,

and let δ satisfy 4(1 + α)(C/δ)1/(1+α) > 4.85. With probability larger than 1 − δ, the M-LUCB strategy
using the exploration rate

β(t, δ) = log(
Ct1+α

δ
) , (4)

returns the maximin action within a number of steps upper-bounded as

τδ ≤ 4(1+α)H∗
1 (µ)

⎡
⎢
⎢
⎢
⎢
⎣

log (
1

δ
) + log(C(4(1 + α)H∗

1 (µ))
1+α

) + 2(1 + α) log log
⎛

⎝

4(1 + α)H∗
1 (µ)C

1
1+α

δ
1

1+α

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

.

Corollary 3 For b, c such that c > 2 and b > c/2, let the exploration rate be

β(t, δ) = log
1

δ
+ b log log

1

δ
+ c log log(et)

and let

fb,c(δ) =K
√
e
π2

3

1

8c/2
(
√

log(1/δ) + b log log(1/δ) + 2
√

2)c

(log(1/δ))b
.

With probability larger than 1 − fb,c(δ)δ, M-LUCB returns the maximin action and, for some positive
constant Cc and for δ small enough,

τδ ≤ 4H∗
1 (µ) [log (

1

δ
) + log(8CcH

∗
1 (µ)) + 2 log log(

8CcH
∗
1 (µ)

δ
)] .

Elaborating on the same ideas, it is possible to obtain results in expectation, at the price of a less explicit
bound, that holds for a slightly larger exploration rate.

Theorem 4 The M-LUCB algorithm using β(t, δ) defined by (4), with α > 1, is δ-PAC and satisfies

lim sup
δ→0

Eµ[τδ]

log(1/δ)
≤ 4(1 + α)H∗

1 (µ).

H∗
1 (µ) is very close to the quantity H∗(µ) introduced in Section 2. The difference is that in H∗

1 (µ)

µi,1 and µ1,1 need to be discriminated from a ‘virtual arm’ with mean (µ1,1 + µ2,1)/2 in place of µ1,1

and µ2,1 respectively. We view this virtual arm (that corresponds to the choice of a parameter c in
Appendix A) as an artifact of our proof. In the particular case of two actions per player, we propose the
following finer result, that holds for the variant of M-LUCB that samples the least drawn arm among Ht

and St at round t + 1.

Theorem 5 Assume K =K1 =K2 = 2. The M-LUCB algorithm using β(t, δ) defined by (4) with α > 1
is δ-PAC and satisfies

lim sup
δ→0

Eµ[τδ]

log(1/δ)
≤ 8(1 + α)H∗

(µ).
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3.2. Improved Intervals and Stopping Rule

The symmetry and the simple form of the sub-gaussian confidence intervals (3) are convenient for the
analysis, but they can be greatly improved thanks to better deviation bounds for Bernoulli distributions.
A simple improvement (see Kaufmann and Kalyanakrishnan (2013)) is to use Chernoff confidence inter-
vals, based on the binary relative entropy function d(x, y) = x log(x/y) + (1 − x) log((1 − x)/(1 − y)).
Moreover, the use of a better stopping rule based on generalized likelihood ratio tests (GLRT) has been
proposed recently for best-arm identification, leading to significant improvements. We propose here an
adaptation of the Chernoff stopping rule of Garivier and Kaufmann (2016), valid for the case ε = 0.

Our stopping rule is based on the statistic:

ZP,Q(t) ∶= log
maxµ′P ≥µ

′

Q
pµ′P (XP

NP (t))pµ′Q (XQ
NQ(t)

)

maxµ′P ≤µ
′

Q
pµ′P (XP

NP (t))pµ′Q (XQ
NQ(t)

)
,

where XP
s is a vector that contains the first s observations of arm P and pµ(Z1, . . . , Zs) is the likelihood

of the given s observations from an i.i.d. Bernoulli distribution with mean µ. Introducing the empirical
mean of the combined samples from arms P and Q,

µ̂P,Q(t) ∶=
NP (t)

NP (t) +NQ(t)
µ̂P (t) +

NQ(t)

NP (t) +NQ(t)
µ̂Q(t),

it appears that for µ̂P (t) ≥ µ̂Q(t),

ZP,Q(t) = NP (t)d (µ̂P (t), µ̂P,Q(t)) +NQ(t)d (µ̂Q(t), µ̂P,Q(t)) ,

and ZP,Q(t) = −ZQ,P (t). The stopping rule is defined as

τ = inf {t ∈ N ∶ ∃i ∈ {1, . . . ,K} ∶ ∀i′ ≠ i,∃j′ ∈ {1, . . . ,Ki′} ∶ ∀j ∈ {1, . . . ,Ki}, Z(i,j),(i′,j′)(t) > β(t, δ)}

= inf {t ∈ N ∶ max
i∈{1,...,K}

min
i′≠i

max
j′∈{1,...,Ki′}

min
j∈{1,...,Ki}

Z(i,j),(i′,j′)(t) > β(t, δ)} . (5)

Proposition 6 Using the stopping rule (5) with the exploration rate β(t, δ) = log (
2K1(K−1)t

δ ), whatever
the sampling rule, if τ is a.s. finite, the recommendation is correct with probability Pµ (ı̂ = i∗) ≥ 1 − δ.

Sketch of Proof. Recall that in our notation the optimal action is i∗ = 1.

Pµ (ı̂ ≠ 1) ≤ Pµ (∃t ∈ N,∃i ∈ {2, . . . ,K},∃j′ ∈ {1, . . . ,K1}, Z(i,1),(1,j′)(t) > β(t, δ))

≤
K

∑
i=2

K1

∑
j′=1

Pµ (∃t ∈ N, Z(i,1),(1,j′)(t) > β(t, δ)) .

Note that for i ≠ 1, µi,1 < µ1,j′ for all j′ ∈ {1, . . . ,K1}. The result follows from the following bound
proved in Garivier and Kaufmann (2016): whenever µP < µQ, for any sampling strategy,

Pµ (∃t ∈ N ∶ ZP,Q(t) ≥ log (
2t

δ
)) ≤ δ . (6)
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4. Second Approach: A Racing Algorithm

We now propose a Racing-type algorithm for the maximin action identification problem, inspired by
another line of algorithms for best arm identification (Maron and Moore, 1997; Even-Dar et al., 2006;
Kaufmann and Kalyanakrishnan, 2013). Racing algorithms are simple and powerful methods that pro-
gressively concentrate on the best actions. We give in this section an analysis of a Maximin-Racing
algorithm that relies on the refined information-theoretic tools introduced in the previous section.

4.1. A Generic Maximin-Racing Algorithm

The Maximin Racing algorithm maintains a set of active arms R and proceeds in rounds, in which all
the active arms are sampled. At the end of round r, all active arms have been sampled r times and some
arms may be eliminated according to some elimination rule. We denote by µ̂P (r) the average of the r
observations on arm P . The elimination rule relies on an elimination function f(x, y) (f(x, y) is large
if x is significantly larger than y), and on a threshold function β(r, δ).

The Maximin-Racing algorithm presented below performs two kinds of eliminations: the largest arm
in each setRi may be eliminated if it appears to be significantly larger than the smallest arm inRi (high
arm elimination), and the group of armsRi containing the smallest arm may be eliminated (all the arms
in Ri are removed from the active set) if it contains one arm that appears significantly smaller than all
the arms of another groupRj (action elimination).

Maximin Racing Algorithm.
Parameters. Elimination function f , threshold function β
Initialization. For each i ∈ {1, . . . ,K},Ri = Pi, andR ∶=R1 ∪ ⋅ ⋅ ⋅ ∪RK .
Main Loop. At round r:

• all arms inR are drawn, empirical means µ̂P (r), P ∈R are updated

• High arms elimination step: for each action i = 1 . . .K, if ∣Ri∣ ≥ 2 and

rf (max
P ∈Ri

µ̂P (r), min
P ∈Ri

µ̂P (r)) ≥ β(r, δ) , (7)

then remove Pm = argmax
P ∈Ri

µ̂P (r) from the active set : Ri =Ri/{Pm},R =R/{Pm}.

• Action elimination step: if (ı̃, ̃) = argmin
P ∈R

µ̂P (r) and if

rf (max
i≠ı̃

min
P ∈Ri

µ̂P (r), µ̂(ı̃,̃)(r)) ≥ β(r, δ) ,

then remove ı̃ from the possible maximin actions: R =R/Rı̃ andRı̃ = ∅.

The algorithm stops when all but one of the Ri are empty, and outputs the index of the remaining set as
the maximin action. If the stopping condition is not met at the end of round

r = r0 ∶=
2

ε2
log(

4K

δ
) ,

then the algorithm stops and returns one of the empirical maximin actions.

9



GARIVIER, KAUFMANN AND KOOLEN

4.2. Tuning the Elimination and Threshold Functions

In the best-arm identification literature, several elimination functions have been studied. The first idea,
presented in the Successive Elimination algorithm of Even-Dar et al. (2006), is to use the simple differ-
ence f(x, y) = (x − y)21(x≥y); in order to take into account possible differences in the deviations of the
arms, the KL-Racing algorithm of Kaufmann and Kalyanakrishnan (2013) uses an elimination function
equivalent to f(x, y) = d∗(x, y)1(x≥y), where d∗(x, y) is defined as the common value of d(x, z) and
d(y, z) for the unique z satisfying d(x, z) = d(y, z). In this paper, we use the divergence function

f(x, y) = I(x, y) ∶= [d(x,
x + y

2
) + d(y,

x + y

2
)]1(x≥y) (8)

inspired by the deviation bounds of Section 3.2. In particular, using again Inequality (6) for the uniform
sampling rule yields, whenever µP < µQ,

Pµ (∃r ∈ N ∶ rI(µ̂P (r), µ̂Q(r)) ≥ log
2r

δ
) ≤ δ. (9)

Using this bound, Proposition 7 (proved in Appendix B.1) proposes a choice of the threshold function
for which the Maximin-Racing algorithm is δ-PAC.

Proposition 7 With the elimination function I(x, y) of Equation (8) and with the threshold function
β(t, δ) = log (4CKt/δ), the Maximin-Racing algorithm satisfies

Pµ (µ1,1 − µı̂,1 ≤ ε) ≥ 1 − δ,

with CK ≤ (K)2. If µ1,1 > µ1,2 and if ∀i, µi,1 < µi,2, then we may take CK =K ×maxiKi.

4.3. Sample Complexity Analysis

We propose here an asymptotic analysis of the number of draws of each arm (i, j) under the Maximin-
Racing algorithm, denoted by τδ(i, j). These bounds are expressed with the deviation function I , and
hold for ε > 0. For ε = 0, one can provide similar bounds under the additional assumption that all arms
are pairwise distinct.

Theorem 8 Assume µ1,1 > µ2,1. For every ε > 0, and for β(t, δ) chosen as in Proposition 7, the
Maximin-Racing algorithm satisfies, for every j ∈ {1, . . . ,K1},

lim sup
δ→0

Eµ[τδ(1, j)]

log(1/δ)
≤

1

max (ε2/2, I(µ1,1, µ2,1), I(µ1,j , µ1,1)))

and, for any (i, j) ∈ P ∖P1,

lim sup
δ→0

Eµ[τδ(i, j)]

log(1/δ)
≤

1

max (ε2/2, I(µi,1, µ1,1), I(µi,j , µi,1))
.

It follows from Pinsker’s inequality that I(x, y) > (x − y)2, and hence Theorem 8 implies in particular
that for the M-Racing algorithm (for a sufficiently small ε) lim supδ→0 Eµ[τδ]/ log(1/δ) ≤ H∗

2 (µ),
where

H∗
2 (µ) ∶=

K1

∑
j=1

1

(µ1,j − µ1,1)
2 ∨ (µ1,1 − µ2,1)

2
+ ∑

(i,j)∈P∖P1

1

(µ1,1 − µi,1)2 ∨ (µi,j − µi,1)2
.

10
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The complexity term H∗
2 (µ) is very close to the quantities H∗(µ) and H∗

1 (µ) respectively intro-
duced in Section 2 and Theorem 1. The terms corresponding to arms in P ∖ P1 are identical to those
in H∗(µ) and strictly smaller than those in H∗

1 (µ) (since no ‘virtual arm’ (µ1,1 + µ2,1)/2 has been
introduced in the analysis of M-Racing). However, the terms corresponding to the arms (1, j), j ≥ 2 are
strictly larger than those in H∗(µ) (as (µ1,j −µ1,1)∨ (µ1,1 −µ2,1) is strictly smaller than (µ1,j −µ2,1)),
and can even be smaller than those in H∗

1 (µ). But this is mitigated by the fact that there is no multi-
plicative constant in front of the complexity term H∗

2 (µ). Besides, as Theorem 8 involves the deviation
function I(x, y) = d(x, (x + y)/2) + d(y, (x + y)/2 and not a subgaussian approximation, the resulting
upper bound on the sample complexity of M-Racing can indeed be significantly better.

5. Numerical Experiments and Discussion

In the previous sections, we have proposed two different algorithms for the maximin action identification
problem. The analysis that we have given does not clearly advocate the superiority of one or the other.
The goal of this section is to propose a brief numerical comparison in different settings, and to compare
with other possible strategies.

We will notably study empirically two interesting variants of M-LUCB. The first improvement
that we propose is the M-KL-LUCB strategy, based on KL-based confidence bounds (Kaufmann and
Kalyanakrishnan (2013)). The second variant, M-Chernoff, additionally improves the stopping rule
as presented in Section 3.2. Whereas Proposition 6 justifies the use of the exploration rate β(t, δ) =

log(4K
2
t/δ), which is over-conservative in practice, we use β(t, δ) = log((log(t) + 1)/δ) in all our ex-

periments, as suggested by Corollary 3 (this appears to be already quite a conservative choice in practice).
In the experiments, we set δ = 0.1, ε = 0.

To simplify the discussion and the comparison, we first focus on the particular case in which there
are two actions for each player. As an element of comparison, one can observe that finding i∗ is at most
as hard as finding the worst arm (or the three best) among the four arms (µi,j)1≤i,j≤2. Thus, one could
use standard best-arm identification strategies like the (original) LUCB algorithm. For the latter, the
complexity is of order

2

(µ1,1 − µ2,1)
2
+

1

(µ1,2 − µ2,1)
2
+

1

(µ2,2 − µ2,1)
2
,

which is much worse than the complexity term obtained for M-LUCB in Theorem 5 when µ2,2 and
µ2,1 are close to one another. This is because a best arm identification algorithm does not only find the
maximin action, but additionally figures out which of the arms in the other action is worst. Our algorithm
does not need to discriminate between µ2,1 and µ2,2, it only tries to assess that one of these two arms is
smaller than µ1,1. However, for specific instances in which the gap between µ2,2 and µ2,1 is very large,
the difference vanishes. This is illustrated in the numerical experiments of Table 1, which involve the
following three sets of parameters (the entry (i, j) in each matrix is the mean µi,j):

µ1 = [
0.4 0.5
0.3 0.35

] µ2 = [
0.4 0.5
0.3 0.45

] µ3 = [
0.4 0.5
0.3 0.6

] (10)

We also perform experiments in a model with 3 × 3 actions with parameters:

µ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0.45 0.5 0.55
0.35 0.4 0.6
0.3 0.47 0.52

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(11)

11
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τ1,1 τ1,2 τ2,1 τ2,2 τ1,1 τ1,2 τ2,1 τ2,2 τ1,1 τ1,2 τ2,1 τ2,2

M-LUCB 1762 198 1761 462 1761 197 1760 110 1755 197 1755 36
M-KL-LUCB 762 92 733 237 743 92 743 54 735 93 740 16
M-Chernoff 315 59 291 136 325 61 327 41 321 61 326 13
M-Racing 324 152 301 298 329 161 318 137 322 159 323 35
KL-LUCB 351 64 3074 2768 627 83 841 187 684 88 774 32

Table 1: Number of draws of the different arms under the models (10) parameterized by µ1,µ2,µ3

(from left to right), averaged over N = 10000 repetitions

Figure 4 shows that the best three algorithms in the previous experiments behave as expected: the num-
ber of draws of the arms are ordered exactly as suggested by the bounds given in the analysis. These

τM-KL-LUCB =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

798 212 92
752 248 22
210 44 21

⎤
⎥
⎥
⎥
⎥
⎥
⎦

τM-Ch. =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

367 131 67
333 156 18
129 31 17

⎤
⎥
⎥
⎥
⎥
⎥
⎦

τM-Racing =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

472 291 173
337 337 42
161 185 71

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Figure 4: Number of draws of each arm under the bandit model (11), averaged of N = 10000 repetitions

experiments tend to show that, in practice, the best two algorithms are M-Racing and M-Chernoff, with
a slight advantage for the latter. However, we did not provide theoretical sample complexity bounds for
M-Chernoff, and it is to be noted that the use of Hoeffding bounds in the M-LUCB algorithm (that has
been analyzed) is a cause of sub-optimality. Among the algorithms for which we provide theoretical
sample complexity guarantees, the M-Racing algorithm appears to perform best.

6. Perspectives

To finish, let us sketch the (still speculative) perspective of an important improvement. For simplicity,
we focus on the case where each player chooses among only two possible actions, and we change our
notation, using: µ1 ∶= µ1,1, µ2 ∶= µ1,2, µ3 ∶= µ2,1, µ4 ∶= µ2,2. As we will see below, the optimal strategy
is going to depend a lot on the position of µ4 relatively to µ1 and µ2. Given w = (w1, . . . ,w4) ∈ ΣK =

{w ∈ R4
+ ∶ w1 + ⋅ ⋅ ⋅ +w4 = 1}, we define for a, b, c in {1, . . . ,4}:

µa,b(w) =
waµa +wbµb
wa +wb

and µa,b,c(w) =
waµa +wbµb +wcµc

wa +wb +wc
.

Using a similar argument than the one of Garivier and Kaufmann (2016) in the context of best-arm
identification, one can prove the following (non explicit) lower bound on the sample complexity.

Theorem 9 Any δ-PAC algorithm satisfies

Eµ[τδ] ≥ T
∗
(µ)d(δ,1 − δ),

12
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where

T ∗(µ)
−1

∶= sup
w∈ΣK

inf
µ′∶µ′1∧µ

′

2<µ
′

3∧µ
′

4

(
K

∑
a=1

wa d(µa, µ
′
a))

= sup
w∈ΣK

F (µ,w), (12)

where F (µ,w) = min[F1(µ,w), F2(µ,w)], with

Fa(µ,w) = {
wa d(µa, µa,3(w)) +w3 d(µ3, µa,3(w)) if µ4 ≥ µa3(w) ,

wa d(µa, µa,3,4(w)) +w3 d(µ3, µa,3,4(w)) +w4 d(µ4, µa,3,4(w)) otherwise.

A particular case. When µ4 > µ2, for any w ∈ ΣK it holds that µ4 ≥ µ1,3(w) and µ4 ≥ µ2,3(w).
Hence the complexity term can be rewritten to

T ∗(µ)
−1

= sup
w∈ΣK

min
a=1,2

wa d(µa, µa,3(w)) +w3 d(µ3, µa,3(w)) .

In that case it is possible to show that the following quantity,

w∗
(µ) = argmax

w∈ΣK

min
a=1,2

wa d(µa, µa,3(w) ) +w3 d(µ3, µa,3(w))

is unique and to give an explicit expression. This quantity is to be interpreted as the vector of proportions
of draws of the arms by a strategy matching the lower bound. In this particular case, one findsw∗

4(µ) = 0,
showing that an optimal strategy could draw arm 4 only an asymptotically vanishing proportion of times
as δ and ε go to 0.

Towards an Asymptotically Optimal Algorithm. Assume that the solution of the general optimiza-
tion problem (12) is well-behaved (unicity of the solution, continuity in the parameters, . . . ) and that we
can find an efficient algorithm to compute, for any given µ,

w∗
(µ) = argmax

w∈ΣK

min[F1(µ,w), F2(µ,w)].

Letting Alt(µ) = {µ′ ∶ i∗(µ) ≠ i∗(µ′)}, one can introduce

Ẑ(t) ∶= inf
µ′∈Alt(µ̂(t))

K

∑
a=1

Na(t)d(µ̂a(t), µ
′
a) = tF((Na(t)/t)a=1...4

, µ̂(t))

= log
maxµ′∉Alt(µ̂(t)) pµ′(X1, . . . ,Xt)

maxµ′∈Alt(µ̂(t)) pµ′(X1, . . . ,Xt)
,

where pµ′(X1, . . . ,Xt) is the likelihood of the observations up to time t under the model parametrized
by µ′ ∈ [0,1]4. Then, if we can design a sampling rule ensuring that for all a, Na(t)/t tends to w∗

a(µ),
and if we combine it with the stopping rule

τδ = inf {t ∈ N ∶ Ẑ(t) > log(Ct/δ)}

for some positive constant C, then one can prove the following:

lim sup
δ→0

Eµ[τδ]

log(1/δ)
≤ T ∗(µ).

But proving that this stopping rule does ensures a δ-PAC algorithm is not straightforward, and the anal-
ysis remains to be done.
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Aurélien Garivier and Emilie Kaufmann. Optimal best arm identification with fixed confidence. In
Proceedings of the 29th Conference On Learning Theory (to appear), 2016.

S. Gelly, L. Kocsis, M. Schoenauer, M. Sebag, D. Silver, C. Szepesvári, and O. Teytaud. The grand
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Appendix A. Analysis of the Maximin-LUCB Algorithm

We define the event
Et = ⋂

P ∈P

(µP ∈ [LP (t),UP (t)]),

so that the event E defined in Theorem 1 rewrites E = ⋂t∈2N Et.
Assume that the event E holds. The arm ı̂ recommended satisfies, by definition of the stopping rule

(and by definition of St) that, for all i ≠ ı̂

min
j∈Kı̂

L(ı̂,j)(τδ) > min
j∈Ki

U(i,j)(τδ) − ε.

Using that LP (τδ) ≤ µP ≤ UP (τδ) for all P ∈ P (by definition of E) yields for all i

µı̂,1 = min
j∈Kı̂

µı̂,j > min
j∈Ki

µi,j − ε = µi,1 − ε,

hence maxi≠ı̂ µi,1 − µı̂,1 < ε. Thus, either ı̂ = 1 or ı̂ satisfies µ1,1 − µı̂,1 < ε. In both case, ı̂ is ε-optimal,
which proves that M-LUCB is correct on E .

Now we analyze M-LUCB with ε = 0. Our analysis is based on the following two key lemmas,
whose proof is given below.
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Lemma 10 Let c ∈ [µ2,1, µ1,1] and t ∈ 2N. On Et, if (τδ > t), there exists P ∈ {Ht, St} such that

(c ∈ [LP (t),UP (t)]) .

Lemma 11 Let c ∈ [µ2,1, µ1,1] and t ∈ 2N. On Et, for every (i, j) ∈ {Ht, St},

c ∈ [L(i,j)(t),U(i,j)(t)] ⇒ N(i,j)(t) ≤ min(
2

(µi,1 − c)2
,

2

(µi,j − µi,1)2
)β(t, δ).

Moreover, for j ∈ {1, . . . ,K1}, one has

c ∈ [L(1,j)(t),U(1,j)(t)] ⇒ N(1,j)(t) ≤
2

(µ1,j − c)2
β(t, δ).

Defining, for every arm P = (i, j) ∈ P the constant

cP =
1

max [(µi,1 −
µ1,1+µ2,1

2
)

2
, (µi,j − µi,1)2]

if P ∈ P ∖P1, cP =
1

(µ1,j −
µ1,1+µ2,1

2
)

2
if P = (1, j) ∈ P1

combining the two lemmas (for the particular choice c = µ1,1+µ2,1
2 ) yields the following key statement:

Et ∩ (τδ > t) ⇒ ∃P ∈ {Ht, St} ∶ NP (t) ≤ 2cPβ(t, δ). (13)

Note that H∗
1 (µ) = ∑P ∈P cP , from its definition in Theorem 1.

A.1. Proof of Theorem 1

Let T be a deterministic time. On the event E = ⋂t∈2N Et, using (13) and the fact that for every even t,
(τδ > t) = (τδ > t + 1) by definition of the algorithm, one has

min(τδ, T ) =
T

∑
t=1

1(τδ>t) = 2 ∑
t∈2N
t≤T

1(τδ>t) = 2 ∑
t∈2N
t≤T

1(∃P ∈{Ht,St}∶NP (t)≤2cpβ(t,δ))

≤ 2 ∑
t∈2N
t≤T

∑
P ∈P

1(Pt+1=P )∪(Pt+2=P )1(NP (t)≤2cP β(T,δ))

≤ 4 ∑
P ∈P

cPβ(T, δ) = 4H∗
1 (µ)β(T, δ).

For any T such that 4H∗
1 (µ)β(T, δ) < T , one has min(τδ, T ) < T , which implies τδ < T . Therefore

τδ ≤ T (µ, δ) for T (µ, δ) defined in Theorem 1.

A.2. Proof of Theorem 4

Let γ > 0. Let T be a deterministic time. On the event GT = ⋂ t∈2N
⌊γT ⌋≤t≤T

Et, one can write

min(τδ, T ) = 2γT + 2 ∑
t∈2N

⌊γT ⌋≤t≤T

1(τδ>t) = 2γT + 2 ∑
t∈2N

⌊γT ⌋≤t≤T

1(∃P ∈{Ht,St}∶NP (t)≤2cpβ(t,δ))

≤ 2γT + 2 ∑
t∈2N

⌊γT ⌋≤t≤T

∑
P ∈P

1(Pt+1=P )∪(Pt+1=P )1(NP (t)≤2cP β(T,δ))

≤ 2γT + 4H∗
1 (µ)β(T, δ).
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Introducing Tγ(µ, δ) ∶= inf{T ∈ N ∶ 4H∗
1 (µ)β(T, δ) < (1−2γ)T}, for all T ≥ Tγ(µ, δ), GT ⊆ (τδ ≤ T ).

One can bound the expectation of τδ in the following way (using notably the self-normalized deviation
inequality of Cappé et al. (2013)):

Eµ[τδ] =
∞

∑
T=1

Pµ(τδ > T ) ≤ Tγ +
∞

∑
T=Tγ

Pµ (τδ > T ) ≤ Tγ +
∞

∑
T=Tγ

Pµ (G
c
T )

≤ Tγ +
∞

∑
T=1

T

∑
t=γT

∑
P ∈P

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Pµ

⎛
⎜
⎝
µP > µ̂P (t) +

¿
Á
ÁÀ β(t, δ)

2NP (t)

⎞
⎟
⎠
+ Pµ

⎛
⎜
⎝
µP < µ̂P (t) −

¿
Á
ÁÀ β(t, δ)

2NP (t)

⎞
⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎦

≤ Tγ +
∞

∑
T=1

T

∑
t=γT

2KPµ

⎛
⎜
⎝
µP > µ̂P (t) +

¿
Á
ÁÀ β(t,1)

2NP (t)

⎞
⎟
⎠

≤ Tγ +
∞

∑
T=1

T

∑
t=γT

2Ke log(t)β(t,1) exp(−β(t,1))

≤ Tγ +
∞

∑
T=1

2KeT log(T )β(T,1) exp(−β(γT,1))

= Tγ +
∞

∑
T=1

2KeT log(T ) log(CT 1+α)

Cγ1+αT 1+α
,

where the series is convergent for α > 1. One has

Tγ(µ, δ) = inf {T ∈ N ∶ log(
CT 1+α

δ
) <

(1 − 2γ)T

4H∗
1 (µ)

} .

The technical Lemma 12 below permits to give an upper bound on Tγ(µ, δ) for small values of δ, that
implies in particular

lim sup
δ→0

Eµ[τδ]

log(1/δ)
≤

4(1 + α)H∗
1 (µ)

1 − 2γ
.

Letting γ go to zero yields the result.

Lemma 12 If α, c1, c2 > 0 are such that a = (1 + α)c
1/(1+α)
2 /c1 > 4.85, then

x =
1 + α

c1
( log(a) + 2 log(log(a)))

is such that c1x ≥ log(c2x
1+α).

Proof. One can check that if a ≥ 4.85, then log2(a) > log(a) + 2 log(log(a)). Thus, y = log(a) +

2 log(log(a)) is such that y ≥ log(ay). Using y = c1x/(1 + α) and a = (1 + α)c
1/(1+α)
2 /c1, one obtains

the result.

◻
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A.3. Proof of Lemma 10

We show that on Et∩(τδ > t), the following four statements cannot occur, which yields that the threshold
c is contained in one of the intervals IHt(t) or ISt(t):

1. (LHt(t) > c) ∩ (LSt(t) > c)

2. (UHt(t) < c) ∩ (USt(t) < c)

3. (UHt(t) < c) ∩ (LSt(t) > c)

4. (LHt(t) > c) ∩ (USt(t) < c)

1. implies that there exists two actions i and i′ such that∀j ≤Ki,Li,j(t) ≥ c and∀j′ ≤Ki′ ,Li′,j′(t) ≥
c. Because Et holds, one has in particular µi,1 > c and µj,1 > c, which is excluded since µ1,1 is the only
such arm that is larger than c.

2. implies that for all i ∈ {1,K}, U(i,ci(t))(t) ≤ c. Thus, in particular U(1,c1(t)) ≤ c and, as Et holds,
there exists j ≤K1 such that µ1,j < c, which is excluded.

3. implies that there exists i ≠ ı̂(t) such that minj µ̂i,j(t) > µ̂Ht(t) ≥ minj µ̂(ı̂(t),j)(t), which
contradicts the definition of ı̂(t).

4. implies that LHt(t) > USt(t), thus the algorithm must have stopped before the t-th round, which
is excluded since τδ > t.

We proved that there exists P ∈ {Ht, St} such that c ∈ IP (t).

A.4. Proof of Lemma 11

Assume that Et holds and that c ∈ [L(i,j)(t),U(i,j)(t)]. We first show that µi,1 is also contained in
[L(i,j)(t),U(i,j)(t)]. First, by definition of the algorithm, if (i, j) =Ht or St, one has (i, j) = (i, ci(t)),
hence

L(i,j)(t) ≤ L(i,1)(t) ≤ µi,1,

using that Et holds. Now, if we assume that µi,1 > U(i,j)(t), because Et holds, one has µi,1 > µi,j , which
is a contradiction. Thus, µi,1 ≤ U(i,j)(t).

As c and µi,1 are both contained in [L(i,j)(t),U(i,j)(t)], whose diameter is 2
√
β(t, δ)/(2N(i,j)(t)),

one has

∣c − µi,1∣ < 2

¿
Á
ÁÀ β(t, δ)

2N(i,j)(t)
⇔ N(i,j)(t) ≤

2β(t, δ)

(µi,1 − c)2
.

Moreover, one can use again that L(i,j)(t) ≤ L(i,1)(t) to write

U(i,j)(t) − 2

¿
Á
ÁÀ β(t, δ)

2N(i,j)(t)
≤ L(i,1)(t)

µi,j − 2

¿
Á
ÁÀ β(t, δ)

2N(i,j)(t)
≤ µi,1,

which yields N(i,j)(t) ≤
2β(t,δ)

(µi,j−µi,1)2
.
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If i = 1, note that ∣µ1,j − c∣ > max(∣µ1,1 − c∣, ∣µ1,j − µ1,1∣). Using that c and µ1,j both belong to
I(1,j)(t)), whose diameter is 2

√
β(t, δ)/(2N(1,j)(t)) yield, using a similar argument as above, that for

all j ∈ {1, . . . ,K1},

N(1,j)(t) ≤
2β(t, δ)

(µ1,j − c)2
.

A.5. Proof of Theorem 5

In the particular case of two actions by player, we analyze the version of LUCB that draws only one arm
per round. More precisely, in this particular case, letting

Xt = argmin
j=1,2

L(1,j)(t) and Yt = argmin
j=1,2

L(2,j)(t),

one has Pt+1 = argmax
P ∈{Xt,Yt}

NP (t).

The analysis follows the same lines as that of Theorem 4. First, we notice that the algorithm outputs
the maximin action on the event E = ∩t∈NEt, and thus the exploration rate defined in Corollary 2 guaran-
tees a δ-PAC algorithm. Then, the sample complexity analysis relies on a specific characterization of the
draw of each of the arms given in Lemma 13 below (which is a counterpart of Lemma 11). This result
justifies the new complexity term that appears in Theorem 5, as ∑1≤i,j≤2 c(i,j) ≤H

∗(µ).

Lemma 13 On the event E , for all P ∈ P , one has

(Pt+1 = P ) ∩ (τδ > t) ⊆ (NP (t) ≤ 8cPβ(t, δ)) ,

with
c(1,1) =

1

(µ1,1 − µ2,1)
2
, c(1,2) =

1

(µ1,2 − µ2,1)
2
, c(2,1) =

1

(µ1,1 − µ2,1)
2
,

and
c(2,2) =

1

max(4(µ2,2 − µ2,1)
2, (µ1,1 − µ2,1)

2)
.

Proof of Lemma 13. The proof of this result uses extensively the fact that the confidence intervals in
(3) are symmetric:

UP (t) = LP (t) + 2

¿
Á
ÁÀ β(t, δ)

2NP (t)
.

Assume that (Pt+1 = (1,1)). By definition of the sampling strategy, one has L(1,1)(t) ≤ L(1,2)(t)
and N(1,1)(t) ≤ NYt(t). If (τδ > t), one has

L(1,1)(t) ≤ UYt(t)

U(1,1)(t) − 2

¿
Á
ÁÀ β(t, δ)

2N(1,1)(t)
≤ LYt(t) + 2

¿
Á
ÁÀ β(t, δ)

2NYt(t)
.

On E , µ1,1 ≤ U(1,1)(t) and LYt(t) = min(L(2,1)(t),L(2,2)(t)) ≤ min(µ2,1, µ2,2) = µ2,1. Thus

µ1,1 − µ2,1 ≤ 2

¿
Á
ÁÀ β(t, δ)

2NYt(t)
+ 2

¿
Á
ÁÀ β(t, δ)

2N(1,1)(t)
≤ 4

¿
Á
ÁÀ β(t, δ)

2N(1,1)(t)
,
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using that N(1,1)(t) ≤ NYt(t). This proves that

(Pt+1 = (1,1)) ∩ (τδ > t) ⊆ (N(1,1)(t) ≤
8β(t, δ)

(µ1,1 − µ2,1)
2
) .

A very similar reasoning shows that

(Pt+1 = (1,2)) ∩ (τδ > t) ⊆ (N(1,2)(t) ≤
8β(t, δ)

(µ1,2 − µ2,1)
2
) .

Assume that (Pt+1 = (2,1)). If (τδ > t), one has

LXt(t) ≤ U(2,1)(t)

UXt(t) − 2

¿
Á
ÁÀ β(t, δ)

2NXt(t)
≤ L(2,1)(t) + 2

¿
Á
ÁÀ β(t, δ)

2N(2,1)(t)
.

On E , µ1,1 ≤ µXt ≤ UXt(t) and L(2,1)(t) ≤ µ2,1. Thus

µ1,1 − µ2,1 ≤ 2

¿
Á
ÁÀ β(t, δ)

2NXt(t)
+ 2

¿
Á
ÁÀ β(t, δ)

2N(2,1)(t)
≤ 4

¿
Á
ÁÀ β(t, δ)

2N(2,1)(t)
,

using that N(2,1)(t) ≤ NXt(t). This proves that

(Pt+1 = (2,1)) ∩ (τδ > t) ⊆ (N(2,1)(t) ≤
8β(t, δ)

(µ1,1 − µ2,1)
2
) .

Assume that (Pt+1 = (2,2)). First, using the fact that L(2,2)(t) ≤ L(2,1)(t) yields, on E ,

U(2,2)(t) − 2

¿
Á
ÁÀ β(t, δ)

2N(2,2)(t)
≤ µ2,1

µ2,2 − µ2,1 ≤ 2

¿
Á
ÁÀ β(t, δ)

2N(2,2)(t)
,

which leads to N(2,2)(t) ≤ 2β(t, δ)/(µ2,2 − µ2,1)
2. Then, if (τδ > t), on E (using also that L(2,2)(t) ≤

L(2,1)(t)),

LXt(t) ≤ U(2,2)(t)

UXt(t) − 2

¿
Á
ÁÀ β(t, δ)

2NXt(t)
≤ L(2,2)(t) + 2

¿
Á
ÁÀ β(t, δ)

2N(2,2)(t)

UXt(t) − 2

¿
Á
ÁÀ β(t, δ)

2NXt(t)
≤ L(2,1)(t) + 2

¿
Á
ÁÀ β(t, δ)

2N(2,2)(t)

µ1,1 − 2

¿
Á
ÁÀ β(t, δ)

2NXt(t)
≤ µ2,1 + 2

¿
Á
ÁÀ β(t, δ)

2N(2,2)(t)

µ1,1 − µ2,1 ≤ 4

¿
Á
ÁÀ β(t, δ)

2N(2,2)(t)
.
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Thus, if µ2,2 < µ1,1, one also has N(2,2)(t) ≤ 8β(t, δ)/(µ1,1 − µ2,1)
2. Combining the two bounds yield

(Pt+1 = (2,2)) ∩ (τδ > t) ⊆ (N(2,2)(t) ≤
8β(t, δ)

max (4(µ2,2 − µ2,1)
2, (µ1,1 − µ2,1)

2)
) .

Appendix B. Analysis of the Maximin-Racing Algorithm

B.1. Proof of Proposition 7.

First note that for every P ∈ P , introducing an i.i.d. sequence of successive observations from arm P , the
sequence of associated empirical means (µ̂P (r))r∈N is defined independently of the arm being active.

We introduce the event E = E1 ∩ E2 with

E1 =
K

⋂
i=1

⋂
(i,j)∈Pi∶
µi,j=µi,1

⋂
(i,j′)∈Pi∶
µi,j′>µi,1

(∀r ∈ N, rf(µ̂i,j(r), µ̂i,j′(r)) ≤ β(r, δ))

E2 = ⋂
i∈{1,...,K}∶
µi,1<µ1,1

⋂
(i,j)∈Ai∶
µi,j=µi,1

⋂
i′∈{1,...,K}∶
µi′,1=µ1,1

⋂
(i′,j′)∈Ai′

(∀r ∈ N, rf(µ̂i,j(r), µ̂i′,j′(r)) ≤ β(r, δ))

and the event
F = ⋂

P ∈P

(∣µ̂P (r0) − µP ∣ ≤
ε

2
) .

From (9) and a union bound, P(Ec) ≤ δ/2. From Hoeffding inequality and a union bound, using also the
definition of r0, one has P(Fc) ≤ δ/2. Finally, Pµ (E ∩F) ≥ 1 − δ.

We now show that on E ∩F , the algorithm outputs an ε-optimal arm. On the event E , the following
two statements are true for any round r ≤ r0:

1. For all i, ifRi ≠ Ø, then there exists (i, j) ∈Ri such that µi,j = µi,1

2. If there exists i such thatRi ≠ Ø, then there exists i′ ∶ µi′,1 = µ1,1 such thatRi′ ≠ Ø.

Indeed, if 1. is not true, there is a non empty set Ri in which all the arms in the set {(i, j) ∈ Pi ∶ µi,j =
µi,1} have been discarded. Hence, in a previous round at least one of these arms must have appeared
strictly larger than one of the arms in the set {(i, j′) ∈ Pi ∶ µi,j′ > µi,1} (in the sense of our elimination
rule), which is not possible from the definition of E1. Now if 2. is not true, there exists i′ ∶ µi′,1 = µ1,1,
such that Ri′ has been discarded at a previous round by some non-empty set Ri, with µi,1 < µ1,1.
Hence, there exists (i′, j′) ∈ Ai′ that appears significantly smaller than all arms in Ri (in the sense of
our elimination rule). As Ri contains by 1. some arm µi,j with µi,j = µi,1, there exists r such that
rd(µ(i,j)(r), µ(i′,j′)(r)) > β(r, δ), which contradicts the definition of E2.

From the statements 1. and 2., on E ∩F if the algorithm terminates before r0, using that the last set
in the race Ri must satisfy µi,1 = µ1,1, the action ı̂ is in particular ε-optimal. If the algorithm has not
stopped at r0, the arm ı̂ recommended is the empirical maximin action. Letting Ri some set still in the
race with µi,1 = µ1,1, one has,

min
P ∈Rı̂

µ̂P (r0) ≥ min
P ∈Ri

µ̂P (r0).

As F holds and because there exists (ı̂, ̂) ∈Rı̂ with µı̂,̂ = µı̂,1, and (i, j) ∈Ri with µi,j = µ1,1, one has

min
P ∈Ri

µ̂P (r0) ≥ min
P ∈Ri

(µP − ε/2) = µi,j − ε/2 = µ1,1 − ε/2.

min
P ∈Rı̂

µ̂P (r0) ≤ min
P ∈Rı̂

(µP + ε/2) = µı̂,̂ + ε/2 = µı̂,1 + ε/2.

21



GARIVIER, KAUFMANN AND KOOLEN

and thus ı̂ is ε-optimal, since

µı̂,1 +
ε

2
≥ µ1,1 −

ε

2
⇔ µ1,1 − µı̂,1 ≤ ε.

◻

B.2. Proof of Theorem 8

Recall µ1,1 > µ2,1. We present the proof assuming additionally that for all i ∈ {1,K}, µi,1 < µi,2 (an
assumption that can be relaxed, at the cost of more complex notations).

Let α > 0. The function f defined in (8) is uniformly continuous on [0,1]2, thus there exists ηα such
that

∣∣(x, y) − (x′, y′)∣∣∞ ≤ ηα ⇒ ∣f(x, y) − f(x′, y′)∣ ≤ α.

We introduce the event
Gα,r = ⋂

P ∈P

(∣µ̂P (r) − µP ∣ ≤ η
α
)

and let E be the event defined in the proof of Lemma 7, which rewrites in a simpler way with our
assumptions on the arms :

E =
K

⋂
i=2

K1

⋂
j=1

(∀r ∈ N, rf(µ̂i,1(r), µ̂1,j(r)) ≤ β(r, δ))
K

⋂
i=1

Ki

⋂
j=2

(∀r ∈ N, rf(µ̂i,1(r), µ̂i,j(r)) ≤ β(r, δ))

Recall that on this event, arm (1,1) is never eliminated before the algorithm stops and whenever an arm
(i, j) ∈R, we know that the corresponding minimal arm (i,1) ∈R.

Let (i, j) ≠ (1,1) and recall that τδ(i, j) is the number of rounds during which arm (i, j) is drawn.
One has

Eµ[τδ(i, j)] = Eµ[τδ(i, j)1E] +Eµ[τδ(i, j)1Ec] ≤ Eµ[τδ(i, j)1E] +
r0δ

2
. (14)

On the event E , if arm (i, j) is still in the race at the end of round r,

• it cannot be significantly larger than (i,1): rf(µ̂i,j(r), µ̂i,1(r)) ≤ β(r, δ)

• arm (i,1) cannot be significantly smaller than (1,1) (otherwise all arms in Ri, including (i, j),
are eliminated): rf(µ̂i,1(r), µ̂1,1(r)) ≤ β(r, δ)

Finally, one can write

Eµ[τδ(i, j)1E] ≤ Eµ [1E

r0

∑
r=1

1((i,j)∈R at round r)]

≤ Eµ [
r0

∑
r=1

1(rmax[f(µ̂i,j(r),µ̂i,1(r)),f(µ̂i,1(r),µ̂1,1(r))]≤β(r,δ))]

≤ Eµ [
r0

∑
r=1

1(rmax[f(µ̂i,j(r),µ̂i,1(r)),f(µ̂i,1(r),µ̂1,1(r))]≤β(r,δ))1Gα,r] +
r0

∑
r=1

Pµ(G
c
α,r)

≤
r0

∑
r=1

1(r(max[f(µi,j ,µi,1),f(µi,1,µ1,1)]−α)≤log(4CKr/δ) +
∞

∑
r=1

Pµ(G
c
α,r)

≤ T(i,j)(δ,α) +
∞

∑
r=1

2K exp(−2(ηα)2r),
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using Hoeffding inequality and introducing

T(i,j)(δ,α) ∶= inf {r ∈ N ∶ r (max [f(µi,j , µi,1), f(µi,1, µ1,1)] − α) > log (
4CKr

δ
)}

Some algebra (Lemma 12) shows that T(i,j)(δ,α) =
1

max[f(µi,j ,µi,1),f(µi,1,µ1,1)]−α
log (

4CK
δ

)+oδ→0 (log 1
δ
)

and finally, for all α > 0,

Eµ [τδ(i, j)] ≤
1

max[f(µi,j , µi,1), f(µi,1, µ1,1)] − α
log (

4CK
δ

) + o(log
1

δ
) .

As this holds for all α, and keeping in mind the trivial bound Eµ [τδ(i, j)] ≤ r0 = 2
ε2

log (4K
δ ), one

obtains

lim sup
δ→0

Eµ[τδ(i, j)]

log(1/δ)
≤

1

max [ε2/2, I(µi,j , µi,1), I(µi,1, µ1,1)]
.

To upper bound the number of draws of the arm (1,1), one can proceed similarly and write that, for
all α > 0,

τδ(1,1)1E = sup
(i,j)∈P/{(1,1)}

τδ(i, j)1E

≤ sup
(i,j)∈P/{(1,1)}

r0

∑
r=1

1(rmax[f(µ̂i,j(r),µ̂i,1(r)),f(µ̂i,1(r),µ̂1,1(r))]≤β(r,δ))

≤ sup
(i,j)∈P/{(1,1)}

r0

∑
r=1

1(r(f(µi,j ,µi,1)∧f(µi,1,µ1,1)−α)≤β(r,δ)) +
∞

∑
r=1

1Gcα,r

≤ sup
(i,j)∈P/{(1,1)}

T(i,j)(δ,α) +
∞

∑
r=1

1Gcα,r .

Taking the expectation and using the more explicit expression of the T(i,j) yields

lim sup
δ→0

Eµ[τδ(1,1)]

log(1/δ)
≤

1

max [ε2/2, I(µ2,1, µ1,1)]
.

For all j ∈ {2, . . . ,K1}, using that on E , τ(1,j) ≤ τ(1,1) also yields, using (14),

Eµ[τδ(1, j)] ≤ Eµ[τδ(1,1)1E] +
r0δ

2
,

and from the above, it follows that

lim sup
δ→0

Eµ[τδ(1, j)]

log(1/δ)
≤

1

I(µ2,1, µ1,1)
,

which concludes the proof.
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