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Abstract
Sepsis is a leading cause of mortality in intensive care units (ICUs) and costs hospitals billions
annually. Treating a septic patient is highly challenging, because individual patients respond very
differently to medical interventions and there is no universally agreed-upon treatment for sepsis.
Understanding more about a patient’s physiological state at a given time could hold the key to
effective treatment policies. In this work, we propose a new approach to deduce optimal treatment
policies for septic patients by using continuous state-space models and deep reinforcement learning.
Learning treatment policies over continuous state-spaces is important, because doing so allows us
to retain more of the patient’s physiological information. Our model is able to learn clinically
interpretable treatment policies, similar in important aspects to the treatment policies of physicians.
Evaluating our algorithm on past ICU patient data, we find that our model could reduce absolute
patient mortality in the hospital by up to 3.6% over observed clinical policies. The learned treatment
policies could be used to aid intensive care clinicians in medical decision making and improve the
likelihood of patient survival.

1. Introduction

Sepsis (severe infections with organ failure) is a dangerous condition that costs hospitals billions
of pounds in the UK alone (Vincent et al., 2006), and is a leading cause of patient mortality (Co-
hen et al., 2006). The clinicians’ task of deciding treatment type and dosage for individual patients
is highly challenging. Besides antibiotics and infection control, a cornerstone in managing severe
infections is the administration of intravenous fluids to correct hypovolemia (a state in which the
blood plasma is too low). This may be followed by the administration of vasopressors to counter-
act sepsis-induced vasodilation (the dilation of blood vessels resulting in reduced blood pressure).
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Using various fluids and vasopressors treatment strategies have been shown to lead to extreme vari-
ations in patient mortality, which demonstrates how critical these decisions are (Waechter et al.,
2014). While international efforts attempt to provide general guidance for treating sepsis, physi-
cians at the bedside still lack efficient tools to provide individualized real-time decision support
(Rhodes et al., 2017). As a consequence, individual clinicians vary treatment in many ways, e.g.,
the amount and type of fluids used, the timing and dosing of vasopressors given, which antibiotics
are given, and whether to administer corticosteroids.

In this work, we propose a data-driven approach to discover optimal sepsis treatment strategies.
We use deep reinforcement learning (RL) algorithms to identify how best to treat septic patients
in the intensive care unit (ICU) to improve their chances of survival. While RL has been used
successfully in complex decision making tasks (Mnih et al., 2015; Silver et al., 2016), its application
to clinical models has thus far been limited by data availability (Nemati et al., 2016) and the inherent
difficulty of defining clinical state and action-spaces (Prasad et al., 2017; Komorowski et al., 2016).

Nevertheless, RL algorithms have many desirable properties for the problem of deducing high-
quality treatments. Their intrinsic design for sparse reward signals makes them well suited to over-
come complexity from the stochasticity in patient responses to medical interventions, and delayed
indications of treatment efficacy. Importantly, RL algorithms also allow us to infer optimal strategies
from suboptimal training examples.

In this work, we demonstrate how to surmount the modeling challenges present in the medical
environment and use RL to deduce optimal treatment policies for septic patients.1 We focus on
continuous state-space modeling, representing a patient’s physiological state at a point in time as
a continuous vector (using either raw physiological data or sparse latent state representations), and
find optimal actions with Deep Q-Learning (Mnih et al., 2015). Motivating this approach is the fact
that physiological data collected from ICU patients provide very rich representations of a patient’s
physical state, allowing for the discovery of interpretable and high-quality policies.

In particular, we:
1. Propose deep reinforcement learning models with continuous state-spaces, improving on ear-

lier work with discrete state-spaces.
2. Identify treatment policies that could improve patient outcomes, potentially reducing absolute

patient mortality in the hospital by 1.8 - 3.6%, from a baseline absolute mortality of 13.7%.
3. Investigate the learned policies for clinical interpretability and potential use as a clinical de-

cision support tool.

2. Background and Related Work

In this section we outline important reinforcement learning algorithms used in the paper and moti-
vate our approach in comparison to prior work.

2.1 Reinforcement Learning

Reinforcement learning (RL) models time-varying state-spaces with a Markov Decision Process
(MDP), in which at every timestep t an agent observes the current state of the environment st, takes
an action at from the allowable set of actions A = {1, . . . ,M}, receives a reward rt, and then
transitions to a new state st+1. The agent selects actions at each timestep that maximize its expected

1. Either patients who develop sepsis in their ICU stay, or those who are already septic at the start of their stay.



discounted future reward, or return, defined as Rt =
∑T

t′=t γ
t′−trt′ , where γ captures the tradeoff

between immediate and future rewards, and T is the terminal timestep. The optimal action value
function Q∗(s, a) is the maximum discounted expected reward obtained after executing action a in
state s; that is, performing a in state s and proceeding optimally from this point onwards. More
concretely, Q∗(s, a) = maxπ E[Rt|st = s, at = a, π], where π — also known as the policy — is a
mapping from states to actions. The optimal value function is defined as V ∗(s) = maxπ E[Rt|st =
s, π], where we act according to π throughout.

In Q-learning, the optimal action value function is estimated using the Bellman equation,
Q∗(s, a) = Es′∼T (s′|s,a)[r + γmaxa′ Q

∗(s′, a′)|st = s, at = a], where T (s′|s, a) refers to the
state transition distribution. Learning proceeds either with value iteration (Sutton and Barto, 1998)
or by directly approximating Q∗(s, a) using a function approximator (such as a neural network)
and learning via stochastic gradient descent. Note that Q-learning is an off-policy algorithm, as the
optimal action-value function is learned with samples< s, a, r, s′ > that are generated to explore the
state-space. An alternative to Q-learning is the SARSA algorithm (Rummery and Niranjan, 1994);
an on-policy method to learn Qπ(s, a), which is the action-value function when taking action a in
state s at time t, and then proceeding according to policy π afterwards.

In this work, the state st is a patient’s physiological state, either in raw form (Section 3.2) or as a
latent representation (Section 4.3). The action-space,A, is of size 25 and is discretized over doses of
vasopressors and IV fluids, two drugs commonly given to septic patients (Section 3.3). The reward
rt is ±Rmax at terminal timesteps and zero otherwise, with positive rewards being issued when a
patient survives, and negative rewards when a patient dies. At every timestep, the agent is trained to
take an action at with the highest Q-value, aiming to increase the chance of patient survival.

2.2 Reinforcement Learning in Health

Much prior work in clinical machine learning has focused on supervised learning techniques for
diagnosis (Esteva et al., 2017) and risk stratification (N.Razavian et al., 2015). The incorporation
of time in a supervised setting could be implicit within the feature space construction (Hug and
Szolovits, 2009; Joshi and Szolovits, 2012), or captured with multiple models for different time
points (Fialho et al., 2013; Ghassemi et al., 2014). We prefer RL for sepsis treatment over super-
vised learning because the ground truth of “good” treatment strategy is unclear in medical literature
(Marik, 2015).

Nemati et al. (2016) applied deep RL techniques to model ICU heparin dosing as a Partially
Observed Markov Decision Process (POMDP), using both discriminative Hidden Markov Models
and Q-networks to discover the optimal policy. Their investigation was made more challenging
by the relatively small amount of available data. Shortreed et al. (2011) learned optimal treatment
policies for schizophrenic patients, and quantified the uncertainty around the expected outcome
for patients who followed the policies. Prasad et al. (2017) use off-policy reinforcement learning
algorithms to determine ICU strategies for mechanical ventilation administration and weaning, but
focus on simpler learning algorithms and a heuristic action-space. In contrast, we experiment with
using a sparse autoencoder to generate latent representations of the state of a patient, likely leading
to an easier learning problem. We also propose neural network architectures that obtain more robust
methods for optimal policy deduction.

While little prior work exists, Komorowski et al. (2016) use a discretized state and action-space
to deduce optimal treatment policies for septic patients. Their work applied SARSA learning to fit



an action-value function to the physician policy and value-iteration techniques to find an optimal
policy (Sutton and Barto, 1998). The optimal policy was then evaluated by comparing the Q-values
that would have been obtained following chosen actions to the Q-values obtained by the physicians.
We reproduce a similar model as our baseline, using related data pre-processing and clustering
techniques. Notably, we differ from Komorowski et al. (2016) in the following ways: we focus on
continuous modeling, where policies are learned directly from the physiological state data, without
discretization; we propose a novel evaluation metric (Jiang and Li, 2015); and we focus on in-
hospital mortality instead of 90-day mortality because of the other unobserved factors that could
affect mortality in a 3-month timeframe.

3. Data and Preprocessing

3.1 Cohort

Data for these patients were obtained from the Multiparameter Intelligent Monitoring in Intensive
Care (MIMIC-III v1.4) database (Johnson et al., 2016), which is publicly available and contains
hospital admissions from over 38,600 adults (at least 15 years old). We extracted a cohort of patients
fulfilling the Sepsis-3 criteria (Singer et al., 2016), and note that summary information about the
populations is similar in sepsis survivors and non-survivors (Table 1).

% Female Mean Age Hours in ICU Total Population
Survivors 43.6 63.4 57.6 15,583
Non-survivors 47.0 69.9 58.8 2,315

Table 1: Comparison of cohort statistics for subjects that fulfilled the Sepsis-3 criteria.

3.2 Feature Preprocessing

For each patient, we extracted relevant physiological parameters including demographics, lab val-
ues, vital signs, and intake/output events. Data were aggregated into windows of 4 hours, with the
mean or sum being recorded (as appropriate) when several data points were present in one window.
Variables with excessive missingness were removed, and any remaining missing values were im-
puted with k-nearest neighbors, yielding a 47 × 1 feature vector for each patient at each timestep.
Values exceeding clinical limits were capped, and capped data were normalized per-feature to zero
mean and unit variance. See Appendix 8.3 for a full feature list.

3.3 Action Discretization

We define a 5×5 action-space for the medical interventions, representing the volume of intravenous
(IV) fluid (adjusted for fluid tonicity) and maximum vasopressor (VP) dosage given in a 4 hour
window. The action-space was restricted to these two interventions as both drugs are extremely
important in the management of septic patients, but there is no agreement on when, and how much,
of each drug to give (Marik, 2015). We discretized the action-space into per-drug quartiles based
on all non-zero dosages of the two drugs, and converted each drug at every timestep into an integer
representing its quartile bin. We included a special case of no drug given as bin 0. This created an
action representation of interventions as tuples of (total IV in, max VP in) at each time.



4. Methods

The challenge of applying RL to optimal medication dosing is that all available data are offline
sampled; that is, data are collected previously and models can only be fit to a retrospective dataset.
In an RL context, this limits exploration of the state-space in question, and makes learning the truly
‘optimal’ policy difficult. This limitation motivates trying several different approaches, with varied
modeling constraints, to determine the best medication strategy for patients.

We focus on off-policy RL algorithms that learn an optimal policy through data that are gen-
erated by following an alternative policy. This makes sense for our problem because the available
data are generated from a policy followed by physicians, but our goal is to learn a different, opti-
mal policy rather than to evaluate the physician’s policy. We propose deep models with continuous
state-spaces and discretized action-spaces to retain more of the underlying state representation.

4.1 Discretized State-space and Discretized Action-space

Following Komorowski et al. (2016), we create a baseline model with discretized state and action-
spaces, aiming to capture the underlying representation while simplifying the learning procedure.
We use this approach to evaluate the performance of other techniques, and to understand the signif-
icance of learned Q-values. We also use the SARSA algorithm (Rummery and Niranjan, 1994) to
learn Qπ(s, a), and the action-value function for the physician policy (Appendix 8.4).

4.2 Continuous State-spaces

Continuous state-space models directly capture a patient’s physiological state, and allow us to dis-
cover high-quality treatment policies. To learn an optimal policy with continuous state vectors, we
use neural networks to approximate the optimal action-value function, Q∗(s, a).

Our model is based on a variant of Deep Q-Networks (Mnih et al., 2015). Deep Q-Networks
seek to minimize a squared error loss between the output of the network, Q(s, a; θ), and the desired
target, Qtarget = r + γmaxa′ Q(s′, a′; θ), observing tuples of the form < s, a, r, s′ >. The network
has outputs for all the different actions that can be taken — for all a ∈ A = {1, . . . ,M}. Concretely,
the parameters θ∗ are found such that:

θ∗ = arg minθ E [L(θ)] = arg minθ E
[
(Qtarget −Q(s, a; θ))2

]
In practice, the expected loss is minimized via stochastic batch gradient descent. However, this

method can be unstable due to non-stationarity of the target values, and using a separate network to
determine the target Q-values (Q(s′, a′)), which is periodically updated towards the main network
(used to estimate Q(s, a)), helps to improve performance.

Simple Q-Networks have several shortcomings, so we made important modifications to make
our model suitable. Firstly, Q-values are frequently overestimated in practice, leading to incorrect
predictions and poor policies. We solve this problem with a Double-Deep Q-Network (van Hasselt
et al., 2015), where the target Q-values are determined using actions found through a feed-forward
pass on the main network, as opposed to being determined directly from the target network. Sec-
ondly, in the context of finding optimal treatments, we want to separate the influence on Q-values
of 1) a patient’s underlying state being good (e.g. near discharge), and 2) the correct action being
taken at that timestep. To this end, we use a Dueling Q-Network (Wang et al., 2015), where the
action-value function Q(s, a) is split into separate value and advantage streams, where the value



represents the quality of the current state, and the advantage represents the quality of the chosen
action. Thirdly, training such a model can be slow as reward signals are sparse and only available
on terminal timesteps. We use Prioritized Experience Replay (Schaul et al., 2015) to accelerate
learning by sampling a transition from the training set with probability proportional to the previous
error observed.

Our final network architecture is a Dueling Double-Deep Q-Network (Dueling DDQN), com-
bining both of the above ideas. The network has two hidden layers of size 128, uses batch normal-
ization (Ioffe and Szegedy, 2015) after each, Leaky-ReLU activation functions, a split into equally
sized advantage and value streams, and a projection onto the action-space by combining these two
streams (see Appendix 8.5). After training the Dueling DDQN, we can then obtain the optimal
policy for a given patient state as: π∗(s) = arg maxaQ(s, a).

4.3 Autoencoder Latent State Representation

Deep RL approaches for optimal medication are challenging to learn, because the patient state is a
continuous vector without clear structure. We examined both ordinary autoencoders (Bengio, 2009)
and sparse autoencoders (Ng, 2011) to produce latent state representations of the physiological state
vectors and simplify the learning problem. Sparse autoencoders were trained with an additional term
in the loss function to encourage sparsity (Section 8.6). Our autoencoder models all had a single
hidden layer, which was used as the latent state representation. These latent state representations
were used as inputs to the Dueling DDQN (Section 4.2).

5. Evaluation

The evaluation of off-policy models is challenging because it is difficult to estimate whether the
rollout of a learned policy (using the learned policy to determine actions at each state) would even-
tually lead to lower patient mortality. Furthermore, directly comparing Q-values on off-policy data,
as done in prior applications of RL to healthcare (Komorowski et al., 2016), can provide incorrect
performance estimates (Jiang and Li, 2015). In this work, we propose evaluating learned policies
with several approaches.

5.1 Discounted Returns vs. Mortality

To understand how expected discounted returns relate to mortality, we bin Q-values obtained via
SARSA on the test set into discrete buckets, and for each, if it is part of a trajectory where a
patient died, we assign it a label of 1; if the patient survived, we assign a label of 0. These labels
represent the ground truth, as we know the actual outcome of patients when the physician’s policy
is followed. We compute the average mortality in each bin, enabling us to produce an empirically
derived function of proportion of mortality versus expected return. We expect to see an inverse
relationship between mortality and expected return, and this function enables us to associate returns
with mortality for the purpose of evaluation.

5.2 Off-Policy Evaluation

We use the method of Doubly Robust Off-policy Value Evaluation (Jiang and Li, 2015) to evaluate
policies. For each trajectory H we compute an unbiased estimate of the value of the learned policy,
V H

DR, and average the results obtained across the observed trajectories. We can also compute the



mean discounted return of chosen actions under the physician policy. Using both these estimates,
and the empirically learned proportion of mortality vs. expected return function, we can assess the
potential improvement our policy could bring in terms of reduction in patient mortality. Directly
comparing the value (or return) of policies without the use of such an estimator is likely to give
invalid results (Jiang and Li, 2015).

5.3 Qualitative Examination of Treatment Policies

We examine the overall choice of treatments proposed by the optimal policy to derive more clinical
understanding, and compare these choices to those made by physicians to understand how differ-
ences in the chosen actions contribute to patient mortality.

6. Results

6.1 Fully Discretized Models are Well-calibrated with Test Set Mortality

Figure 1 shows the proportion of mortality versus the expected return for the physician policy on
the held out test set. Note that Rmax = 15 is the reward issued at terminal timesteps. As expected,
we observe high mortality with low returns, and low mortality with high returns. The empirically
derived mortality for the physician’s policy matches the actual proportion of mortality in the test set.
For the empirically derived mortality, we average the expected return for the physician on the test
set to obtain 13.9± 0.5%. This reflects the actual proportion of mortality on the test set (13.7%).

Figure 1: The relationship between expected returns — learned from observational data and actions
taken by actual physicians — and the risk of mortality in the test set of 3,580 patients (see Section
5.1). The model appears to be well calibrated, with an inverse relationship between return and
mortality.

6.2 Continuous State-space Models

We present the results for the two proposed networks: the Dueling Double-Deep Q-Network (Du-
eling DDQN) and the Sparse Autoencoder Dueling DDQN. For clarity, these are referred to as the
normal Q-N model and autoencode Q-N model respectively.



6.2.1 QUANTITATIVE VALUE ESTIMATE OF LEARNED POLICIES

Table 2 presents the relative performance of the three policies — physician, normal Q-N, and au-
toencode Q-N — on expected returns and estimated mortality. As described in Section 5.2, we first
obtain unbiased estimates of the value of our learned policies on the test data. The expected returns
shown are V̄ Physician

DR , V̄ normal Q-N
DR , and V̄ autoencode Q-N

DR . We estimate the mortality under each policy
using Figure 1. As shown, the autoencode Q-N policy has the lowest estimated mortality and could
reduce patient mortality by up to 4%. We examine a histogram of mortality counts against the first
two principal components of the sparse representation (Figure 2) and observe a clear gradient of
mortality counts, indicating how the autoencoder’s hidden state may provide a rich representation
of physiological state that leads to better policies.

Figure 2: Histogram of mortality counts against first two principal components of sparse autoen-
coder representation. Note the association between these values and the eventual outcome of the
patient, potentially indicating why this model was able to learn a good quality policy.

Policy Expected Return Estimated Mortality
Physician 9.87 13.9± 0.5%

Normal Q-N 10.16 12.8± 0.5%

Autoencode Q-N 10.73 11.2± 0.4%

Table 2: Comparison of expected return and estimated mortality under the physician’s policy, nor-
mal Q-N, and autoencode Q-N.

6.2.2 QUALITATIVE EXAMINATION OF LEARNED POLICIES

Figure 3 demonstrates what the three policies — physician, normal Q-N, and autoencode Q-N —
have learned as optimal policies. The action numbers index the different discrete actions selected at
a given timestep, and the charts shown aggregate actions taken over all patient trajectories. Action 0
refers to no drugs given to the patient at that timestep, and increasing actions refer to higher drug
dosages, where drug dosages are represented by quartiles.

As shown, physicians do not often prescribe vasopressors to patients (note the high density of
actions corresponding to vasopressor dose = 0) and this behavior is strongly in the policy learned by
the autoencode Q-N model. This result is sensible; even though vasopressors are commonly used



Figure 3: Policies learned by the different models, as a 2D histogram, where we aggregate all actions
selected by the physician and models on the test set over all timesteps. The axes labels index the
discretized action-space, where 0 represents no drug given, and 4 the maximum of that particular
drug. Both models learn to prescribe vasopressors sparingly, a key feature of the physician’s policy.

in the ICU to elevate mean arterial blood pressure, many patients with sepsis are not hypotensive
and therefore do not need vasopressors. In addition, there have been few controlled clinical trials
that have documented improved outcomes from their use (Müllner et al., 2004). The normal Q-
N also learns a policy where vasopressors are not given in with high frequency, but that policy is
less evident. There are interesting parallels between the two learned policies (normal Q-N, and
autoencode Q-N). For example, both favor action (0,2) (corresponding to no IV fluids given and an
intermediate dosage of vasopressor given), and action (2,3) (corresponding to a medium dosage of
IV fluids and vasopressors).

6.2.3 QUANTIFYING OPTIMALITY OF LEARNED POLICIES

Figure 4 shows the correlation between 1) the observed mortality, and 2) the difference between
the optimal doses suggested by the policy, and the actual doses given by clinicians. The dosage
differences at individual timesteps were binned, and mortality counts were aggregated. We observe
consistently low mortalities when the optimal dosage and true dosage coincide, i.e. at a difference
of 0, indicating the validity of the learned policy. The observed mortality proportion then increases
as the difference between the optimal dosage and the true dosage increases. Results are less reliable
when the optimal dose and physician dose differ by larger amounts.

Both models appear to learn useful policies for vasopressors, with a large increase in observed
mortality seen in the autoencode Q-N because of relatively few cases in the test set where the
optimal dose and given dose differed positively by a large amount. For IV-fluids, normal Q-N learns
a policy that shows a clear improvement over that of the physician’s, indicated by the significant
drop in observed mortality at the 0 mark. The autoencode Q-N model learns a weaker policy over
IV fluids, shown by the observed mortality decreasing as the difference between dosages increases.

7. Conclusion

In this work, we explored methods of applying deep reinforcement learning (RL) to the problem
of deducing optimal medical treatments for patients with sepsis. There remain many interesting
areas to be investigated. The reward function in this model is quite sparse, with rewards/penalties



Figure 4: Comparison of how observed mortality (y-axis) varies with the difference between the
dosages recommended by the optimal policy and the dosages administered by clinicians (x-axis).
For every timestep, this difference was calculated and associated with whether the patient survived
or died in the hospital, allowing the computation of observed mortality. In general, we see low
mortality for when the difference is zero, indicating that when the physician acts according to the
optimal policy we observe more patient survival.

only being issued at terminal states. To improve this, a clinically informed reward function could
be used, based on patient blood counts. Another approach could be to use inverse RL techniques
(Abbeel and Ng, 2010) to derive a suitable reward function based on the actions of experts (the
physicians). As our dataset of patient trajectories is collected from recording the actions of many
different physicians, this approach may allow us to infer a more appropriate reward function and in
turn learn a better model.

Our contributions build on recent work by Komorowski et al. (2016), investigating a variety of
techniques to find optimal treatment policies that improve patient outcome. We started by building
a discretized state and action-space model, where the underlying states represent the physiological
data averaged over four hour blocks and the action-space is over two commonly administered drugs
for septic patients — IV fluids and vasopressors. Following this, we explored a fully continuous
state-space/discretized action-space model, using Dueling Double-Deep Q-Networks to learn an
approximation for the optimal action-value function, Q∗(s, a).

We demonstrated that using continuous state-space modeling found policies that could reduce
patient mortality in the hospital by 1.8–3.6%, which is an exciting direction for identifying better
medication strategies for treating patients with sepsis. Our policies learned that vasopressors may
not be favored as a first response to sepsis, which is sensible given that vasopressors may be harmful
in some populations (D’Aragon et al., 2015). Our learned policy of intermediate fluid dosages fits
well with recent clinical work finding that large fluid dosages on first ICU day are associated with
increased hospital costs and risk of death (Marik et al., 2017). The learned policies are also clinically
interpretable, and could be used to provide clinical decision support in the ICU. To our knowledge,
this is the first extensive application of novel deep reinforcement learning techniques to medical
informatics, building significantly on the findings of Nemati et al. (2016).
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8. APPENDICES

8.1 Cohort definition

Following the latest guidelines, sepsis was defined as a suspected infection (prescription of antibi-
otics and sampling of bodily fluids for microbiological culture) combined with evidence of organ
dysfunction, defined by a Sequential Organ Failure Assessment (SOFA) score greater or equal to 2
(Singer et al., 2016). We assumed a baseline SOFA of zero for all patients. For cohort definition, we
respected the temporal criteria for diagnosis of sepsis: when the microbiological sampling occurred
first, the antibiotic must have been administered within 72 hours, and when the antibiotic was given
first, the microbiological sample must have been collected within 24 hours (Singer et al., 2016). The
earliest event defined the onset of sepsis. We excluded patients who received no intravenous fluid,
and those with missing data for 8 or more out of the 47 variables. This method yield a cohort of
17,898 patients.

8.2 Data extraction

MIMIC-III v1.4 was queried using pgAdmin 4. Raw data were extracted for all 47 features and
processed in Matlab (version 2016b). Data were included from up to 24 hours preceding the diag-
nosis of sepsis and until 48 hours following the onset of sepsis, in order to capture the early phase
of its management including initial resuscitation, which is the time period of interest. The features
were converted into multidimensional time series with a time resolution of 4 hours. The outcome of
interest was in-hospital mortality.

8.3 Model Features

The physiological features used in our model are presented below.

Demographics/Static
Shock Index, Elixhauser, SIRS, Gender, Re-admission, GCS - Glasgow Coma Scale, SOFA - Se-
quential Organ Failure Assessment, Age

Lab Values
Albumin, Arterial pH, Calcium, Glucose, Hemoglobin, Magnesium, PTT - Partial Thromboplas-
tin Time, Potassium, SGPT - Serum Glutamic-Pyruvic Transaminase, Arterial Blood Gas, BUN -
Blood Urea Nitrogen, Chloride, Bicarbonate, INR - International Normalized Ratio, Sodium, Arte-
rial Lactate, CO2, Creatinine, Ionised Calcium, PT - Prothrombin Time, Platelets Count, SGOT -
Serum Glutamic-Oxaloacetic Transaminase, Total bilirubin, White Blood Cell Count

Vital Signs
Diastolic Blood Pressure, Systolic Blood Pressure, Mean Blood Pressure, PaCO2, PaO2, FiO2,
PaO/FiO2 ratio, Respiratory Rate, Temperature (Celsius), Weight (kg), Heart Rate, SpO2

Intake and Output Events
Fluid Output - 4 hourly period, Total Fluid Output, Mechanical Ventilation



8.4 Discretized State and Action-Space Model

We present here how the discretized model was built.

8.4.1 STATE DISCRETIZATION

The data are partitioned into a training set (80%) and held-out test set (20%) by selecting a propor-
tionate number of patient trajectories for each set. These sets were checked to ensure they provide
an accurate representation of the complete dataset, in terms of distribution of outcomes and some
demographic features. We apply k-means clustering to the training set, discretizing the states into
1250 clusters. As in Komorowski et al. (2016), we use a simple, sparse reward function, issuing a
reward Rmax of +15 at a timestep if a patient survives, -15 if they die, and 0 otherwise. Test set data
points are discretized according to whichever training set cluster centroid they fall closest to.

8.4.2 SARSA FOR PHYSICIAN POLICY

To learn the action-value function associated with the model, we used an offline, SARSA approach
with the Bellman optimality equation, randomly sampling trajectories from our training set, and
using tuples of the form < s, a, r, s′, a′ > to update the action-value function:

Q(s, a)← Q(s, a) + α ∗ [r + γQ(s′, a′) - Q(s, a)]

Here, (s, a) is the current (state, action) tuple considered, (s′, a′) is a tuple representing the next
state and action, α is the learning rate and γ the discount factor. As our state and action-spaces
are both finite in this model, we represent the Q-function using a table with rows for each (s, a)
tuple. This learned function was then used in model evaluation - after convergence, it represents
Qπ(s, a) = Es′∼T (s′|s,a)[r + γQπ(s′, a′)|st = s, at = a, π], where π is the physician policy.

8.5 Continuous Model Architecture and Implementation Details

Our final network architecture had two hidden layers of size 128, using batch normalization (Ioffe
and Szegedy, 2015) after each, Leaky-ReLU activation functions, a split into equally sized advan-
tage and value streams, and a projection onto the action-space by combining these two streams
together.

The activation function is mathematically described by: f(z) = max(z, 0.5z), where z is the
input to a neuron. This choice of activation function is motivated by the fact that Q-values can be
positive or negative, and standard ReLU, tanh, and sigmoid activations appear to lead to saturation
and ‘dead neurons’ in the network. Appropriate feature scaling helped alleviate this problem, as did
issuing rewards of ±15 at terminal timesteps to help model stability.

We added a regularization term to the standard Q-network loss that penalized output Q-values
which were outside of the allowed thresholds (±15), in order to encourage the network to learn
a more appropriate Q-function. Clipping the target network outputs to ±15 was also found to be
useful. The final loss function was:

L(θ) = E
[(
Qdouble-target −Q (s, a; θ)

)2]
+ λ ·max (|Q(s, a; θ)−Rmax| , 0)

with Rmax being the absolute value of the reward/penalty issued at a terminal timestep, and

Qdouble-target = r + γQ(s′, arg maxa′ Q(s′, a′; θ); θ′)



where θ are the weights used to parameterize the main network, and θ′ are the weights used to
parameterize the target network.

As with the discrete model, we use a train/test split of 80/20 and ensure that a proportionate
number of patient outcomes are present in both sets. Batch normalization is used during training.
All models were implemented in TensorFlow v1.0, with Adam being used for optimization (Kingma
and Ba, 2014).

During training, we sample transitions of the form < s, a, r, s′ > from our training set, perform
feed-forward passes on the main and target networks to evaluate the output and loss, and update the
weights in the main network via backpropagation. Training was conducted for 80000 batches, with
batch size 30.

8.6 Autoencoder Implementation Details

For the autoencoder, a desired sparsity ρ is chosen, and the weights of the autoencoder are adjusted
to minimize Lsparse(θ) = Lreconstruction(θ) + β

∑n
j=1 KL(ρ||ρj). Here, n is the total number of hid-

den neurons in the network, ρj is the actual output of neuron j, β is a hyperparameter controlling
the strength of the sparsity term, KL(·||·) is the KL divergence, and Lreconstruction is the loss for a
normal autoencoder. The dimensionality of the hidden state representation was 200.
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