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Abstract
Contextual bandits are widely used in Internet
services from news recommendation to adver-
tising, and to Web search. Generalized linear
models (logistical regression in particular) have
demonstrated stronger performance than linear
models in many applications where rewards are
binary. However, most theoretical analyses on
contextual bandits so far are on linear bandits. In
this work, we propose an upper confidence bound
based algorithm for generalized linear contex-
tual bandits, which achieves an Õ(

√
dT ) regret

over T rounds with d dimensional feature vec-
tors. This regret matches the minimax lower
bound, up to logarithmic terms, and improves on
the best previous result by a

√
d factor, assum-

ing the number of arms is fixed. A key compo-
nent in our analysis is to establish a new, sharp
finite-sample confidence bound for maximum-
likelihood estimates in generalized linear mod-
els, which may be of independent interest. We
also analyze a simpler upper confidence bound
algorithm, which is useful in practice, and prove
it to have optimal regret for certain cases.

1. Introduction
Contextual bandit problems are originally motivated by ap-
plications in clinical trials (Woodroofe, 1979). When a
standard treatment and a new treatment are available for
a certain disease, the doctor needs to decide, in a sequetial
manner, which of them to use based on the patient’s profiles
such as age, general physical status or medicine history.
With the development of modern technologies, contextual
bandit problems have more applications, especially in web-
based recommendation, advertising and search (Agarwal
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et al., 2009; Li et al., 2010; 2012). In the problem of per-
sonalized news recommendation, the website must recom-
mend news articles that are most interesting to users that
visit the website. The problem is especially challenging
for breaking news, as little data are available to make good
prediction about user interest. A trade-off naturally occurs
in this kind of sequential decision making problems. One
needs to balance exploitation—choosing actions that per-
formed well in the past—and exploration—choosing ac-
tions that may potentially give better outcomes.

In this paper, we study the following stochastic, K-armed
contextual bandit problem. Suppose at each of the T
rounds, an agent is presented with a set of K actions, each
of which is associated with a context (a d-dimensional fea-
ture vector). By choosing an action based on the rewards
obtained from previous rounds and on the contexts, the
agent will receive a stochastic reward generated from some
unknown distribution conditioned on the context and the
chosen action. The goal of the agent is to maximize the
expected cumulative rewards over T rounds. The most
studied model in contextual bandits literature is the linear
model (Auer, 2002; Dani et al., 2008; Rusmevichientong
& Tsitsiklis, 2010; Chu et al., 2011; Abbasi-Yadkori et al.,
2011), in which the expected rewards at each round is a lin-
ear combination of features in the context vector. The lin-
ear model is theoretically convenient to work with. How-
ever, in practice, we usually have binary rewards (click or
not, treatment working or not). Logistic regression model
based algorithms have been shown to have substantial im-
provements over linear models (Li et al., 2012). We there-
fore consider generalized linear models (GLM) in the con-
textual bandit setting, in which linear, logistic and probit
regression serve as three important special cases.

The celebrated work of Lai & Robbins (1985) first intro-
duces the upper confidence bound (UCB) approach to effi-
cient exploration. Later, the idea of confidence bound has
been successfully applied to many stochastic bandits prob-
lems, from K-arm bandits problems (Auer et al., 2002a;
Bubeck & Cesa-Bianchi, 2012) to linear bandits (Auer,
2002; Abbasi-Yadkori et al., 2011). UCB-type algorithms
are both efficient and provable optimal in K-arm bandits
and K-armed linear bandits. However, most study are lim-
ited to the linear case. While some UCB-type algorithms
using GLMs perform well empirically (Li et al., 2012),
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there is little theoretical study of them. A natural question
arises: can we find an efficient algorithm to achieve the op-
timal convergence rate for generalized linear bandits?

Our Contributions In this paper, we propose a GLM
version of the UCB algorithm called SupCB-GLM that
achieves a regret over T rounds of order Õ(

√
dT ). This rate

improves the state-of-the-art results of Filippi et al. (2010)
by a

√
d factor, assuming the number of actions is fixed.

Moreover, it matches the GLM bandits problem’s mini-
max lower bound indicated by the linear bandits problem
and thus is optimal. SupCB-GLM is inspired by the semi-
nal work of Auer (2002), which introduced a technique to
construct independence samples in linear contextual ban-
dits. A key observation in proving this result is that the
`2 confidence ball of the unknown parameter is insufficient
to calculate a sharp upper confidence bound, yet what we
need is the confidence interval in all directions. Thus, we
prove a finite sample normality type confidence bound for
the maximum likelihood estimator of GLM. To the best of
our knowledge, this is the first non-asymptotic normality
type result for the GLM and might be of its own theoretical
value. We also analyze a simple version of UCB algorithm
called UCB-GLM that is widely used in practice. We prove
it also achieves the optimal regret bound under a reason-
able assumption. These results shed light on explaining the
good empirical performance of GLM bandits in practice.

Related Work The study of GLM bandits problem goes
back at least to Sarkar (1991), who considered discounted
regrets rather than cumulative regerts. They prove that a
myopic rule without exploration is asymptotically optimal.
Recently, Filippi et al. (2010) study the same stochastic
GLM bandit problem considered here. They propose the
GLM-UCB algorithm, similar to our Algorithm 1, which
achieves a regret of Õ(d

√
T ) after T rounds. However, as

we believe the optimal regret for stochastic GLM bandits
should be the same as linear case when the number of ac-
tions is small, their rates misses a

√
d term than the optimal

rates.

Another line of research focuses on using EXP-type al-
gorithms, which can be applied to almost any model
classes (Auer et al., 2002b). These algorithms, which
choose actions using a carefully randomized policy, use
importance sampling to reduce a bandit problem to its full-
information analogue. Later variants of the EXP4 algo-
rithm (Beygelzimer et al., 2010; Agarwal et al., 2014) give
an Õ(

√
dKT ) regret that is near-optimal with respect to

T . However, these regret bounds have a
√
K dependence.

Moreover, these algorithms can be expensive to run: they
either have a computational complexity exponential in d for
our GLM case, or need to make a large number of calls to
a nontrivial optimization oracle.

Organization Section 2 introduces the generalized linear
bandit problem. Section 3 gives a brief review of the sta-
tistical properties of generalized linear model, and gives a
sharp non-asymptotic normality-type result for GLM pa-
rameter estimation which can be of independent value.
With this tool, Section 4 presents our algorithms and the
main theoretical results. Section 5 concludes the paper with
further discussions, including several open problems. All
proofs are given in the supplementary materials.

Notations For a vector x ∈ Rd, we use ‖x‖ to denote its
`2- norm and x′ its transpose. Bd := {x ∈ Rd : ‖x‖ ≤ 1}
is the unit ball centered at the origin. The weighted `2-norm
associated with a positive-definite matrix A is defined by
‖x‖A :=

√
x′Ax. The minimum and maximum singular

values of a matrix A are written as λmin(A) and ‖A‖, re-
spectively. The trace of a matrix A is tr (A). For two sym-
metric matrices A and B of the same dimensions, A � B
means that A − B is positive semi-definite. For a real-
valued function f , we use ḟ and f̈ to denote its first and
second derivatives. Finally, [n] := {1, 2, . . . , n}.

2. Problem Setting
We consider the stochastic K-armed contextual bandit
problem. Let T be the number of total rounds. At round
t, the agent observes a context consisting of a set of K
feature vectors, {xt,a | a ∈ [K]} ⊂ Rd, which is drawn
IID from an unknown distribution ν, with ‖xt,a‖ ≤ 1.
Each feature vector xt,a is associated with an unknown
stochastic reward yt,a ∈ [0, 1]. The agent selects one ac-
tion, denoted at, and observes the corresponding reward
yt,at . Finally, we make a regularity assumption about the
distribution ν: there exists a constant σ0 > 0 such that
λmin(E[ 1

K

∑
a∈[K] xt,ax

′
t,a]) ≥ σ2

0 for all t.

In this paper, we are concerned with the generalized linear
model, or GLM, in which there is an unknown θ∗ ∈ Rd and
a fixed, strictly increasing link function µ : R → R such
that E[Y | X] = µ(X ′θ∗), where X is the chosen action’s
feature and Y the corresponding reward. One can verify
that linear and logistic models are special cases of GLM
with µ(x) = x and µ(x) = 1/(1 + e−x), respectively.

The agent’s goal is to maximize the cumulative expected
rewards over T rounds. Suppose the agent takes action at
at round t. Then the agent’s strategy can be evaluated by
comparing its expected reward to the best expected reward.
To do so, define the optimal action at round t by a∗t =
argmaxa∈[K] µ(x′t,aθ

∗). Then, the agent’s total regret of
following strategy π can be expressed as follows

RT (π) :=

T∑
t=1

(
µ(x′t,a∗t θ

∗)− µ(x′t,atθ
∗)
)
.

Note that RT (π) is in general a random variable due to the
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possible randomness in π. Denote by Xt = xt,at , Yt =
yt,at , and our model can be written as

Yt = µ(X ′tθ
∗) + εt , (1)

where {εt, t ∈ [T ]} are independent zero-mean noise.
Here, Xt is a random variable because the agent chooses
current action based on previous rewards. Formally, we as-
sume there is an increasing sequence of sigma fields {Fn}
such that εt is Ft-measurable with E [ εt | Ft−1 ] = 0.
An example of Fn will be the sigma-field generated by
{X1, Y1, . . . , Xn, Yn}. Also, we assume the noise εt is
sub-Gaussian with parameter σ, where σ is some positive,
universal constant; that is, for all t,

E
[
eλεt | Ft−1

]
≤ eλ

2σ2/2. (2)

In practice, when we have bounded reward Yt ∈ [0, 1], the
noise εt is also bounded and hence satisfies (2) with some
appropriate σ value. In addition to the boundedness as-
sumption on the rewards and feature vectors, we also need
the following assumption on the link function µ.

Assumption 1. κ := inf{‖x‖≤1, ‖θ−θ∗‖≤1} µ̇(x′θ) > 0.

As we shall see in Section 3, the asymptotic normality of
maximum-likelihood estimates implies the necessity of this
assumption. Note that this assumption is weaker than As-
sumption 1 in Filippi et al. (2010), as it only requires to
control the local behavior of µ̇(x′θ) near θ∗.

Assumption 2. µ is twice differentiable. Its first and sec-
ond order derivatives are upper-bounded by Lµ and Mµ,
respectively.

It can be verified that Assumption 2 holds for the logistic
link function, where we may choose Lµ = Mµ = 1/4.

3. Generalized Linear Models
To motivate the algorithms proposed in this paper, we first
briefly review the classical likelihood theory of generalized
linear models. In the canonical generalized linear model
(McCullagh & Nelder, 1989), the conditional distribution
of Y given X is from the exponential family, and its den-
sity, parameterized by θ ∈ Θ, can be written as

P(Y | X) = exp

{
Y X ′θ∗ −m(X ′θ∗)

g(η)
+ h(Y, η)

}
. (3)

Here, η ∈ R+ is a known scale parameter; m, g and h
are three normalization functions mapping from R to R.
The exponential family (3) is a very broad family of distri-
butions including the Gaussian, binomial, Poisson, gamma
and inverse-Gaussian distributions. It follows from stan-
dard properties of exponential families (Brown, 1986) that
m is infinitely differentiable satisfying ṁ(X ′θ∗) = E[Y |

X ] = µ(X ′θ∗) and m̈(X ′θ∗) = V(Y | X). It can be
checked that the data generated from (3) automatically sat-
isfies the sub-Gaussian condition (2).

Suppose we have independent samples of Y1, Y2, . . . , Yn
condition on X1, X2, . . . , Xn. The log-likelihood function
of θ under model (3) is

log `(θ) =

n∑
t=1

[
YtX

′
tθ −m(X ′tθ)

v(η)
+ c(Yt, η)

]

=
1

v(η)

n∑
t=1

[YtX
′
tθ −m(X ′tθ)] + constant .

Consequently, the maximum likelihood estimate (MLE)
may be defined by

θ̂n ∈ argmax
θ∈Θ

n∑
t=1

[YtX
′
tθ −m(X ′tθ)] .

From classical likelihood theory (Lehmann & Casella,
1998), we know that when the sample size n goes to infin-
ity, the MLE θ̂n is asymptotically normal, that is, θ̂n−θ∗ →
N (0, I−1

θ∗ ), where Iθ =
∑n
t=1 µ̇(X ′tθ)XtX

′
t is the Fisher

Information Matrix. Note that if µ̇(X ′tθ
∗)→ 0, the asymp-

totic variance of x′θ̂ can go to infinity for some x. This
suggests the necessity of Assumption 1.

As we will see later, the normality result is crucial in our
regret analysis of GLM bandits. However, to the best of
our knowledge, there is no non-asymptotic normality re-
sults of the MLE for GLM. In the following, we present a
finite-sample version of the classical asymptotic normality
results, which can be of independent interest.
Theorem 1. Define Vn =

∑n
t=1XtX

′
t, and let δ > 0 be

given. Furthermore, assume that

λmin(Vn) ≥
512M2

µσ
2

κ4

(
d2 + log

1

δ

)
. (4)

Then, with probability at least 1 − 3δ, the maximum-
likelihood estimator satisfies, for any x ∈ Rd, that

|x′(θ̂n − θ∗)| ≤
3σ

κ

√
log(1/δ) ‖x‖V −1

n
. (5)

This theorem characterizes the behavior of MLE on every
direction. It implies that x′(θ̂n − θ∗) has a sub-Gaussian
tail bound for any x ∈ Rd. It also provides a rigorous justi-
fication of the asymptotic upper confidence bound derived
heuristically by Filippi et al. (2010, Section 4.2).

The proof of the theorem is given in the appendix. It con-
sists of two main steps, as is typical for proving normality-
type results of MLEs (Van der Vaart, 2000). We first show
the n−1/2-consistency of θ̂ to θ∗. Then, by using a second-
order Taylor expansion or Newton-step, we can prove the
desired normality of θ̂.
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The condition (4) on λmin(Vn) is necessary for the consis-
tency of estimating linear models (Lai & Wei, 1982; Bickel
et al., 2009) and generalized linear models (Fahrmeir &
Kaufmann, 1985; Chen et al., 1999). It can be satisfied un-
der mild conditions such as the proposition below, which
will be useful for our analysis.

Proposition 1. Define Vn =
∑n
t=1XtX

′
t, where Xt is

drawn iid from some distribution ν with support in the unit
ball, Bd. Furthermore, let Σ := E[XtX

′
t] be the second

moment matrix, and B and δ > 0 be two positive con-
stants. Then, there exist positive, universal constants C1

and C2 such that λmin(Vn) ≥ B with probability at least
1− δ, as long as

n ≥

(
C1

√
d+ C2

√
log(1/δ)

λmin(Σ)

)2

+
2B

λmin(Σ)
.

Proof Sketch. We give a proof sketch here, and the full
proof is found in the appendix. In the following, for sim-
plicity, we will drop the subscript n when there is no ambi-
guity. Therefore, Vn is denoted V and so on. We will need a
technical lemma, which is an existing result in random ma-
trix theory. The version we presented here is adapted from
Equation (5.23) of Theorem 5.39 from Vershynin (2012).

Lemma 1. Let A ∈ Rn×d be a matrix whose rows Ai
are independent sub-Gaussian isotropic random vectors in
Rd with parameter σ, namely, E exp(x′(Ai − EAi)) ≤
exp(σ2 ‖x‖2 /2) for any x ∈ Rd. Then, there exist pos-
itive, universal constants C1 and C2 such that, for ev-
ery t ≥ 0, the following holds with probability at least
1 − 2 exp(−C2t

2), where ε = σ2(C1

√
d/n + t/

√
n):∥∥ 1

nA
′A− Id

∥∥ ≤ max{ε, ε2} .

Let X be a random vector drawn from the distribution
ν. Define Z := Σ−1/2X . Then Z is isotropic, namely,
E[ZZ ′] = Id. Define U =

∑n
t=1 ZtZ

′
t = Σ−1/2V Σ−1/2.

From Lemma 1, we have that, for any t, with probability
at least 1 − 2 exp(−C2t

2), λmin(U) ≥ n − C1σ
2
√
nd −

σ2t
√
n, where σ is the sub-Gaussian parameter ofZ, which

is upper-bounded by
∥∥Σ−1/2

∥∥ = λ
−1/2
min (Σ) (see, e.g., Ver-

shynin (2012)). We thus can rewrite the above inequality
(which holds with probability 1− δ as

λmin(U) ≥ n− λ−1
min(Σ)

(
C1σ

2
√
nd+ t

√
n
)
.

This implies the following lower bound:

λmin(V ) ≥ λmin(Σ)n− C1

√
nd− C2

√
n log(1/δ) .

Finally, simple calculations show that the last expression is
no less thanB as long as n is no smaller than the expression
stated in the proposition, finishing the proof.

4. Algorithms and Main Results
In this section, we are going to present two algorithms.
While the first algorithm is computationally more efficient,
the second algorithm has a provable optimal regret bound.

4.1. Algorithm UCB-GLM

The idea of upper confidence bounds (UCB) is highly
effective in dealing with the exploration and exploita-
tion trade-off in many parametric bandit problems, includ-
ing K-arm bandits (Auer et al., 2002a) and linear ban-
dits (Abbasi-Yadkori et al., 2011; Auer, 2002; Chu et al.,
2011; Dani et al., 2008). For the generalized linear model
considered here, since µ is a strictly increasing function,
our goal is equivalent to choosing a ∈ [K] to maximize
x′t,aθ

∗ at round t. Suppose θ̂t is our current estimator of θ∗

after round t. An exploitation action is to take the action
that maximizes the estimated mean value, while an explo-
ration action is to choose the one that has the largest vari-
ance. Thus, to balance exploitation and exploration, we
can simply choose the action that maximizes the sum of es-
timated mean and variance, which can be interpreted as an
upper confidence bound of x′t,aθ̂t. This leads to the algo-
rithm UCB-GLM (Algorithm 1).

Algorithm 1 UCB-GLM

Input: the total rounds T , tuning parameter τ and α.
Initialization: randomly choose at ∈ [K] for t ∈ [τ ], set
Vτ+1 =

∑τ
i=1XtX

′
t

For t = τ + 1, τ + 2, . . . , T do
1. Calculate the maximum-likelihood estimator θ̂t by

solving the equation
t−1∑
i=1

(Yi − µ(X ′iθ))Xi = 0 (6)

2. Choose at = argmaxa∈[K]

(
X ′t,aθ̂t + α ‖Xt,a‖V −1

t

)
3. Observe Yt, let Xt ← Xt,at , Vt+1 ← Vt +XtX

′
t

End For

UCB-GLM take two parameters. At the initialization stage,
we randomly choose actions to ensure a unique solution
of (6). The choice of τ in the theorem statement follows
from Proposition 1 with B = 1. It should be noted that the
IID assumption about contextual (i.e., the distribution ν)
is only needed to ensure Vτ+1 is invertable (similar to the
first phase in the algorithm of Filippi et al. (2010)); the rest
of our analysis does not depend on this stochastic assump-
tion. The same may be achieved by using regularization
(see, e.g., Abbasi-Yadkori et al. (2011)). Another tuning
parameter α is used to control the amount of exploration.
The larger the α is, the more exploration will be used.

As mentioned earlier, the feature vectors Xt depend on the
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previous rewards. Consequently, the rewards {Yi, i ∈ [t]}
may not be independent given {Xi, i ∈ [t]}. We in-
stead use results on self-normalized martingales (Abbasi-
Yadkori et al., 2011), together with a finite-time normality
result like Theorem 1, to prove the next theorem.

Theorem 2. Fix any δ > 0. There exists a universal
constant C > 0, such that if we run UCB-GLM with

α = σ
κ

√
d
2 log(1 + 2T/d) + log(1/δ) and τ = Cσ−2

0 (d+

log(1/δ)), then, with probability at least 1− 2δ, the regret
of the algorithm is upper bounded by

RT ≤ τ +
2Lµσd

κ
log

(
T

dδ

)√
T .

The theorem shows an Õ(d
√
T ) regret bound that is in-

dependent of K. Indeed, this rate matches the minimax
lower bound up to logarithm factor for the infinite actions
contextual bandit problems (Dani et al., 2008). By choos-
ing δ = 1/T and using the fact that RT ≤ T , this high-
probability result implies a bound on the expected regret:
E[RT ] = Õ(d

√
T ). Our result improves the previous

regret bound of Filippi et al. (2010) by a
√

log T factor.
Moreover, the algorithm proposed in Filippi et al. (2010)
involves a projection step, which is computationally more
expensive comparing to UCB-GLM. Finally, this algorithm
works well in practice. We give a heuristic argument for its
strong performance in Section 5, under a specific condition
that sometimes are satisfied.

Proof of Theorem 2. We first bound the one-step regret. To
do so, fix t and let X∗t = xt,a∗t and ∆t = θ̂t − θ∗, where
a∗t ∈ arg maxa∈[K] µ(x′t,aθ

∗) is an optimal action at round
t. The selection of at in UCB-GLM implies

〈X∗t , θ̂t〉+ α ‖X∗t ‖V −1
t
≤ 〈Xt, θ̂t〉+ α ‖Xt‖V −1

t
. (7)

Then, we have

〈X∗t , θ∗〉 − 〈Xt, θ
∗〉 = 〈X∗t −Xt, θ̂t〉 − 〈X∗t −Xt, θ̂t − θ∗〉

≤ α ‖Xt‖V −1
t
− α ‖X∗t ‖V −1

t
− 〈X∗t −Xt,∆t〉

≤ α
(
‖Xt‖V −1

t
− ‖X∗t ‖V −1

t

)
+ ‖X∗t −Xt‖V −1

t
‖∆t‖Vt

,

where the last inequality is due to Cauchy-Schwartz in-
equality. We have the following two lemmas to bound
‖∆t‖Vt

and ‖Xt‖V −1
t

, respectively. Their proofs are de-
ferred to the appendix.

Lemma 2. Let {Xt}∞t=1 be a sequence in Rd satisfying
‖Xt‖ ≤ 1. Define X0 = 0 and Vt =

∑t−1
s=0XsX

′
s. Sup-

pose there is an integer m such that λmin(Vm+1) ≥ 1, then
for all n > 0,

m+n∑
t=m+1

‖Xt‖V −1
t
≤

√
2nd log

(
n+m

d

)
.

Lemma 3. Suppose λmin(Vτ+1) ≥ 1. For any δ ∈
[1/T, 1), define event

E∆ :=

{
‖∆t‖Vt

≤ σ

κ

√
d

2
log(1 + 2t/d) + log(1/δ)

}
.

Then, event E∆ holds for all t ≥ τ with probability at least
1− δ.

We now choose α = σ
κ

√
d
2 log(1 + 2T/d) + log(1/δ). If

event E∆ holds for all t ≥ τ , then,

〈X∗t , θ∗〉 − 〈Xt, θ
∗〉

≤ α
(
‖Xt‖V −1

t
− ‖X∗t ‖V −1

t
+ ‖X∗t −Xt‖V −1

t

)
≤ 2α ‖Xt‖V −1

t
.

Combining the above with Lemma 2 yields

T∑
t=τ+1

(
〈X∗t , θ∗〉 − 〈Xt, θ

∗〉
)
≤ 2α

√
2Td log

(
T

d

)
≤ 2dσ

κ
log

(
T

dδ

)√
T . (8)

Note that µ is an increasing Lipschitz function with Lips-
chitz constant Lµ and the µ function is bounded between
0 and 1. The regret of algorithm UCB-GLM can be upper
bounded as

RT =

τ∑
t=1

(
µ (〈X∗t , θ∗〉)− µ (〈Xt, θ

∗〉)
)

+

T∑
t=τ+1

(
µ (〈X∗t , θ∗〉)− µ (〈Xt, θ

∗〉)
)

≤ τ + Lµ

T∑
t=τ+1

(
〈X∗t , θ∗〉 − 〈Xt, θ

∗〉
)
.

The proof can be finished by applying (8) and the specified
value of τ to the bound above.

4.2. Algorithm SupCB-GLM

While the algorithm UCB-GLM performs sufficiently well
in practice (Li et al., 2012), it is unclear whether it can
achieve the optimal rates of O(

√
dT logK), when K is

fixed and small. As mentioned in Section 4.1, the key
technical difficulty in analyzing UCB-GLM is the depen-
dence between samples. Inspired by a technique developed
by Auer (2002) to create independent samples for linear
contextual bandits, we propose another algorithm SupCB-
GLM (Algorithm 3), which uses algorithm CB-GLM (Al-
gorithm 2) as a sub-routine.
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Algorithm 2 CB-GLM

Input: parameter α, index set Ψ(t), and candidate set A.
1. Let θ̂t be the solution of∑

i∈Ψ(t)

[Yi − µ(X ′iθ)]Xi = 0

2. Vt =
∑
i∈Ψ(t)XiX

′
i

3. For a ∈ A, do

wt,a = α ‖xt,a‖V −1
t

, mt,a = 〈xt,a, θ̂t〉

End For

This algorithm also relies on the idea of confidence bound
to do exploration. At round t, the algorithm screens the
candidate actions based on the value of w(s)

t,a through S
stages until an action is chosen. At stage s, we set the
confidence level at stage s to be 2−s. If w(s)

t,a > 2−s for
some a, we need to do more exploration on xt,a and thus
we choose this action. Otherwise, the actions are filtered
in step 2d such that the actions passed to the next stage are
close enough to the optimal action. Since all the widths
are smaller than 2−s, if m(s)

t,a < m
(s)
t,j − 2 · 2−s for some

j ∈ As, the action a can not be the optimal action. The fil-
ter process terminates when we have already got accurate
estimate of all x′t,aθ

∗ up to the 1/
√
T level and we do not

need to do exploration. Thus in step 2c we just choose the
action that maximizes the estimated mean value.

Our algorithm is different from the algorithm SupLinRel
in Auer (2002) that we directly maximize the mean, rather
than the upper confidence bound, in steps c and d. This
modification leads to a simpler algorithm and a cleaner re-
gret analysis. Also, we would like to point out that, unlike
SpectralEliminator (Valko et al., 2014), the algorithm can
easily handle a changing action set.

The following result, adapted from Auer (2002, lemma 14),
shows how the algorithm SupCB-GLM will give us inde-
pendent samples. For the sake of completeness, we also
present its proof here.

Lemma 4. For all s ∈ [S] and t ∈ [T ], given {xi,ai , i ∈
Ψs(t)}, the rewards {yi,ai , i ∈ Ψs(t)} are independent
random variables.

Proof of Lemma 4. Since a trial t can only be added to
Ψs(t) in step 2b of algorithm SupCB-GLM, the event {t ∈
Ψs} only depends on the results of trials τ ∈ ∪σ<sΨσ(t)

and on w(s)
t,a . From the definition of w(s)

t,a , we know it only
depends on the feature vectors xi,ai , i ∈ Ψs(t) and on xt,i.
This implies the lemma.

Algorithm 3 SupCB-GLM

Input: tuning parameter α, τ , the number of trials T .

Initialization:
for t ∈ [τ ], randomly choose at ∈ [K].
Set S = blog2 T c, F = {a1, · · · , aτ} and Ψ0 = Ψ1 =

· · · = ΨS = ∅.
For t = τ + 1, τ + 2, · · · , T do

1. Initialize A1 = [K] and s = 1.

2. While at =Null
a. Run CB-GLM with α and Ψs ∪ F to calculate
m

(s)
t,a and w(s)

t,a for all a ∈ As.

b. If w(s)
t,a > 2−s for some a ∈ As,

set at = a, update Ψs = Ψs ∪ {t}

c. Else if w(s)
t,a ≤ 1/

√
T for all a ∈ As,

set at = argmax
a∈As

m
(s)
t,a , update Ψ0 = Ψ0 ∪ {t}

d. Else if w(s)
t,a ≤ 2−s for all a ∈ As,

As+1 = {a ∈ As,m(s)
t,a ≥ max

j∈As

m
(s)
t,j − 2 · 2−s},

s← s+ 1 .

End For

With Lemma 4, we are able to apply the non-asymptotic
normality result (5) and thus to prove our regret bound of
Algorithm SupCB-GLM.

Theorem 3. For any 0 < δ < 1, if we run the SupCB-GLM
algorithm with τ =

√
dT and α = 3σ

κ

√
2 log(TK/δ) for

T ≥ T0 rounds, where

T0 = Ω

(
σ2

κ4
max

{
d3,

log(TK/δ)

d

})
, (9)

the regret of the algorithm is bounded as

RT ≤ 45(σLµ/κ)
√

log T log(TK/δ) log(T/d)
√
dT ,

with probability at least 1− δ. With δ = 1/T , we obtain

E[RT ] = O
(

(log T )1.5
√
dT logK

)
.

The theorem demonstrates an Õ(
√
dT logK) regret bound

for the algorithm SupCB-GLM. It has been proved in Chu
et al. (2011, Theorem 2) that

√
dT is the minimax lower

bound of the expected regret for K-armed linear bandits,
a special of the GLM bandits considered here. Therefore,
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the regret of our SupCB-GLM algorithm is optimal up to
logarithm terms of T and K. To the best of our knowledge,
this is the first algorithm which achieves the (near-)optimal
rate of GLM bandits.

It is worthwhile to compare Theorem 3 with the result in
Theorem 2. When K = o(2d) is small, the rate of SupCB-
GLM is faster, and we improve the previous rates by a

√
d

factor. Here, we give a briefly illustration of how we get rid
of the extra

√
d factor. Both in Theorem 2 and in Filippi

et al. (2010), |x′(θ̂n − θ∗)| is upper bounded by using the
Cauchy-Schwartz inequality,

|x′(θ̂n − θ∗)| ≤ ‖x‖V −1
n

∥∥∥θ̂n − θ∗∥∥∥
Vn

. (10)

Lemma 3 in the supplementary material establishes that∥∥∥θ̂n − θ∗∥∥∥
Vn

≤ C2

√
d log(T/δ).

This will lead to an extra
√
d factor compared to (5). By

using the Cauchy-Schwartz inequality (10), we only make
use of the fact that θ̂n is close to θ∗ in the `2 sense. How-
ever, (5) tells us that actually θ̂n is close to θ∗ in every
direction. This is the reason why we are able to remove
the extra

√
d factor to achieve a near-optimal regret. It also

explains why the bound in Theorem 2 is tight when K is
large. As K goes large, it is likely there is a direction x for
which (10) is tight.

Proof of Theorem 3. To facilitate our proof, we first
present two technical lemmas. Lemma 5 follows from
Lemma 4, Theorem 1, Theorem 5.39 of Vershynin (2012)
and a union bound. The proof of Lemma 6 is deferred to
the appendix.

Lemma 5. Fix δ > 0. Choose in SupCB-GLM τ =
√
dT

and α = 3σ
κ

√
2 log(TK/δ). Suppose T satisfies condition

(9). Define the following event:

EX := {|m(s)
t,a − x′t,aθ∗| ≤ w

(s)
t,a , (11)

∀t ∈ [τ + 1, T ], s ∈ [S], a ∈ [K]}

Then, event EX holds with probability at least 1− δ.

Proof of Lemma 5. By Lemma 4, we have independent
samples now. Then to apply Theorem 1, the key is to
lower bound the minimum eigenvalue of Vt. Note that we
randomly select the feature vectors at the first τ =

√
dT

rounds, that is, they are independent. Moreover, the fea-
ture vectors are bounded. Thus, X1, X2, . . . , Xτ are inde-
pendent sub-Gaussian with parameter 1. It follows from
Proposition 1 that

λmin(Vt) ≥ λmin(Vτ ) ≥ c
√
dT

for some constant c with probability at least 1 −
exp(−

√
dT ). By Theorem 1 and union bound, we have

the desired result under condition (9).

Lemma 6. Suppose that event EX holds, and that in round
t, the action at is chosen at stage st. Then, a∗t ∈ As for all
s ≤ st. Furthermore, we have

µ(x′t,a∗t θ
∗)− µ(x′t,atθ

∗)

≤
{

(8Lµ)/2st if at is selected in step 2b
(2Lµ)/

√
T if at is selected in step 2c .

Define Vs,t =
∑
t∈Ψs(T )XtX

′
t, then by Lemma 2,∑

t∈Ψs(T )

w
(s)
t,at =

∑
t∈Ψs(T )

α(δ)‖xt,at‖V −1
s,t

≤ α(δ)
√

2d log(T/d)|Ψs(n)| .

On the other hand, by the step 2b of SupCB-GLM,∑
t∈Ψs(T )

w
(s)
t,at ≥ 2−s|Ψs(T )|.

Combining the above two inequalities gives us

|Ψs(T )| ≤ 2sα(δ)
√

2d log (T/d)|Ψs(T )|. (12)

Let Ψ0 be the collection of trials such that at is chosen in
step 2c. Since we have chose S = log2 T , each t ∈ [τ +
1, T ] must be in one of Ψs and hence, {τ, τ + 1, . . . , T} =
Ψ0 ∪

(
∪Ss=1Ψs(T )

)
. If we set τ =

√
dT , we have

RT =

τ∑
t=1

(
µ(x′t,a∗t θ

∗)− µ(x′t,atθ
∗)
)

+

T∑
t=τ+1

(
µ(x′t,a∗t θ

∗)− µ(x′t,atθ
∗)
)

≤ τ +
∑
t∈Ψ0

(
µ(x′t,a∗t θ

∗)− µ(x′t,atθ
∗)
)

+

S∑
s=1

∑
t∈Ψs(T )

(
µ(x′t,a∗t θ

∗)− µ(x′t,atθ
∗)
)

≤
√
dT + T · 2Lµ√

T
+

S∑
s=1

Lµ · 23−s · |Ψs(T )|

≤
√
dT + 2Lµ

√
T

+8Lµα(δ)

S∑
s=1

√
2d log

T

d
|Ψs(T )|

≤
√
dT + 2Lµ

√
T + 8Lµα(δ)

√
2d log(T/d)

√
ST

≤ 45(σLµ/κ)
√

log T log(TK/δ) log(T/d)
√
dT ,

with probability at least 1 − δ. Here, the first inequality is
due to the assumption that 0 ≤ µ ≤ 1. The second inequal-
ity is Lemma 6. The third inequality is the inequality (12)
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and the fourth inequality is implied by Cauchy-Schwartz.
This completes the proof of the high-probability result.

5. Discussions
In this paper, we propose two algorithms forK-armed ban-
dits with generalized linear models. While the first algo-
rithm, UCB-GLM, achieves the optimal rate for the case
of infinite number of arms, the second algorithm SupCB-
GLM is provable optimal for the case of finite number ac-
tions at each round. However, it remains open whether
UCB-GLM can achieve the optimal rate for small K.

5.1. A better regret bound for UCB-GLM

A key quantity in determining the regret of UCB-GLM is
the minimum eigenvalue of Vt. If we make an addition
assumption on the minimum eigenvalue of Vt, we will be
able to prove an O(

√
dT ) regret bound for UCB-GLM.

Theorem 4. We run algorithm UCB-GLM with τ =
8σ2

κ2 d log T and α ≤ Lµσ/κ. For any δ ∈ [1/T, 1), sup-
pose there is an universal constant c such that

T∑
t=τ+1

λ
−1/2
min (Vt) ≤ c

√
T . (13)

holds with probability at least 1− δ, and

T = Ω

(
σR

κLµ
d log2 T

)
. (14)

Then, the regret of the algorithm is bounded by

RT ≤
CLµσ

κ

√
dT log(T/δ)

with probability at least 1− 2δ, where C is a positive, uni-
versal constant.

This theorem provides some insights of why UCB-GLM
performs well in practice. Although the condition in (13) is
hard to check and may be violated in some cases, for exam-
ple, in K-armed bandits, we provide a heuristic argument
to justify this assumption in a range of problems. When
t is large enough, our estimator θ̂t is very close to θ∗. If
we assume there is a positive gap between 〈xt,a∗t , θ

∗〉 and
〈xt,a, θ∗〉 for all a 6= a∗t , we will have at = a∗t after, for
example,

√
T steps. Since {xt,a, a ∈ [K]} are independent

for t ∈ [T ], {xt,a∗t } are also independent samples. Then
Vt/twill be well-approximated by the covariance matrix of
xt,a∗t , which we denote by Σ0. In many problem in prac-
tice, especially when features are dense, it is unlikely the
feature vector xt,a∗t lies in a low-dimensional subspace of
Rd. It implies that Σ0 has full rank, and that we will have
λmin(Vt) = Θ(t · λmin(Σ0)) when t is large enough. It

follows that,

T∑
t=τ+1

1√
λmin(Vt)

=

T∑
t=τ+1

Θ(t−1/2) = O(
√
T ).

It should be cautioned that, since we do not know the distri-
bution of our feature vectors, we cannot assume the above
gap exists. It is therefore challenging to make the above
arguments rigorous. In fact, when studying the ARIMA
model in time series, Lai & Wei (1982, Example 1) pro-
vide an example such that λmin(Vt) = O(log t).

5.2. Open Questions

Computational efficient algorithms. While UCB-GLM
and SupCB-GLM enjoy good theoretical properties, they
can be expensive in some applications. First, they require
inverting a d × d matrix in every step, a costly operation
when d is large. Second, at step t, the MLE is computed
using Θ(t) samples, meaning that the per-step complexity
grows at least linearly with t for a straightforward imple-
mentation of the algorithms. It is therefore interesting to
investigate more scalable alternatives. It is possible to use a
first-order, iterative optimization procedure to amortize the
cost, analogous to the approach of Agarwal et al. (2014).

K-dependent lower bound. Currently, all the lower
bound results on (generalized) linear bandits have no de-
pendence on K, the number of arms. The minimax lower
bound will be of particularly interest because all current
lower bound results assume that K ≤ d. Although it will
at most be a logarithm dependence on K, it is still a theo-
retically interesting question.

Randomized algorithms with optimal regret rate. As
opposed to the deterministic, UCB-style algorithms stud-
ied in this paper, randomized algorithms like EXP4 (Auer
et al., 2002b) and Thompson Sampling (Thompson, 1933)
have advantages in certain situations, for example, when re-
ward observations are delayed (Chapelle & Li, 2012). Re-
cently developed techniques for analyzing Bayes regret in
BLM bandits (Russo & Van Roy, 2014) may be useful to
analyze the cumulative regret considered here.
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