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Abstract

Stochastic gradient descent (SGD) is the optimiza-
tion algorithm of choice in many machine learn-
ing applications such as regularized empirical risk
minimization and training deep neural networks.
The classical convergence analysis of SGD is car-
ried out under the assumption that the norm of the
stochastic gradient is uniformly bounded. While
this might hold for some loss functions, it is al-
ways violated for cases where the objective func-
tion is strongly convex. In (Bottou et al., 2016), a
new analysis of convergence of SGD is performed
under the assumption that stochastic gradients are
bounded with respect to the true gradient norm.
Here we show that for stochastic problems aris-
ing in machine learning such bound always holds;
and we also propose an alternative convergence
analysis of SGD with diminishing learning rate
regime, which results in more relaxed conditions
than those in (Bottou et al., 2016). We then move
on the asynchronous parallel setting, and prove
convergence of Hogwild! algorithm in the same
regime, obtaining the first convergence results for
this method in the case of diminished learning
rate.
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1. Introduction
We are interested in solving the following stochastic opti-
mization problem

min
w∈Rd

{F (w) = E[f(w; ξ)]} , (1)

where ξ is a random variable obeying some distribution.

In the case of empirical risk minimization with a training
set {(xi, yi)}ni=1, ξi is a random variable that is defined by
a single random sample (x, y) pulled uniformly from the
training set. Then, by defining fi(w) := f(w; ξi), empirical
risk minimization reduces to

min
w∈Rd

{
F (w) =

1

n

n∑
i=1

fi(w)

}
. (2)

Problem (2) arises frequently in supervised learning ap-
plications (Hastie et al., 2009). For a wide range of ap-
plications, such as linear regression and logistic regres-
sion, the objective function F is strongly convex and each
fi, i ∈ [n], is convex and has Lipschitz continuous gra-
dients (with Lipschitz constant L). Given a training set
{(xi, yi)}ni=1 with xi ∈ Rd, yi ∈ R, the `2-regularized
least squares regression model, for example, is written as (2)
with fi(w)

def
= (〈xi, w〉−yi)2 + λ

2 ‖w‖
2. The `2-regularized

logistic regression for binary classification is written with
fi(w)

def
= log(1+exp(−yi〈xi, w〉))+ λ

2 ‖w‖
2, yi ∈ {−1, 1}.

It is well established by now that solving this type of prob-
lem by gradient descent (GD) (Nesterov, 2004; Nocedal &
Wright, 2006) may be prohibitively expensive and stochas-
tic gradient descent (SGD) is thus preferable. Recently, a
class of variance reduction methods (Le Roux et al., 2012;
Defazio et al., 2014; Johnson & Zhang, 2013; Nguyen et al.,
2017) has been proposed in order to reduce the computa-
tional cost. All these methods explicitly exploit the finite
sum form of (2) and thus they have some disadvantages
for very large scale machine learning problems and are not
applicable to (1).

To apply SGD to the general form (1) one needs to assume
existence of unbiased gradient estimators. This is usually
defined as follows:

Eξ[∇f(w; ξ)] = ∇F (w),
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for any fixed w. Here we make an important observation: if
we view (1) not as a general stochastic problem but as the
expected risk minimization problem, where ξ corresponds
to a random data sample pulled from a distribution, then (1)
has an additional key property: for each realization of the
random variable ξ, f(w; ξ) is a convex function with Lips-
chitz continuous gradients. Notice that traditional analysis
of SGD for general stochastic problem of the form (1) does
not make any assumptions on individual function realiza-
tions. In this paper we derive convergence properties for
SGD applied to (1) with these additional assumptions on
f(w; ξ) and also extend to the case when f(w; ξ) are not
necessarily convex.

Regardless of the properties of f(w; ξ) we assume that F
in (1) is strongly convex. We define the (unique) optimal
solution of F as w∗.

Assumption 1 (µ-strongly convex). The objective function
F : Rd → R is a µ-strongly convex, i.e., there exists a
constant µ > 0 such that ∀w,w′ ∈ Rd,

F (w)− F (w′) ≥ 〈∇F (w′), (w − w′)〉+
µ

2
‖w − w′‖2.

(3)

It is well-known in literature (Nesterov, 2004; Bottou et al.,
2016) that Assumption 1 implies

2µ[F (w)− F (w∗)] ≤ ‖∇F (w)‖2 , ∀w ∈ Rd. (4)

The classical theoretical analysis of SGD assumes that the
stochastic gradients are uniformly bounded, i.e. there exists
a finite (fixed) constant σ <∞, such that

E[‖∇f(w; ξ)‖2] ≤ σ2 , ∀w ∈ Rd (5)

(see e.g. (Shalev-Shwartz et al., 2007; Nemirovski et al.,
2009; Recht et al., 2011; Hazan & Kale, 2014; Rakhlin et al.,
2012), etc.). However, this assumption is clearly false if
F is strongly convex. Specifically, under this assumption
together with strong convexity, ∀w ∈ Rd, we have

2µ[F (w)− F (w∗)]
(4)
≤ ‖∇F (w)‖2 = ‖E[∇f(w; ξ)]‖2

≤ E[‖∇f(w; ξ)‖2]
(5)
≤ σ2.

Hence,

F (w) ≤ σ2

2µ
+ F (w∗) , ∀w ∈ Rd.

On the other hand strong convexity and∇F (w∗) = 0 imply

F (w) ≥ µ‖w − w∗‖2 + F (w∗) , ∀w ∈ Rd.

The last two inequalities are clearly in contradiction with
each other for sufficiently large ‖w − w∗‖2.

Let us consider the following example: f1(w) = 1
2w

2 and
f2(w) = w with F (w) = 1

2 (f1(w) + f2(w)). Note that
F is strongly convex, while individual realizations are not
necessarily so. Let w0 = 0, for any number t ≥ 0, with
probability 1

2t the steps of SGD algorithm for all i < t

are wi+1 = wi − ηi. This implies that wt = −
∑t
i=1 ηi

and since
∑∞
i=1 ηi = ∞ then |wt| can be arbitrarily large

for large enough t with probability 1
2t . Noting that for

this example, E[‖∇f(wt; ξ)‖2] = 1
2w

2
t + 1

2 , we see that
E[‖∇f(wt; ξ)‖2] can also be arbitrarily large.

Recently, in the review paper (Bottou et al., 2016), con-
vergence of SGD for general stochastic optimization prob-
lem was analyzed under the following assumption: there
exist constants M and N such that E[‖∇f(wt; ξt)‖2] ≤
M‖∇F (wt)‖2 + N , where wt, t ≥ 0, are generated by
the algorithm. This assumption does not contradict strong
convexity, however, in general, constants M and N are un-
known, while M is used to determine the learning rate ηt
(Bottou et al., 2016). In addition, the rate of convergence
of the SGD algorithm depends on M and N . In this paper
we show that under the smoothness assumption on individ-
ual realizations f(w, ξ) it is possible to derive the bound
E[‖∇f(w; ξ)‖2] ≤M0[F (w)− F (w∗)] +N with specific
values of M0, and N for ∀w ∈ Rd, which in turn implies
the bound E[‖∇f(w; ξ)‖2] ≤M‖∇F (w)‖2 +N with spe-
cific M , by strong convexity of F . We also note that, in
(Moulines & Bach, 2011), the convergence of SGD without
bounded gradient assumption is studied. We then provide
an alternative convergence analysis for SGD which shows
convergence in expectation with a bound on learning rate
which is larger than that in (Bottou et al., 2016; Moulines
& Bach, 2011) by a factor of L/µ. We then use the new
framework for the convergence analysis of SGD to analyze
an asynchronous stochastic gradient method.

In (Recht et al., 2011), an asynchronous stochastic opti-
mization method called Hogwild! was proposed. Hogwild!
algorithm is a parallel version of SGD, where each processor
applies SGD steps independently of the other processors to
the solution w which is shared by all processors. Thus, each
processor computes a stochastic gradient and updates w
without ”locking” the memory containing w, meaning that
multiple processors are able to update w at the same time.
This approach leads to much better scaling of parallel SGD
algorithm than a synchoronous version, but the analysis of
this method is more complex. In (Recht et al., 2011; Mania
et al., 2015; De Sa et al., 2015) various variants of Hogwild!
with a fixed step size are analyzed under the assumption
that the gradients are bounded as in (5). In this paper, we
extend our analysis of SGD to provide analysis of Hogwild!
with diminishing step sizes and without the assumption on
bounded gradients.

In a recent technical report (Leblond et al., 2018) Hogwild!
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with fixed step size is analyzed without the bounded gradient
assumption. We note that SGD with fixed step size only
converges to a neighborhood of the optimal solution, while
by analyzing the diminishing step size variant we are able to
show convergence to the optimal solution with probability
one. Both in (Leblond et al., 2018) and in this paper, the
version of Hogwild! with inconsistent reads and writes is
considered.

1.1. Contribution

We provide a new framework for the analysis of stochas-
tic gradient algorithms in the strongly convex case under
the condition of Lipschitz continuity of the individual func-
tion realizations, but without requiring any bounds on
the stochastic gradients. Within this framework we have
the following contributions:

• We prove the almost sure (w.p.1) convergence of SGD
with diminishing step size. Our analysis provides a
larger bound on the possible initial step size when
compared to any previous analysis of convergence in
expectation for SGD.

• We introduce a general recurrence for vector updates
which has as its special cases (a) Hogwild! algorithm
with diminishing step sizes, where each update in-
volves all non-zero entries of the computed gradient,
and (b) a position-based updating algorithm where each
update corresponds to only one uniformly selected non-
zero entry of the computed gradient.

• We analyze this general recurrence under inconsistent
vector reads from and vector writes to shared memory
(where individual vector entry reads and writes are
atomic in that they cannot be interrupted by writes
to the same entry) assuming that there exists a delay
τ such that during the (t + 1)-th iteration a gradient
of a read vector w is computed which includes the
aggregate of all the updates up to and including those
made during the (t − τ)-th iteration. In other words,
τ controls to what extend past updates influence the
shared memory.

– Our upper bound for the expected convergence
rate is sublinear, i.e., O(1/t), and its precise ex-
pression allows comparison of algorithms (a) and
(b) described above.

– For SGD we can improve this upper bound by a
factor 2 and also show that its initial step size can
be larger.

– We show that τ can be a function of t as large
as ≈

√
t/ ln t without affecting the asymptotic

behavior of the upper bound; we also determine
a constant T0 with the property that, for t ≥ T0,

higher order terms containing parameter τ are
smaller than the leading O(1/t) term. We give in-
tuition explaining why the expected convergence
rate is not more affected by τ . Our experiments
confirm our analysis.

– We determine a constant T1 with the property
that, for t ≥ T1, the higher order term containing
parameter ‖w0−w∗‖2 is smaller than the leading
O(1/t) term.

• All the above contributions generalize to the non-
convex setting where we do not need to assume that
the component functions f(w; ξ) are convex in w.

1.2. Organization

We analyse the convergence rate of SGD in Section 2 and
introduce the general recursion and its analysis in Section 3.
Experiments are reported in Section 4.

2. New Framework for Convergence Analysis
of SGD

We introduce SGD algorithm in Algorithm 1.

Algorithm 1 Stochastic Gradient Descent (SGD) Method

Initialize: w0

Iterate:
for t = 0, 1, 2, . . . do

Choose a step size (i.e., learning rate) ηt > 0.
Generate a random variable ξt.
Compute a stochastic gradient∇f(wt; ξt).
Update the new iterate wt+1 = wt − ηt∇f(wt; ξt).

end for

The sequence of random variables {ξt}t≥0 is assumed to
be i.i.d.1 Let us introduce our key assumption that each
realization ∇f(w; ξ) is an L-smooth function.
Assumption 2 (L-smooth). f(w; ξ) is L-smooth for every
realization of ξ, i.e., there exists a constant L > 0 such that,
∀w,w′ ∈ Rd,

‖∇f(w; ξ)−∇f(w′; ξ)‖ ≤ L‖w − w′‖. (6)

Assumption 2 implies that F is also L-smooth. Then, by
the property of L-smooth function (in (Nesterov, 2004)), we
have, ∀w,w′ ∈ Rd,

F (w) ≤ F (w′) + 〈∇F (w′), (w − w′)〉+
L

2
‖w − w′‖2.

(7)

The following additional convexity assumption can be made,
as it holds for many problems arising in machine learning.

1Independent and identically distributed.
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Assumption 3. f(w; ξ) is convex for every realization of ξ,
i.e., ∀w,w′ ∈ Rd,

f(w; ξ)− f(w′; ξ) ≥ 〈∇f(w′; ξ), (w − w′)〉.

We first derive our analysis under Assumptions 2, and 3 and
then we derive weaker results under only Assumption 2.

2.1. Convergence With Probability One

As discussed in the introduction, under Assumptions 2 and
3 we can now derive a bound on E‖∇f(w; ξ)‖2.
Lemma 1. Let Assumptions 2 and 3 hold. Then, for ∀w ∈
Rd,

E[‖∇f(w; ξ)‖2] ≤ 4L[F (w)− F (w∗)] +N, (8)

where N = 2E[‖∇f(w∗; ξ)‖2]; ξ is a random variable,
and w∗ = arg minw F (w).

Using Lemma 1 and Super Martingale Convergence The-
orem (Bertsekas, 2015) (Lemma 4 in the supplementary
material), we can provide the sufficient condition for almost
sure convergence of Algorithm 1 in the strongly convex case
without assuming any bounded gradients.
Theorem 1 (Sufficient conditions for almost sure conver-
gence). Let Assumptions 1, 2 and 3 hold. Consider Algo-
rithm 1 with a stepsize sequence such that

0 < ηt ≤
1

2L
,

∞∑
t=0

ηt =∞ and
∞∑
t=0

η2t <∞.

Then, the following holds w.p.1 (almost surely)

‖wt − w∗‖2 → 0.

Note that the classical SGD proposed in (Robbins & Monro,
1951) has learning rate satisfying conditions

∞∑
t=0

ηt =∞ and
∞∑
t=0

η2t <∞

However, the original analysis is performed under the
bounded gradient assumption, as in (5). In Theorem 1, on
the other hand, we do not use this assumption, but instead
assume Lipschitz smoothness and convexity of the function
realizations, which does not contradict the strong convexity
of F (w).

The following result establishes a sublinear convergence
rate of SGD.
Theorem 2. Let Assumptions 1, 2 and 3 hold. LetE = 2αL

µ
with α = 2. Consider Algorithm 1 with a stepsize sequence
such that ηt = α

µ(t+E) ≤ η0 = 1
2L . The expectation

E[‖wt − w∗‖2] is at most

4α2N

µ2

1

(t− T + E)

for

t ≥ T =
4L

µ
max{Lµ

N
‖w0 − w∗‖2, 1} −

4L

µ
.

2.2. Convergence Analysis without Convexity

In this section, we provide the analysis of Algorithm 1 with-
out using Assumption 3, that is, f(w; ξ) is not necessarily
convex. We still do not need to impose the bounded stochas-
tic gradient assumption, since we can derive an analogue of
Lemma 1, albeit with worse constant in the bound.

Lemma 2. Let Assumptions 1 and 2 hold. Then, for ∀w ∈
Rd,

E[‖∇f(w; ξ)‖2] ≤ 4Lκ[F (w)− F (w∗)] +N, (9)

where κ = L
µ and N = 2E[‖∇f(w∗; ξ)‖2]; ξ is a random

variable, and w∗ = arg minw F (w).

Based on the proofs of Theorems 1 and 2, we can easily
have the following two results (Theorems 3 and 4).

Theorem 3 (Sufficient conditions for almost sure conver-
gence). Let Assumptions 1 and 2 hold. Then, we can con-
clude the statement of Theorem 1 with the definition of the
step size replaced by 0 < ηt ≤ 1

2Lκ with κ = L
µ .

Theorem 4. Let Assumptions 1 and 2 hold. Then, we can
conclude the statement of Theorem 2 with the definition of
the step size replaced by ηt = α

µ(t+E) ≤ η0 = 1
2Lκ with

κ = L
µ and α = 2, and all other occurrences of L in E and

T replaced by Lκ.

We compare our result in Theorem 4 with that in (Bottou
et al., 2016) in the following remark.

Remark 1. By strong convexity of F , Lemma 2 implies
E[‖∇f(w; ξ)‖2] ≤ 2κ2‖∇F (w)‖2 + N , for ∀w ∈ Rd,
where κ = L

µ and N = 2E[‖∇f(w∗; ξ)‖2]. We can now
substitute the value M = 2κ2 into Theorem 4.7 in (Bottou
et al., 2016). We observe that the resulting initial learning
rate in (Bottou et al., 2016) has to satisfy η0 ≤ 1

2Lκ2 while
our results allows η0 = 1

2Lκ . We are able to achieve this
improvement by introducing Assumption 2, which holds for
many ML problems.

Recall that under Assumption 3, our initial learning rate
is η0 = 1

2L (in Theorem 2). Thus Assumption 3 provides
further improvement of the conditions on the learning rate.

3. Asynchronous Stochastic Optimization aka
Hogwild!

Hogwild! (Recht et al., 2011) is an asynchronous stochastic
optimization method where writes to and reads from vec-
tor positions in shared memory can be inconsistent (this
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corresponds to (13) as we shall see). However, as men-
tioned in (Mania et al., 2015), for the purpose of analysis the
method in (Recht et al., 2011) performs single vector entry
updates that are randomly selected from the non-zero entries
of the computed gradient as in (12) (explained later) and
requires the assumption of consistent vector reads together
with the bounded gradient assumption to prove convergence.
Both (Mania et al., 2015) and (De Sa et al., 2015) prove the
same result for fixed step size based on the assumption of
bounded stochastic gradients in the strongly convex case but
now without assuming consistent vector reads and writes.
In these works the fixed step size η must depend on σ from
the bounded gradient assumption, however, one does not
usually know σ and thus, we cannot compute a suitable η
a-priori.

As claimed by the authors in (Mania et al., 2015), they can
eliminate the bounded gradient assumption in their analy-
sis of Hogwild!, which however was only mentioned as a
remark without proof. On the other hand, the authors of re-
cent unpublished work (Leblond et al., 2018) formulate and
prove, without the bounded gradient assumption, a precise
theorem about the convergence rate of Hogwild! of the form

E[‖wt − w∗‖2] ≤ (1− ρ)t(2‖w0 − w∗‖2) + b,

where ρ is a function of several parameters but independent
of the fixed chosen step size η and where b is a function of
several parameters and has a linear dependency with respect
to the fixed step size, i.e., b = O(η).

In this section, we discuss the convergence of Hogwild!
with diminishing stepsize where writes to and reads from
vector positions in shared memory can be inconsistent. This
is a slight modification of the original Hogwild! where
the stepsize is fixed. In our analysis we also do not use
the bounded gradient assumption as in (Leblond et al.,
2018). Moreover, (a) we focus on solving the more general
problem in (1), while (Leblond et al., 2018) considers the
specific case of the “finite-sum” problem in (2), and (b) we
show that our analysis generalizes to the non-convex case,
i.e., we do not need to assume functions f(w; ξ) are convex
(we only require F (w) = E[f(w; ξ)] to be strongly convex)
as opposed to the assumption in (Leblond et al., 2018).

3.1. Recursion

We first formulate a general recursion for wt to which our
analysis applies, next we will explain how the different
variables in the recursion interact and describe two special
cases, and finally we present pseudo code of the algorithm
using the recursion.

The recursion explains which positions in wt should be up-
dated in order to compute wt+1. Since wt is stored in shared
memory and is being updated in a possibly non-consistent
way by multiple cores who each perform recursions, the

shared memory will contain a vector w whose entries repre-
sent a mix of updates. That is, before performing the com-
putation of a recursion, a core will first read w from shared
memory, however, while reading w from shared memory,
the entries in w are being updated out of order. The final
vector ŵt read by the core represents an aggregate of a mix
of updates in previous iterations.

The general recursion is defined as follows: For t ≥ 0,

wt+1 = wt − ηtdξtSξtut
∇f(ŵt; ξt), (10)

where

• ŵt represents the vector used in computing the gradient
∇f(ŵt; ξt) and whose entries have been read (one by
one) from an aggregate of a mix of previous updates
that led to wj , j ≤ t, and

• the Sξtut
are diagonal 0/1-matrices with the property

that there exist real numbers dξ satisfying

dξE[Sξu|ξ] = Dξ, (11)

where the expectation is taken over u and Dξ is the
diagonal 0/1 matrix whose 1-entries correspond to the
non-zero positions in ∇f(w; ξ), i.e., the i-th entry of
Dξ’s diagonal is equal to 1 if and only if there exists a
w such that the i-th position of ∇f(w; ξ) is non-zero.

The role of matrix Sξtut
is that it filters which positions of

gradient ∇f(ŵt; ξt) play a role in (10) and need to be com-
puted. Notice that Dξ represents the support of ∇f(w; ξ);
by |Dξ| we denote the number of 1s in Dξ , i.e., |Dξ| equals
the size of the support of ∇f(w; ξ).

We will restrict ourselves to choosing (i.e., fixing a-priori)
non-empty matrices Sξu that “partition” Dξ in D approxi-
mately “equally sized” Sξu:∑

u

Sξu = Dξ,

where each matrix Sξu has either b|Dξ|/Dc or d|Dξ|/De
ones on its diagonal. We uniformly choose one of the ma-
trices Sξtut

in (10), hence, dξ equals the number of matrices
Sξu, see (11).

In other to explain recursion (10) we first consider two
special cases. For D = ∆̄, where

∆̄ = max
ξ
{|Dξ|}

represents the maximum number of non-zero positions in
any gradient computation f(w; ξ), we have that for all ξ,
there are exactly |Dξ| diagonal matrices Sξu with a sin-
gle 1 representing each of the elements in Dξ. Since
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pξ(u) = 1/|Dξ| is the uniform distribution, we have
E[Sξu|ξ] = Dξ/|Dξ|, hence, dξ = |Dξ|. This gives the
recursion

wt+1 = wt − ηt|Dξ|[∇f(ŵt; ξt)]ut
, (12)

where [∇f(ŵt; ξt)]ut denotes the ut-th position of
∇f(ŵt; ξt) and where ut is a uniformly selected position
that corresponds to a non-zero entry in∇f(ŵt; ξt).

At the other extreme, forD = 1, we have exactly one matrix
Sξ1 = Dξ for each ξ, and we have dξ = 1. This gives the
recursion

wt+1 = wt − ηt∇f(ŵt; ξt). (13)

Recursion (13) represents Hogwild!. In a single-core setting
where updates are done in a consistent way and ŵt = wt
yields SGD.

Algorithm 2 gives the pseudo code corresponding to recur-
sion (10) with our choice of sets Sξu (for parameter D).

Algorithm 2 Hogwild! general recursion

1: Input: w0 ∈ Rd
2: for t = 0, 1, 2, . . . in parallel do
3: read each position of shared memory w denoted by

ŵt (each position read is atomic)
4: draw a random sample ξt and a random “filter” Sξtut

5: for positions h where Sξtut
has a 1 on its diagonal do

6: compute gh as the gradient ∇f(ŵt; ξt) at position
h

7: add ηtdξtgh to the entry at position h of w in
shared memory (each position update is atomic)

8: end for
9: end for

3.2. Analysis

Besides Assumptions 1, 2, and for now 3, we assume the
following assumption regarding a parameter τ , called the
delay, which indicates which updates in previous iterations
have certainly made their way into shared memory w.

Assumption 4 (Consistent with delay τ ). We say that
shared memory is consistent with delay τ with respect to
recursion (10) if, for all t, vector ŵt includes the aggregate
of the updates up to and including those made during the
(t − τ)-th iteration (where (10) defines the (t + 1)-st iter-
ation). Each position read from shared memory is atomic
and each position update to shared memory is atomic (in
that these cannot be interrupted by another update to the
same position).

In other words in the (t + 1)-th iteration, ŵt equals wt−τ
plus some subset of position updates made during iterations
t − τ, t − τ + 1, . . . , t − 1. We assume that there exists a
constant delay τ satisfying Assumption 4.

The supplementary material proves the following theorem
where

∆̄D
def
= D · E[d|Dξ|/De].

Theorem 5. Suppose Assumptions 1, 2, 3 and 4 and con-
sider Algorithm 2 for sets Sξu with parameter D. Let
ηt = αt

µ(t+E) with 4 ≤ αt ≤ α and E = max{2τ, 4LαDµ }.
Then, the expected number of single vector entry updates
after t iterations is equal to

t′ = t∆̄D/D

and expectations E[‖ŵt −w∗‖2] and E[‖wt −w∗‖2] are at
most

4α2DN

µ2

t

(t+ E − 1)2
+O

(
ln t

(t+ E − 1)2

)
.

In terms of t′, the expected number single vector entry
updates after t iterations, E[‖ŵt−w∗‖2] and E[‖wt−w∗‖2]
are at most

4α2∆̄DN

µ2

1

t′
+O

(
ln t′

t′2

)
.

Remark 2. In (12) D = ∆̄, hence, d|Dξ|/De = 1 and
∆̄D = ∆̄ = maxξ{|Dξ|}. In (13) D = 1, hence, ∆̄D =
E[|Dξ|]. This shows that the upper bound in Theorem 5
is better for (13) with D = 1. If we assume no delay, i.e.
τ = 0, in addition to D = 1, then we obtain SGD. Theorem
2 shows that, measured in t′, we obtain the upper bound

4α2
SGD∆̄DN

µ2

1

t′

with αSGD = 2 as opposed to α ≥ 4.

With respect to parallelism, SGD assumes a single core,
while (13) and (12) allow multiple cores. Notice that recur-
sion (12) allows us to partition the position of the shared
memory among the different processor cores in such a way
that each partition can only be updated by its assigned core
and where partitions can be read by all cores. This allows
optimal resource sharing and could make up for the differ-
ence between ∆̄D for (12) and (13). We hypothesize that,
for a parallel implementation, D equal to a fraction of ∆̄
will lead to best performance.

Remark 3. Surprisingly, the leading term of the upper
bound on the convergence rate is independent of delay τ .
On one hand, one would expect that a more recent read
which contains more of the updates done during the last τ
iterations will lead to better convergence. When inspecting
the second order term in the proof in the supplementary ma-
terial, we do see that a smaller τ (and/or smaller sparsity)
makes the convergence rate smaller. That is, asymptoti-
cally t should be large enough as a function of τ (and other
parameters) in order for the leading term to dominate.
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Nevertheless, in asymptotic terms (for larger t) the depen-
dence on τ is not noticeable. In fact, the supplementary
material shows that we may allow τ to be a monotonic
increasing function of t with

2LαD

µ
≤ τ(t) ≤

√
t · L(t),

where L(t) = 1
ln t −

1
(ln t)2 (this will make E =

max{2τ(t), 4LαDµ } also a function of t). The leading term
of the convergence rate does not change while the second
order terms increase to O( 1

t ln t ). We show that, for

t ≥ T0 = exp[2
√

∆(1 +
(L+ µ)α

µ
)],

where ∆ = maxi P (i ∈ Dξ) measures sparsity, the higher
order terms that contain τ(t) (as defined above) are at most
the leading term.

Our intuition behind this phenomenon is that for large τ , all
the last τ iterations before the t-th iteration use vectors ŵj
with entries that are dominated by the aggregate of updates
that happened till iteration t− τ . Since the average sum of
the updates during the last τ iterations is equal to

−1

τ

t−1∑
j=t−τ

ηjdξjS
ξj
uj
∇f(ŵj ; ξt) (14)

and all ŵj look alike in that they mainly represent learned
information before the (t− τ)-th iteration, (14) becomes an
estimate of the expectation of (14), i.e.,

t−1∑
j=t−τ

−ηj
τ

E[dξjS
ξj
uj
∇f(ŵj ; ξt)] =

t−1∑
j=t−τ

−ηj
τ
∇F (ŵj).

(15)
This looks like GD which in the strong convex case has con-
vergence rate ≤ c−t for some constant c > 1. This already
shows that larger τ could help convergence as well. How-
ever, estimate (14) has estimation noise with respect to (15)
which explains why in this thought experiment we cannot
attain c−t but can only reach a much smaller convergence
rate of e.g. O(1/t) as in Theorem 5.

Experiments in Section 4 confirm our analysis.

Remark 4. The higher order terms in the proof in the sup-
plementary material show that, as in Theorem 2, the ex-
pected convergence rate in Theorem 5 depends on ‖w0 −
w∗‖2. The proof shows that, for

t ≥ T1 =
µ2

α2ND
‖w0 − w∗‖2,

the higher order term that contains ‖w0 − w∗‖2 is at most
the leading term. This is comparable to T in Theorem 2 for
SGD.

Remark 5. Step size ηt = αt

µ(t+E) with 4 ≤ αt ≤ α

can be chosen to be fixed during periods whose ranges
exponentially increase. For t + E ∈ [2h, 2h+1) we define
αt = 4(t+E)

2h
. Notice that 4 ≤ αt < 8 which satisfies the

conditions of Theorem 5 for α = 8. This means that we can
choose

ηt =
αt

µ(t+ E)
=

4

µ2h

as step size for t+E ∈ [2h, 2h+1). This choice for ηt allows
changes in ηt to be easily synchronized between cores since
these changes only happen when t + E = 2h for some
integer h. That is, if each core is processing iterations at
the same speed, then each core on its own may reliably
assume that after having processed (2h −E)/P iterations
the aggregate of all P cores has approximately processed
2h − E iterations. So, after (2h − E)/P iterations a core
will increment its version of h to h+ 1. This will introduce
some noise as the different cores will not increment their
h versions at exactly the same time, but this only happens
during a small interval around every t+ E = 2h. This will
occur rarely for larger h.

3.3. Convergence Analysis without Convexity

In the supplementary material, we also show that the proof
of Theorem 5 can easily be modified such that Theorem 5
with E ≥ 4LκαD

µ also holds in the non-convex case of the
component functions, i.e., we do not need Assumption 3.
Note that this case is not analyzed in (Leblond et al., 2018).

Theorem 6. Let Assumptions 1 and 2 hold. Then, we can
conclude the statement of Theorem 5 with E ≥ 4LκαD

µ for
κ = L

µ .

4. Numerical Experiments
For our numerical experiments, we consider the finite sum
minimization problem in (2). We consider `2-regularized
logistic regression problems with

fi(w) = log(1 + exp(−yi〈xi, w〉)) +
λ

2
‖w‖2,

where the penalty parameter λ is set to 1/n, a widely-used
value in literature (Le Roux et al., 2012).

We conducted experiments on a single core for Algorithm
2 on two popular datasets ijcnn1 (n = 91, 701 training
data) and covtype (n = 406, 709 training data) from the
LIBSVM2 website. Since we are interested in the expected
convergence rate with respect to the number of iterations,
respectively number of single position vector updates, we
do not need a parallelized multi-core simulation to confirm
our analysis. The impact of efficient resource scheduling

2http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/



SGD and Hogwild! Convergence Without the Bounded Gradients Assumption

Figure 1: ijcnn1 for different fraction of non-zero set

Figure 2: ijcnn1 for different τ with the whole non-zero set

over multiple cores leads to a performance improvement
complementary to our analysis of (10) (which, as discussed,
lends itself for an efficient parallelized implementation).
We experimented with 10 runs and reported the average
results. We choose the step size based on Theorem 5, i.e,
ηt = 4

µ(t+E) and E = max{2τ, 16LDµ }. For each fraction
v ∈ {1, 3/4, 2/3, 1/2, 1/3, 1/4} we performed the follow-
ing experiment: In Algorithm 2 we choose each “filter” ma-
trix Sξtut

to correspond with a random subset of size v|Dξt |
of the non-zero positions of Dξt (i.e., the support of the gra-
dient corresponding to ξt). In addition we use τ = 10. For
the two datasets, Figures 1 and 3 plot the training loss for
each fraction with τ = 10. The top plots have t′, the number
of coordinate updates, for the horizontal axis. The bottom
plots have the number of epochs, each epoch counting n
iterations, for the horizontal axis. The results show that
each fraction shows a sublinear expected convergence rate
of O(1/t′); the smaller fractions exhibit larger deviations
but do seem to converge faster to the minimum solution.

In Figures 2 and 4, we show experiments with different
values of τ ∈ {1, 10, 100}where we use the whole non-zero
set of gradient positions (i.e., v = 1) for the update. Our
analysis states that, for t = 50 epochs times n iterations per
epoch, τ can be as large as

√
t · L(t) = 524 for ijcnn1

and 1058 for covtype. The experiments indeed show that
τ ≤ 100 has little effect on the expected convergence rate.

Figure 3: covtype for different fraction of non-zero set

Figure 4: covtype for different τ with the whole non-zero set

5. Conclusion
We have provided the analysis of stochastic gradient algo-
rithms with diminishing step size in the strongly convex
case under the condition of Lipschitz continuity of the in-
dividual function realizations, but without requiring any
bounds on the stochastic gradients. We showed almost sure
convergence of SGD and provided sublinear upper bounds
for the expected convergence rate of a general recursion
which includes Hogwild! for inconsistent reads and writes
as a special case. We also provided new intuition which will
help understanding convergence as observed in practice.
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