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Abstract

We present an approximate inference approach
to parameter estimation in a spatio-temporal
stochastic process of the reaction-diffusion type.
The continuous space limit of an inference
method for Markov jump processes leads to an
approximation which is related to a spatial Gaus-
sian process. An efficient solution in feature
space using a Fourier basis is applied to inference
on simulational data.

1 Introduction

Reaction-diffusion models are used to describe spatio-tem-
poral stochastic processes where molecules diffuse through
space, are created and destroyed, and can participate in
chemical reactions when they are close. This type of pro-
cess finds a variety of applications in chemistry, physics
(Gardiner, 1996), and also in the field of computational
biology. Recently the propagation of theBicoid protein,
which is relevant for morphogenesis in theDrosophilaem-
bryo, has been modelled by such a process (Wu et al.,
2007).

In many applications, one can assume a qualitative knowl-
edge of basic processes in the model. However, the numer-
ical values of the parameters corresponding to these pro-
cesses, such as the microscopic rates for diffusion, decay,
and reactions, are often unknown. Hence, it is important to
be able to infer such quantities from concrete experimental
data.

This is a problem of non-parametric statistical inference,
because the natural description of the state of such systems
is not in terms of the dynamics of individual molecules, but
of the molecule density as a function of continuous space
and time. Experiments typically provide (noisy) measure-
ments of the (smoothed) molecule densities over a range of
spatial locations at discrete times.
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Statistical inference for such processes is highly nontrivial
because

• observations are not independent but are generated
from aMarkov process with continuous time.

• Space is continuous. It is not clear if an inference
method for a spatially discretized model remains com-
putationally tractable when discretization becomes
finer and finer.

• Fluctuations may not be irrelevant: The transition
to a spatial continuum limit is often enabled in the
limit where the number of molecules is large enough
to safely neglect density fluctuations. The evolution
of the macroscopic density is then typically governed
by a partial differential equation (PDE). In some cases
it is possible to solve the PDE for the stationary (time
independent) density analytically which could be used
as a fit to experiments. However, neglecting the tem-
poral dynamics usually does not allow us to estimate
all rate parameters, but only certain ratios. Further-
more, measurements are often indirect and allow to
estimate molecule densities only up to an unknown
scale factor. Then even a time dependent solution of
the macroscopic PDEs would not be sufficient to infer
those parameters which directly determine molecule
numbers (such as creation rates) and the stochasticity
of the spatio-temporal process must be discussed. For
the relevance of fluctuations in the biological context,
see (Tostevin et al., 2007).

The problem of inference in continuous time Markov pro-
cesses has recently attracted attention in the machine learn-
ing/AI community and a variety of approximate inference
methods for these models have been developed (Archam-
beau et al., 2008; Cohn et al., 2009; Nodelman et al., 2005;
Opper and Sanguinetti, 2008). However, it is not clear if
these methods will scale up to be able to deal with the com-
plexity of fluctuating spatial densities.

In this paper we present an approach for approximate in-
ference in a reaction-diffusion model which takes both
Markov dynamics and spatial fluctuations into account.
The method is based on a recently developed approximate
inference method for Markov jump processes (Ruttor and
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Opper, 2009) which easily allows for the transition to a con-
tinuous space.

We apply the method to a model which contains the ba-
sic processes relevant for theBicoid protein evolution in
Drosophila (i.e. creation and decay of molecules, but no
chemical reactions between molecules), but uses a simpli-
fied one dimensionalgeometry. We have used this model
as a proof of concept for our inference approach. The data
sets were obtained from simulations of the model and the
measurement process using realistic true system parame-
ters (Wu et al., 2007). This allows us to see how well these
parameters can be inferred from data.

We have not yet applied the model toreal measurements,
because available data at different time points are taken
from different embryosand are thus not based on the sta-
tistical assumptions of our model. Obtaining the more in-
terestingin vivo measurements on a single embryo is non-
trivial, but should hopefully be possible in the near future
(Wu et al., 2007).

2 Reaction-diffusion models as Markov
jump processes

A sound description of the stochastics of reaction-diffusion
models can be based on acompartmentmodel (Gardiner,
1996), where space is discretized into small cells of size
∆x (assuming a single space dimension for simplicity).
The state of the system is described by a vectorn =
(n0, . . . ,nM), whereni is the number of molecules in a cell.
The stochastic dynamics is assumed to be a Markov jump
process (MJP) defined by a rate functionf (n′|n) which de-
termines the temporal change of transition probabilities via

P
(

n′, t +∆t|n, t
)

≃ δn′,n +∆t f
(

n′|n
)

(1)

for ∆t → 0. The ratef (n′|n) is the sum of the rates for all
individual processes which lead fromn to n′.

In theBicoid system we consider three types of elementary
processes:

• Particle diffusion, say from celli into the neighbor-
ing cell i + 1, is modelled by a transitionn′i = ni −1
andn′i+1 = ni+1 + 1 with a rated ni/∆x2, whered is
the diffusion constant of the system. The proportion-
ality of the rate to the numberni of molecules accounts
for the fact that each of the molecules can perform the
jump to the neighboring cell. As we will show later,
the factor 1/∆x2 will allow for a proper limit∆x→ 0
of the compartment model.

• In a similar way we can treatMolecule degradation
n′i = ni −1 which occurs with a rateλ ni in all cells.

• Creation of moleculesin the system occurs by injec-
tion with a fixed ratec/∆x in a single cell only.

3 Approximate Inference for MJPs

While it is not possible to perform exact inference on this
model, we will resort to an approximate inference approach
for Markov jump processes following the work of Ruttor
and Opper (2009). The main contribution of the present
paper is to extend this method to thenon-parametric con-
tinuum limit required for reaction-diffusion models. Here
the cell size∆x shrinks to zero and molecule numbersni

are replaced by densitiesρ(x) via

ni → ρ(xi)∆x. (2)

We will next briefly review the main results of Ruttor and
Opper (2009) needed for our application.

Parameter inference of Markov jump processes can be
based on the recursive computation of

ψ(n, t) ≡ P(D≥t |θ ,n(t) = n) , (3)

the likelihood offuture observations D≥t = {yi}ti≥t con-
ditioned on the staten(t) = n at the present timet. The
likelihood of all data is used for maximum likelihood or
Bayesian estimation of rate constantsc, d, andλ is conse-
quently

p(D|c,d,λ ) = ∑
n

ψ(n,0)p0(n) , (4)

wherep0(n) is the distribution of the initial state.

For timesbetween two observationsψ(n, t) obeys theKol-
mogorov backwardequation

d
dt

ψ(n, t) = ∑
n′ 6=n

f (n′|n)
[

ψ(n, t)−ψ(n′, t)
]

, (5)

which has to be solved backward in time with the end con-
dition ψ(n, tN) = p(yN|n(tN)). The observations enter con-
secutively from the latest to the first one through their con-
ditional distributions (assuming independent noise)p(y|n),
in the jump conditions

lim
t→t−l

ψ(n, t) = p(yl |n(tl )) lim
t→t+l

ψ(x, t) , (6)

wheret−l andt+l denote the left and right side limits. Sim-
ilar to the backward-forward algorithm in Hidden Markov
Models state inference at arbitrary timest can be performed
usingψ(n, t) together with a solution of the (forward) mas-
ter equation.

The approximation method of Ruttor and Opper (2009)
is an extension of van Kampen’s system size expansion
approach (Gardiner, 1996; van Kampen, 1981) originally
developed for solving the forward Master equation to the
problem of statistical inference. Assuming systems with
sufficiently large numbers of molecules, the staten of the
system is essentially approximated by a vector with contin-
uous components which have Gaussian fluctuations around
amacroscopicstate.
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Formally, the system size expansion can be derived by a
combination of a diffusion approximation to the Master
equation together with a subsequent Gaussian ‘weak noise’
approximation, where small relative fluctuations are as-
sumed.1

Applying the same ideas to theKolmogorov backward
equationRuttor and Opper (2009) derive an approximation
to (5) by the partial differential equation

∂ψ(n, t)
∂ t

+(n−b)⊤A⊤(b(t))∇ψ(n, t)

+
1
2

Tr(D(b(t))∇∇⊤)ψ(n, t) = 0. (7)

Here b denotes themacroscopicstate of the system for
which fluctuations are ignored and∇ is the vector of partial
derivatives with respect ton. This fulfils the classical rate
equation

db
dt

= f(b) , (8)

where
f(n) = ∑

n′ 6=n

f (n′|n)(n′−n) (9)

is the first jump moment ordrift vector of the transition
rates. The matrixA = ∇f⊤ is the Jacobian of the first jump
moment. Thediffusion matrix(again not to be confused
with the diffusion constantd for the molecules)

D(n) = ∑
n′ 6=n

(n′−n) f (n′|n)(n′−n)⊤ (10)

is defined by the second jump moments. The dependency
of D(b) on b accounts for the fact that fluctuations depend
on the number of molecules.

Eq. (7) is the backward equation for a Gaussian diffusion
process of theOrnstein-Uhlenbecktype (Gardiner, 1996).
For observations with Gaussian noise, it can be shown that
the solutionψ(n, t) of (7) is of the form

ψ ≈ z(t)

|S|1/2
exp

[

−1
2
(n−b(t))⊤S−1(t)(n−b(t))

]

. (11)

Although ψ(n, t) (as a solution to a backward equation)
is not a normalized probability, we will refer to (11) as a
Gaussian. This analogy is helpful when we later apply lin-
ear transformations such as Fourier transforms to the vari-
ables.

Between observations the dynamics ofb(t) is given by (8)
and the matrixS(t) and normalizerz(t) evolve according to
the ODEs

dS
dt

= AS+SA⊤−D(b) , (12)

dz
dt

= z(t)Tr(A) . (13)

1Note, that the term diffusion here refers to the stochastic dy-
namics of the vectorn and should not be confused with the diffu-
sion of the molecules.

The end condition forS is given byS(tN) = σ2I in the case
of independent Gaussian measurement noise with standard
deviationσ . HereI denotes the unit matrix.

Using the rates of the MJPs for the compartment model,
assuming that molecules are created at sitei = 0 only, one
can derive the following expressions from (9) and (10) for
drift vector and diffusion matrix:

fi(n) =
d

∆x2 (ni+1 +ni−1−2ni)

− λ ni +cδi,0 (14)

Di, j(n) =
d

∆x2 (ni +ni+1)(δi, j −δi+1, j)

+
d

∆x2 (ni +ni−1)(δi, j −δi−1, j)

+ δi, j λ ni +δi,0 δ j,0c. (15)

Hereδi, j denotes theKroneckersymbol which equals 1 for
i = j and 0 else.

In spatially homogeneous reaction systems both drift vec-
tor f and diffusion matrixD only depend on the state of
the system and the reaction constants. But here, in the
case of a compartment model for a reaction-diffusion sys-
tem, there is an additional parameter to choose: the cell
size ∆x. Of course, all information contained in the ob-
servations should be used by the inference algorithm. For
that purpose∆x has to be smaller than or at least equal to
the spatial distance between two adjacent data pointsyi, j .
However, shrinking the size of the compartments increases
their number and the dimension of the matrices used in the
calculation of the likelihood. Consequently, fulfilling this
condition on∆x is often not possible because of limited
computational resources.

4 Continuum limit

A better way to solve this problem is calculating drift vector
f and diffusion matrixD in the limit ∆x → 0 analytically.
By doing so, we obtain a representation of theBicoidmodel
which decouples the effective dimension of the system state
used in numerical calculations from the number of spatial
components found in each observationyi .

To perform the continuum limit we introduce the spatial
positionsxi = i∆x and particle densities viaρ(xi) = ni∆x.
Denoting the macroscopic density corresponding ton by
ρ̄ it is straightforward to perform this limit for the macro-
scopic rate equation (8). Using a Taylor series expansion
to 2nd order aroundxi one obtains the well known classical
diffusion equation

∂
∂ t

ρ̄(x, t) = d · ∂ 2

∂x2 ρ̄(x, t)−λρ̄(x, t)+cδ (x) (16)

for molecules, which include the decay and a source term
atx = 0, whereδ (x) is Dirac’sδ distribution.
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To includedensity fluctuationsin the continuum limit a use-
ful strategy would seem to replace the multivariate Gaus-
sian (11) forni(t) by a corresponding spatialGaussian
process(Rasmussen and Williams, 2006) for the density
ρ(x, t). The matrixS would then become a type of covari-
ance operator. An explicit expression in terms of differen-
tial operators for this operator is indeed possible. Surpris-
ingly, it is also possible to solve the operator differential
equation corresponding to (12) analytically for our model.
However, the subsequent computations of explicit opera-
tor inverses which are needed at the observations together
with the normalizing determinant turn out be analytically
intractable inposition space. Hence, we have not pursued
this route any further and give details elsewhere.

It turns out that an equivalent approach to defining a Gaus-
sian process inposition spaceis to do that in afeature
space(Rasmussen and Williams, 2006) where the fluctuat-
ing densities are expanded as an infinite linear combination
of functions. The natural choice in our case is aFourier
basisfor which a truncation with a relatively small number
of features usually gives good results.

The particle density of the molecules is expanded into a
Fourier series,

ρ(x, t) = ρ̃0(t)+2
∞

∑
k=1

ρ̃k(t)cos(kπx/L) , (17)

as well as the macroscopic density corresponding ton,

ρ̄(x, t) = ρ̂0(t)+2
∞

∑
k=1

ρ̂k(t)cos(kπx/L) . (18)

Assuming reflecting boundary conditions atx= 0 andx= L
the series can only contain cosine waves with frequencies
kπ/L. In order to simplify further calculations we continue
our model periodically in space with period 2L and sym-
metrically tox = 0, so thatρ(−x, t) = ρ(x, t). This is al-
ready a property of the Fourier series (17) and (18).

Applying the Fourier transform to the classical diffusion
equation (16) and taking the boundary conditions into ac-
count leads to

f̃k = −
[

d

(

kπ
L

)2

+λ

]

ρ̃k +
c
L

, (19)

which describes the driftf of the continuous model in
Fourier space. It is possible to do a similar transforma-
tion for the diffusion operatorD. But, in this case, a more
elegant approach is to apply the discrete Fourier transform
defined by

ρ̃k =
1
L

M

∑
j=0

n j cos

(

kπ
L

j∆x

)

(20)

to the diffusion matrix of the discrete compartment model,

which results in

D̃r,s =
1
L2

M

∑
i=0

M

∑
j=0

Di, j cos
( rπ

L
i∆x

)

cos
(sπ

L
j∆x

)

. (21)

Afterwards we take the limit∆x→ 0, M → ∞ and arrive at

D̃r,s =
1

2L

[

2d

(

rπ
L

)(

sπ
L

)

+λ
]

ρ̃|r−s| +
c

2L2 (22)

for the diffusionD in the continuous model. In contrast to
the corresponding equations (14) and (15) for the discrete
compartment model, (19) and (22) do not contain the cell
size∆x.

Then the solutionψ(ρ̃, t) of the backward equation in the
Fourier representation is found to be

ψ ≈ z(t)

|S̃|1/2
exp

[

−1
2
(ρ̃ − ρ̂(t))⊤S̃−1(t)(ρ̃ − ρ̂(t))

]

. (23)

The Fourier representation of the densities has a remark-
able property: Each componentfk only depends linearly on
the series coefficient̃ρk(t) for the same spatial frequency.
Consequently, operatorA is diagonal in Fourier space and
the system of coupled matrix differential equations equa-
tions (8) and (12) for the compartment model becomes a
set of uncoupled linear differential equations after apply-
ing Fourier transform and continuum limit:

d
dt

ρ̂k = −
[

d

(

kπ
L

)2

+λ

]

ρ̂k +
c
L

, (24)

d
dt

S̃r,s = −
[

d

(

rπ
L

)2

+d

(

sπ
L

)2

+2λ

]

S̃r,s

− 1
2L

[

2d

(

rπ
L

)(

sπ
L

)

+λ
]

ρ̂|r−s|

− c
2L2 . (25)

All equations can be solved analytically in terms of expo-
nential functions. Additionally, covariance componentsS̃r,s

are only influenced by mean valuesρ̂k with k≤ r andk≤ s.
Therefore it is possible to truncate all Fourier series at order
N without affecting these calculations for lower frequen-
cies at all. The only exception is the normalization factor
z, because the likelihood of aGaussian processdepends on
which features are actually observed:

d
dt

lnz = −
N

∑
k=0

[

d

(

kπ
L

)2

+λ

]

. (26)

However, as the right-hand side is independent of the sys-
tem state, this dependency onN does not influence param-
eter estimation.

In summary,ψ(ρ̃,0) is calculated by integrating the ODEs
(24), (25), (26) backwards in time and applying the jump
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Figure 1: Typical sample of the system after reaching the
stationary state for parametersc = 30, d = 17.2, andλ =
0.027. The solid line shows the actual density of molecules,
while the stationary solution of (16), the expectation value
of the prior process, is given by the dashed line.

condition (6) at each observation. Then the total likelihood
is given by

p(D|c,d,λ ) =
∫

ψ(ρ̃,0)p(ρ̃0)dρ̃ , (27)

where p(ρ̃0) denotes the prior for the initial conditions.
For the results shown here, we have used an uninformative
prior, which is flat at observed lower frequencies, while it
suppresses fluctuations at unobserved higher frequencies.
In this special case we findp(D|c,d,λ ) ∝ z.

5 Observations

We also have to consider how observations are generated
from the continuous densityρ(x, t). We assume that this
measurement process for positionxr and timets can be de-
scribed by a convolution ofρ(x, t) with a weight function
w(x) in position space,

yr,s =
∫ L

−L
w(xr −x)ρ(x, ts)dx+ξr,s (28)

where ξr,s ∼ N (0,σ2) denotes additive Gaussian white
noise. This convolution corresponds to a product in Fourier
space, so that each observed feature is just given as

ỹk,s = w̃k ρ̃k(ts)+ ξ̃k,s. (29)

We obtainM data points at positionsxr = r L/M and use a
triangle window of widthl = 2L/M, so that the weights ˜wk

in Fourier space are given by

w̃k =

(

2π
L

kl

)−2

sin2
(

2π
L

kl

)

. (30)

Here high frequencies are just averaged out in the mea-
surement process. Therefore all information contained in

0 50 100 150 200
x

0
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y

t = 240
t = 241
t = 242

Figure 2: The first three observations of a data set as a func-
tion of positionx. The data points were obtained from a
simulation with parametersc = 30, d = 17.2, λ = 0.027,
and noise levelσ = 0.4 by convoluting the particle density
with a triangle window of widthl = 40.

the observations can be found in the low-order terms of
the series expansion, while higher-order terms mostly con-
tain noise and can be omitted in practise by truncating the
Fourier series at orderN. Note, thatN can be smaller than
M, which allows for a reduction of the computational com-
plexity. We found that parameter estimation works well
even ifN is as small asM/2, which has been used to obtain
the results shown in this paper. In contrast, the number of
cells in the compartment model has to be greater than or
equal to the number of spatial data points.

Our inference method can use other weight functions, too.
This is especially useful if the characteristics of the real
measurement process are known. As long as the measure-
ment window is large compared to the spatial distance be-
tween adjacent observations, our algorithm works without
modifications. But if a small window does not suppress
high frequencies sufficiently, these are folded back into the
low frequency components of ˜yk,s by the discrete Fourier
transform. In this case one has to replaceψ(ρ̃, t) with the
corresponding likelihoodψ(w̃ρ̃, t) for a weighted density.

6 Simulations

Although real data from biochemical experiments is not yet
available, we can generate observations using simulations
of the model. For that purpose, we could use the Gille-
spie algorithm (Gillespie, 1992) applied to the compart-
ment model, which is quite a standard approach for Markov
jump processes in a discrete state space. But choosing a
well suited compartment size∆x is difficult. If it is large,
we only have to deal with a small number of state vari-
ables. Transfer reactions between the compartments are
rare events, as the diffusion rate is inverse proportional to
∆x2. In this case the Gillespie algorithm works well, but
the spatial resolution of the simulation is rather low. Of
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Figure 3: Marginal posterior averaged over 200 data sets
for the decay constant. The vertical line shows the true
parameter valueλ = 0.027.

course, improving it is possible by just using a large num-
ber of compartments. But a small compartment size∆x also
leads to a very high frequency of transfer reactions. There-
fore the average waiting time between reaction events is
small and the Gillespie algorithm, which processes single
reaction events, becomes very slow.

Simulating the molecular dynamics of a reaction-diffusion
model directly instead of using the compartment approxi-
mation can be an alternative. By doing so, we avoid the dis-
cretization error caused by the finite compartment size∆x.
As the Bicoid model only contains first-order reactions, dif-
fusion processes of single molecules do not influence each
other and can be solved analytically. Therefore the new po-
sition x(t + ∆t) of a molecule starting atx(t) after a time
span∆t is given by

x(t +∆t) = x(t)+ ε , (31)

whereε is a Gaussian distributed random number,

ε ∼ N

(

0,
√

2d∆t
)

, (32)

with zero mean and standard deviation
√

2d∆t. Exponen-
tially distributed life timesτ for each molecule,

p(τ) = λ exp(−λτ) , (33)

take the degradation into account. And production is sim-
ply simulated by adding new molecules to the system. The
waiting time tw between two production events for single
molecules is also exponentially distributed according to

p(tw) = cexp(−ctw) . (34)

As this approach works well, we have used it to generate
observations as input for our inference algorithm. Figure
1 shows a typical sample obtained from such a simulation.
It is clearly visible that spatial fluctuations cannot be ne-
glected in this case.
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p(
c|

D
)

Figure 4: Marginal posterior averaged over 200 data sets
for the production rate. The vertical line shows the true
parameter valuec = 30.

7 Results

In order to test our method we have generated 200 different
data sets from simulations of the Bicoid reaction-diffusion
system with the same parameters. The values of the param-
eters are biologically plausible and were taken from Wu
et al. (2007). Each sample contained 11×11 observations
with spatial distanceδx= 20, temporal distanceδ t = 1 and
noise levelσ = 0.4. An example is shown in figure 2.

For each data set we have calculated marginal posteriors
for the vector of parametersθ = (c,d,λ ) from a Laplace
approximation to the posterior density

p(θ |D) ∝ p(D|θ) p(θ) . (35)

Setting

F(θ) ≡− ln(p(D|θ) p(θ)) , (36)

Laplace’s approximation is given by

− logp(θi |D) ≈ F(θi ,θ ∗
\i)+C

+
1
2

log

∣

∣

∣

∣

∣

∂ 2F(θi ,θ\i)

∂θ 2

∣

∣

∣

∣

∣

θ=θ∗
, (37)

where θ ∗ denotes the most likely parameters, i.e.θ ∗ =
argminθ F(θ), θ\i all parameterswithout θi , and p(D|θ)
is computed from (27) using our approximate inference ap-
proach. For the prior distributionp(θ) we have chosen a
product of Gaussian densities cut off at negative values,
with standard deviations equal tohalf of and means at the
true parameter values. This choice was mainly done for
simplicity and may have caused the peaks, which appear in
the marginal posteriors for very low parameter values.

The results of averaging the posteriors over the data sets
are shown in figures 3, 4 and 5. It is clearly visible, that
the modes of the averaged marginal posteriors are good es-
timates of the rate constants.
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Figure 5: Marginal posterior averaged over 200 data sets
for the diffusion constant. The vertical line shows the true
parameter valued = 17.2.

8 Indirect measurements and the role of
fluctuations

While our model uses the densityρ(x, t) of the molecules in
order to describe the state of the reaction-diffusion system,
this quantity is usually not directly observable in biochem-
ical experiments. There the molecules are marked with flu-
orescent particles and one observes the intensityI(x, t) of
the emitted light, which is proportional to the density of the
molecules (Wu et al., 2007):

I(x, t) = ρ(x, t)/γ . (38)

However, the constant of proportionalityγ, which depends
on the preparation of the experiment and other factors, is
usually unknown.

We can take these indirect measurements into account by
substitutingρ(x, t) with γ I(x, t) in our model. In this case
the production ratec for molecules is replaced by a pro-
duction ratecI = c/γ for intensity. The other rate constants
d andλ , which describe diffusion and degradation respec-
tively, are not changed by rescaling the state variables, as
these are first order reactions. Therefore it is not possible
to estimateγ using only the deterministic part (16) of the
dynamics.

But the covariances of the state variables contained inSand
likewise the diffusion matrixD(ρ̃) are rescaled by 1/γ2,
which results in

(D̃I (Ĩ))r,s =
1

2γL

[

2d

(

rπ
L

)(

sπ
L

)

+λ
]

Ĩ|r−s|

+
cI

2γL2 . (39)

As D̃ is the inhomogeneity in the linear differential equa-
tion (25), it determines the size of fluctuations around the
stationary state, which scale proportional to 1/γ. Conse-
quently, we can estimateγ, because our model takes the

0 1 2 3 4
γ

0

0.5

1

p(
γ|

D
)

Figure 6: Marginal posterior forγ averaged over 100
rescaled data sets with reaction constants as before. The
vertical line shows the true parameter valueγ = 2.

internal noise of the system into account. For that purpose,
we just have to treatγ as additional parameter.

Figure 6 shows the preliminary result of estimatingγ aver-
aged over 100 rescaled data sets. Each set contained 21×6
observations with spatial distanceδx = 10, temporal dis-
tanceδ t = 2 and noise levelσ = 0.4 for the intensities.
Here we have kept the parameterλ at its true value. It is
clearly visible, that estimation of the number of molecules
from intensity measurements is possible using our algo-
rithm. However, the uncertainty forγ is large, which in-
dicates that this is a more difficult inference task.

9 Discussion and Outlook

We have developed an approximate inference approach to
parameter estimation for a simple class of reaction-diffu-
sion models. Simulations suggest that our method is capa-
ble of dealing efficiently with the limit of continuous space
and with fluctuations in the density.

While the type of elementary processes considered so far
are relevant to the biologicalBicoid system, the one di-
mensional spatial geometry might be a strong simplifica-
tion. Working with a 3-dimensional box geometry would
be still possible using our Fourier basis without concep-
tual changes. More realistic geometries could be treated by
using other types of specialized feature functions that are
adapted to the boundaries of the problem. Bessel functions,
for example, are a suitable basis for circular boundaries.

A more challenging problem is the inclusion of chemical
reactions between molecules. Again this can be modelled
within the compartment approach and the continuum limit
can be taken. However, this will usually lead tononlin-
ear macroscopic rate equations. Fluctuations may be still
approximated by Gaussians analogous to (23) and would
also be tractable by a suitable feature space representation.
However in this case, analytical solutions to the temporal
dynamics are not to be expected and a numerical integra-
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tions of ODEs is required. But we expect to find only a
weak coupling between features of different order. Then
we can still work with a reasonably small number of fea-
tures and the nonlinearity is not a serious problem.

Finally, it will be important to assess the validity of the
assumption of Gaussian fluctuations in our approximation.
One might think that the success of such an approximation
in the limit of infinitely small cell sizes in the compartment
model is totally counterintuitive. Small cells contain only
few molecules (or none at all) and fluctuations within a cell
would be far from being Gaussian. One should note how-
ever, that what we really use in the inference method are
the fluctuations of the leading Fourier coefficients of the
density. Those are obtained from spatial averages of densi-
ties modulated with trigonometric functions of long wave-
lengths. This averaging takes advantage of the smoothness
of the density functionρ(x, t) and might make fluctuations
indeedmoreGaussian. We expect that a formal analysis
of our assumptions together with corrections to the ap-
proximation could be obtained from a functional integral
approach to inference in reaction-diffusion models using
ideas similar to T̈auber et al. (2005).
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