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Statistical inference for such processes is highly noiatriv

because

We present an approximate inference approach
to parameter estimation in a spatio-temporal

stochastic process of the reaction-diffusion type.
The continuous space limit of an inference

method for Markov jump processes leads to an
approximation which is related to a spatial Gaus-
sian process. An efficient solution in feature

space using a Fourier basis is applied to inference
on simulational data.

1 Introduction

Reaction-diffusion models are used to describe spatie-tem
poral stochastic processes where molecules diffuse throug
space, are created and destroyed, and can participate in
chemical reactions when they are close. This type of pro-
cess finds a variety of applications in chemistry, physics
(Gardiner, 1996), and also in the field of computational
biology. Recently the propagation of tigcoid protein,
which is relevant for morphogenesis in theosophilaem-

bryo, has been modelled by such a process (Wu et al.,
2007).

In many applications, one can assume a qualitative knowl-
edge of basic processes in the model. However, the numer-
ical values of the parameters corresponding to these pro-
cesses, such as the microscopic rates for diffusion, decay,
and reactions, are often unknown. Hence, it is important to
be able to infer such quantities from concrete experimental

e observations are not independent but are generated

from aMarkov process with continuous time

Space is continuous It is not clear if an inference
method for a spatially discretized model remains com-
putationally tractable when discretization becomes
finer and finer.

Fluctuations may not be irrelevant The transition

to a spatial continuum limit is often enabled in the
limit where the number of molecules is large enough
to safely neglect density fluctuations. The evolution
of the macroscopic density is then typically governed
by a partial differential equation (PDE). In some cases
it is possible to solve the PDE for the stationary (time
independent) density analytically which could be used
as a fit to experiments. However, neglecting the tem-
poral dynamics usually does not allow us to estimate
all rate parameters, but only certain ratios. Further-
more, measurements are often indirect and allow to
estimate molecule densities only up to an unknown
scale factor. Then even a time dependent solution of
the macroscopic PDEs would not be sufficient to infer
those parameters which directly determine molecule
numbers (such as creation rates) and the stochasticity
of the spatio-temporal process must be discussed. For
the relevance of fluctuations in the biological context,
see (Tostevin et al., 2007).

data. The problem of inference in continuous time Markov pro-
cesses has recently attracted attention in the machirne lear
This is a problem of non-parametric statistical inferencejng/Al community and a variety of approximate inference
because the natural description of the state of such systemgethods for these models have been developed (Archam-
is not in terms of the dynamics of individual molecules, butpeay et al., 2008; Cohn et al., 2009; Nodelman et al., 2005;
of the molecule density as a function of continuous spacedpper and Sanguinetti, 2008). However, it is not clear if

and time Experiments typically provide (noisy) measure- these methods will scale up to be able to deal with the com-
ments of the (smoothed) molecule densities over a range @flexity of fluctuating spatial densities.

spatial locations at discrete times. ) ] )
In this paper we present an approach for approximate in-

Appearing in Proceedings of the!3nternational Conference on ference in a reaction-diffusion model which takes both
Avrtificial Intelligence and Statistics (AISTATS) 2010, Chia La- Markov dynamics and spatial fluctuations into account.
QUEaZRelSOS* Shard'“'ﬁ' Italy. Volume 9 of JIMLR: W&CP 9. Copy-The method is based on a recently developed approximate
right 2010 by the authors. inference method for Markov jump processes (Ruttor and
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Opper, 2009) which easily allows for the transition to acon-3  Approximate Inference for MJPs
tinuous space.

We apply the method to a model which contains the ba-Wh'Ie it is not possible to perform exact inference on this

sic processes relevant for ticoid protein evolution in model, we V\.”” resortto an approxm_1ate inference approach
for Markov jump processes following the work of Ruttor

Drosophila (i.e. creation and decay of molecules, but no . 2
chemical reactions between molecules), but uses a simplf}nd Opper (2009). The main contribution of the present

fied one dimensionafjeometry. We have used this model paper is to extend this method to then-parametric con-
- tinuumlimit required for reaction-diffusion models. Here

as a proof of concept for our inference approach. The dat e cell sizeAx shrinks to zero and molecule nUMbers

sets were obtained from simulations of the model and the re replaced by densitigkx) via &

measurement process using realistic true system param%- P y s

ters (Wu et al., 2007). This allows us to see how well these ni — P(X)AX. 2)

parameters can be inferred from data.

h lied th el We will next briefly review the main results of Ruttor and
We have not yet applied the model ieal measurements Opper (2009) needed for our application.

because available data at different time points are taken
from different embryosand are thus not based on the sta-Parameter inference of Markov jump processes can be
tistical assumptions of our model. Obtaining the more in-based on the recursive computation of

terestingin vivo measurements on a single embryo is non-

trivial, but should hopefully be possible in the near future Y(n,t) = P(Dxt|0,n(t) =n), ®)
(Wu et al., 2007). the likelihood offuture observations B = {yi};>t con-
ditioned on the stata(t) = n at the present timé The
2 Reaction-diffusion models as Markov likelihood of all data is used for maximum likelihood or
jump processes Bayesian estimation of rate constantsl, andA is conse-
quently
A sound description of the stochastics of reaction-diffasi p(Dlc,d,A) = Z (n,0)po(n), (4)

models can be based orcampartmentnodel (Gardiner,

1996), where space is discretized into small cells of sizévherepo(n)
Ax (assuming a single space dimension for simplicity).For timesbetween two observations(n,t) obeys thekol-
The state of the system is described by a vector mogorov backwarequation

(no,...,Nm), wheren; is the number of molecules in a cell.

The stochastic dynamics is assumed to be a Markov jump Ew(mt) - f(n'In) [w(n,t) —w(, 0], (5)
process (MJP) defined by a rate functibfn’|n) which de- dt nZn

termines the temporal change of transition probabilitias v . o )
which has to be solved backward in time with the end con-

P(n',t+Atn,t) ~ oy, + At f (n'n) (1)  dition g(n,ty) = p(yn|n(tn)). The observations enter con-
secutively from the latest to the first one through their con-
ditional distributions (assuming independent nojsgjn),

in the jump conditions

In theBicoid system we consider three types of elementary . - .

processes: tliq} (n7t) - p(y| |n(t| ))tILTJr W(Xat) ) (6)

is the distribution of the initial state.

for At — 0. The ratef (n’|n) is the sum of the rates for alll
individual processes which lead fromto n’.

e Particle diffusion, say from celli into the neighbor- wheret;” andt;" denote the left and right side limits. Sim-
ing celli+ 1, is modelled by a transitionf = nj —1 ilar to the backward-forward algorithm in Hidden Markov
andn/,; = n;1+ 1 with a rated ny /AX?, whered is ~ Models state inference at arbitrary timtessan be performed
the diffusion constant of the system. The proportion-usingy(n,t) together with a solution of the (forward) mas-
ality of the rate to the numbey of molecules accounts ter equation.

for the fact that_each Qf the molecules can perform therhe approximation method of Ruttor and Opper (2009)
jump to the nezlgh_bonng cell. As we W_'" _show later, is an extension of van Kampen’s system size expansion
the factor JAx” will allow for a proper limitAx — 0 approach (Gardiner, 1996; van Kampen, 1981) originally
of the compartment model. developed for solving the forward Master equation to the
e In a similar way we can tred¢lolecule degradation ~ Problem of statistical inference. Assuming systems with
n{ = n; — 1 which occurs with a rata n; in all cells. sufficiently large numbers of molecules, the statef the
system is essentially approximated by a vector with contin-

* Creation of moleculesin the system occurs by injec- yous components which have Gaussian fluctuations around
tion with a fixed ratec/Ax in a single cell only. amacroscopictate.
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Formally, the system size expansion can be derived by @he end condition foSis given byS(ty) = 02l in the case
combination of a diffusion approximation to the Master of independent Gaussian measurement noise with standard
equation together with a subsequent Gaussian ‘weak noiséfeviationo. Herel denotes the unit matrix.

Z‘Srﬁlrg;"f" ation, where small relative fluctuations are aS'Using the rates of the MJPs for the compartment model,

assuming that molecules are created atisitd) only, one
Applying the same ideas to thkolmogorov backward can derive the following expressions from (9) and (10) for
equationRuttor and Opper (2009) derive an approximationdrift vector and diffusion matrix:

to (5) by the partial differential equation d
dun.t) filn) = @(nwl“'nifl— 2n;)
2+ (n—b) AT (b(t)) Dy (n,1)
ot ) — Ani+cdp (14)
-
+2Tr(D(b(t))DD )w(n,t) = 0. (7) Di(n) = &(ni ) (8= Bs)
Here b denotes themacroscopicstate of the system for d
which fluctuations are ignored afdis the vector of partial + e (Mi+ni—1)(dj—d-1j)
derivatives with respect tn. This fulfils the classical rate
equation + &jAn+dpdjpcC. (15)
% =f(b), (8)  Hered j denotes th&roneckersymbol which equals 1 for
i=jandO else.
where
f(n) = z f(n'In)(n"—n) (9)  In spatially homogeneous reaction systems both drift vec-
n'Zn tor f and diffusion matrixD only depend on the state of

is the first jump moment odrift vector of the transition the system and the reaction constants. But here, in the
rates. The matriA = Of " is the Jacobian of the first jump case of a compartment model for a reaction-diffusion sys-
moment. Thediffusion matrix(again not to be confused tem, there is an additional parameter to choose: the cell

with the diffusion constand for the molecules) size Ax. Of course, all information contained in the ob-
, , , T servations should be used by the inference algorithm. For
D(n) = n;n(n —n)f(njn)(n"—n) (10) that purposé\x has to be smaller than or at least equal to

the spatial distance between two adjacent data pgifts
is defined by the second jump moments. The dependendjowever, shrinking the size of the compartments increases
of D(b) onb accounts for the fact that fluctuations dependtheir number and the dimension of the matrices used in the
on the number of molecules. calculation of the likelihood. Consequently, fulfillingish
ncondition onAx is often not possible because of limited

Eq. (7) is the backward equation for a Gaussian diffusio )
computational resources.

process of thérnstein-Uhlenbeckype (Gardiner, 1996).
For observations with Gaussian noise, it can be shown that

the solutiony(n,t) of (7) is of the form 4 Continuum limit
ES |;|(22 exp —%(n —b(t))"SL(t)(n—b(t))| . (11)  Abetter way to solve this problem is calculating drift vecto

f and diffusion matrixD in the limit Ax — 0 analytically.

By doing so, we obtain a representation of Bieoid model

is not a normalized probability, we will refer to (11) as a which.decoupk_as the effectiye dimension of the system stgte
Gaussian This analogy is he|pf[.l| when we later apply lin- used in numerical galculatlons from.the number of spatial

J . . components found in each observatign

ear transformations such as Fourier transforms to the vari-
ables. To perform the continuum limit we introduce the spatial
positionsx; = iAx and particle densities via(x) = niAx.
Denoting the macroscopic density corresponding tioy

p it is straightforward to perform this limit for the macro-

Although (n,t) (as a solution to a backward equation)

Between observations the dynamicsf) is given by (8)
and the matriX§(t) and normalizeg(t) evolve according to

the ODEs scopic rate equation (8). Using a Taylor series expansion
dis — AS+SAT— D(b), (12) tq 2nql order arpun!di one obtains the well known classical
gt diffusion equation
z
— = zZ(t) Tr(A). (13) _ 2 _ _
a — AT 250t =d- 2Bkt~ AR +5X)  (16)

INote, that the term diffusion here refers to the stochastic dy- o
namics of the vecton and should not be confused with the diffu- for molecules, which include the decay and a source term

sion of the molecules. atx =0, whered(x) is Dirac’s d distribution.
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To includedensity fluctuationm the continuum limitause-  which results in

ful strategy would seem to replace the multivariate Gaus- M M

sian (11) forn;(t) by a corresponding spatigaussian Drs= 1 Di | cos(
process(Rasmussen and Williams, 2006) for the density CoL i;)j;) '
p(x,t). The matrixS would then become a type of covari- o )
ance operator. An explicit expression in terms of differen-Afterwards we take the limiix — 0, M — o and arrive at
tial operators for this operator is indeed possible. Sefpri . 1 rr\ /ST B c

ingly, it is also possible to solve the operator differentia  Drs= 5 [ d(L> (L) +/\} Prsit5z (22)
equation corresponding to (12) analytically for our model.
However, the subsequent computations of explicit operafor the diffusionD in the continuous model. In contrast to
tor inverses which are needed at the observations togethete corresponding equations (14) and (15) for the discrete
with the normalizing determinant turn out be analytically compartment model, (19) and (22) do not contain the cell
intractable inposition space Hence, we have not pursued sizeAx.

this route any further and give details elsewhere.

rm

1 iAx) cos(%Tij) . (21)

Then the solutiony(p,t) of the backward equation in the

It turns out that an equivalent approach to defining a GausFourier representation is found to be

sian process imposition spacds to do that in afeature

space(Rasmussen and Williams, 2006) where the fluctuat- , - E(t) ex _}(f, _ ﬁ(t))Tg—l(t)(ﬁ —pt))] . (23)

ing densities are expanded as an infinite linear combination |S|1/2 2 )

of functions. The natural choice in our case if@urier

basisfor which a truncation with a relatively small number The Fourier representation of the densities has a remark-

of features usually gives good results. able property: Each componefjtonly depends linearly on

the series coefficieni(t) for the same spatial frequency.

aConsequentIy, operatdy is diagonal in Fourier space and

the system of coupled matrix differential equations equa-
. ® tions (8) and (12) for the compartment model becomes a

p(xt) =pPo(t) +2 y p(t)coskmx/L),  (17)  get of uncoupled linear differential equations after apply

k=1 ing Fourier transform and continuum limit:

)

rm\? s\ 2
. . " —|d{— ) +d{— ) +2A
Assuming reflecting boundary conditionscat 0 andx =L L L
the series can only contain cosine waves with frequencies 1 P\ /ST
krt/L. In order to simplify further calculations we continue oL [Zd (L) ( ) +/\} [)|r_s|
c

The particle density of the molecules is expanded into
Fourier series,

as well as the macroscopic density corresponding to

A ~ Cc

&la

LX) =polt) +2 3 At coskmL). (18)
=1

Ss

Sla
__(/)x
I

our model periodically in space with period 2nd sym- L

metrically tox = 0, so thato(—x,t) = p(x,t). This is al-
ready a property of the Fourier series (17) and (18).

. 25
212 (25)
Applying the Fourier transform to the classical diffusion Al e_quatlon_s can be ;(_)Ived analytlc_ally in terms of expo-
. . o . nential functions. Additionally, covariance componefts
equation (16) and taking the boundary conditions into ac- . P ’
are only influenced by mean valugswith k <r andk <s.
count leads to o . ; X
Therefore itis possible to truncate all Fourier seriesdépr
. KiT\ 2 . c N without affecting these calculations for lower frequen-
fk=— d<|_> +A| P+ (19)  cies at all. The only exception is the normalization factor
which describes the driff of the continuous model in
Fourier space. It is possible to do a similar transforma-

L z, because the likelihood of@aussian procesdepends on
. ol 2 d N ki 2
tion for the diffusion operatob. But, in this case, a more 3 Inz = — ZO d(L) A
k=

(26)

which features are actually observed:
elegant approach is to apply the discrete Fourier transform

defined by However, as the right-hand side is independent of the sys-

1 M KIT tem state, this dependency Nrdoes not influence param-
Pk = L Z}nj cos<Lij> (20)  eter estimation.
j=

In summary(p,0) is calculated by integrating the ODEs
to the diffusion matrix of the discrete compartment model,(24), (25), (26) backwards in time and applying the jump
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Figure 1: Typical sample of the system after reaching thé~igure 2: The first three observations of a data set as a func-
stationary state for parametars- 30,d = 17.2, andA = tion of positionx. The data points were obtained from a
0.027. The solid line shows the actual density of moleculessimulation with parameters= 30,d = 17.2, A = 0.027,
while the stationary solution of (16), the expectation ealu and noise levetr = 0.4 by convoluting the particle density

of the prior process, is given by the dashed line. with a triangle window of widtH = 40.

condition (6) at each observation. Then the total likelthoo the observations can be found in the low-order terms of
is given by the series expansion, while higher-order terms mostly con-
tain noise and can be omitted in practise by truncating the
Fourier series at ordéd. Note, thatN can be smaller than

M, which allows for a reduction of the computational com-
where p(po) denotes the prior for the initial conditions. plexity. We found that parameter estimation works well
For the results shown here, we have used an uninformativeven ifN is as small ad1 /2, which has been used to obtain
prior, which is flat at observed lower frequencies, while itthe results shown in this paper. In contrast, the number of
suppresses fluctuations at unobserved higher frequenciesells in the compartment model has to be greater than or
In this special case we fing(D|c,d,A) O z equal to the number of spatial data points.

pDIc.dA) = [W(B.OP(Bo)dD. (@)

Our inference method can use other weight functions, too.
This is especially useful if the characteristics of the real
measurement process are known. As long as the measure-
We also have to consider how observations are generatedent window is large compared to the spatial distance be-
from the continuous densitg(x,t). We assume that this tween adjacent observations, our algorithm works without
measurement process for positigrand timets can be de-  modifications. But if a small window does not suppress
scribed by a convolution gb(x,t) with a weight function  high frequencies sufficiently, these are folded back ino th
w(x) in position space, low frequency components of s by the discrete Fourier
transform. In this case one has to replggg,t) with the
corresponding likelihoogy(Wp,t) for a weighted density.

5 Observations

L
Yrs= / LW(Xr —X)p(X,ts) X+ & s (28)
where & s ~ .4 (0,0%) denotes additive Gaussian white 6 Simulations
noise. This convolution corresponds to a product in Fourier
space, so that each observed feature is just given as Although real data from biochemical experiments is not yet
available, we can generate observations using simulations
of the model. For that purpose, we could use the Gille-
spie algorithm (Gillespie, 1992) applied to the compart-
ment model, which is quite a standard approach for Markov
; ; ; jump processes in a discrete state space. But choosing a
in Fourier space are given by well suited compartment siz&x is difficult. If it is large,
omr \ 2 . /2m we only have to deal with a small number of state vari-

Wy = (Lkl) sir? (Lk|> . ables. Transfer reactions between the compartments are
rare events, as the diffusion rate is inverse proportiomal t
Here high frequencies are just averaged out in the meaAx?. In this case the Gillespie algorithm works well, but
surement process. Therefore all information contained ithe spatial resolution of the simulation is rather low. Of

Yics = Wk Px(ts) + Eks- (29)

We obtainM data points at positiong =rL/M and use a
triangle window of width = 2L /M, so that the weights)~

(30)
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Figure 3: Marginal posterior averaged over 200 data setEigure 4. Marginal posterior averaged over 200 data sets
for the decay constant. The vertical line shows the trugfor the production rate. The vertical line shows the true
parameter valug = 0.027. parameter value = 30.

course, improving it is possible by just using a large num-7 Results
ber of compartments. But a small compartment Aizalso

leads to a very high frequency of transfer reactions. Therem, order to test our method we have generated 200 different
fore the average waiting time between reaction events igata sets from simulations of the Bicoid reaction-diffusio
small and the Gillespie algorithm, which processes singl%ystem with the same parameters. The values of the param-
reaction events, becomes very slow. eters are biologically plausible and were taken from Wu

Simulating the molecular dynamics of a reaction-diffusion®t &l- (2007). Each sample contained-111 observations
model directly instead of using the compartment approxi-With spatial distancéx = 20, temporal distancét = 1 and
mation can be an alternative. By doing so, we avoid the disD0ise levelo = 0.4. An example is shown in figure 2.
cretization error caused by the finite compartment Aze  For each data set we have calculated marginal posteriors
As _the Bicoid model qnly contains first-order rgacuonsn dif for the vector of paramete = (c,d,A) from a Laplace
fusion processes of single molecules do not influence eachpproximation to the posterior density

other and can be solved analytically. Therefore the new po-

sition x(_t +_At) of a molecule starting at(t) after a time p(8|D) O p(D|6) p(8). (35)
spanAt is given by

Setting

Ay =T, &1 F(6) = —In(p(DI®) P(6) . (36
wheree is a Gaussian distributed random number, Laplace’s approximation is given by

e~ (0,v2dat), (32) _logp(6ID) ~ F(8,8%)+C

2 A

with zero mean and standard deviatigi2dAt. Exponen- + }| w ., (37)
tially distributed life timest for each molecule, 2 00 0—6

p(t) =Aexp(—AT), (33) where 6* denotes the most likely parameters, i&. =

o .. argmingF(6), 6,; all parametersvithout 6, and p(D|6)
take the degradatlon into account. And prOdUC“Oﬂ IS SIM4g Computed from (27) using our approximate inference ap-
ply simulated by adding new molecules to the system. Theyroach. For the prior distributiop(8) we have chosen a
waiting timet,, between two production events for single product of Gaussian densities cut off at negative values,
molecules is also exponentially distributed according to  \ith standard deviations equal half of and means at the
true parameter values. This choice was mainly done for
P(tw) = cexp(—Cty) . (34) simplicity and may have caused the peaks, which appear in

As this approach works well, we have used it to generatéhe marginal posteriors for very low parameter values.

observations as input for our inference algorithm. FigureThe results of averaging the posteriors over the data sets
1 shows a typical sample obtained from such a simulationare shown in figures 3, 4 and 5. It is clearly visible, that

It is clearly visible that spatial fluctuations cannot be ne-the modes of the averaged marginal posteriors are good es-
glected in this case. timates of the rate constants.
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Figure 5: Marginal posterior averaged over 200 data setfigure 6: Marginal posterior foy averaged over 100
for the diffusion constant. The vertical line shows the truerescaled data sets with reaction constants as before. The

parameter valud = 17.2. vertical line shows the true parameter vajue 2.
8 Indirect measurements and the role of internal noise of the system into account. For that purpose,
fluctuations we just have to treat as additional parameter.

Figure 6 shows the preliminary result of estimatingver-
While our model uses the densjtyx,t) of the moleculesin  aged over 100 rescaled data sets. Each set contained 21
order to describe the state of the reaction-diffusion syste observations with spatial distandx = 10, temporal dis-
this quantity is usually not directly observable in biochem tancedt = 2 and noise leveb = 0.4 for the intensities.
ical experiments. There the molecules are marked with fluHere we have kept the paramefesat its true value. It is
orescent particles and one observes the intehgity) of  clearly visible, that estimation of the number of molecules
the emitted light, which is proportional to the density aéth from intensity measurements is possible using our algo-
molecules (Wu et al., 2007): rithm. However, the uncertainty far is large, which in-

dicates that this is a more difficult inference task.

I(th) =p(x,t)/y. (38)

However, the constant of proportionaligywhich depends 9 Discussion and Outlook

on the preparation of the experiment and other factors, is ) .
usually unknown. We have developed an approximate inference approach to

o . parameter estimation for a simple class of reaction-diffu-
We can take these indirect measurements into account tyon models. Simulations Suggest that our method is capa-

substitutingo(x;t) with y1(x,t) in our model. In this case ple of dealing efficiently with the limit of continuous space
the production rate for molecules is replaced by a pro- gnd with fluctuations in the density.

duction ratec; = c/y for intensity. The other rate constants i .
d andA, which describe diffusion and degradation respec-Vhile the type of elementary processes considered so far
tively, are not changed by rescaling the state variables, £&'€ relevant to the biologicaicoid system, the one di-

these are first order reactions. Therefore it is not possiblgensional spatial geometry might be a strong simplifica-
to estimatey using only the deterministic part (16) of the tion. Working with a 3-dimensional box geometry would
dynamics. be still possible using our Fourier basis without concep-
tual changes. More realistic geometries could be treated by
But the covariances of the state variables contain&bind  ysing other types of specialized feature functions that are

likewise the diffusion matribXD(p) are rescaled by A%,  adapted to the boundaries of the problem. Bessel functions,

which results in for example, are a suitable basis for circular boundaries.
(f) (T)) _ 1 od rm\ /s Al A more challenging problem is the inclusion of chemical
s 2yL L L Ir=sl reactions between molecules. Again this can be modelled
C within the compartment approach and the continuum limit
+ 2yL2° (39) can be taken. However, this will usually lead rionlin-

ear macroscopic rate equations. Fluctuations may be still
As D is the inhomogeneity in the linear differential equa- approximated by Gaussians analogous to (23) and would
tion (25), it determines the size of fluctuations around thealso be tractable by a suitable feature space representatio
stationary state, which scale proportional to/1 Conse- However in this case, analytical solutions to the temporal
guently, we can estimatg because our model takes the dynamics are not to be expected and a numerical integra-
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tions of ODEs is required. But we expect to find only a U. C. Tauber, M. Howard, and B. P. Volimayr-Lee. Appli-
weak coupling between features of different order. Then cations of field-theoretic renormalization group methods
we can still work with a reasonably small number of fea- to reaction-diffusion problems]. Phys. A: Math. Gen.
tures and the nonlinearity is not a serious problem. 38(17):R79-R131, 2005.

Finally, it will be important to assess the validity of the F. Tostevin, P. Rein ten Wolde, and M. Howard. Funda-
assumption of Gaussian fluctuations in our approximation. mental limits to position determination by concentration
One might think that the success of such an approximation gradientsPLoS Computational Biolog(4):e78, 2007.

in the limit of infinitely small cell sizes in the compartment N. G. van Kampen.Stochastic Processes in Physics and
model is totally counterintuitive. Small cells contain ypnl Chemistry North-Holland, 1981.

few molecules (or none at all) and fluctuations within aceIIY. F. Wu, E. Myasnikova, and J. Reinitz. Master equation

would be far from being Gaussian. One should note how- " . . L . o
ever, that what we really use in the inference method are S|muilat|on analysis oflmmunostamed bicoid morphogen
; gradient.BMC Systems Biology:52, 2007.

the fluctuations of the leading Fourier coefficients of the
density. Those are obtained from spatial averages of densi-
ties modulated with trigonometric functions of long wave-
lengths. This averaging takes advantage of the smoothness
of the density functiorp(x,t) and might make fluctuations
indeedmore Gaussian. We expect that a formal analysis
of our assumptions together with corrections to the ap-
proximation could be obtained from a functional integral
approach to inference in reaction-diffusion models using
ideas similar to &uber et al. (2005).
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