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Abstract

We consider the problem of feature selection for unsupervised anomaly detection (AD) in
time-series, where only normal examples are available for training. We develop a method
based on exchangeability martingales that only keeps features that exhibit the same pattern
(i.e., are i.i.d.) under normal conditions of the observed phenomenon. We apply this to the
problem of monitoring a Windows service and detecting anomalies it exhibits if compro-
mised; results show that our method: i) strongly improves the AD system’s performance,
and ii) it reduces its computational complexity. Furthermore, it gives results that are easy
to interpret for analysts, and it potentially increases robustness against AD evasion attacks.
Keywords: plug-in martingales, exchangeability, feature selection, anomaly detection,
conformal prediction, information security

1. Introduction

The goal of Anomaly Detection (AD) is to identify test objects that do not conform to
an expected normal behavior; we work under the assumption that training data contains
only normal examples (unsupervised AD), and will call anomalies non-conforming objects
in the test data. AD methods are widely used to detect anomalous events, such as frauds,
mechanical faults, and software misbehaviors.

In recent years, information security researchers increasingly directed their attention
to AD to identify attacks to systems. AD is particularly effective in scenarios where the
observed phenomenon (e.g., the status of an operating system or a network) exhibits the
same pattern under normal conditions; in these circumstances, one can use AD methods
to identify anomalies and report them as attacks. AD in security is also motivated by the
fact that, while it is generally cheap for adversaries to morph their attack vectors to bypass
deterministic checks (e.g., in the context of malware, by using polymorphism), changing the
attack’s behavior to fit in with the normal behavior may have a larger cost.

AD applications to security problems need to consider carefully that: i) attacks are
not necessarily anomalies with respect to the monitored features, and ii) to limit false
positives, the AD system should only monitor features that indeed exhibit the same pattern
under normal conditions. The former is application-specific, and it can be approached by
monitoring as many features as possible. The latter, on the other hand, can be solved by
performing feature selection, and it is inspiration for the method we propose in this paper.
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1.1. Feature selection for AD

As with most machine learning problems, feature selection has a critical importance for AD,
since using the right features generally leads to i) reducing computational complexity, and
ii) improving the convergence rate of the learning algorithm, potentially making it more
robust to noise. However, in terms of feature selection, there is a fundamental difference
between supervised learning and unsupervised AD. In a supervised setting, features’ utility
is determined as their ability to separate objects belonging to different classes; moreover,
low variance features can usually be discarded. In AD, on the other hand, we are only given
normal data; this means the only assertion we can make about features in this context is
whether they indeed follow the same pattern under normal conditions or not. Remarkably,
in this case, features with low variance under normal conditions may be useful for detecting
anomalies (e.g., a constant value that changes with a class of anomalies can be very useful);
for the same reason, high variance does not imply a feature should be discarded.

This inherent constraint of the AD setting was often ignored by previous work on fea-
ture selection for AD. In fact, many researchers proposed feature selection methods that
use anomalous examples together with normal data (Kayacik et al., 2005; Stein et al., 2005;
Iglesias and Zseby, 2015). Arguably, their approach, whilst having the advantage of su-
pervised learning selection methods, biased the selected features to the kinds of anomalies
provided within training data, which does not necessarily represent all possible anomalies.
Other researchers approached AD feature selection by using dimensionality reduction meth-
ods (e.g., PCA) (Flynn and McLoone, 2011; Puggini and McLoone, 2017); the output of
these methods, however, lacks of interpretability.

Kloft et al. (2008) did feature selection respecting the constraint; specifically, they ex-
tended the optimization task of Support Vector Data Description (SVDD) to account for
features’ importance.

1.2. Contributions

We present a feature selection method for AD that only looks at normal examples. The
method is based on the following intuition: a feature should be used to detect anomalies
if, under normal conditions, it exhibits the same pattern. This intuition is formalized by
the i.i.d. property: we will say that a feature is i.i.d. if its values over time appear to be
independently sampled from the same distribution. In this paper, we test if a feature is i.i.d.
by using a method for testing exchangeability that is based on Plug-in martingales (Fedorova
et al., 2012)!, and we discard any feature that does not pass such test.

As a motivating example, we consider the problem of monitoring a Windows service,
and detecting misbehaviors that may be the consequence of attacks. In a general computing
platform such as a Windows PC, it could be very hard to capture normal behavior associated
with various user activities and usage patterns. However, there are standard services that
run within the OS that are likely to have a much more predictable behavior. Such services
could be attacked as a route to hiding malware through techniques such as DLL injection;
furthermore, services that provide security functions could be maliciously patched by an
adversary to stop executing them.

1. To test for exchangeability is equivalent to testing for i.i.d.. A sequence of random variables is exchange-
able if their joint probability distribution is the same for any permutation of the sequence.
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Within the problem of monitoring a Windows service, our method allows the following
automated strategy: 1) initialize the features to all possible measurements of a Windows ser-
vice (e.g., memory, CPU and resource usage); 2) collect data for such features under normal
conditions; 3) remove the features that do not exhibit the same pattern over time by using
martingale-based exchangeability testing; 4) perform AD using standard algorithms (e.g.,
One-class SVM). This approach, which can be applied to various AD problems other than
security, has the following advantages: i) it permits automation without expert knowledge
of the data, and yet ii) it allows an analyst to supervise and control the feature selection
process. We further argue that, in a security context, this feature selection method can
make an AD system more robust to AD evasion techniques (subsection 4.4).

2. Problem setting

We consider the problem of AD on a time series of objects {z; : t = 1,2, ...}, where objects
are d-dimensional vectors z; € R?. In a training phase?, we access a sequence of n training
objects, x1, ..., Ty, which we assume are all labeled as normal. In a test phase, we observe
a new object, x,,+1, and are asked to predict whether this object is anomalous with respect
to the training data, or whether it is normal (i.e., it belongs to the same distribution).

We refer to the i-th feature of an object with z%. Let ® = {1,...,d} be the original set of
features. In this paper, we seek to find a set of features ® C ® such that an AD algorithm
trained only considering features ®' of the objects, obtains better predictions on test data
than when it uses all the features. We define our evaluation criteria in subsection 4.3.

3. Feature selection using exchangeability martingales

A feature is not useful for AD purposes if its values within normal data do not exhibit the
same pattern over time. We leverage this intuition to propose the following feature selection
technique for AD: if the values of the i-th feature within training data, x%, ..., 2%, do not
appear i.i.d., we will remove such feature from the feature set. We first give an overview of
the technique, and then provide the details throughout the section.

We remark that testing the i.i.d. assumption for a sequence is equivalent to testing
its exchangeability. Vovk et al. (2003) proposed exchangeability martingales as a tool to
test exchangeability for a sequence of objects as follows. Note that an exchangeability
martingale is defined for a Conformal Predictor (CP) (subsection 3.1) and a betting strategy
(subsection 3.2). Consider the i-th feature, and let v; = 2%, for t = 1,...,n. To verify that
a sequence of feature values vy, vy, ..., v, is exchangeable (and thus i.i.d.) one can:

1. compute a p-value p; for each feature value v, with ¢t = 1,...,n, by using a CP in
online setting;

2. use the betting strategy to compute a martingale value M; for each p-value;

3. reject exchangeability if some M; exceeds a selected threshold 9.

2. Whilst our formulation of the problem and experiments assumes batch predictions, one can use features
selected using the method we propose in an online setting.
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This method works because of the following: i) if the sequence of values v; is indeed i.i.d.,
then the CP returns p-values that are distributed uniformly in [0, 1] (Theorem 1); and ii) if
p-values p; are uniformly distributed, then the martingale M; will increase above the chosen
threshold ¥ (which is generally set to 20 or 100) only with low probability (Theorem 2).

The remainder of this section describes the theoretical results that support the method
above, and application-specific details.

3.1. Conformal Predictors

A CP, C4 : R x R [0,1], is a wrapper around a scoring function (nonconformity
measure) A : R x R"™1 — R, which, given a training sequence of objects v1,...,v,_1,
associates a p-value p, € [0,1] to a new object v, (Algorithm 1). For any nonconformity
measure A, and for any n, a CP guarantees the following:

Theorem 1 (Vovk et al. (2005)) Consider a sequence of objects v1,...,v,. In an online
setting, compute a p-value for each object as py = CA(vt,Zvl,...,vt_ﬂ), fort =1,...,n.
Then, if v1, ..., v, are exchangeable, p-values pi, ..., p, are distributed uniformly in [0, 1].

To test that a sequence of feature values vy, ..., v, is exchangeable, we will first compute
the corresponding p-values pq, ..., p, in an online setting by using a CP; then, we will use
an exchangeability martingale to verify that p-values are uniformly distributed, as it is
described in the next section. In experiment, we will use a CP with k-NN nonconformity
measure A, which is defined as follows: let v(;) be the i-th closest object to v, in a sequence
V1, ..., Un—1, according to the Euclidean distance d; then,

k

An, 1, ey vn15) = Y d(vn, v(s))

i=1

This nonconformity measure is computationally efficient and well performing, which makes
it one of the most commonly used. We remark that the guarantees formulated in this section
are independent of the chosen nonconformity measure.

Algorithm 1: Smoothed CP for computing a p-value
Function CP (v, (v1,...,0p-11):
V 7\7)1, vy Un—1, Ung
fori=1,...ndo

‘ oy <— A(Ui, V \ Ui)
end
7«5 Uni(0,1) > Sample 7 uniformly in [0, 1]
#{i|ai>an }+r#{i|ai=an}

n

Pn
return p,




EXCHANGEABILITY MARTINGALES FOR SELECTING FEATURES IN ANOMALY DETECTION

3.2. Exchangeability martingales

An exchangeability martingale is a sequence of non-negative random variables My, M, ...
that keeps the conditional expectation:

M, = E(Myq|My, .., M), t=1,2,...

where FE is the expected value with respect to any exchangeable distribution; we assume M
is constant, My = 1. Consider testing if a sequence of p-values py, ..., p, is exchangeable; we
define an exchangeability martingale for a betting function b : [0, 1] x [0, 1]* — [0, 00) as:

where b;(p;) = b(ps, |p1, ..., pi—1}) is the betting function computed on the previous p-values
and evaluated on p;. A proof that M; satisfies the martingale’s property is in Fedorova
et al. (2012). Because M; = by(p;) M;—1, the martingale’s values can be updated efficiently.

Intuitively, a martingale can be thought as a betting strategy for a capital investing
game without bankruptcy, where a player observes outcomes of events, and makes a bet
on their next value; the player starts with a capital 1, and their capital increases the
more predictable are the outcomes (Fedorova et al., 2012); within this analogy, the betting
function determines how quickly the player becomes rich in the case of predictable outcomes.

Thanks to the following result, an exchangeability martingale can be used to test whether
a sequence of p-values is uniformly distributed:

Theorem 2 (Ville (1939)) For a martingale My, Ma, ... and V9 > 1:

P(3t: M, >9) <

Sl

In other words, it is unlikely that a martingale takes large values. Common values for the
threshold 9 are 20 and 100, corresponding to significance levels 0.05 and 0.01.

To test if a sequence of p-values py, ..., p,, is distributed uniformly in [0, 1], we associate
a martingale value to each of them in an online setting, and reject the hypothesis if the
martingale increases more than the desired threshold.

3.3. Plug-in martingales

Fedorova et al. (2012) introduced Plug-in martingales, where the betting function b is a
probability density estimate given previous p-values p1,...,pn—1 and it is evaluated on p,.
Specifically, they used kernel density estimation (KDE), with Gaussian kernel and band-
width h chosen according to Silverman’s “rule of thumb”; to improve the estimate, they
computed KDE on the extended set of p-values: {p;, —p;,2 — pi}, for each t = 1,...,n — 1,
and normalized in [0,1]. In experiments, we will use the same approach.
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4. Empirical Evaluation

We evaluate exchangeability martingales-based feature selection by performing AD on a
Windows service dataset (Windows-service); we use One-class SVM as the AD algorithm,
and evaluate its performances before and after feature selection.

4.1. Data

We consider the problem of monitoring a Windows service, and detecting anomalies in
its behavior. To this end, and to avoid using malware on a system in normal use, we
created a Windows service, and optionally enabled some anomalous functionalities during
data collection; we henceforth refer to this service when operating under normal conditions
as the normal service. The dataset includes 20051 examples, 8963 of which represent
normal behavior; examples have 88 features each. Training and test data were collected in
separate runs; specifically, training data only contains normal behavior, test data contains
both normal and combinations of anomalous behaviors; we collected roughly 24 hours of
observations for each kind of behavior.

Follows a description of the service’s main functionality, its anomalous behaviors, and
of the kinds of features we collected.

Normal behavior The normal service has functionalities emulating executable control
functions that are often found in Next Generation AntiVirus systems (NGAV); these look for
known fingerprints of good and bad software as they are executed. Specifically, it monitors
OS events that occur as executable code is loaded, whether into a new process or as a DLL
that is dynamically loaded into an existing process; it then computes a cryptographic hash
of the executable file, which could be compared against a lists of known good or bad code.
The behavior of this service will partly respond to events that relate to usage patterns;
however, we expect its operations will mostly follow the same pattern over time.

Anomalous behaviors We embedded additional behaviors into our service that act as if
malware had been injected as our service runs. While collecting training data, these behav-
iors were disabled so that only normal behavior was captured. During the collection of test
data, we enabled each and combinations of these additional behaviors along with marking
the recorded data as being normal or anomalous. Anomalous behaviors are described into
details in Appendix.

Features We used the Windows process monitoring API to create features that capture
process performance information. This includes user and privileged CPU usage, user and
privileged memory usage, various working set and virtual memory measurements, the num-
ber of threads, processor priority, and handle counts. In addition, we recorded information
about network connections made by the process, along with the protocol type, and a flag
determining whether the connection was to an intranet address or to an external Internet
address. We also recorded the number and class of DLLs loaded into the service. Note that
malware may use a reflective DLL loading technique, so its own code may not be listed;
therefore we did not load separate DLLs associated with the anomalous behaviors; however,
the use of library calls may cause further system DLLs to load.
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Figure 1: Martingales plots for evaluating individual features. L.i.d. features are kept.

Data collection During data collection, the Windows service was run separately in nor-
mal and anomalous conditions; the latter accounted for various combinations of the anoma-
lous behaviors. The service was run and data collected on a Windows 10 laptop over a
few days. Whilst data was collected, the laptop was used as a normal work system; this
included performing a variety of routine tasks, from creating and editing documents (Word,
PowerPoint and Excel), web browsing, and using Visual Studio for development. Data was
sampled every 10 seconds.

As preprocessing, we first one-hot encoded categorical values. Then, for a subset of
features, we derived “diff” features by subtracting the feature’s value at time ¢t — 1 to its
value at time ¢; this is a standard practice in time series analysis, which tends to produce
stationary features from non-stationary ones.

4.2. Feature selection

We consider individually each feature in the training data, and compute its martingales
as in section 3. Common threshold choices for the exchangeability test are 20 or 100,
corresponding to a probability of mistakenly rejecting the i.i.d. hypothesis of 0.05 and 0.01;
we select ¥ = 20, although we notice that ¥ = 100 would have made no difference on this
dataset. A feature is discarded if its martingale is ever greater than .

Figure 1 represents the values of the exchangeability martingales for three features. We
notice that these plots can be easily interpreted by a domain expert, who for example may
choose to include a feature even if its martingale exceeds the selected threshold for a small
amount of examples (Figure 1c). Furthermore, to avoid such uncertainty, and because p-
values from which martingales are computed depend on a source of randomness, an analyst
may run the method for various initialization seeds, and then make a decision based on the
respective plots. In experiments, we did not use any expert heuristics of this kind, and we
simply discarded a feature if its martingale ever exceeded ¥ = 20.

A further intuition of how the method works is given by looking at how discarded
features behave over time. Figure 2 shows the values of a subset of features over time,
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Figure 2: A subset of features of the Windows-service dataset, plotted in time before and
after martingales feature selection (threshold: 20).

before and after feature selection. We observe that monotonic increasing features, such as
TotalProcessorTime and PrivilegedProcessorTime, are removed. We also observe that
feature diff-TotalProcessorTime was removed; indeed, the upper part of Figure 2 shows
this feature exhibits pattern changes.

4.3. Evaluation

We evaluate the performance of an AD algorithm before and after feature selection, with
respect to the size of the training set. To this end, we first train the algorithm only on
4 hours of observations, and test it against a much longer trace; then, we measure its
performances while increasing the length of its training data up to roughly 24 hours.

We use One-class SVM as an AD algorithm®, and we evaluate its predictions by mea-
suring precision, recall and F1 score. We select an RBF kernel for One-class SVM, whose
parameter v we pick according to a grid search within [107?,103] to maximize the F1 score
on validation data. One-class SVM also accepts a parameter v, which represents the proba-
bility of a training object to be an anomaly; since we use a training set of normal examples,
we use the rule of thumb, v = 1/n, where n is the size of training data.

We first train One-class SVM on 4 hours of training data (1296 examples), and evaluate it
on the test data (9608 examples, 4909 of which normal), before and after feature selection.

3. In experiments, we use the scikit-learn implementation of One-class SVM (Pedregosa et al., 2011),
and random-world for CP and exchangeability martingales (Cherubin, 2017).
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Feature selection # features Precision Recall F1
None 88 0.725 0.999 0.840
Martingales (9 = 20) 72 0.858 0.999 0.923

Table 1: AD performances before and after feature selection on Windows-service.
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Figure 3: Precision-recall curves before and after feature selection.

Because the performance measures we use are robust for both balanced and imbalanced
data, the fact that our dataset is balanced does not affect the generality of the results.

Table 1 shows the AD performances, before and after feature selection. We observe that,
whilst the recall is close to 1 in both cases, feature selection causes a major improvement
in the precision; this is the consequence of a strong decrease in false positives (1780 before
feature selection, 775 after), which virtually did not affect true positives (4694 before, 4693
after)*. This also suggests that the model after feature selection is more robust (subsec-
tion 4.4). Precision-recall curves, plotted using One-class SVM’s decision function, also
confirm better performance after feature selection (Figure 3).

We further evaluate feature selection using a larger training set of n = 4052 examples, by
training One-class SVM on subsets of 10%, 20%, ..., 100% of its examples®. Figure 4 shows
that the AD method after feature selection converges quickly to optimal performance. How-
ever, we notice that, as the training data grows, One-class SVM tends to perform similarly
before and after feature selection; indeed, reducing the feature set can never improve the
asymptotic performance of a learning algorithm, but it can boost its finite sample conver-
gence rate (Devroye et al., 2013).

4. In practical applications, one could further reduce false positives by using a shifting window of predictions,
and setting a threshold on the anomalies count.
5. We repeat this for 10 random shuffles of the original dataset, and then average the results.
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Figure 4: Precision, recall and F1 score as the size of training data increases.

4.4. Robustness of predictions

Most of the workload of the Windows service we consider is based on system-generated
events, which should be easily learnable; however, part of its behavior depends on user
patterns, and while such behavior could be learned by collecting data for a long time, this
would lead to a less robust model. This aspect plays an important role in AD evasion
attacks, where an adversary wants to craft a malicious service that evades the AD’s checks.

To better understand the effects of feature selection on the robustness of One-class
SVM, we visualize its hyperplane for a 2D representation of the data. Specifically, we use a
combination of t-SNE (Maaten and Hinton, 2008) and k-NN regressor to map the original
data into two dimensions®, and then use One-class SVM to perform AD in such space. We
stress that, because 2D objects will not keep their original disposition in space, we will only
use these plots as an intuition of the result of feature selection in high dimensions.

We perform this before (Figure 5a) and after (Figure 5b) feature selection. We notice
that normal objects before feature selection form various clusters, some of which are not
captured by the One-class SVM model. Figure 5b suggests that the reduced feature space
better characterizes the features that represent the normal behavior of the service, and it
brings test examples closer to the training data. Importantly, after feature selection, objects
exhibit a more regular behavior, which is easily characterized by two groups; this indicates
that an AD algorithm after feature selection will be able to create tighter boundaries.

There is a trade-off between the amount of data one needs to collect for training, and the
need for a suitable reduction in features. More training data may allow the AD algorithm
to fit more complex distributions (Figure 5a); however, this will also produce less robust
models, which may cause sudden spikes in false positive rates during normal operations
(e.g., in the context of our application to Windows data, when new software is installed).

6. We use t-SNE to map a subset of 1000 objects into 2 dimensions, and then use k-NN regressor to
embed the remaining objects into a 2D space. This improves the computational complexity, and in our
experiments it produces better embeddings than vanilla t-SNE.

10
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Figure 5: One-class SVM on a t-SNE projection of data before and after feature selection.

5. Conclusion and Future Work

When applying AD, it is essential to select the right set of features to ensure the robustness
of the learning algorithm. In this paper, we suggested that features for unsupervised AD
should only be rejected when their values do not exhibit the same pattern over time (i.i.d.
assumption). Based on this intuition, we introduced a feature selection method that tests
the i.i.d. hypothesis for each feature, and discards those failing the test; we do this by
using exchangeability martingales, a tool derived from CP. Whilst previous research con-
structed AD techniques from CP and exchangeability martingales (Ho, 2005; Laxhammar
and Falkman, 2010; Cherubin et al., 2015; Ishimtsev et al., 2017), this is, to the best of our
knowledge, their first use for feature selection. Interestingly, our approach allows automatic
feature selection while retaining the ability for an expert analyst to review the process.

We applied this method to the problem of monitoring a Windows service and detecting
anomalous (potentially malicious) behavior. A comparison before and after feature selection
indicates that our method strongly improves the precision of the AD algorithm, without
affecting its recall. Furthermore, we argued it favors the robustness of the model, which is
particularly desired in applications where an adversary may try to evade the AD system.

With regards to the application to Windows data, our aim was to test whether we
could use AD to differentiate a service’s normal behavior from behaviors with additional or
reduced functionalities, and to select which features characterize the problem space. Future
work may look at performing AD across different devices, including a variety of processors,
physical memory and OS versions.

Future work may apply this technique to AD problems from different domains; also,
whilst we only evaluated our technique in an AD setting using One-class SVM, the same
method can improve the performance of other AD algorithms (subsection 4.4). More gener-
ally, we expect that the same approach can be applied to many other unsupervised learning
problems, such as clustering.

11
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Appendix A. Anomalous Data

The following table describes the anomalies we injected into the Windows service during
data collection.

Name Description

File scanning This caused the service to scan through files on the local
system. This behavior could be associated with malware
trying to find files that may contain potentially valuable
data (such as documents, presentations, spreadsheets), or
with the early phase of many pieces of ransomware which
often create an index of interesting files prior to starting
encrypting them.

C&C Most malware needs to call home to a command and con-
trol (C&C) server to receive instructions and updates,
This will often happen by malware regularly beaconing
to a web address over HTTP(S) thus allowing malware
installed on a laptop to get out through most firewalls.
Malware may call home to a hard coded address (IP or
DNS address) or it may use a Domain Generation Al-
gorithm (DGA) which generates a large number of DNS
requests one of which will have been registered by the
malware owner. We added this command and control
behaviour into our service.

Monitoring disabled ~Where there are security monitoring functions running in
a service such as this one, malware may try to prevent
detection by disabling either the service or just the mon-
itoring functions. Thus our third anomaly class involved
turning off the monitoring functions within the service.

12
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