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Abstract

We present constraint-based and (hybrid) score-based algorithms for causal structure learn-
ing that estimate dynamic graphical models from multivariate time series data. In contrast
to previous work, our methods allow for both “contemporaneous” causal relations and ar-
bitrary unmeasured (“latent”) processes influencing observed variables. The performance
of our algorithms is investigated with simulation experiments and we briefly illustrate the
proposed approach on some real data from international political economy.
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1. Introduction

The FCI algorithm is a well-known constraint-based procedure for causal structure learning
in settings with possible unmeasured confounding (Spirtes et al., 2000). FCI performs
model selection by a sequence of conditional independence tests, and produces an estimated
equivalence class of ancestral graph Markov models (Richardson and Spirtes, 2002; Zhang,
2008a,b). More recently, Ogarrio et al. (2016) introduced GFCI (Greedy FCI), which is
a hybrid score-based algorithm that combines features of the Greedy Equivalence Search
(GES, Chickering, 2002) with FCI. GES selects causal models by incrementally improving
a model score, specifically the BIC score. GFCI executes this greedy search followed by
additional conditional independence tests and orientation rules from FCI. Both of these
procedures (and related variations like RFCI, FCI+) are designed for structure learning
from non-temporal data. This paper extends both FCI and GFCI to the domain of partially
observed multivariate time series by imposing and exploiting additional information encoded
in the underlying dynamical model. Specifically, we assume the data-generating process is
a structural vector autoregression (SVAR) with latent components.

A novel feature of our approach is that we allow for both “contemporaneous” causal
influence and arbitrary latent confounding in the data-generating process. The nearest
method to ours is the tsFCI algorithm of Entner and Hoyer (2010), which excludes the
possibility of contemporaneous influence. So, our paper begins with an extended charac-
terization of the target data-generating processes and the challenges they present. We then
summarize related work on causal structure learning from time series before introducing our
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algorithms: SVAR-FCI and SVAR-GFCI. We explore the performance of our methods with
simulation experiments and apply SVAR-FCI to some real data from international political
economy.

2. Preliminaries

A graph G is a pair (V,E) where V is a set of vertices corresponding to random variables
(e.g., V = {X1, ..., Xk}) and E is a set of edges connecting vertices in V.

Definition 2.1 Basic graphical terminology. If Xi → Xj then Xi is called a parent of Xj,
and Xj is a child of Xi. Two variables are adjacent if there is some edge between them,
and a path is a sequence of distinct adjacent vertices containing at least two vertices, e.g.,
〈Xi, Xi+1, ..., Xi+n〉. A path is a directed path from Xi to Xn if for all m ∈ {1, ..., n} the
edge Xi+m−1 → Xi+m occurs. When there is a directed path from Xi to Xj we call Xi an
ancestor of Xj, and Xj is a descendent of Xi. Denote the set of parents of a vertex X in
G by pa(X,G) and the set of adjacencies of X by adj(X,G). In an acyclic graph, no vertex
is an ancestor (nor a descendent) of itself.

A DAG is a graph that contains only directed edges (→) and which is acyclic. In a
causal DAG, Xi → Xj if and only if Xi is a direct cause of Xj relative to V. There
is a straightforward correspondence between direct causation in causal DAG models and
(nonparametric) structural equation models which are employed in many sciences including
economics, sociology, biology, and so on. For a recent overview of structural equations and
their causal interpretation see Peters et al. (2017). The direct causes of a variable Xi appear
in the structural equation for Xi, along with a stochastic error term:

Xi = fi(pa(Xi,G), εi) (1)

∀i ∈ {1, ..., k}, i.e., for all vertices in V. The ε1, ..., εk are jointly independent and εi ⊥⊥
pa(Xi,G). fi can be any measurable function. Note that acyclic graphs correspond to
recursive systems of structural equations, i.e., systems with no causal “feedback.” Non-
recursive structural equations can be represented with cyclic directed graphs (Spirtes, 1995).
The conditional independence relationships implied by a recursive structural equation model
can be obtained from the corresponding DAG using the well-known d-separation criterion.

In settings where there may be an unknown number and arrangement of unmeasured
confounders (latent common causes), one may rather represent the relations among mea-
sured variables by a causal MAG (Maximal Ancestral Graph). A MAG is a mixed graph
that may have directed (→) and bidirected (↔) edges. More generally, if we include the
possibility of selection bias a MAG can also have undirected edges, but we will not consider
selection bias here. A MAG represents a DAG (or a set of DAGs sharing common features)
after all latent variables have been marginalized out, and it preserves all conditional in-
dependence relations among the measured variables which are entailed by the underlying
DAG. These can be enumerated via a graphical criterion called m-separation. In a MAG
M, a tail mark at Xi (e.g., Xi → Xj) means that Xi is an ancestor of Xj in all DAGs
represented by M. An arrowhead at Xi (e.g., Xi ← Xj or Xi ↔ Xj) means that Xi is
not an ancestor of Xj in all DAGs represented by M. A ↔ edge between two variables
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indicates that neither variable is an ancestor of the other. Adjacencies inM occur when Xi

and Xj are not d-separated by any subset of the observed variables in all DAGs represented
by M. See Richardson and Spirtes (2002), Ali et al. (2009), and Zhang (2008a) for details
on MAGs. A Markov equivalence class of MAGs (i.e., a set of MAGs that imply the same
m-seperation facts) is represented by a PAG (Partial Ancestral Graph), which possibly has
edges with the additional “circle” edge mark ◦ (e.g., Xi ◦→Xj). This indicates that in some
MAG in the equivalence class there is an arrowhead at Xi and in some other MAG there is
a tail at Xi. So, the PAGs we will consider in this paper (again, excluding the possibility
of selection variables) can have the following edges: →, ◦→, ◦–◦, and ↔.

2.1 Dynamic DAGs with latent variables

The above correspondence scheme between DAGs and structural equations can be extended
to dynamic systems, where vertices represent elements of discrete-time stochastic processes
in lieu of cross-sectional observations and the equations are (possibly nonlinear) SVARs.
The present focus will be on stochastic processes {Xt}t∈N that are generated by SVARs
including arbitrary latent components. A k-dimensional order-p SVAR process may be
written:

Xi,t = fi(X
−i
t ,Xt−1, ...,Xt−p, εi,t) (2)

∀i ∈ {1, ..., k}, ∀t ∈ N. Xt is a k × 1 vector of time series variables (X1,t, ..., Xk,t)
′, X−it =

Xt \ {Xi,t}, and the εi,t are both mutually and serially independent (cf. Peters et al.,
2013). Just as for the structural equation models introduced earlier, the fi can be arbitrary
measurable functions. In the linear case it is more common to write in matrix notation:

Γ0Xt = Γ1Xt−1 + ...+ ΓpXt−p + εt (3)

∀t ∈ N where the Γj are k × k matrices of constant coefficients and Γ0 has ones along the
diagonal. If the errors are jointly normal, the independent errors assumption implies that
Σ = E[εtε

′
t] is diagonal. Such models are especially common in empirical macroeconomics.

We make one important substantive restriction: we exclude the possibility of contempo-
raneous causal feedback, i.e., the fi in (2) must be recursive with respect to variables at
t and Γ0 can be made lower triangular in (3). The data-generating process is permitted
to have any number of latent components; these are sometimes explicitly represented by
replacing Xt in (2) or (3) with X̃t = (L′t,X

′
t)
′, Lt being a vector of unmeasured time series

variables and Xt being the observed variables (likewise for all other terms). Throughout we
assume that the process is stable and thus stationary, i.e., that all moments of the process
are time invariant. In the linear case, the stability condition is that all roots of the reverse
characteristic polynomial are outside the complex unit circle (Lütkepohl, 2005, p. 16). In
the general nonlinear case, stability conditions become much more complicated (Saikkonen,
2001).

Corresponding to such a data-generating process is a dynamic DAG with latent variables,
also called a dynamic Bayesian network (DBN).1 If the function fi is a nontrivial function of
Xj,s (s ≤ t), then Xj,s → Xi,t in the graph G. Note that the graphs considered here can be

1. We prefer the term “dynamic DAG” to DBN because DBNs are typically specified in two parts: a prior
network and a transition network (Friedman et al., 1998). The dynamic DAG is just one graph here,
and this is sometimes called the “unrolled DBN.”
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L3 L3

(b)

Figure 1: a) A dynamic DAG model with latent processes L1 and L2. L1 may be called
an “auto-lag confounder,” and L2 may be called a “contemporaneous confounder.” b) A
dynamic DAG model with latent process L3. L3 may be called a “cross-lag confounder.”

called repeating since Xi,t−h → Xj,t if and only if Xi,t−h−m → Xj,t−m ∀h ≥ 0,m ∈ N. Also
note that these graphs are (semi-)infinite, i.e., G = (V,E) where |V| = |N× X̃t|. However,
in practice we handle only finite segments of these graphs since they are repeating. Two
examples are displayed in Figure 1. The graph segments displayed here have the same
edges among variables at t− p as among variables at t. This representational choice is not
uniform across studies; in some presentations, dynamic DAGs are drawn with “extra” edges
at time-slice t−p (i.e., edges that do not appear at slice t) because some variables at t−p are
conditionally independent only given some lagged covariates outside of the visible segment.
Keeping the infinite repeating graph in mind, we find it more convenient to represent finite
segments with the same edges at t− p and t.

Given initial values (X−p+1, ...,X0)′, the Markov factorization for a k-dimensional order
p stochastic process {Xt}t∈N may be written:

p(Xt, ...,Xt−p) =
∏

i∈{1,...,k}, s∈{t,...,t−p}

p(Xi,s|pa(Xi,s,G)) (4)

∀t ∈ N, where G is the infinite dynamic DAG.

2.2 Dynamic ancestral graph Markov models

We assume the data-generating process is some SVAR (2) for {X̃t}t∈N, X̃t = (L′t,X
′
t)
′

with order p, and that we observe samples from the marginal subprocess {Xt}t∈N. For
the dynamic DAG segment G corresponding to the entire process we can derive a unique
dynamic MAG segment M over just the observed variables. Two examples are illustrated
in Figure 2. The algorithms introduced in Section 3 aim to learn the Markov equivalence
class of M, a dynamic PAG segment P.

Latent variables in dynamic DAGs may be classified into several types: there may be
“contemporaneous confounders” which are common causes of multiple contemporaneous
variables (L2 in Figure 1a); there may be “cross-lag confounders” which are common causes
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Xi,t−2 Xi,t−1 Xi,t

Xj,t−2 Xj,t−1 Xj,t
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Xj,t−1 Xj,t

Xk,t−1 Xk,t

(b)

Figure 2: a) The dynamic MAG model implied by Figure 1a. b) The dynamic MAG model
implied by Figure 1b.

of variables at different lags, say Xk,t and Xj,t−1 (L3 in Figure 1b); finally there may be
“auto-lag confounders” which are common causes of some variable and it’s own past lags,
say Xi,t−1 and Xi,t (L1 in Figure 1a). Latent variables may be combinations of these
types; they also may or may not cause themselves (e.g., L1,t−1 → L1,t) and cause each
other. Each type of confounding poses difficulties for analysis, but auto-lag confounders
can be particularly problematic since they induce apparently “infinite-lag” associations in
the marginal: Xi,t (in Figure 1a) will not be conditionally independent of its distant past
even conditional on any number of lags, which makes the marginal model appear to be of
infinite order. This is important because in practice a user of some causal structure learning
method must choose a finite number of lags to include their analysis, which may not reflect
the true Markov order of the fully observed process. For example, having chosen p = 2 the
MAG in Figure 2a includes the edge Xi,t−2 → Xi,t though the underlying dynamic DAG
has order 1. Taking care not to mistake the apparent “order” of the MAG for the order of
the underlying DAG, we note the MAG when properly interpreted preserves relevant causal
and statistical information: Xi,t−2 is indeed a causal ancestor of Xi,t in the underlying
DAG; Xi,t−2 and Xi,t are not d-separated by any subset of the observed variables in the
underlying DAG; and applying the distinction between “visible” and “invisible” edges in a
MAG produces the conclusion that a possible latent confounder may be affecting Xi,t−2 and
Xi,t, which is true (Zhang, 2008a). We discuss a data-driven way of choosing the number
of lags to include for structure learning in the Appendix.

In contrast to previous work on time series (discussed below), we allow for arbitrary
unmeasured structure. The algorithms introduced in this paper make no attempt to discover
the number, arrangement, or features of the unmeasured processes – rather our methods
learn as much as possible (from independence constraints) about the causal relations among
what is observed. Just as with FCI and GFCI, we aim to exploit patterns of conditional
independence and dependence in the marginal distribution to rule out confounding among
some of the variables, and thus render some (if not all) of the causal effect parameters
estimable. If there is only one or a few causal relationships of particular interest and
confounding cannot be ruled out on the basis of the data, this may indicate to a researcher
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that they must either make stronger assumptions to procure unbiased estimates of the
desired quantity, or expand their set of measured variables.

2.3 Contemporaneous causal relations

The data-generating processes considered here are discrete-time autoregressive models with
contemporaneous causal influences. Popular approaches to modeling such data, e.g., so-
called Granger-causality methods or VAR estimation, make no reference to contempora-
neous relations or sometimes explain-away contemporaneous statistical dependencies by
non-causal means. It is worth considering these issues in more detail before proceeding,
since contemporaneous relations may in fact be interpreted in multiple ways.

In SVARs, contemporaneous causal relations (such as summarized in the matrix Γ0 in
the linear case) represent the possibility that interventions (e.g., “shocks” typically studied
in macroeconometrics) on one variable can have consequences for another variable “within
the same period,” i.e., that causal influences can propogate more quickly than the frequency
of available measurements. Note that this viewpoint contrasts with Granger’s (1988, p. 205-
6), who prefers to explain all contemporaneous statistical dependence as an artifact of
unmeasured confounding: on his view Xi,t does not cause Xj,t contemporaneously, but
rather there is some unmeasured common cause of both variables Lt−δ (δ > 0) which
is determined at an earlier time.2 The two cases have distinguishable consequences: on a
missing variables interpretation, interventions on Xi,t would have no effect on Xj,t (but may
have effect on Xj,t′ for some later t′), whereas if the data-generating process for the complete
system (i.e., including latent processes) is allowed to have contemporaneous dependencies,
then interventions on Xi,t may have consequences for Xj,t. The algorithms introduced below
can distinguish between such hypotheses, since dynamic MAGs are permitted to have either
bidirected or directed edges between contemporaneous variables.

Causal influence “within the same period” or different speeds of influence propogation
can be explicated by considering subdivisions of the observation period, as well as more
substantially delayed relations. A discrete time window may be divided into n equal in-
tervals, with ∆θ = 1/n characterizing the underlying speed of causal propogation within
the window. That is, one may consider the underlying multi-scale model (shifting notation
from Xi,t to Xi(t) for readability):

X(t+ k∆θ) = B0X(t+ (k − 1)∆θ) +

τp∑
τ=τ1

ΓτX(t− τ) + ε(t+ k∆θ) (5)

∀t ∈ N, k = 1, ..., n. It is assumed that the delay points {τ1, ..., τp} are multiples of the step
size. Here we have no contemporaneous relations.

Plausibly, the measurement frequency for the observed time series is much lower than the
incremental step size ∆θ. On one interpretation connecting the “measurement timescale” to

2. In the same paper, Granger also claims that observed contemporaneous causal relations can be “explained
by either temporal aggregation or missing causal variables,” but he does not discuss temporal aggregation
further and focuses on the missing variables explanation (p. 206). In Granger’s (1969), he suggests that
“real” (as contrasted with “spurious”) contemporaneous causality can be attributed to the relative
frequency of measurements and speed of information flows (p. 427 and 430). In earlier work (1963, p. 41)
Granger explicates this relative frequency interpretation with a kind of undersampling scheme, discussed
below.
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the “fast timescale” of the multi-scale model, the SVAR which is the focus of this work arises
naturally from (5). Following the strategy in Fisher (1970), consider observations which are
local time averages (see also Gong et al., 2017). Fisher concerns himself with the simultane-
ous equation models popular among mid-20th century econometricians, but one may extend
his strategy to the case of linear SVARs. For convenience of exposition, say that the mea-
surements are collected monthly but the underlying causal influences propogate on the scale
of a second. So, the observation interval (a month) may be divided into n equal subinter-
vals each of length ∆θ (approx. one second). Fisher posits that the measured variables are
actually time averages over this observation period. In other words, we measure variables
like GDP and consumption as averages over a month, Xi,t := X̄i(t) = 1

n

∑n
k=1Xi(t+ k∆θ).

In that case, the multi-scale model (5) can be locally averaged to yield a SVAR relating
the average variables in the limit as n → ∞ or ∆θ → 0. We begin by aligning things so
τ1 = 1, ..., τp = p. Then, following Fisher and using the above definition of time average,

X̄(t) =
1

n

n∑
k=1

{B0X(t+ (k − 1)∆θ) +

p∑
j=1

ΓjX̄(t− j) + ε(t+ k∆θ)}

= B0
1

n

n∑
k=1

X(t+ (k − 1)∆θ) +
1

n

n∑
k=1

p∑
j=1

ΓjX̄(t− j) +
1

n

n∑
k=1

ε(t+ k∆θ)

= B0
1

n

n∑
k=1

X(t+ k∆θ) +

p∑
j=1

ΓjX̄(t− j) + ε̄(t) + B0
1

n
X(t)−B0

1

n
X(t+ n∆θ)

= B0X̄(t) +

p∑
j=1

ΓjX̄(t− j) + ε̄(t) + B0
1

n
(X(t)−X(t+ n∆θ))

The last equation yields the linear SVAR (3) with B0 = (I− Γ0) in the limit as n→∞ or
∆θ → 0 if and only if

lim
n→∞

1

n
(X(t)−X(t+ n∆θ)) = lim

∆θ→0
∆θ(X(t)−X(t+ n∆θ)) = 0. (6)

This is Fisher’s equation (3.4) in (1970). From here Fisher goes on to show that to satisfy
this condition, it is necessary and sufficient that |λi| ≤ 1, where λi (i = 1, ..., k) are the
characteristic values of B0. | · | denotes the modulus. In nonlinear systems, the relevant
functions have to be restricted analagously (e.g., their derivatives must be bounded in
absolute value).

So, the linear SVAR model (3) may arise from a local average approximation to an
underlying multi-scale model, in the limit as n→∞. Note that Fisher (1970) restricts the
error variables to be constant over the observation interval, whereas here the error variables
in (3) are treated as time averages on par with all the other variables in the model. Of
course, not all variables are local averages, and not in all settings is the n→∞ assumption
reasonable.

In some settings, it may be more appropriate to think of observed data as generated
by an undersampling (a.k.a. subsampling) scheme, i.e. that the data consists of every mth
observation of (5). This may be the case, for example, in neurological studies where data-
generating processes are fast and measurement technology is precise but much slower. In
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a sense, it is possible to interpret contemparaneous correlation in a VAR model as an ar-
tifact of undersampling: undersamping a VAR process with no contemporaneous relations
(i.e., an SVAR with Γ0 = I) would indeed produce contempraneous correlation among the
residuals, and one may apply traditional econometric techniques to render those residu-
als uncorrelated, e.g., premultiplying by some orthogonalizing matrix (Lütkepohl, 2005).
However, it is important to note that the parameters in such a model – regardless of how
the orthogonalizing matrix is chosen – are not the underlying structural parameters in the
“fully sampled” representation. Unlike the local averaging case, undersampling does not
preserve causal relationships, and one cannot in general straightforwardly infer the causal
relationships in the underlying VAR by estimating an SVAR model for the undersampled
data. See Gong et al. (2015) for detailed discussion of this point.

So, we do not interpret the contemporaneous relations in the SVAR (2) or (3) data-
generating process as an artifact of undersampling, though the approach outlined in this
paper accommodates undersampling in a different way. Namely, the unrecorded observa-
tions in an undersampled process may be treated as latent variables, and searching for the
causal structure of such a system is just equivalent to searching for the induced marginal
model of an SVAR with latent variables (a dynamic MAG) in the special case where the
latent variables are the excluded observations of the measured variables. It may be helpful
to consider a simple example with just two processes. Consider the model (shifting notation
back to Xi,t form):

Xi,t = γ1Xi,t−1 + εi,t

Xj,t = γ2Xi,t−1 + γ3Xj,t−1 + εj,t
(7)

Undersampling this model by a factor of two (m = 2) means that we observe every second
value. The intervening variables are latent, so the model is equivalent to:

Li,t−1 = γ̃1Xi,t−2 + ε̃Li,t−1

Lj,t−1 = γ̃2Xi,t−2 + γ̃3Xj,t−2 + ε̃Lj ,t−1

Xi,t = γ̃4Li,t−1 + ε̃i,t

Xj,t = γ̃5Li,t−1 + γ̃6Lj,t−1 + ε̃j,t

(8)

This corresponds to a dynamic DAG with latent variables. In matrix notation (8) is written:

Γ̃0X̃t = Γ̃2X̃t−2 + ε̃t (9)

where X̃t = (Li,t−1, Lj,t−1, Xi,t, Xj,t)
′. So we have a special case of the SVAR model with

latent processes. The methods described in the next section accommodate undersampling
by learning the structure of the marginal model, in contrast to approaches which learn the
parameters or structure of the underlying “fully sampled” process from undersampled data
(e.g., Plis et al., 2015; Gong et al., 2015; Hyttinen et al., 2017).

So, the various ways of understanding contemporaneous causal connections – causal
influences which propogate faster than the measurement time-scale, whether the measure-
ments are local averages or undersampled observations, with or without latent processes –
are accommodated within the general model class we consider: the class of SVARs with
latent components.
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2.4 Related work

Swanson and Granger (1997) search for an SVAR with some restrictions on the possible
contemporaneous structure. After estimating a reduced form VAR model in the usual way
(multivariate regression of each variable on all earlier variables), they find correlated errors
and Swanson and Granger propose to explain these by contemporaneous causal connec-
tions organized in a “causal chain.” A causal chain is a recursive total causal ordering, like
X1,t → X2,t → X3,t. Variables which are (contemporaneous) common causes or common ef-
fects of multiple variables are excluded from the space of possibilities. In summary, Swanson
and Granger employ a two-step strategy – regression estimates of the reduced form VAR,
followed by identification of the contemporaneous relations – to recover an SVAR like (3)
with some restrictions on Γ0. Generalizations of this two-step procedure are pursued later
in the econometric literature. Bessler and Lee (2002) and Demiralp and Hoover (2003) opt
for the more unrestricted domain of recursive causal orderings for Γ0; they use the PC algo-
rithm which allows for any recursive (acyclic) structure. Hyvärinen et al. (2010) and Moneta
et al. (2011) (see also works cited therein) pursue essentially the same strategy except they
use ICA-LiNGaM to search for contemporaneous orientations. ICA-LiNGaM allows for any
recursive ordering and assumes that the error distributions are non-Gaussian. All of these
studies assume linearity. More seriously, all of these methods exclude latent variables, al-
though one could in principle replace the PC algorithm and ICA-LiNGAM with something
like FCI or LV-LiNGaM to allow for latent confounding among contemporaneous variables.
This approach would still leave out the possibility of hidden common causes among the
lagged variables, namely what we call cross-lag and auto-lag confounding in Figure 1. Chu
and Glymour (2008) do something along these lines by using FCI for contemporaneous
connections but they use additive regression techniques for the non-contemporaneous con-
nections, so they allow for only contemporaneous confounding but no cross-lag or auto-lag
confounding. Their approach is different from the others in that they allow for additive but
nonlinear relations among the variables, and allow for unmeasured confounders even if only
in a limited way.

Eichler (2012) models multivariate time series with mixed graphical models which are
very similar to the ancestral models proposed here. However, Eichler’s representation sup-
presses information about the dynamics of the process; his framework represents causal
connections between entire time series processes but cannot distinguish between (for ex-
ample) the case where a variable causes another at one time lag (Xi,t−1 causes Xi,t) and
the case where a variable causes another at only two time lags (Xi,t−2 causes Xi,t). Eich-
ler (2012, p. 10-11) points out that representing the full dynamics can be computationally
complex, so he prefers the simpler and more tractable representation. On the other hand,
representing the dynamics (the lag structure) of a causal system can be critical for forecast-
ing the outcomes of policies as in impulse response analysis or assessing dynamic treatment
strategies.

The approach we present here follows Entner and Hoyer (2010) in searching for (equiva-
lence classes of) ancestral graphs over the full dynamic structure. A key difference between
SVAR-FCI as presented below and their tsFCI algorithm is that we allow for contempo-
raneous causal relationships whereas Entner and Hoyer do not; we elaborate in the next
section. In addition, we introduce a (hybrid) score-based approach which Entner and Hoyer
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do not explore. Gao and Tian (2010) present a likelihood-based procedure for selecting dy-
namic ancestral graph models but their approach suffers from several shortcomings. First,
by performing model selection using maximum likelihood with no complexity penalty, their
procedure will select overly complex models even in the limit of infinite data. That is, their
procedure is not consistent. Second, they perform structure learning directly on MAGs
rather than PAGs, thus ignoring problems of Markov equivalence; their procedure selects
the model with maximum likelihood despite the fact that several alternative models will be
likelihood-equivalent given their assumptions. Third, they perform a brute force enumera-
tion of all dynamic MAGs over the measured variables in their search-and-score procedure,
which is computationally infeasible for more than a few variables.

3. Learning ancestral models

We modify the FCI algorithm to search for an equivalence class of dynamic MAGs. Assum-
ing that the data-generating process is a (possibly nonlinear) SVAR with latent variables,
or equivalently a dynamic DAG with latent components, the SVAR-FCI procedure makes
the following modifications to FCI:

1) SVAR-FCI respects the time order of the variables by restricting possible conditioning
sets to variables in the “present” or “past” time slices and prohibiting orientations
backwards in time.

2) SVAR-FCI enforces the repeating structure of the underlying dynamic DAG in both
determining adjacencies and orientations.

Following Entner and Hoyer (2010), we introduce the following definition:

Definition 3.1 Let the pair of vertices (Xi,t, Xj,s) be called homologous to pair (Xm,a, Xn,b)
if m = i, n = j, and t − s = a − b. hom(Xi,t, Xj,s,G) denotes the set of vertex pairs
homologous to (Xi,t, Xj,s) in graph G.

For example, in Figure 1a the pairs (Xi,t−1, Xj,t−1) and (Xi,t−2, Xj,t−2) are homologous
to (Xi,t, Xj,t); (Xk,t−2, Xj,t−1) is homologus to (Xk,t−1, Xj,t). SVAR-FCI enforces the re-
peating structure of the assumed data-generating process by removing the edge between all
(Xm,a, Xn,b) ∈ hom(Xi,t, Xj,s) whenever an edge is removed from (Xi,t, Xj,s), and orient-
ing the edge between all (Xm,a, Xn,b) ∈ hom(Xi,t, Xj,s) as the edge between (Xi,t, Xj,s) is
oriented. We also need the following definitions:

Definition 3.2 Given a path π in a graph G, a non-endpoint vertex Xj on π is called
a collider if the two edges incident to Xj are both into Xj, i.e., have arrowheads at Xj

(∗→ Xj ←∗). (Note the ∗ mark is used to represent any possible endpoint.) A v-structure
is a triple 〈Xi, Xj , Xk〉 such that Xi ∗→ Xj ←∗ Xk and Xi and Xk are not adjacent.

Definition 3.3 Let X ∈ pds(Xi, Xj ,G) if and only if X 6= Xi, X 6= Xj, and there is a
path π between Xi and X in G such that for every subpath 〈Xm, Xl, Xh〉 of π either Xl is
a collider on the subpath in G or 〈Xm, Xl, Xh〉 is a triangle in G. A triangle is a triple
〈Xm, Xl, Xh〉 where each pair of vertices is adjacent.

10
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Also, define adjt(Xi,t,G) = {Xj,s : Xj,s ∈ adj(Xi,t,G), s ≤ t} and pdst(Xi,t, Xk,u,G) =
{Xj,s : Xj,s ∈ pds(Xi,t, Xk,u,G), s ≤ max(t, u)}. Psuedocode for SVAR-FCI is presented in
Algorithm 3.1 below. (We include pseudocode for FCI in the Appendix for comparison.)

Note that our procedure differs from the tsFCI algorithm presented by Entner and
Hoyer (2010) in two ways: first, we do not restrict contemporaneous causal connections,
except that we disallow cycles; second, we remove adjacencies and propogate orientations
for homologous edges even if the separating set for (Xi,t, Xj,s) is outside the visible window
(so, as a consequence, the structure at time-slice t−p is the same as at t). The latter change
may appear minor, but is helpful for interpreting the output as the marginal ancestral graph
of an infinite dynamic DAG, and it significantly increases the number of unambiguous
orientations, since orientation decisions at earlier time-slices can help orient later edges
according to the rules in Zhang (2008b). The first difference is also important: we allow
for data-generating processes with nontrivial contemporaneous causation, whereas Entner
and Hoyer attribute all observed contempraneous dependence to latent confounding. In
this sense, SVAR-FCI as presented here places fewer restrictions on the possible underlying
data-generating processes.

SVAR-FCI is consistent under the same conditions as the FCI algorithm: the Markov
condition and faithfulness (Spirtes et al., 2000; Zhang, 2008b), though in this case w.r.t.
an underlying dynamic DAG. We require a consistent test of conditional independence for
time series data, i.e., a test which makes correct conditional independence judgements in
the limit as sample size T →∞.

Proposition 3.1 Assume the stationary stochastic process {X̃t}t∈N, where X̃t = (L′t,X
′
t)
′,

is Markov and faithful to a dynamic DAG G. Let M be the MAG implied by G over
Xt, ...,Xt−p and PAG P the equivalence class of M. Given T observations of the marginal
subprocess {Xt}t∈N and a consistent test of conditional independence, the SVAR-FCI algo-
rithm is a (pointwise) consistent estimator of P.

Proof This follows straightfowardly from the consistency of the FCI algorithm. The task
is equivalent to estimating the PAG P over vertex set Xt, ...,Xt−p, with the added assump-
tions that the underlying DAG is repeating and that there are no directed edges from later
vertices to earlier vertices. The SVAR-FCI algorithm just enforces these restrictions at
every step of the FCI algorithm.

SVAR-FCI may be considered a nonparametric method if used in conjunction with a
nonparametric test consistent for non-i.i.d. data. Some nonparametric conditional indepen-
dence tests for multivariate time series are discussed and evaluated in Moneta et al. (2011).
Unfortunately, the methods described therein require multivariate kernel density estimation
and a complicated bootstrap procedure to calculate critical values, so these tests are so far
infeasible for settings with many variables. Scalable nonparametric independence tests are
a subject of ongoing research. For linear processes with Gaussian errors, the Fisher Z test of
vanishing partial correlation is a popular and fast choice. We discuss a data-driven selection
procedure for the tuning parameter α, the nominal test size, in the Appendix. A similar
procedure can be used for selecting the order p, which we also discuss in the Appendix.
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Algorithm 3.1: SVAR-FCI(Test, α)

Input: Data on variables Xt, ...,Xt−p = {X1,t, ..., Xk,t, ..., X1,t−p, ..., Xk,t−p}
Output: Dynamic PAG segment P
1. Form the complete graph P on vertex set Xt, ...,Xt−p with ◦–◦ edges.
2. n← 0
3. repeat
4. for all pairs of adjacent vertices (Xi,t, Xj,s) s.t. |adjt(Xi,t,P) \ {Xj,s}| ≥ n

and subsets S ⊂ adjt(Xi,t,P) \ {Xj,s} s.t. |S| = n
5. if Xi,t ⊥⊥ Xj,s|S according to (Test, α)

then


Delete edge Xi,t ◦–◦ Xj,s from P.
Delete edge Xm,a ◦–◦ Xn,b ∀(Xm,a, Xn,b) ∈ hom(Xi,t, Xj,s,P).
Let sepset(Xi,t, Xj,s) = sepset(Xi,t, Xj,s) = S.

6. end
7. n← n+ 1
8. until for each pair of adjacent vertices (Xi,t, Xj,s), |adjt(Xi,t,P) \ {Xj,s}| < n.
9. for all adjacent vertices (Xi,t, Xj,s) orient Xi,t ∗→ Xj,s iff s > t.
10. for all triples (Xi,t, Xk,r, Xj,s) s.t. Xi,t ∈ adjt(Xk,r,P) and Xj,s ∈ adjt(Xk,r,P)

but Xi,t 6∈ adjt(Xj,s,P), orient Xi,t ∗→ Xk,r ←∗ Xj,s iff Xk,r 6∈ sepset(Xi,t, Xj,s);
then also orient Xm,a ∗→ Xo,c ←∗ Xn,b

∀(Xm,a, Xo,c) ∈ hom(Xi,t, Xk,r,P) and ∀(Xn,b, Xo,c) ∈ hom(Xj,t, Xk,r,P)
11. for all pairs (Xi,t, Xj,s) adjacent in P if ∃S s.t.

S ∈ pdst(Xi,t, Xj,s,P) or S ∈ pdss(Xj,s, Xi,t,P) and Xi,t ⊥⊥ Xj,s|S
according to (Test, α)

then


Delete edge Xi,t ◦–◦ Xj,s from P.
Delete edge Xm,a ◦–◦ Xn,b ∀(Xm,a, Xn,b) ∈ hom(Xi,t, Xj,s,P).
Let sepset(Xi,t, Xj,s) = sepset(Xi,t, Xj,s) = S.

12. Reorient all edges as ◦–◦ and repeat steps 9 and 10.
13. Exhaustively apply orientation rules (R1-R10) in Zhang (2008b) to orient

remaining endpoints, orienting all homologous pairs similarly.
14. return P.

In i.i.d. settings, simulations have shown that the hybrid score-based method GFCI is
typically more accurate in finite samples than its constraint-based counterpart, FCI (Og-
arrio et al., 2016). So, one may hope to improve on the accuracy of SVAR-FCI with
similar modifications to GFCI, using a greedy initial adjacency search that respects time
order and enforces the assumed repeating structure. Pseudocode for SVAR-GFCI is pre-
sented in Algorithm 3.2. As a subroutine, we reference SVAR-GES, which modifies GES
analagously: SVAR-GES prohibits adding edges inconsistent with the time order of the
variables, it adds/removes homologous edges every time an edge is added/removed, and
orients homologous edges similarly whenever an edge is oriented. The procedure requires
a score that is decomposible, score-equivalent, and consistent (Chickering, 2002). Let
S(G,D) denote the score of model G with data D. A score is decomposible if S(G,D) =∑

Xi∈V S(Xi|pa(Xi,G),D), i.e., it can be decomposed into a sum of “local” contributions

12
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from each variable given its parents. A score is score-equivalent if S(G,D) = S(G′,D) when
G and G′ are Markov equivalent. A score is consistent when the true model gets the highest
score as sample size approaches infinity. We provide pseudocode for GFCI and important
subroutines of GES in the Appendix, to aid in comparison.

Algorithm 3.2: SVAR-GFCI(Score,Test, α)

Input: Data on variables Xt, ...,Xt−p = {X1,t, ..., Xk,t, ..., X1,t−p, ..., Xk,t−p}
Output: Dynamic PAG segment P
1. G ← SVAR-GES(Score)
2. Form the graph P on vertex set Xt, ...,Xt−p with adjacencies in G and ◦–◦ edges.
3. n← 0
4. repeat
5. for all pairs of adjacent vertices (Xi,t, Xj,s) s.t. |adjt(Xi,t,P) \ {Xj,s}| ≥ n

and subsets S ⊂ adjt(Xi,t,P) \ {Xj,s} s.t. |S| = n
6. if Xi,t ⊥⊥ Xj,s|S according to (Test, α)

then


Delete edge Xi,t ◦–◦ Xj,s from P.
Delete edge Xm,a ◦–◦ Xn,b ∀(Xm,a, Xn,b) ∈ hom(Xi,t, Xj,s,P).
Let sepset(Xi,t, Xj,s) = sepset(Xi,t, Xj,s) = S.

7. end
8. n← n+ 1
9. until for each pair of adjacent vertices (Xi,t, Xj,s), |adjt(Xi,t,P) \ {Xj,s}| < n.
10. for all adjacent vertices (Xi,t, Xj,s) orient Xi,t ∗→ Xj,s iff s > t.
11. for all triples (Xi,t, Xk,r, Xj,s) s.t. Xi,t ∈ adjt(Xk,r,P) and Xj,s ∈ adjt(Xk,r,P)

but Xi,t 6∈ adjt(Xj,s,P), orient Xi,t ∗→ Xk,r ←∗ Xj,s iff
(Xi,t, Xk,r, Xj,s) is a v-structure in G, or it is a triangle in G
and Xk,r 6∈ sepset(Xi,t, Xj,s); then also orient Xm,a ∗→ Xo,c ←∗ Xn,b

∀(Xm,a, Xo,c) ∈ hom(Xi,t, Xk,r,P) and ∀(Xn,b, Xo,c) ∈ hom(Xj,t, Xk,r,P)
12. for all pairs (Xi,t, Xj,s) adjacent in P if ∃S s.t.

S ∈ pdst(Xi,t, Xj,s,P) or S ∈ pdss(Xj,s, Xi,t,P) and Xi,t ⊥⊥ Xj,s|S
according to (Test, α)

then


Delete edge Xi,t ◦–◦ Xj,s from P.
Delete edge Xm,a ◦–◦ Xn,b ∀(Xm,a, Xn,b) ∈ hom(Xi,t, Xj,s,P).
Let sepset(Xi,t, Xj,s) = sepset(Xi,t, Xj,s) = S.

13. Reorient all edges as ◦–◦ and repeat steps 10 and 11.
14. Exhaustively apply orientation rules (R1-R10) in Zhang (2008b) to orient

remaining endpoints, orienting all homologous pairs similarly.
15. return P.

Proposition 3.2 Assume the stationary stochastic process {X̃t}t∈N, where X̃t = (L′t,X
′
t)
′,

is Markov and faithful to a dynamic DAG G. Let M be the MAG implied by G over
Xt, ...,Xt−p and PAG P the equivalence class of M. Given T observations of the marginal
subprocess {Xt}t∈N, a decomposible, score-equivalent, and consistent score, and a consistent
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test of conditional independence, the SVAR-GFCI algorithm is a (pointwise) consistent
estimator of P.

Proof This follows straightforwardly from the consistency of the GFCI algorithm, just as
for the previous proposition.

We restrict ourselves to the BIC score for multivariate normal distributions here, so
SVAR-GFCI is limited to linear SVAR processes with Gaussian errors. However, more
general model scores are a subject of current research.

4. Simulation experiments

To investigate the finite-sample performance of SVAR-FCI and SVAR-GFCI, we simulate
observations from dynamic DAG models with latent variables and use implementations of
our algorithms to recover the corresponding PAGs. These simulations are carried out us-
ing the algcomparison package for performance evaluation, part of the TETRAD software
(Ramsey and Malinsky, 2016).3 In our study, we randomly generate order-1 dynamic DAG
models with 10 measured processes either two or four latent confounding processes (cor-
responding to “moderately confounded” and “highly confounded” settings). The average
degrees of the underlying DAGs were 3.75 and 4.36 respectively. The DAGs are parame-
terized as linear SVARs with Gaussian errors, with all coefficients uniformly selected from
the range ±[0.30, 0.70], and variances uniformly in ±[1.0, 3.0].

We evaluate SVAR-FCI and SVAR-GFCI by considering “accuracy” as a classification
problem, examining precision and recall as a function of sample size. Precision is defined
as the ratio of true positives to the total number of positives: TP / (TP + FP). Recall is
defined as the ratio of true positives to the total number of true instances: TP / (TP + FN).
We can ask about precision and recall for classification of adjacencies or orientations. For
example, a true positive adjacency between Xi,t and Xj,s occurs when the estimated PAG
from our structure learning method classifies Xi,t and Xj,s as adjacent, and Xi,t and Xj,s are
adjacent in the true underlying PAG. Orientation classification consist of two components,
tails and arrowheads: in our case, we look at arrowhead precision and recall. The results,
averaged over 200 trials, can be found in Figure 3. (Results for tails are qualitatively
similar.) In this case, we use the Fisher Z test for conditional independence judgements
with α = 0.01 in SVAR-FCI and α = 0.05 in SVAR-GFCI, and the Gaussian model BIC
score in SVAR-GFCI.4 Note that since there does not exist any competing method which
allows for both contemporaneous causation and arbitrary confounding (as detailed in Section
2.4), our simulation experiments serve primarily to illustrate the behavior of our algorithms
as a function of sample size and confounding.

3. The implementation used in these simulations has been found to be not complete, thus the results should
be viewed as preliminary.

4. We use different values for the tuning parameter α because SVAR-GFCI performs significantly fewer
conditional independence tests than SVAR-FCI. The values α = 0.01 and α = 0.05 were chosen because
these were found to have (roughly) the best accuracies for the two algorithms. Formally, to approximate
a conditional independence oracle α should decrease as a function of sample size. We display results
with a fixed α here to illustrate the consequences of choosing fixed α, as is commonly done in practice.
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Figure 3: Average precision and recall results in the “moderately confounded” (top row)
and “highly confounded” (bottom row) settings, i.e., 10 measured processes and two or four
latent processes.

The simulation results paint a familiar picture from constraint-based and score-based
structure learning studies in the i.i.d. domain. Both methods have very good adjacency
precision, even at small sample sizes. Adjacency recall is generally lower, especially at
small sample sizes. The general problem – also apparent in simulation studies with i.i.d.
data – is that the estimated graphs are overly sparse, not that they incorrectly include
too many edges (Ogarrio et al., 2016). Orientation precision and recall trends are less
uniform. Missing adjacencies can lead to wildly different orientations, since these may
create incorrect unshielded colliders or other graphical substructures which drive subsequent
orientations in the orientation-phase of the algorithms. However, results do indicate that in
large samples where the adjacencies are recovered more accurately, arrowhead orientations
are not unreasonable. Recall somewhat declines with more latent confounding in the data-
generating process, as expected. We also note that neither SVAR-FCI nor SVAR-GFCI
seems to be uniformly more accurate with these settings.

5. Application to political economy data

To illustrate how such methods may be applied to real data, we consider date from in-
ternational political economy on capital taxation rates (Garrett and Mitchell, 2001; Beck
and Katz, 2011). The data consists of annual observations from 1967 to 1992 of various
macroeconomic and political variables on 16 OECD countries. The total sample size is 330.
This is an example of so-called time-series cross-sectional data (TSCS) which is typical of

15



Malinsky and Spirtes

captaxt−1 captaxt
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lowwaget−1 lowwaget

Figure 4: An application of SVAR-FCI (α ∈ [0.06, 0.12]) to the OECD data from Garrett
and Mitchell (2001).

studies in international political economy. We follow Beck and Katz (2011) and center the
observations at the country level, which is equivalent to forcing country-specific fixed effects.
For more details about the data, see the Appendix.

The dependent variable of interest is capital taxation rates (captax ). The other variables
include economic indicators such as GDP growth per capita (growthpc) and unemployment
(unem), variables related to globablization pressures such as total foreign direct investement
(fdi) and proportion of imports from low-wage countries (lowwage), as well as a demographic
factor: the ratio of dependents to workers (depratio). The data also included two variables
to indicate the power of political factions: namely the proportion of cabinet portfolios held
by left parties (left) and Christian democratic parties (cdem).

We used SVAR-FCI with the Fisher Z test of conditional independence to learn a dy-
namic PAG of order-1, imposing no substantive causal constraints on the specification. As
always, in finite samples the resultant model sparsity depends on the tuning parameter α.
In Figure 4, we show a search result that was stable over a reasonable range of α values,
α ∈ [0.06, 0.12]. At greater than α = 0.12, SVAR-FCI recovered successively more edges.
We also implemented the data-driven α selection procedure described the Appendix, and
present an alternative estimated model therein, where α is selected to be 0.37.

Though we present these results mostly to illustratate the applicability of SVAR-FCI to
real data, we note that the results exhibit some interesting features when compared with
claims in the literature on this same data set. There is no known “ground truth” for the
relationships among these variables, and in fact there is widespread disagreement among
empirical studies using the same or similar data, wherein models are specified on the basis
of some (controversial) background theory. Garrett and Mitchell (2001), for example, find
that some of the strongest determinants of capital taxation rates are unemployment levels,
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GDP growth rates, and foreign direct investment. None of these variables, according to
our sparse model in Figure 4, are causes of capital taxation rates. In fact, capital taxation
rates cause growth. There is also a possible pathway from growth to taxation rates via
unemployment and dependency ratio. In the more dense model (Appendix), we see that
addition of a directed edge from lagged growth to capital taxation rates, so the taxation
and growth processes may exhibit mutual feedback over time. We find some statistical de-
pendencies between taxation rates and variables like FDI and unemployment, but these are
best explained by relationships between growth and those factors (some dependencies in-
duced by latent confounders), or possibly explained by the relationship between dependency
ratio and unemployment. We find no causal influence from the political faction variables
to the rest. Perhaps most interestingly for the background scientific and policy debate, the
globablization-related variables (FDI and imports from low-wage countries) show no causal
effect on capital taxation rates. Garrett and Mitchell (2001) find at least some weak positive
relationship between FDI and taxation rates, whereas in Beck and Katz (2011) they find
large regression coefficients for both FDI and low-wage imports in their preferred model
specification. In our case, we find that the OECD data supports no causal relationship,
even at higher α values: all statistical dependency can be attributed to latent confounding.

6. Discussion

In this paper we have presented two algorithms for learning the structure of dynamic PAGs
from multivariate time series, which are asymptotically consistent given appropriate in-
dependence tests or model scores. Our simulations suggest that the learning algorithms
exhibit high precision but lower recall in finite samples. Of course, decades of algorithm
development research in structure learning has produced variations on the basic techniques
which improve accuracy in finite samples: potentially, subsampling or stability selection
techniques, or adaptive restricted search in score-based case, may increase the recall of
SVAR-FCI and SVAR-GFCI by mitigating the propogation of decision errors in finite sam-
ples. These improvements are left for future research. Furthermore, in future work we
hope to relax the present restriction to acyclic contemporaneous relations and stationary
processes.
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Appendix

FCI, GES, and GFCI

In this section we provide psuedocode for FCI, GES, and GFCI to aid in comparison.

Algorithm .1: FCI(Test, α)

Input: Data on variables X = {X1, ..., Xk}
Output: PAG P
1. Form the complete graph P on vertex set X with ◦–◦ edges.
2. n← 0
3. repeat
4. for all pairs of adjacent vertices (Xi, Xj) s.t. |adj(Xi,P) \ {Xj}| ≥ n

and subsets S ⊂ adj(Xi,P) \ {Xj} s.t. |S| = n
5. if Xi ⊥⊥ Xj |S according to (Test, α)

then

{
Delete edge Xi ◦–◦ Xj from P.
Let sepset(Xi, Xj) = sepset(Xj , Xi) = S.

6. end
7. n← n+ 1
8. until for each pair of adjacent vertices (Xi, Xj), |adj(Xi,P) \ {Xj}| < n.
9. for all triples (Xi, Xk, Xj) s.t. Xi ∈ adj(Xk,P) and Xj ∈ adj(Xk,P)

but Xi 6∈ adj(Xj ,P), orient Xi ∗→ Xk ←∗ Xj iff Xk 6∈ sepset(Xi, Xj).
10. for all pairs (Xi, Xj) adjacent in P if ∃S s.t.

S ∈ pds(Xi, Xj ,P) or S ∈ pds(Xj , Xi,P) and Xi ⊥⊥ Xj |S according to (Test, α)

then

{
Delete edge Xi ◦–◦ Xj from P.
Let sepset(Xi, Xj) = sepset(Xj , Xi) = S.

11. Reorient all edges as ◦–◦ and repeat step 9.
12. Exhaustively apply orientation rules (R1-R10) in Zhang (2008b) to orient

remaining endpoints.
13. return P.

High-level pseudocode for GES is below. Some of the subroutines are ommitted, see
Chickering (2002) or Ramsey et al. (2010) for more details. Specifically, the subroutines
ScoreEdgeAddition and ScoreEdgeDeletion determine whether the score increases
on adding or deleting the specified edge; ValidInsert and ValidDelete check that some
graphical conditions are satisfied; and Rebuild propogates some orientation rules to en-
force acylicity. GES can be used in conjunction with any score that is decomposible, score-
equivalent, and consistent. The BIC score for multivariate Gaussian data (or multinomial,
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in the discrete case) is a popular choice which satisfies these properties. The GES algorithm
returns a CPDAG, a representation of an equivalence class of DAGs.

Algorithm .2: GES(Score)

Input: Data on variables X = {X1, ..., Xk}
Output: CPDAG G
1. Form the empty graph G on vertex set X.
2. Let S(G,D) be the Score for G with data D.
3. 〈G, S〉 ← ForwardEquivalenceSearch(G, S)
4. G ← BackwardEquivalenceSearch(G, S)
5. return G.

Algorithm .3: ForwardEquivalenceSearch(G, S)

Input: Data on variables X = {X1, ..., Xk}
Output: CPDAG G, Score S
1. while E0 6= ∅
2. E0 ← T0 ← ∅. S0 ← 0.
3. for each edge E = Xi → Xj s.t. Xi 6∈ adj(Xj ,G)
4. Let T′ ← vertices Xk s.t. Xk −Xj and Xk 6∈ adj(Xi,G)
5. for each subset T ∈ T′

6. G′ ← a DAG in G
7. S′ ← S + ScoreEdgeAddition(G, E,T)
8. if S′ > S and S′ > S0 and ValidInsert(G, E,T)

then


E0 ← E
T0 ← T
S0 ← S′

9. end
10. end
11. if E0 6= ∅

then


Add E0 to G.
for each T ∈ T0 if T −Xi in G, orient T −Xi as T → Xi.
S ← S0

G ← Rebuild(G)
13. end
14. return 〈G, S〉.
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Algorithm .4: BackwardEquivalenceSearch(G, S)

Input: Data on variables X = {X1, ..., Xk}
Output: CPDAG G
1. while E0 6= ∅
2. E0 ← H0 ← ∅. S0 ← 0.
3. for each edge E between Xi and Xj in G
4. Let H′ ← vertices Xk s.t. Xk −Xj and Xk ∈ adj(Xi,G)
5. for each subset H ∈ H′

6. G′ ← a DAG in G
7. S′ ← S + ScoreEdgeDeletion(G, E,H)
8. if S′ > S and S′ > S0 and ValidDelete(G, E,H)

then


E0 ← E
H0 ← H
S0 ← S′

9. end
10. end
11. if E0 6= ∅

then


Remove E0 from G.
for each H ∈ H0 if Xi −H in G, orient Xi −H as Xi → H.
S ← S0

G ← Rebuild(G)
13. end
14. return G.
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Pseudocode for GFCI, which combines feature of GES with FCI to estimate a PAG, is
reproduced below.

Algorithm .5: GFCI(Score,Test, α)

Input: Data on variables X = {X1, ..., Xk}
Output: PAG P
1. G ← GES(Score)
2. Form the graph P on vertex set X with adjacencies in G and ◦–◦ edges.
3. n← 0
4. repeat
5. for all pairs of adjacent vertices (Xi, Xj) s.t. |adj(Xi,P) \ {Xj}| ≥ n

and subsets S ⊂ adj(Xi,P) \ {Xj} s.t. |S| = n
6. if Xi ⊥⊥ Xj |S according to (Test, α)

then

{
Delete edge Xi ◦–◦ Xj from P.
Let sepset(Xi, Xj) = sepset(Xj , Xi) = S.

7. end
8. n← n+ 1
9. until for each pair of adjacent vertices (Xi, Xj), |adj(Xi,P) \ {Xj}| < n.
10. for all triples (Xi, Xk, Xj) s.t. Xi ∈ adj(Xk,P) and Xj ∈ adj(Xk,P)

but Xi 6∈ adj(Xj ,P), orient Xi ∗→ Xk ←∗ Xj iff (Xi, Xk, Xj) is a v-structure in G,
or it is a triangle in G and Xk 6∈ sepset(Xi, Xj).

11. for all pairs (Xi, Xj) adjacent in P if ∃S s.t.
S ∈ pds(Xi, Xj ,P) or S ∈ pds(Xj , Xi,P) and Xi ⊥⊥ Xj |S according to (Test, α)

then

{
Delete edge Xi ◦–◦ Xj from P.
Let sepset(Xi, Xj) = sepset(Xj , Xi) = S.

12. Reorient all edges as ◦–◦ and repeat step 10.
13. Exhaustively apply orientation rules (R1-R10) in Zhang (2008b) to orient

remaining endpoints.
14. return P.

Data-driven selection of α and p

Maathuis et al. (2009, p. 3144-5) suggest one way of selecting the α tuning parameter
required by constraint-based search methods. The idea is to repeat search over a liberal
range of α values, and choose the value which leads to a model with the best “fit” as
measured by the BIC score. In our case, we estimate a PAG model P̂α with SVAR-FCI
(or SVAR-GFCI) for some α, and score any MAG in the equivalence class represented by
P̂α with the BIC score. The likelihood in the BIC score is calculated using ICF (Iterative
Conditional Fitting) for MAG models (Drton and Richardson, 2004). Recall that Markov
equivalent graphs have the same score, so we can pick any MAG in P̂α. Then we repeat
the procedure for a range of α ∈ [a, b] with some step size, i.e., we select:

arg max
α∈[a,b]

BIC(P̂α)

21



Malinsky and Spirtes

In practice we choose an interval like [0.01, 0.40] with a step size of 0.01. One may follow a
similar procedure for selecting the maximum lag length p. Recall that the effective “order”
of the marginal process (the maximum lag length p such that Xi,t−p is a parent of some Xj,t

in P) can be different from the true Markov order of the underlying full dynamic DAG, since
latent variables induce extra edges in the marginal graph. From the perspective of structure
learning and with infinite data, there is no harm in selecting “large” p, since the structure
learning method will not add any incorrect edges in the limit. However, with finite data
SVAR-FCI or SVAR-GFCI may add extra edges – these would be consistent with the true
ancestral relationships, but may reduce the numer of unambiguous orientations in the graph.
Furthermore, with a total sample size of T , the effective sample size for all independence
tests is T − p so an unnecessarily large p wastes some data. The score-based selection of
maximum lag length has a long history in VAR econometrics (see, e.g., Lütkepohl, 2005,
p. 148-151). We recommend repeating the above score-maximizing procedure for varying
p, i.e., select:

arg max
p∈[1,c]

BIC(P̂p)

for some maximum considered lag length c and fixed α. One may maximize over both
parameters:

arg max
α∈[a,b],p∈[1,c]

BIC(P̂α,p)

In each score calculation, the effective sample size in the BIC calculations is set according
to the maximum considered lag length, i.e., T − c. Of course, maximizing over nontrivial
ranges of both α and p can be computationally quite intensive for large models.

Additional details and results on the real data example

As mentioned in the main paper, the data consists of annual observations from 1967 to 1992
of various macroeconomic and political variables on 16 OECD countries. Some countries
only report tax rates for a portion of the period under study. Following Beck and Katz
(2011), years with missing values in any of the 8 variables were removed from the sam-
ple. The missingness occurs mostly at the beginning and end of the data collection period,
which is why the data analyzed spans years (at maximum) 1967–1992 though the full data
set includes observations from 1961 up to 1994 on some countries. For several countries the
first observation is significantly later than 1967, e.g., 1971 (and in one case 1986). Having
no missing values “internal” to the study period permits analysis with no imputation or
otherwise special handling of missing values, though of course some available data is wasted
and the data set is not rectangular. The data can be found online at the following address:
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/27269

We implemented the α selection procedure described above, considering α values in
[0.01, 0.40] by 0.01 increments, and choosing the α which leads to a model with maximimum
BIC score in the range. In that case, the procedure selects α = 0.37, which we reproduce
in Figure 5.

Note that the BIC scores calculated for the resultant models are quite near each other
for different values of α, so we doubt there is strong reason to prefer the more dense model.
In any case, the different models support roughly the same conclusions with respect to
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captaxt−1 captaxt

unemt−1 unemt

growthpct−1 growthpct

depratiot−1 depratiot

fdit−1 fdit

leftt−1 leftt

cdemt−1 cdemt

lowwaget−1 lowwaget

Figure 5: An application of SVAR-FCI (α = 0.37, chosen by BIC) to the same OECD data.

capital taxation rates: capital taxation rates are not responding to globalization pressures,
at least not very strongly.
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