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Abstract

Recent literature has demonstrated promising re-

sults for training Generative Adversarial Net-

works by employing a set of discriminators, in

contrast to the traditional game involving one gen-

erator against a single adversary. Such methods

perform single-objective optimization on some

simple consolidation of the losses, e.g. an arith-

metic average. In this work, we revisit the

multiple-discriminator setting by framing the si-

multaneous minimization of losses provided by

different models as a multi-objective optimiza-

tion problem. Specifically, we evaluate the per-

formance of multiple gradient descent and the

hypervolume maximization algorithm on a num-

ber of different datasets. Moreover, we argue that

the previously proposed methods and hypervol-

ume maximization can all be seen as variations

of multiple gradient descent in which the update

direction can be computed efficiently. Our results

indicate that hypervolume maximization presents

a better compromise between sample quality and

computational cost than previous methods.

1. Introduction

Generative Adversarial Networks (GANs) (Goodfellow

et al., 2014) offer a new approach to generative modeling,

using game-theoretic training schemes to implicitly learn a

given probability density. Prior to the emergence of GAN ar-

chitectures, realistic generative modeling remained elusive.

While offering unprecedented realism, GAN training still

remains fraught with stability issues. Commonly reported
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shortcomings involve the lack of useful gradient signal pro-

vided by the discriminator, and mode collapse, i.e. lack of

diversity in the generator’s samples.

Considerable research has been devoted in recent literature

to overcome training instability1 within the GAN framework.

Some architectures such as BEGAN (Berthelot et al., 2017)

have applied auto-encoders as discriminators and proposed

a new loss function to help stabilize training. Methods such

as TTUR (Heusel et al., 2017), in turn, have attempted to

define separate schedules for updating the generator and

discriminator. The PacGAN algorithm (Lin et al., 2017)

proposes to modify the discriminator’s architecture to ac-

cept m concatenated samples as input. These samples are

jointly classified as either real or generated, and the authors

show that such an approach can help to enforce sample di-

versity. Furthermore, spectral normalization was applied

to the discriminator’s parameters in SNGAN (Miyato et al.,

2018) aiming to ensure Lipschitz continuity, which is em-

pirically shown to yield high quality samples across several

sets of hyperparameters. Alternatively, recent approaches

have proposed to tackle GAN instability issues with multi-

ple discriminators. Neyshabur et al. (2017) propose a setting

such that one generator is trained against a set of discrimina-

tors, where each one sees a fixed random projection of the

inputs. Prior work, including Durugkar et al. (2016) have

also explored training with multiple discriminators.

In this paper, we build upon Neyshabur et al. (2017)’s frame-

work and propose reformulating their average loss mini-

mization to further stabilize GAN training. Specifically,

we propose treating the loss signal provided by each dis-

criminator as an independent objective function. To achieve

this, we simultaneously minimize the losses using multi-

objective optimization techniques. Namely, we exploit well

known methods in optimization literature such as the mul-

tiple gradient descent (MGD) algorithm (Désidéri, 2012).

However, due to MGD’s prohibitively high cost in the case

of large neural networks, we propose to use more efficient

1Instability in the sense commonly used in GANs literature,
i.e. when the discriminator is able to easily distinguish between
real and fake samples during the training phase (Neyshabur et al.,
2017; Arjovsky et al., 2017; Berthelot et al., 2017).
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alternatives such as maximizing hypervolume in the region

defined between a fixed, shared upper bound on the losses,

which we refer to as the nadir point η∗, and each of the

component losses. In contrast to Neyshabur et al. (2017)’s

approach, where the average loss is minimized when train-

ing the generator, hypervolume maximization (HVM) op-

timizes a weighted loss, and the generator’s training will

assign greater importance to feedback from discriminators

against which it performs poorly.

Experiments performed on MNIST show that HVM presents

a useful compromise between computational cost and sam-

ple quality when compared to GMAN’s average loss min-

imization (low quality and cost), and MGD (high quality

and cost). Our results indicate that increasing the number of

discriminators consequently increases the generator’s robust-

ness to hyperparameter settings. In addition, experiments

performed on CIFAR-10 indicate the method described pro-

duces higher quality and more diverse generator samples as

measured by several quantitative metrics. Moreover, image

quality and sample diversity are once more shown to consis-

tently improve as we increase the number of discriminators.

In summary, our main contributions are as follows: (i) A

variation of the single-solution HVM is introduced as an

alternative to MGD for the case of large neural networks.

(ii) We offer a new perspective on multiple-discriminator

GAN training by framing it in the context of multi-objective

optimization, and draw similarities between previous ap-

proaches under this setting and MGD, commonly employed

as a general solver for multi-objective optimization.

The remainder of this document is organized as follows:

Section 2 introduces definitions for multi-objective opti-

mization and MGD. In Section 3, we describe prior relevant

literature. The HVM algorithm is detailed in Section 4, with

experiments and results presented in Section 5. Conclusions

and directions for future work are drawn in Section 6.

2. Preliminaries

In this section we provide some definitions regarding multi-

objective optimization from prior literature which will be

useful in the following sections. Boldface notation is used

to denote vector-valued variables and functions.

Multi-objective optimization. A multi-objective optimiza-

tion problem is defined as (Deb, 2001):

min F(x) = [f1(x), f2(x), ..., fK(x)]T , x ∈ Ω (1)

where K is the number of objectives, Ω is the variables

space and x = [x1, x2, ..., xn]
T ∈ Ω is a decision vector

or possible solution to the problem. F : Ω → R
K is a

set of K-objective functions that maps the n-dimensional

variables space to the K-dimensional objective space.

Pareto-dominance. Let x1 and x2 be two decision vectors.

x1 is said to dominate x2 (denoted by x1 ≺ x2) if and only

if fi(x1) ≤ fi(x2) for all i ∈ {1, 2, . . . ,K} and fj(x1) <
fj(x2) for some j ∈ {1, 2, . . . ,K}. If a decision vector

x is dominated by no other vector in Ω, x is called a non-

dominated solution.

Pareto-optimality. A decision vector x∗ ∈ Ω is said to be

Pareto-optimal if and only if there is no x ∈ Ω such that

x ≺ x∗, i.e. x∗ is a non-dominated solution. The Pareto-

optimal Set (PS) is defined as the set of all Pareto-optimal

solutions x ∈ Ω, i.e., PS = {x ∈ Ω | x is Pareto optimal}.

The set of all objective vectors F(x) such that x is Pareto-

optimal is called Pareto front (PF), that is PF = {F(x) ∈
R

K | x ∈ PS}.

Pareto-stationarity. Pareto-stationarity is a necessary con-

dition for Pareto-optimality. For fk differentiable every-

where for all k, F is Pareto-stationary at x if there exists a

set of scalars αk, k ∈ {1, . . . ,K}, such that:

K�
k=1

αk∇fk = 0,

K�
k=1

αk = 1, αk ≥ 0 ∀k. (2)

Multiple Gradient Descent. Multiple gradient descent

(Schäffler et al., 2002; Désidéri, 2012; Peitz & Dellnitz,

2018; Sener & Koltun, 2018) was proposed for the uncon-

strained case of multi-objective optimization of F(x) assum-

ing a convex, continuously differentiable and smooth fk(x)
for all k. MGD finds a common descent direction for all fk
by defining the convex hull of all ∇fk(x) and finding the

minimum norm element within it. Consider w∗ given by:

w∗ = argmin||w||2, w =

K�
k=1

αk∇fk(x),

s.t.

K�
k=1

αk = 1, αk ≥ 0 ∀k.

(3)

w∗ will be either 0 in which case x is a Pareto-stationary

point, or w∗ 6= 0 and then w∗ is a descent direction for

all fi(x). Similar to gradient descent, MGD consists in

finding the common steepest descent direction w∗
t at each

iteration t, and then updating parameters with a learning

rate λ according to xt+1 = xt − λ
w∗

t

||w∗
t ||

.

3. Related work

3.1. Training GANs with multiple discriminators

While we would prefer to always have strong gradients from

the discriminator during training, the vanilla GAN makes

this difficult to ensure, as the discriminator quickly learns to

distinguish real and generated samples (Goodfellow, 2016),

thus providing no meaningful error signal to improve the

generator thereafter. Durugkar et al. (2016) proposed the
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Generative Multi-Adversarial Networks (GMAN) which

consists of training the generator against a softmax weighted

arithmetic average of K different discriminators:

LG =
K�

k=1

αk(−LDk
), (4)

where αk = e
β(−LDk

)

�
K
j=1 e

β(−LDj
) , β ≥ 0, and LDk

is the loss of

discriminator k and is defined as:

LDk
= −Ex∼pdata

log(Dk(x))−Ez∼pz
log(1−Dk(G(z))).

(5)

Dk(x) and G(z) correspond to the outputs of the k-th dis-

criminator and the generator, respectively. The goal of using

the proposed averaging scheme is to favor discriminators

yielding higher losses to the generator (i.e. high −LDk
),

thus providing more useful gradients during training. Exper-

iments were performed with β = 0 (equal weights), β → ∞
(only worst discriminator is taken into account), β = 1, and

β learned by the generator. Models with K = {2, 5} were

tested and evaluated using a proposed metric and the Incep-

tion score (Salimans et al., 2016). Results showed that the

simple average of discriminator’s losses provided the best

values for both metrics in most of the considered cases.

Neyshabur et al. (2017) proposed training a GAN with

K discriminators using the same architecture. Each dis-

criminator Dk sees a different randomly projected lower-

dimensional version of the input image. Random projections

are defined by a randomly initialized matrix Wk, which re-

mains fixed during training. Theoretical results provided

show the distribution induced by the generator G will con-

verge to the real data distribution pdata, as long as there is a

sufficient number of discriminators. Moreover, discrimina-

tive tasks in the projected space are harder, i.e. real and fake

examples are more alike, thus avoiding early convergence

of discriminators, which leads to common stability issues in

GAN training such as mode-collapse (Goodfellow, 2016).

Essentially, the authors trade one hard problem for K easier

subproblems. The losses of each discriminator LDk
are

the same as shown in Eq. 5. However, the generator loss

LG is defined as the sum of the losses provided by each

discriminator, as shown in Eq. 6. This choice of LG does

not exploit available information such as the performance

of the generator with respect to each discriminator.

LG = −
K�

k=1

Ez∼pz
logDk(G(z)). (6)

3.2. Hypervolume maximization

Let S be the solutions for a multi-objective optimization

problem. The hypervolume H of S is defined as (Fleis-

cher, 2003): H(S) = µ(∪x∈S [F(x),η
∗]), where µ is the

Lebesgue measure and η∗ is a point dominated by all x ∈ S

(i.e. fi(x) is upper-bounded by η), referred to as the nadir

point. H(S) can be understood as the size of the space

covered by {F(x) | x ∈ S} (Bader & Zitzler, 2011).

The hypervolume was originally introduced as a quan-

titative metric for coverage and convergence of Pareto-

optimal fronts obtained through population-based algo-

rithms (Beume et al., 2007). Methods based on direct maxi-

mization of H exhibit favorable convergence even in chal-

lenging scenarios, such as simultaneous minimization of 50

objectives (Bader & Zitzler, 2011). In the context of Ma-

chine Learning, single-solution HVM has been applied to

neural networks as a surrogate loss for mean squared error

(Miranda & Von Zuben, 2016), i.e. the loss provided by

each example in a training batch is treated as a single cost

and the multi-objective approach aims to minimize costs

over all examples. Authors show that such method provides

an inexpensive boosting-like training.

4. Multi-objective training of GANs with

multiple discriminators

We introduce a variation of the GAN game in which the

generator solves the following multi-objective problem:

minLG(z) = [l1(z), l2(z), ..., lK(z)]T , (7)

where each lk = −Ez∼pz
logDk(G(z)), k ∈ {1, ..., K},

is the loss provided by the k-th discriminator. Training

proceeds in the usual fashion (Goodfellow et al., 2014), i.e.

with alternate updates between the discriminators and the

generator. Updates of each discriminator are performed to

minimize the loss described in Eq. 5.

A natural choice for our generator’s updates is the MGD

algorithm, described in Section 2. However, computing

the direction of steepest descent w∗ before every parameter

update step, as required in MGD, can be prohibitively ex-

pensive for large neural networks. Therefore, we propose

an alternative scheme for multi-objective optimization and

argue that both our proposal and previously published meth-

ods can all be viewed as performing a computationally more

efficient version of the MGD update rule, without the burden

of needing to solve a quadratric program, i.e. computing

w∗, every iteration.

4.1. Hypervolume maximization for training GANs

Fleischer (2003) has shown that maximizing H yields

Pareto-optimal solutions. Since MGD converges to a set of

Pareto-stationary points, i.e. a superset of the Pareto-optimal

solutions, HVM yields a subset of the solutions obtained us-

ing MGD. We exploit this property and define the generator
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loss as the negative log-hypervolume, as defined in Eq. 8:

LG = −V = −
K�

k=1

log(η − lk), (8)

where the nadir point coordinate η is an upper bound for

all lk. In Fig. 1 we provide an illustrative example for the

case where K = 2. The highlighted region corresponds to

eV . Since the nadir point η∗ is fixed, V will be maximized,

and consequently LG minimized, if and only if each lk is

minimized. Moreover, by adapting the results shown in

(Miranda & Von Zuben, 2016), the gradient of LG with

respect to any generator’s parameter θ is given by:

∂LG

∂θ
=

K�
k=1

1

η − lk

∂lk

∂θ
. (9)

In other words, the gradient can be obtained by computing

a weighted sum of the gradients of the losses provided by

each discriminator, whose weights are defined as the inverse

distance to the nadir point components. This formulation

will naturally assign more importance to higher losses in the

final gradient, which is another useful property of HVM.

LD1

LD2

l1

l2

η∗

l

η

η

eV

Figure 1: 2D example of the objective space where the

generator loss is being optimized.

Nadir point selection. It is evident from Eq. 9 that the

selection of η directly affects the importance assignment of

gradients provided by different discriminators. Particularly,

as the quantity mink{η − lk} grows, the multi-objective

GAN game approaches the one defined by the simple av-

erage of lk. Previous literature has discussed in depth the

effects of the selection of η in the case of population-based

methods (Auger et al., 2009; 2012). However, those results

are not readily applicable for the single-solution case. As

will be shown in Section 5, our experiments indicate that

the choice of η plays an important role in the final quality

of samples. Nevertheless, this effect becomes less relevant

as the number of discriminators increases.

Nadir point adaptation. Similarly to (Miranda &

Von Zuben, 2016), we propose an adaptive scheme for η

such that at iteration t: ηt = δmaxk{l
t
k}, where δ > 1 is a

user-defined parameter which will be referred to as slack.

This enforces mink{η
t − ltk} to be higher when maxk{l

t
k}

is high and low otherwise, which induces a similar behavior

as an average loss when training begins and automatically

places more importance on the discriminators in which per-

formance is worse as training progresses.

We further illustrate the proposed adaptation scheme in Fig.

2. Consider a two-objective problem with lt1 > 0 and lt2 > 0
corresponding to LD1

and LD2
at iteration t, respectively. If

no adaptation is performed and η is left unchanged through-

out training, as represented by the red dashed lines in Fig.

2, η − lt1 ≈ η − lt2 for a large enough t. This will assign

similar weights to gradients provided by the different losses,

which defeats the purpose of employing HVM rather than

average loss minimization. Assuming that losses decrease

with time, after T updates, ηT = δmax{lT1 , l
T
2 } < η , since

losses are now closer to 0. The employed adaptation scheme

thus keeps the gradient weighting relevant even when losses

become low. This effect will become more aggressive as

training progresses, assigning more gradient importance to

higher losses, as ηT −max{lT1 , l
T
2 } < η0 −max{l01, l

0
2}.

LD1

LD2

lT1

lT2

η∗

ηT

ηT

ηT −max{lT1 , l
T
2 }

η0

η0 η∗

η0 − max{lT1 , lT2 }

Figure 2: Losses and nadir point at t = T , and nadir point

at t = 0 (in red).

Comparison to average loss minimization. The upper

bound proven by Neyshabur et al. (2017) assumes that the

marginals of the real and generated distributions are iden-

tical along all random projections. However, average loss

minimization does not ensure equally good approximation

between the marginals in all directions. In the case of com-

peting discriminators, i.e. when decreasing the loss on one

projection increases the loss on another, the distribution of

losses can be uneven. With HV on the other hand, espe-

cially when η is reduced during training, the overall loss will

remain high as long as there are discriminators with high

loss. This objective tends to prefer central regions, where

all discriminators present roughly equally low losses.
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4.2. Relationship between multiple discriminator

GANs and MGD

All methods described previously for the solution of GANs

with multiple discriminators, i.e. average loss minimiza-

tion (Neyshabur et al., 2017), GMAN’s weighted average

(Durugkar et al., 2016) and HVM can be defined as MGD-

like two-step algorithms consisting of: Step 1 - consolidate

all gradients into a single update direction (compute the

set α1,...,K ); Step 2 - update parameters in the direction re-

turned in Step 1. The definition of Step 1 for the considered

methods can be summarized as follows:

1. MGD: α1:K = argminα||w||, s.t.
�K

k=1 αk = 1,

αk ≥ 0 ∀k ∈ {1, ...,K}

2. Average loss minimization (Neyshabur et al., 2017):

αk = 1
K

3. GMAN (Durugkar et al., 2016): αk = softmax(l1:K)k

4. Hypervolume maximization: αk = 1
T (η−lk)

,

T =
�K

k=1
1

η−lk

5. Experiments

We performed four sets of experiments aiming to understand

the following phenomena: (i) How alternative methods for

training GANs with multiple discriminators perform in com-

parison to MGD; (ii) How alternative methods perform in

comparison to each other in terms of sample quality and

coverage; (iii) How the varying number of discriminators

impacts performance given the studied methods; and (iv)

Whether the multiple-discriminator setting is practical given

the added cost involved in training a set of discriminators.

Firstly, we exploited the relatively low dimensionality of

MNIST and used it as testbed for comparing MGD with

the other approaches, i.e. average loss minimization (AVG),

GMAN’s weighted average loss, and HV, proposed in this

work. Moreover, multiple initializations and slack combi-

nations were evaluated in order to investigate how varying

the number of discriminators affects robustness to those fac-

tors. Then, experiments were performed with an upscaled

version of CIFAR-10 at the resolution of 64x64 pixels while

increasing the number of discriminators. Upscaling was

performed with the aim of running experiments utilizing the

same architecture described in (Neyshabur et al., 2017). We

evaluated HV’s performance compared to baseline meth-

ods in terms of its resulting sample quality. Additional

experiments were carried out with CIFAR-10 at its original

resolution in order to provide a clear comparison with well

known single-discriminator settings. We further analyzed

HV’s impact on the diversity of generated samples using

the stacked MNIST dataset (Srivastava et al., 2017). Finally,

the computational cost and performance are compared for

the single- vs. multiple-discriminator cases. Samples of

generators trained on stacked MNIST and CIFAR-10 are

presented in the Appendix along with samples from CelebA

(at two different resolutions) as well as the Cats dataset at a

256× 256 resolution.

In all experiments performed, the same architecture, set of

hyperparameters and initialization were used for both AVG,

GMAN and our proposed method, the only variation being

the generator loss. Unless stated otherwise, Adam (Kingma

& Ba, 2014) was used to train all the models with learning

rate, β1 and β2 set to 0.0002, 0.5 and 0.999, respectively.

Mini-batch size was set to 64. The Fréchet Inception Dis-

tance (FID) (Heusel et al., 2017) was used for comparison.

Details on FID computation can be found in Appendix A.

5.1. MGD compared with alternative methods

We employed MGD in our experiments with MNIST and,

in order to do so, a quadratic program has to be solved

prior to every parameters update. For this, we used Scipy’s

implementation of the Serial Least Square Quadratic Pro-

gram solver. Three and four fully connected layers with

LeakyReLU activations were used for the generator and dis-

criminator, respectively. Dropout was also employed in the

discriminator and the random projection layer was imple-

mented as a randomly initialized norm-1 fully connected

layer, reducing the vectorized dimensionality of MNIST

from 784 to 512. The output layer of a pretrained LeNet

(LeCun et al., 1998) was used for FID computation. Experi-

ments over 100 epochs with 8 discriminators are reported

in Fig. 3 and Fig. 4. In Fig. 3, box-plots refer to 30 inde-

pendent computations of FID over 10000 images sampled

from the generator which achieved the minimum FID at

train time. FID results are measured at training time with

1000 images and the best values are reported in Fig. 4 along

with the necessary time to achieve it.

MGD outperforms all tested methods. However, its cost

per iteration does not allow its use in more relevant datasets

outside MNIST. HV, on the other hand, performs closer to

MGD than the considered baselines, while introducing no

relevant extra cost. In Fig. 5, we analyze convergence in the

Pareto-stationarity sense by plotting the norm of the update

direction for each method, given by ||
�K

k=1 αk∇lk||. All

methods converged to similar norms, leading to the conclu-

sion that different Pareto-stationary solutions will result in

generators with distinct sample quality. Best FID as a func-

tion of wall-clock time is shown in Fig. 20 at the Appendix.

HV sensitivity to initialization and choice of δ. Analy-

sis of the performance sensitivity with the choice of the

slack parameter δ and initialization was performed under

the following setting: models were trained for 50 epochs on

MNIST with HVM using 8, 16, 24 discriminators. Three
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Figure 3: Box-plots corresponding to 30 independent FID

computations with 10000 images. MGD performs consis-

tently better than other methods, followed by HVM. Models

that achieved minimum FID at training time were used. Red

and blue dashed lines represent FID values for a random

generator and real data, respectively.

independent runs (different initializations) were executed

with each δ = {1.05, 1.5, 1.75, 2} and number of discrimi-

nators, totaling 36 final models. Fig. 6 reports the box-plots

obtained for 5 FID independent computations using 10000
images, for each of the 36 models obtained under the set-

ting described. Results indicate that increasing the number

of discriminators yields much smaller variation in the FID

obtained by the final model.

5.2. HV as an alternative for MGD

5.2.1. UPSCALED CIFAR-10

We evaluate the performance of HV compared to base-

line methods using the upscaled CIFAR-10 dataset. FID

was computed with a pretrained ResNet (He et al., 2016).

ResNet was trained on the 10-class classification task of

CIFAR-10 up to approximately 95% test accuracy. DCGAN

(Radford et al., 2015) and WGAN-GP (Gulrajani et al.,

2017) were included in the experiments for FID reference.

Same architectures as in (Neyshabur et al., 2017) were em-

ployed for all multi-discriminators settings. An increasing

number of discriminators was used. Inception score (IS)

(Salimans et al., 2016) as well as FID computed with other

models are included in the Appendix-Table 7.

In Fig. 7, we report the box-plots of 15 independent evalua-

tions of FID on 10000 images for the best model obtained

with each method across 3 independent runs. Results once

more indicate that HV outperforms other methods in terms

of quality of the generated samples. Moreover, performance

clearly improves as the number of discriminators grows. Fig.

8 shows the FID at train time, i.e. measured with 1000 gen-

erated images after each epoch, for the best models across

Figure 4: Time vs. best FID achieved during training for

each approach. FID values are computed over 1000 gener-

ated images after every epoch. MGD performs relevantly

better than others in terms of FID, followed by HV. How-

ever, MGD is approximately 7 times slower than HV. HV is

well-placed in the time-quality trade-off.

Figure 5: Norm of the update direction over time for

each method. While Pareto-stationarity is approximately

achieved by all methods, performance varies relevantly in

terms of FID.

runs. Models trained against more discriminators converge

to smaller values. We report the norm of the update direc-

tion ||
�K

k=1 αk∇lk|| for each method in Fig. 10-(a) in the

Appendix.

5.2.2. CIFAR-10

We run experiments with CIFAR-10 in its original resolu-

tion, aiming to put our proposed approach in context with

previous methods. Similar experiments as described by

Miyato et al. (2018) can be found in Table 2, for the model
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FID-ResNet FID (5k) IS (5k) FID (10k) IS (10k)

SNGAN (Miyato et al., 2018) - 25.5 7.58± 0.12 - -

WGAN-GP (Miyato et al., 2018) - 40.2 6.68± 0.06 - -

DCGAN (Miyato et al., 2018) - - 6.64± 0.14 - -

SNGAN (our implementation) 1.55 27.93 7.11± 0.30 25.29 7.26± 0.12
DCGAN + 24 Ds and HV 1.21 27.74 7.32± 0.26 24.90 7.45± 0.17

Table 1: An evaluation of the effect of adding discriminators on a DCGAN-like model trained on CIFAR-10. Results reach

the same level as the best-reported scores for the given architecture in the multiple-discriminator setting.

Figure 6: Independent FID evaluations for models obtained

with different initializations and slack parameter δ. Sensi-

tivity reduces as the number of discriminators increases.

Miyato et al. (2018) refer to as Standard CNN. The same

architecture is employed and spectral normalization is re-

moved from the discriminators, while a random projection

input layer is added.

FID and IS are evaluated on 5000 generated images as in

(Miyato et al., 2018) as well as 10000 images, as reported in

Table 1. These results include our proposed approach and

implementation of (Miyato et al., 2018), alongside the FID

measured using a ResNet classifier trained in advance on

the CIFAR-10 dataset.

As can be seen, the addition of the multiple discriminators

setting along with HV yields a relevant shift in performance

for the DCGAN-like generator, improving the evaluated

metrics while the generator architecture was kept unchanged.

Both IS and FID improved relative to WGAN-GP, while

outperforming our own implementation of SNGAN. It is

worth noting that for this experiment we selected the best

performing set of hyperparameters for SNGAN, following

the reported setting in prior literature (Miyato et al., 2018).

Figure 7: Box-plots of 15 independent FID computations

with 10000 images. Dashed lines represent the FID for

real data (blue) and a random generator (red). FID was

computed with a pretrained ResNet.

Figure 8: FID estimated over 1000 generated images at train

time. Models trained against more discriminators achieve

lower FID. FID was computed with a pretrained ResNet.

5.3. Computational cost

In Table 2 we present a comparison of minimum FID (mea-

sured with a pretrained ResNet) obtained during training,

along with computation cost in terms of time and space

for different GANs, with both 1 and 24 discriminators.
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By design, the computational cost of training GANs un-

der a multiple-discriminator setting is higher in terms of

both FLOPS and memory, if compared with the single-

discriminator GAN setting. However, the additional cost

results in a corresponding improvement in performance.

This effect was consistently observed using 3 different well-

known approaches, namely DCGAN (Radford et al., 2015),

Least-square GAN (LSGAN) (Mao et al., 2017), and Hinge-

GAN (Miyato et al., 2018). The architectures of all single

discriminator models follow that of DCGAN, described in

(Radford et al., 2015). For the 24-discriminator models, we

used the setting described in Section 5.2.1. All models were

trained with a minibatch of size 64 over 150 epochs.

We further emphasize that even though training with multi-

ple discriminators may be more computationally expensive

when compared to conventional approaches, such a frame-

work supports fully parallel training of the discriminators,

a feature which is not trivially possible in other GAN set-

tings. For example in WGAN, the discriminator is serially

updated multiple times for each generator update. In Fig.

10-(b) in the Appendix, we provide a comparison in terms

of wall-clock time per iteration on all methods evaluated.

Serial implementations of discriminator updates with 8 and

16 discriminators were observed to run faster than WGAN-

GP. Moreover, all experiments performed within this work

were executed in single-GPU hardware, which indicates the

multiple discriminator setting is a practical approach.

# Disc. FID-ResNet FLOPS Memory

DCGAN
1 4.22 8e10 1292

24 1.89 5e11 5671

LSGAN
1 4.55 8e10 1303

24 1.91 5e11 5682

HingeGAN
1 6.17 8e10 1303

24 2.25 5e11 5682

Table 2: Comparison between different GANs with 1 and 24

discriminators in terms of minimum FID-ResNet obtained

during training, and FLOPs (MAC) and memory consump-

tion (MB) for a complete training step.

5.4. Effect of the number of discriminators on sample

diversity

We repeat the experiments in (Srivastava et al., 2017) aiming

to analyze how the number of discriminators affects the sam-

ple diversity of the corresponding generator when trained

using the HV algorithm. The stacked MNIST dataset is

employed and results reported in (Lin et al., 2017) are used

for comparison. HV results for 8, 16, and 24 discriminators

were obtained with 10k and 26k generator images, averaged

over 10 runs. The number of covered modes along with the

KL divergence between the generated mode distribution and

test data are reported in Table 3.

Model Modes (Max 1000) KL

DCGAN (Radford et al., 2015) 99.0 3.400
ALI (Dumoulin et al., 2016) 16.0 5.400

Unrolled GAN (Metz et al., 2016) 48.7 4.320
VEEGAN (Srivastava et al., 2017) 150.0 2.950

PacDCGAN2 (Lin et al., 2017) 1000.0± 0.0 0.060± 0.003
HV - 8 disc. (10k) 679.2± 5.9 1.139± 0.011
HV - 16 disc. (10k) 998.0± 1.8 0.120± 0.004
HV - 24 disc. (10k) 998.3± 1.1 0.116± 0.003
HV - 8 disc. (26k) 776.8± 6.4 1.115± 0.007
HV - 16 disc. (26k) 1000.0± 0.0 0.088± 0.002
HV - 24 disc. (26k) 1000.0± 0.0 0.084± 0.002

Table 3: Number of covered modes and reverse KL diver-

gence for stacked MNIST. We evaluate HV under a reduced

test sample size (10k) with the goal of highlighting the ef-

fect provided by the increased number of discriminators on

sample diversity.

As in previous experiments, results consistently improved

as we increased the number of discriminators. All evaluated

models using HV outperformed DCGAN, ALI, Unrolled

GAN and VEEGAN. Moreover, HV with 16 and 24 dis-

criminators achieved state-of-the-art coverage values. Thus,

increasing each model’s capacity by using more discrim-

inators directly resulted in an improvement in the corre-

sponding generator coverage. Training details as well as

architecture information are presented in Appendix B.

6. Conclusion

In this work we show that employing multiple discrimina-

tors on GAN training is a practical approach for directly

trading extra capacity - and thereby extra computational

cost - for higher quality and diversity of generated samples.

Such an approach is complementary to other advances in

GANs training and can be easily used in tandem with other

methods. We thus introduce a multi-objective optimiza-

tion framework for studying multiple discriminator GANs,

and showed strong similarities between previous work us-

ing such setting and the MGD algorithm. The proposed

approach, namely a single-solution variation of the hyper-

volume maximization, was observed to consistently yield

higher quality samples in terms of FID when compared to

average loss and GMAN’s aggregation rule. We further ob-

served a higher number of discriminators to increase sample

diversity and generator robustness.

Deeper analysis of the quantity ||
�K

k=1 αk∇lk|| is a subject

of future investigation. We hypothesize that using it as a

penalty term might reduce the necessity of a high number

of discriminators. Moreover, we believe the proposed HV

method might be of independent interest in other problems

in Machine Learning literature that rely on the minimization

of a set of loss terms.
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