CURIOUS: Intrinsically Motivated Modular
Multi-Goal Reinforcement Learning

Cédric Colas' Pierre Fournier 2

Abstract

In open-ended environments, autonomous learn-
ing agents must set their own goals and build their
own curriculum through an intrinsically motivated
exploration. They may consider a large diversity
of goals, aiming to discover what is controllable
in their environments, and what is not. Because
some goals might prove easy and some impos-
sible, agents must actively select which goal to
practice at any moment, to maximize their overall
mastery on the set of learnable goals. This paper
proposes CURIOUS, an algorithm that leverages
1) a modular Universal Value Function Approxi-
mator with hindsight learning to achieve a diver-
sity of goals of different kinds within a unique
policy and 2) an automated curriculum learning
mechanism that biases the attention of the agent
towards goals maximizing the absolute learning
progress. Agents focus sequentially on goals of
increasing complexity, and focus back on goals
that are being forgotten. Experiments conducted
in a new modular-goal robotic environment show
the resulting developmental self-organization of a
learning curriculum, and demonstrate properties
of robustness to distracting goals, forgetting and
changes in body properties.

1. Introduction

In autonomous continual learning, agents aim to discover
repertoires of skills in an ever-changing open-ended world,
and without external rewards. In such realistic environments,
the agent must be endowed with intrinsic motivations to
explore the diversity of ways in which it can control its
environment. One important form of intrinsic motivation
system is the ability to autonomously set one’s own goals

"Flowers Team, Inria and Ensta ParisTech, FR. ZISIR, Sor-
bonne Univ., Paris, FR.. Correspondence to: Cédric Colas
<cedric.colas@inria.fr>.

Proceedings of the 36" International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

Olivier Sigaud> Mohamed Chetouani

2

Pierre-Yves Oudeyer !

Figure 1. The Modular Goal Fetch Arm environment. An intrin-
sically motivated agent can set its own (modular) goals (Reach,
Push, Pick and Place, Stack), with multiple objects and distractors.

and self-organize one’s own curriculum. This challenge can
be tackled within the framework of Intrinsically Motivated
Goal Exploration Processes (IMGEP) (Baranes & Oudeyer,
2013; Forestier et al., 2017), leveraging computational mod-
els of autonomous development in human infants.

Modular goal representation. In a same environment,
an agent might want to ‘put the cube in position z’ or
to ‘reach position y’ for any z or y. Here, describ-
ing the full goal space requires modular goal representa-
tions. Goals are organized by modules, where module
refers to the pair of a reward function and a goal space
M; = (Rwm;,,g:€6m, » GM;)- The reward function describes
a set of constraints that must be satisfied by the agent’s state
(e.g. Reach), given a continuous parameter (e.g. g; = y)
evolving in the associated goal space (e.g. 3D Euclidean
space), see Fig. 1.

While flat multi-goal problems with continuous (Schaul
etal., 2015; Andrychowicz et al., 2017; Plappert et al., 2018)
or discrete goals (Mankowitz et al., 2018; Riedmiller et al.,
2018) have been explored in the past, only few works tackle
the problem of modular multi-goal learning (Forestier &
Oudeyer, 2016), none in an RL setting. Here, we present
CURIOUS', a modular multi-goal reinforcement learning
(RL) algorithm that uses intrinsic motivations to efficiently
learn a continuous set of diverse goals using modular goal
representations. To build an algorithm able to learn modular
goals, one must answer the following questions: 1) How
to choose the action policy architecture? 2) How to select

! cURIOUS stands for Continual Universal Reinforcement learn-
ing with Intrinsically mOtivated sUbstitutionS.



CURIOUS: Intrinsically Motivated Modular Multi-Goal Reinforcement Learning

the next module and goal to practice and learn about? 3)
How to efficiently transfer knowledge between modules and
goals?

Related work. Kaelbling (1993) proposed the first algo-
rithm able to leverage cross-goal learning to address a dis-
crete set of goals. For each goal, the algorithm learned
a specific value function using Q-learning (goal-experts
approach). More recently, Schaul et al. (2015) proposed
Universal Value Function Approximators (UVFA), a unique
policy able to address an infinity of goals by concatenating
the current state and goal to feed both the policy and the
value function. In UNICORN, UVFA is used to address a
discrete set of goals in parallel: reaching different objects in
a visual world (Mankowitz et al., 2018). SAC-X implements
multi-task RL where easy tasks are considered as auxiliary
tasks to help learning about the hardest task (placing cubes
inside a closed box) (Riedmiller et al., 2018). Here, one
network is trained for each task and the collected transi-
tions are shared (goal-experts approach). In other works
from multi-task RL (Teh et al., 2017; Espeholt et al., 2018;
Hessel et al., 2018), agents do not represent explicitly the
current task and aim at maximizing the overall reward. Fi-
nally, within the Intrinsically Motivated Goal Exploration
Processes framework (IMGEP), Forestier & Oudeyer (2016)
proposed MACOB, an algorithm able to target modular goals
using a population-based algorithm that mutates and replays
controllers experienced in the past. MACOB maintains a
population of solutions, one for each goal (modular goal-
experts approach), see Nguyen & Oudeyer (2012) for a
similar approach. This enables efficient cross-goal learn-
ing in high-dimensional goal spaces, but is limited by the
memory-based representation of policies.

Multi-goal approaches prove better than simply training
a policy per goal because knowledge can be transferred
between different goals using off-policy learning and hind-
sight learning (Andrychowicz et al., 2017). Off-policy learn-
ing enables the use of any transition to improve the cur-
rent policy: transitions collected from an older version of
the current policy (Lillicrap et al., 2015), from a popula-
tion of exploratory policies (Colas et al., 2018), or even
from demonstrations (Vecerik et al., 2017). Transitions col-
lected while aiming at a particular goal can be used to learn
about any other. With finite sets of goals, each transition
is generally used to update the policy on every other goal
(Mankowitz et al., 2018; Kaelbling, 1993). With continuous
sets of goals, imaginary goals are sampled from the goal
space (Andrychowicz et al., 2017). In the case of UVFA poli-
cies, this consists in the substitution of the goal that is part
of the input by the imaginary one, a technique called goal re-
play or goal substitution. Building on UVFA, Andrychowicz
et al. (2017) proposed Hindsight Experience Replay (HER),
a method leveraging hindsight for transferring knowledge

between goals. The original goal of a transition can be sub-
stituted by any outcome experienced later in the trajectory
(imaginary goal). This helps to increase the probability to
observe rewards in reward-sparse environments.

In the literature, environments usually provide goals that the
agent is asked to solve. In the IMGEP framework however,
autonomous agents are intrinsically motivated to set their
own, possibly learning their representation (Laversanne-
Finot et al., 2018). Forestier & Oudeyer (2016) in particular,
biased the selection of the next goal to attempt towards mod-
ules showing high absolute measures of learning progress
(LP). This mechanism helps the agent to focus on learnable
goals and to disengage from goals that are currently too hard
or already solved. Veeriah et al. (2018) uses LP computed
from Bellman errors for goal selection, but this form of LP
does not improve over random goal selection.

Additional background can be found in the supplementary
document. Table 1 presents a classification of the multi-goal
approaches most related to our work.

Contributions. The contributions of this paper are:

1. A modular encoding of goals to enable learning of
continuous sets of diverse goals within a single policy
using UVFA (Reach, Push, Pick and Place, Stack). This
enables to tackle different kinds of goals, each with
their own continuous parameterization, and facilitates
transfer between modules and goals. See Sec. 2.1.

2. An active strategy for cross-module goal replay. Off-
policy learning enables to use any experience to learn
about any goal from any module. We propose to guide
the selection of module for replay using absolute learn-
ing progress measures (in addition to LP-based goal
sampling to interact with environment). See Sec. 2.2.

3. From the IMGEP perspective, a single monolithic modu-
lar multi-goal action policy. This is an alternative to the
population-based algorithms studied so far (Forestier
& Oudeyer, 2016; Forestier et al., 2017) and provides
the flexibility of RL methods.

4. An environment for modular goal RL. See Sec. 3.

5. Empirical comparisons to other architectures: a goal-
parameterized RL with HER (flat multi-goal RL) and
a multi-goal module-experts approach (one multi-goal
expert per module). See Sec. 4.1.

6. A study of the self-organization of learning phases
demonstrated by our algorithm (automatic curriculum).
See Sec. 4.2.

7. Experimental evidence of robustness to distracting
goals, forgetting and body changes in comparison with
random goal selection. See Sec. 4.3 and 4.4.



CURIOUS: Intrinsically Motivated Modular Multi-Goal Reinforcement Learning

2. CURIOUS

2.1. A Modular Multi-Goal Architecture using
Universal Approximators

UVFA concatenates the goal of the agent with its current
state to form the input of the policy and the value function
implemented by deep neural networks (Schaul et al., 2015).
With curious, we propose a new encoding of goals us-
ing modular representations. This enables to target a rich
diversity of modular goals within a single network¢du-
lar multi-goal approach), see Fig. 2. Givésy,, the goal
space of modul®;, thelgurrent goad is de ned as a vec-
tor of dimensionGj = iN:1 jGw,j, where theGy, can  Figure 2.Modular goal-parametgrized actor-critic archite_c-
have different dimensionalitiesy is set to0 everywhere ~ Ureé (M-UVFA). Toy example with2 modules, parameterized
except in the indices corresponding to the current modul& 9: (2D) andg. (1D) respectively. Here, the agent is attempting
M;, where itis set t@ 2 Gy . By masking the goal-inputs goalg: |rlmod.ul_eM 1, as speci ed by the one-hot mod_ule descrip-

. ! .tormg = hi;0i. The actor (left) computes the actian. The
corresponding to unconsidered modules, the correspondlné;}itiC (right) computes th@-value.
weights are frozen during backpropagation. In addition,
a module descriptamy of sizeN (one-hot encoding) en-
codes the current module. The overall input to the policyon the other hand, agents have the capacity to select which
network is[si; g;mqy], see Fig. 2. We call this modular goal to target next. Because goals are not equivalent, the
goal-parameterized architecture ModularFA (M-UVFA).  agent can bene t from intrinsic motivations towards LP

In Fig. 2, we can see the underlying learning architecturéSChmidh_Uber’ 1991; Kaplan & Oudeyer, 2004). This can
(actor-critic). The actor implements the action policy angPe useful: 1) when there are distracting goals on which the
maps the inpust; g; m4] to the next actiorm, . The action agent cannqt progress; 2) when some goals are already mas-
is then concatenated to a copy of the actor's input to feed thifred. This idea comes from thecEep framework and was
critic [s¢; g; ma; &]. The critic provides an estimate of the US€d in Baranes & Oudeyer (2013) to guide goal selection
Q-value:Q(s;: g: mq: & ). The critic and the actor are then a}nd in Forestier & Oudeyer_(2016) to guide module selec-
trained usingbDPG (Lillicrap et al., 2015), although any tion. The pro_blem of selgctlng a mod_uIe can be modeled
other off-policy learning method could be used (erg3 S @ non-stationary multi-armed bandit (MAB), where the
(Fujimoto et al., 2018), obQN for the discrete case (Mnih value of each arm (module) is the current absolute LP. Learn-
et al., 2013)). More details abonbpG can be found in the N9 Progress (LP) is de ned as the derivative of the agent's

supplementary document or in Lillicrap et al. (2015). competence on a particular modulé?y,, = dCT? where
the competenc€y, :t! Psuccess (t) is the probability of
2.2. Module and Goal Selection, Cross-Module success at time Here, the agent focuses its attention on
Learning, Cross-Goal Learning modules for which it is making the largest absolute progress,

and pays little attention to modules that are already solved
In UVFA, HER andUNICORN, the next goal to target is se- or unsolvable, i.e. for whicfLP j stays small. Using the ab-
lected at random (Schaul et al., 2015; Andrychowicz et al.golute value of LP also leads to the prioritization of modules
2017; Mankowitz et al., 2018). This is coherent with the for which the agent is showing decreasing performances.
common view that the agent must comply with the desiresThis helps to deal with forgetting: the agent reallocates
of an engineer and target the goal it is asked to target. Hergarning resources to the modules being forgotten, Sec. 4.3.

Table 1.Classi cation of multi-goal approaches Underlined Algorithms internally generating goalsv(GEP), (*) using LP-based
intrinsic motivationsltalic: Population-based algorithms (non-RBpld: Algorithms proposed in this paper.

N GOALS, N POLICIES N GOALS, 1 PoOLICY
FLAT REPR. GOAL-EXPERTS MULTI-GOAL: UVFA (Schaul et al., 2015)
(Kaelbling, 1993) HER (Andrychowicz et al., 2017)
SAC-X (Riedmiller et al., 2018) UNICORN (Mankowitz et al., 2018)

SAGG-RIAC* (Baranes & Oudeyer, 2013)

MODULAR REPR  MOD-GOAL-EXPERTS MAcoB* (Forestier & Oudeyer, 2016) MODULAR-MULTI-GOALS:
MULTI -GOAL MODULE-EXPERTS MG-ME M-UVFA, CURIOUS *




CURIOUS: Intrinsically Motivated Modular Multi-Goal Reinforcement Learning

Learning Progress Estimation. Since an autonomous Cross-Module and Cross-Goal Learning. In an exam-
agent is not externally provided its true competence or LRyle with three modules, an agent computgg =

it needs to approximate them for each module. To measurf®:6; 0:2; 0:2]. The agent uses these probabilities to guide
its competence, it uses some episodes (withh = 0:1)  learning towards modules with high absolute LP. If the size
to evaluate itself on random modules and targets withoubf the minibatch iN ,, , the agent will samplbN ,,  0:6¢
exploration noise. The results (succésar failure0) of  transitions relevant to module bN,, 0:2c transitions
these rollouts are stored in competence queesslts (V) relevant to module 2 etc. A transition thatredevant for

for all M. In a similar way as Forestier & Oudeyer (2016), moduleM; (e.g. Push module), means that it comes from
the agent computes its subjective competence as an episode during which the corresponding outcome has
changed (e.g. cube position). This sampling bias towards
“eventful” transitions is similar to Energy-Based Prioriti-
zation (Zhao & Tresp, 2018) (see supp. doc.). In this
_ minibatch, every transition has been sampled to train on
wheren®’) " is the number of self-evaluation rollouts per- a speci ¢ module (e.gmy), although it could have been

formed et\)/)e;lthe agent in moduM;. The subjectivePy, collected while targeting another module (emg). To
aftern{). self-evaluation rollouts is then computed as: ~ Perform this cross-module learning, we simply substitute
) ) . the latter by the former. Goal substitution is then performed

LPu, (n(elv)al) = Cu; (ngv)al Cu, (ng\,)a1| 1): using hindsight, which means the gapdf a transition is
Given the subjective LP measures, we tackle the multi.?omet'mesm: 0:8) replaced by an outcome reached later

armed bandit problem by implementing a simple approacrlln the same episodg (Andrychowicz etal., 2017).

Il tional ili tchi ith itional .
called proportional probability matching, with an additiona Internal Reward. After module descriptors and goals

-greedy strategy for exploration. More precisely, we com- . .
pugte theyLP prot?gbilitiesgm (M) as: P y have been substituted, the agent computes an internal reward
i :

for each transition using a reward function parameterized

(i) 1X?

eval) = T reSUHS(i)(n

G )

CMi(n
=0

N 1 iLPm,j . by the newm, and goalg . Thus it answersWhat would
P (Mi) = N @) ,N LiLPw have been my reward for experiencing this transition, if
= i

| were aiming at that imagined goal from that imagined
whereN is the number of modules. The ratiomplements  module?The reward is non-negative)(when the outcome
a mixture between random exploration of modules (leftsatis es the constraints described by the imagined module
term) and exploitation through a biased selection/replay Of'nd, relative to the imagined ; negative otherwise 1).
modules (right term). The random exploration term enablesn 3 reaching module for instance (see Fig. 1), a positive
sampling modules that do not show any LP (i.e. alreadyeward is generated when the Euclidean distance between
solved, too hard, or at a plateau). This way, the agent cathe 3D target (goal) and the gripper (outcome) falls below a

check that it stays competent on modules that are alreadjtecision parametefeacn (reward constraint associated to
learned, or can insist on modules that are currently too harghe reaching module).

Note that we use LP for two distinct purposes: 1) Before o o
data collection, to select the module from which to draw the2.3. Combining Modular-UVFA and Intrinsically
next goal to attempt in the environment; 2) Before training, ~ Motivated Goal Exploration

to select the substitute module descriptor (module replayk schematic view ofcURIOUS is given in Fig. 3. The

Recall that, once transitions are sampled from the repla}ﬁetailed algorithm is given in the supplementary document
buffer, they can be modi ed (replayed) by substituting the g g PP y '

original module descriptor (or goal) by a new one. The
substitute module is the one the agent is going to learn abou
When replaying a particular module more than others, the
agent allocates more resources to that module. While the use
of LP for module selection is not new (Forestier & Oudeyer,
2016), we are the rst to consider its use for cross-module 908! spac&y .

1. Module and goal selectionThe agent selects module
M; and goalg; for the next rollout (blue), respectively
sampled from the set of potential modulds using

pe (purple), and uniformly from the corresponding

goal replay. 2. Data collection. The agent interacts with the environ-
) ) i ) ment using its curremi-uUVvFA policy (grey), collects
Module and Goal Selection. Before interacting with the transitions and stores them in memory (red).

environment, the agents selects the next goal to target by

rst sampling a module fronM usingp.p , and second, 3. LP update. If it was a self-evaluation rollout, the agent
sampling the goal uniformly from the corresponding goal updates its measures of competence, LPmpdgiven
spaceGy; . the new result (success or failure, purple).



CURIOUS: Intrinsically Motivated Modular Multi-Goal Reinforcement Learning

4. Module and goal substitution. The agent decides on target with the gripper;M ) Pushcubel onto a2D target
which modules and goals to train. To update the policyon the table; ¥ 3) Pick and Placecubel on a3D target;
and critic, the algorithm rst samples a minibatch from (M,4) Stackcubel over cube2. Additional Push modules
the replay buffers (red) usingp and implements concerning additional out-of-reach and moving cubes can
module and goal substitutions to perform cross-moduleébe de ned (impossible, distracting goals). Further details
and cross-goal learning (orange), see Sec. 2.2. can be found in the supplementary document.

5. Internal reward. The agent computes its reward
for each transition, usinBy,y parameterized by the

substitute modulen, and goaly (brown). In this section, we present ablative studies to assess the
relative importance of: 1) the policy and value function
architecture and 2) the use of intrinsically motivated mod-
ule selection for practice and replay. We caluvFa the
algorithm using a modular goal-parameterized policy and
random module choices, while the intrinsically motivated
version is calledccurious. We do not investigate the ef-
ciency of HER or the ef ciency of the sampling bias to-
wards interesting transitions as they were already studied
in Andrychowicz et al. (2017); Plappert et al. (2018) and
Zhao & Tresp (2018) respectively. For fair comparisons, we
apply both mechanisms to all the tested algorithms.

4. Experiment and Results

6. RL updates. The agent updates its policy and value
function with bDPG using the modi ed minibatch
(green).

4.1. Impact of Policy and Value Function Architecture

Experiments. In this section, we investigate the impact
of using anm-UVvFA architecture for the policy and value
function. The module-set is composed of four achievable
modules and four distracting modules. We test this algo-
rithm against two baselines:

1. A at multi-goal architecture §ER). This algorithm
does not represent goals in a modular fashion but
in a linear way. The corresponding goal is selected
unifctsnly inside G, a holistic goal space such that

2.4. Evaluation Methodology G= iNzl Gu, - To generate a reward, the agent needs

to satisfy the constraints described by all the modules

at once. This goal-parameterized architecture is equiv-
alent touvFA, which makes the algorithm equivalent
t0o HER +DDPG.

Figure 3.Schematic view ofcuURIOUS.

The performance of the agents are evaluated of ine in terms
of success rates over sets of achievable goals (de ned by the
experimenter). Every point of a learning curve represents
the success rate ov8b of ine evaluation rollouts § 19
actors), using random achievable goals. Evaluation is com-2. A multi-goal module-expertarchitecture ¥G-ME)
pletely independent from training, i.e. agents cannot train ~ where an expert multi-goal policy is trained for each of
on evaluation transitions. We use the non-parametric one- theN modules. Each policy is trained one epoch every

tail Mann-Whitney U-test with con dence level = 0:01 N on its designated module and shares the collected
for all comparisons. More details and justi cations can be transitions with other experts. When evaluated on a par-
found in the supplementary document. ticular module, the algorithm uses the corresponding

module-expert.

3. A Modular Goal Environment . .

Results. Fig. 5 shows the evolution of the average success
Modular Goal Fetch Armis a new simulated environment rate computed over achievable goals foiuvFA and the
adapted from the OpenAl Gym suite (Brockman et al.two baselines described above. The learning curvesef
2016). The agent is embodied by a robotic arm facingstays at. This can be easily understood as none of the goals
2 cubes randomly positioned on a table. The agent controlexpressed in the complete goal sp&orresponds to a real
the position of its gripper and the gripper openid®). It  situation (e.g. the agent cannot reach a 3D target with its
can target a diverse set of modular goaM:;;§ Reacha 3D gripper while placing a cube at another). The agent cannot



CURIOUS: Intrinsically Motivated Modular Multi-Goal Reinforcement Learning

control its gripper {1 ,), then to push objects on a desired
target on the tableM ;) before it learns how to place the
cube on &D target M3) and how to stack the two cubes
(My). Fig. 4(b) shows that LP stays small for modules
that are already solved (e.bl; after10* episodes) or too
hard to solve (e.gM 3 andM, before35 10° episodes),
and increases when a module is being learned. We further
discuss the link between these learning phases, developmen-
tal learning and curriculum learning in the supplementary
document.

Figure 5.lmpact of the policy and value function architecture.

Average success rates computed over achievable goals. Mean 3/ Impact of the Intrinsic Motivation: Resilience to
std over 10 trials are plotted, while dots indicate signi cance when Forgetting and Sensor Perturbati;)ns

testingM-UVFA againstMG-ME.
Experiments. During learning, the agent can forget about

) _ a previously mastered module. This can happen because is
fulll .the constraints of a_II mod_ules simultaneously, thus not targeting it often (catastrophic forgetting), because of
receives no rewa_rd. This motivates the use of a mOdUIaénvironmental changes (e.g. icy oor) or because of body
representation with separated modules. Compaviog  changes (e.g. sensor failure). IdeadyrIous should be
ME andm-UVFA, we can see that the achievable goals argy e 15 getect and react when such situations arise. This
learned much faster in the multi-modular-goals approachygtion investigates the resilience of our algorithm to such

(one, policy, 250 10°vs. 450 10° episodes). From perturbations and compares it to theuvFa baseline.
now on, all experiments use tive UVFA architecture.
We rst look at a run where forgetting occurs and explain

4.2. Visualizing the Intrinsic Motivation towards how cuRrlous detects the situation and reacts. Since for-
Learning Progress getting cannot be triggered, we add more emphasis to a
second experiment, where we simulate a time-locked sen-
Experiments. This section aims at showing the inner sory failure. We present the following setup to the agent:
working of CURIOUSS intrinsic motivation towards LP. Here  st, it learns about a set of modules (Reach, Push, Pick
we focus on a setting with four achievable modules (Reactand Place for cubg, and Push for cub®). Then, a sensory
Push, Pick and Place, and Stack). perturbation is triggered at a precise tinepgch= 250,
episode= 237:5 10%) such that the perception of cuBe
Results. Fig. 4(a) shows the evolution of the module- gets shifted by:05 (simulation units) until the end of the
dependent competence measures as subjectively perceivagh. The performance on this module suddenly drops and
by the agent, while Fig. 4(b) shows the evolution of thewe compare the recoveries obRIOUSandM-UVFA.
corresponding LP measures. Finally, Fig. 4(c) shows the
corresponding module selection probabilitgs , a mix-
ture of random selection with probabilityand active se- Results - Forgetting. Looking at Fig. 4(a), we can ob-
lection proportional to LP measures with probabillty .  serve a drop in the competence bty around episode
These gures demonstrate the existence of successive lear8 10°. This phenomenon is usually describedcagas-
ing phases, that can be interpreted as developmental phagesphic forgetting because it is trained on other modules,
(Oudeyer & Smith, 2016). The robot rst learns how to the network can forget about the previously mastered mod-

(@) (b) (©

Figure 4.Visualization of a single run. a: Module-dependent subjective measures of competencesfaous(1 run). b: Corresponding
module-dependent subjective measures of absolute LP. ¢: Corresponding probabilitiesselect modules to practice or to learn about.



