
CURIOUS: Intrinsically Motivated Modular
Multi-Goal Reinforcement Learning

Cédric Colas 1 Pierre Fournier 2 Olivier Sigaud 2 Mohamed Chetouani 2 Pierre-Yves Oudeyer 1

Abstract
In open-ended environments, autonomous learn-
ing agents must set their own goals and build their
own curriculum through an intrinsically motivated
exploration. They may consider a large diversity
of goals, aiming to discover what is controllable
in their environments, and what is not. Because
some goals might prove easy and some impos-
sible, agents must actively select which goal to
practice at any moment, to maximize their overall
mastery on the set of learnable goals. This paper
proposes CURIOUS, an algorithm that leverages
1) a modular Universal Value Function Approxi-
mator with hindsight learning to achieve a diver-
sity of goals of different kinds within a unique
policy and 2) an automated curriculum learning
mechanism that biases the attention of the agent
towards goals maximizing the absolute learning
progress. Agents focus sequentially on goals of
increasing complexity, and focus back on goals
that are being forgotten. Experiments conducted
in a new modular-goal robotic environment show
the resulting developmental self-organization of a
learning curriculum, and demonstrate properties
of robustness to distracting goals, forgetting and
changes in body properties.

1. Introduction
In autonomous continual learning, agents aim to discover
repertoires of skills in an ever-changing open-ended world,
and without external rewards. In such realistic environments,
the agent must be endowed with intrinsic motivations to
explore the diversity of ways in which it can control its
environment. One important form of intrinsic motivation
system is the ability to autonomously set one’s own goals

1Flowers Team, Inria and Ensta ParisTech, FR. 2ISIR, Sor-
bonne Univ., Paris, FR.. Correspondence to: Cédric Colas
<cedric.colas@inria.fr>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

Figure 1. The Modular Goal Fetch Arm environment. An intrin-
sically motivated agent can set its own (modular) goals (Reach,
Push, Pick and Place, Stack), with multiple objects and distractors.

and self-organize one’s own curriculum. This challenge can
be tackled within the framework of Intrinsically Motivated
Goal Exploration Processes (IMGEP) (Baranes & Oudeyer,
2013; Forestier et al., 2017), leveraging computational mod-
els of autonomous development in human infants.

Modular goal representation. In a same environment,
an agent might want to ‘put the cube in position x’ or
to ‘reach position y’ for any x or y. Here, describ-
ing the full goal space requires modular goal representa-
tions. Goals are organized by modules, where module
refers to the pair of a reward function and a goal space
Mi = (RMi,gi∈GMi

,GMi
). The reward function describes

a set of constraints that must be satisfied by the agent’s state
(e.g. Reach), given a continuous parameter (e.g. gi = y)
evolving in the associated goal space (e.g. 3D Euclidean
space), see Fig. 1.

While flat multi-goal problems with continuous (Schaul
et al., 2015; Andrychowicz et al., 2017; Plappert et al., 2018)
or discrete goals (Mankowitz et al., 2018; Riedmiller et al.,
2018) have been explored in the past, only few works tackle
the problem of modular multi-goal learning (Forestier &
Oudeyer, 2016), none in an RL setting. Here, we present
CURIOUS1, a modular multi-goal reinforcement learning
(RL) algorithm that uses intrinsic motivations to efficiently
learn a continuous set of diverse goals using modular goal
representations. To build an algorithm able to learn modular
goals, one must answer the following questions: 1) How
to choose the action policy architecture? 2) How to select

1 CURIOUS stands for Continual Universal Reinforcement learn-
ing with Intrinsically mOtivated sUbstitutionS.

CURIOUS: Intrinsically Motivated Modular Multi-Goal Reinforcement Learning

the next module and goal to practice and learn about? 3)
How to efficiently transfer knowledge between modules and
goals?

Related work. Kaelbling (1993) proposed the first algo-
rithm able to leverage cross-goal learning to address a dis-
crete set of goals. For each goal, the algorithm learned
a specific value function using Q-learning (goal-experts
approach). More recently, Schaul et al. (2015) proposed
Universal Value Function Approximators (UVFA), a unique
policy able to address an infinity of goals by concatenating
the current state and goal to feed both the policy and the
value function. In UNICORN, UVFA is used to address a
discrete set of goals in parallel: reaching different objects in
a visual world (Mankowitz et al., 2018). SAC-X implements
multi-task RL where easy tasks are considered as auxiliary
tasks to help learning about the hardest task (placing cubes
inside a closed box) (Riedmiller et al., 2018). Here, one
network is trained for each task and the collected transi-
tions are shared (goal-experts approach). In other works
from multi-task RL (Teh et al., 2017; Espeholt et al., 2018;
Hessel et al., 2018), agents do not represent explicitly the
current task and aim at maximizing the overall reward. Fi-
nally, within the Intrinsically Motivated Goal Exploration
Processes framework (IMGEP), Forestier & Oudeyer (2016)
proposed MACOB, an algorithm able to target modular goals
using a population-based algorithm that mutates and replays
controllers experienced in the past. MACOB maintains a
population of solutions, one for each goal (modular goal-
experts approach), see Nguyen & Oudeyer (2012) for a
similar approach. This enables efficient cross-goal learn-
ing in high-dimensional goal spaces, but is limited by the
memory-based representation of policies.

Multi-goal approaches prove better than simply training
a policy per goal because knowledge can be transferred
between different goals using off-policy learning and hind-
sight learning (Andrychowicz et al., 2017). Off-policy learn-
ing enables the use of any transition to improve the cur-
rent policy: transitions collected from an older version of
the current policy (Lillicrap et al., 2015), from a popula-
tion of exploratory policies (Colas et al., 2018), or even
from demonstrations (Večerı́k et al., 2017). Transitions col-
lected while aiming at a particular goal can be used to learn
about any other. With finite sets of goals, each transition
is generally used to update the policy on every other goal
(Mankowitz et al., 2018; Kaelbling, 1993). With continuous
sets of goals, imaginary goals are sampled from the goal
space (Andrychowicz et al., 2017). In the case of UVFA poli-
cies, this consists in the substitution of the goal that is part
of the input by the imaginary one, a technique called goal re-
play or goal substitution. Building on UVFA, Andrychowicz
et al. (2017) proposed Hindsight Experience Replay (HER),
a method leveraging hindsight for transferring knowledge

between goals. The original goal of a transition can be sub-
stituted by any outcome experienced later in the trajectory
(imaginary goal). This helps to increase the probability to
observe rewards in reward-sparse environments.

In the literature, environments usually provide goals that the
agent is asked to solve. In the IMGEP framework however,
autonomous agents are intrinsically motivated to set their
own, possibly learning their representation (Laversanne-
Finot et al., 2018). Forestier & Oudeyer (2016) in particular,
biased the selection of the next goal to attempt towards mod-
ules showing high absolute measures of learning progress
(LP). This mechanism helps the agent to focus on learnable
goals and to disengage from goals that are currently too hard
or already solved. Veeriah et al. (2018) uses LP computed
from Bellman errors for goal selection, but this form of LP
does not improve over random goal selection.

Additional background can be found in the supplementary
document. Table 1 presents a classification of the multi-goal
approaches most related to our work.

Contributions. The contributions of this paper are:

1. A modular encoding of goals to enable learning of
continuous sets of diverse goals within a single policy
using UVFA (Reach, Push, Pick and Place, Stack). This
enables to tackle different kinds of goals, each with
their own continuous parameterization, and facilitates
transfer between modules and goals. See Sec. 2.1.

2. An active strategy for cross-module goal replay. Off-
policy learning enables to use any experience to learn
about any goal from any module. We propose to guide
the selection of module for replay using absolute learn-
ing progress measures (in addition to LP-based goal
sampling to interact with environment). See Sec. 2.2.

3. From the IMGEP perspective, a single monolithic modu-
lar multi-goal action policy. This is an alternative to the
population-based algorithms studied so far (Forestier
& Oudeyer, 2016; Forestier et al., 2017) and provides
the flexibility of RL methods.

4. An environment for modular goal RL. See Sec. 3.

5. Empirical comparisons to other architectures: a goal-
parameterized RL with HER (flat multi-goal RL) and
a multi-goal module-experts approach (one multi-goal
expert per module). See Sec. 4.1.

6. A study of the self-organization of learning phases
demonstrated by our algorithm (automatic curriculum).
See Sec. 4.2.

7. Experimental evidence of robustness to distracting
goals, forgetting and body changes in comparison with
random goal selection. See Sec. 4.3 and 4.4.

CURIOUS: Intrinsically Motivated Modular Multi-Goal Reinforcement Learning

2. CURIOUS

2.1. A Modular Multi-Goal Architecture using
Universal Approximators

UVFA concatenates the goal of the agent with its current
state to form the input of the policy and the value function
implemented by deep neural networks (Schaul et al., 2015).
With CURIOUS, we propose a new encoding of goals us-
ing modular representations. This enables to target a rich
diversity of modular goals within a single network (modu-
lar multi-goal approach), see Fig. 2. GivenGM i the goal
space of moduleM i , the current goalg is de�ned as a vec-
tor of dimensionjGj =

P N
i =1 jGM i j, where theGM i can

have different dimensionalities.g is set to0 everywhere
except in the indices corresponding to the current module
M i , where it is set togi 2 GM i . By masking the goal-inputs
corresponding to unconsidered modules, the corresponding
weights are frozen during backpropagation. In addition,
a module descriptormd of sizeN (one-hot encoding) en-
codes the current module. The overall input to the policy
network is[st ; g; md], see Fig. 2. We call this modular
goal-parameterized architecture Modular-UVFA (M-UVFA).

In Fig. 2, we can see the underlying learning architecture
(actor-critic). The actor implements the action policy and
maps the input[st ; g; md] to the next actionat . The action
is then concatenated to a copy of the actor's input to feed the
critic [st ; g; md; at]. The critic provides an estimate of the
Q-value:Q(st ; g; md; at). The critic and the actor are then
trained usingDDPG (Lillicrap et al., 2015), although any
other off-policy learning method could be used (e.g.TD3
(Fujimoto et al., 2018), orDQN for the discrete case (Mnih
et al., 2013)). More details aboutDDPG can be found in the
supplementary document or in Lillicrap et al. (2015).

2.2. Module and Goal Selection, Cross-Module
Learning, Cross-Goal Learning

In UVFA, HER andUNICORN, the next goal to target is se-
lected at random (Schaul et al., 2015; Andrychowicz et al.,
2017; Mankowitz et al., 2018). This is coherent with the
common view that the agent must comply with the desires
of an engineer and target the goal it is asked to target. Here

Figure 2.Modular goal-parameterized actor-critic architec-
ture (M -UVFA). Toy example with2 modules, parameterized
by g1 (2D) andg2 (1D) respectively. Here, the agent is attempting
goalg1 in moduleM 1 , as speci�ed by the one-hot module descrip-
tor md = h1; 0i . The actor (left) computes the actionat . The
critic (right) computes theQ-value.

on the other hand, agents have the capacity to select which
goal to target next. Because goals are not equivalent, the
agent can bene�t from intrinsic motivations towards LP
(Schmidhuber, 1991; Kaplan & Oudeyer, 2004). This can
be useful: 1) when there are distracting goals on which the
agent cannot progress; 2) when some goals are already mas-
tered. This idea comes from theIMGEP framework and was
used in Baranes & Oudeyer (2013) to guide goal selection
and in Forestier & Oudeyer (2016) to guide module selec-
tion. The problem of selecting a module can be modeled
as a non-stationary multi-armed bandit (MAB), where the
value of each arm (module) is the current absolute LP. Learn-
ing progress (LP) is de�ned as the derivative of the agent's
competence on a particular module:LPM i = dC M i

dt , where
the competenceCM i : t ! psuccess (t) is the probability of
success at timet. Here, the agent focuses its attention on
modules for which it is making the largest absolute progress,
and pays little attention to modules that are already solved
or unsolvable, i.e. for whichjLP j stays small. Using the ab-
solute value of LP also leads to the prioritization of modules
for which the agent is showing decreasing performances.
This helps to deal with forgetting: the agent reallocates
learning resources to the modules being forgotten, Sec. 4.3.

Table 1.Classi�cation of multi-goal approaches. Underlined: Algorithms internally generating goals (IMGEP), (*) using LP-based
intrinsic motivations.Italic: Population-based algorithms (non-RL).Bold: Algorithms proposed in this paper.

n GOALS, n POLICIES n GOALS, 1 POLICY

FLAT REPR. GOAL-EXPERTS: MULTI -GOAL: UVFA (Schaul et al., 2015)
(Kaelbling, 1993) HER (Andrychowicz et al., 2017)

SAC-X (Riedmiller et al., 2018) UNICORN (Mankowitz et al., 2018)
SAGG-RIAC* (Baranes & Oudeyer, 2013)

MODULAR REPR. MOD-GOAL-EXPERTS: MACOB* (Forestier & Oudeyer, 2016) MODULAR-MULTI -GOALS:
MULTI -GOAL MODULE-EXPERTS: MG -ME M -UVFA , CURIOUS *

CURIOUS: Intrinsically Motivated Modular Multi-Goal Reinforcement Learning

Learning Progress Estimation. Since an autonomous
agent is not externally provided its true competence or LP,
it needs to approximate them for each module. To measure
its competence, it uses some episodes (withpeval = 0 :1)
to evaluate itself on random modules and targets without
exploration noise. The results (success1 or failure 0) of
these rollouts are stored in competence queuesresults (i)

for all M i . In a similar way as Forestier & Oudeyer (2016),
the agent computes its subjective competence as

CM i (n
(i)
eval) =

1
l

l � 1X

j =0

results (i) (n(i)
eval � j);

wheren(i)
eval is the number of self-evaluation rollouts per-

formed by the agent in moduleM i . The subjectiveLPM i

aftern(i)
eval self-evaluation rollouts is then computed as:

LPM i (n
(i)
eval) = CM i (n

(i)
eval) � CM i (n

(i)
eval � l):

Given the subjective LP measures, we tackle the multi-
armed bandit problem by implementing a simple approach
called proportional probability matching, with an additional
� -greedy strategy for exploration. More precisely, we com-
pute theLP probabilitiespLP (M i) as:

pLP (M i) = � �
1
N

+ (1 � �) �
jLPM i jP N

j =1 jLPM j j
;

whereN is the number of modules. The ratio� implements
a mixture between random exploration of modules (left
term) and exploitation through a biased selection/replay of
modules (right term). The random exploration term enables
sampling modules that do not show any LP (i.e. already
solved, too hard, or at a plateau). This way, the agent can
check that it stays competent on modules that are already
learned, or can insist on modules that are currently too hard.

Note that we use LP for two distinct purposes: 1) Before
data collection, to select the module from which to draw the
next goal to attempt in the environment; 2) Before training,
to select the substitute module descriptor (module replay).
Recall that, once transitions are sampled from the replay
buffer, they can be modi�ed (replayed) by substituting the
original module descriptor (or goal) by a new one. The
substitute module is the one the agent is going to learn about.
When replaying a particular module more than others, the
agent allocates more resources to that module. While the use
of LP for module selection is not new (Forestier & Oudeyer,
2016), we are the �rst to consider its use for cross-module
goal replay.

Module and Goal Selection. Before interacting with the
environment, the agents selects the next goal to target by
�rst sampling a module fromM usingpLP , and second,
sampling the goal uniformly from the corresponding goal
spaceGM i .

Cross-Module and Cross-Goal Learning. In an exam-
ple with three modules, an agent computedpLP =
[0:6; 0:2; 0:2]. The agent uses these probabilities to guide
learning towards modules with high absolute LP. If the size
of the minibatch isNmb , the agent will samplebNmb � 0:6c
transitions relevant to module1, bNmb � 0:2c transitions
relevant to module 2 etc. A transition that isrelevant for
moduleM i (e.g. Push module), means that it comes from
an episode during which the corresponding outcome has
changed (e.g. cube position). This sampling bias towards
“eventful” transitions is similar to Energy-Based Prioriti-
zation (Zhao & Tresp, 2018) (see supp. doc.). In this
minibatch, every transition has been sampled to train on
a speci�c module (e.g.m�

d), although it could have been
collected while targeting another module (e.g.md). To
perform this cross-module learning, we simply substitute
the latter by the former. Goal substitution is then performed
using hindsight, which means the goalg of a transition is
sometimes (p = 0 :8) replaced by an outcome reached later
in the same episodeg� (Andrychowicz et al., 2017).

Internal Reward. After module descriptors and goals
have been substituted, the agent computes an internal reward
for each transition using a reward function parameterized
by the newm�

d and goalg� . Thus it answers:What would
have been my reward for experiencing this transition, if
I were aiming at that imagined goal from that imagined
module?The reward is non-negative (0) when the outcome
satis�es the constraints described by the imagined module
m�

d, relative to the imaginedg� ; negative otherwise (-1).
In a reaching module for instance (see Fig. 1), a positive
reward is generated when the Euclidean distance between
the 3D target (goal) and the gripper (outcome) falls below a
precision parameter� reach (reward constraint associated to
the reaching module).

2.3. Combining Modular-UVFA and Intrinsically
Motivated Goal Exploration

A schematic view ofCURIOUS is given in Fig. 3. The
detailed algorithm is given in the supplementary document.

1. Module and goal selection.The agent selects module
M i and goalgi for the next rollout (blue), respectively
sampled from the set of potential modulesM using
pLP (purple), and uniformly from the corresponding
goal spaceGM i .

2. Data collection.The agent interacts with the environ-
ment using its currentM-UVFA policy (grey), collects
transitions and stores them in memory (red).

3. LP update. If it was a self-evaluation rollout, the agent
updates its measures of competence, LP andpLP given
the new result (success or failure, purple).

CURIOUS: Intrinsically Motivated Modular Multi-Goal Reinforcement Learning

4. Module and goal substitution.The agent decides on
which modules and goals to train. To update the policy
and critic, the algorithm �rst samples a minibatch from
the replay buffers (red) usingpLP and implements
module and goal substitutions to perform cross-module
and cross-goal learning (orange), see Sec. 2.2.

5. Internal reward. The agent computes its rewardr
for each transition, usingRM;g parameterized by the
substitute modulem�

d and goalg� (brown).

6. RL updates. The agent updates its policy and value
function with DDPG using the modi�ed minibatch
(green).

Figure 3.Schematic view ofCURIOUS.

2.4. Evaluation Methodology

The performance of the agents are evaluated of�ine in terms
of success rates over sets of achievable goals (de�ned by the
experimenter). Every point of a learning curve represents
the success rate over95of�ine evaluation rollouts (5 � 19
actors), using random achievable goals. Evaluation is com-
pletely independent from training, i.e. agents cannot train
on evaluation transitions. We use the non-parametric one-
tail Mann-Whitney U-test with con�dence level� = 0 :01
for all comparisons. More details and justi�cations can be
found in the supplementary document.

3. A Modular Goal Environment

Modular Goal Fetch Armis a new simulated environment
adapted from the OpenAI Gym suite (Brockman et al.,
2016). The agent is embodied by a robotic arm facing
2 cubes randomly positioned on a table. The agent controls
the position of its gripper and the gripper opening (4D). It
can target a diverse set of modular goals: (M 1) Reacha 3D

target with the gripper; (M 2) Pushcube1 onto a2D target
on the table; (M 3) Pick and Placecube1 on a3D target;
(M 4) Stackcube1 over cube2. Additional Push modules
concerning additional out-of-reach and moving cubes can
be de�ned (impossible, distracting goals). Further details
can be found in the supplementary document.

4. Experiment and Results

In this section, we present ablative studies to assess the
relative importance of: 1) the policy and value function
architecture and 2) the use of intrinsically motivated mod-
ule selection for practice and replay. We callM-UVFA the
algorithm using a modular goal-parameterized policy and
random module choices, while the intrinsically motivated
version is calledCURIOUS. We do not investigate the ef-
�ciency of HER or the ef�ciency of the sampling bias to-
wards interesting transitions as they were already studied
in Andrychowicz et al. (2017); Plappert et al. (2018) and
Zhao & Tresp (2018) respectively. For fair comparisons, we
apply both mechanisms to all the tested algorithms.

4.1. Impact of Policy and Value Function Architecture

Experiments. In this section, we investigate the impact
of using anM-UVFA architecture for the policy and value
function. The module-set is composed of four achievable
modules and four distracting modules. We test this algo-
rithm against two baselines:

1. A �at multi-goal architecture (HER). This algorithm
does not represent goals in a modular fashion but
in a linear way. The corresponding goal is selected
uniformly insideG, a holistic goal space such that
G =

Q N
i =1 GM i . To generate a reward, the agent needs

to satisfy the constraints described by all the modules
at once. This goal-parameterized architecture is equiv-
alent toUVFA, which makes the algorithm equivalent
to HER +DDPG.

2. A multi-goal module-expertsarchitecture (MG-ME)
where an expert multi-goal policy is trained for each of
theN modules. Each policy is trained one epoch every
N on its designated module and shares the collected
transitions with other experts. When evaluated on a par-
ticular module, the algorithm uses the corresponding
module-expert.

Results. Fig. 5 shows the evolution of the average success
rate computed over achievable goals forM-UVFA and the
two baselines described above. The learning curve ofHER

stays �at. This can be easily understood as none of the goals
expressed in the complete goal spaceGcorresponds to a real
situation (e.g. the agent cannot reach a 3D target with its
gripper while placing a cube at another). The agent cannot

CURIOUS: Intrinsically Motivated Modular Multi-Goal Reinforcement Learning

Figure 5.Impact of the policy and value function architecture.
Average success rates computed over achievable goals. Mean +/-
std over 10 trials are plotted, while dots indicate signi�cance when
testingM-UVFA againstMG-ME.

ful�ll the constraints of all modules simultaneously, thus
receives no reward. This motivates the use of a modular
representation with separated modules. ComparingMG-
ME andM-UVFA, we can see that the achievable goals are
learned much faster in the multi-modular-goals approach
(one, policy,� 250� 103 vs. � 450� 103 episodes). From
now on, all experiments use theM-UVFA architecture.

4.2. Visualizing the Intrinsic Motivation towards
Learning Progress

Experiments. This section aims at showing the inner
working ofCURIOUS's intrinsic motivation towards LP. Here
we focus on a setting with four achievable modules (Reach,
Push, Pick and Place, and Stack).

Results. Fig. 4(a) shows the evolution of the module-
dependent competence measures as subjectively perceived
by the agent, while Fig. 4(b) shows the evolution of the
corresponding LP measures. Finally, Fig. 4(c) shows the
corresponding module selection probabilitiespLP , a mix-
ture of random selection with probability� and active se-
lection proportional to LP measures with probability1 � � .
These �gures demonstrate the existence of successive learn-
ing phases, that can be interpreted as developmental phases
(Oudeyer & Smith, 2016). The robot �rst learns how to

control its gripper (M 1), then to push objects on a desired
target on the table (M 2) before it learns how to place the
cube on a3D target (M 3) and how to stack the two cubes
(M 4). Fig. 4(b) shows that LP stays small for modules
that are already solved (e.g.M 1 after104 episodes) or too
hard to solve (e.g.M 3 andM 4 before35 � 103 episodes),
and increases when a module is being learned. We further
discuss the link between these learning phases, developmen-
tal learning and curriculum learning in the supplementary
document.

4.3. Impact of the Intrinsic Motivation: Resilience to
Forgetting and Sensor Perturbations

Experiments. During learning, the agent can forget about
a previously mastered module. This can happen because is
not targeting it often (catastrophic forgetting), because of
environmental changes (e.g. icy �oor) or because of body
changes (e.g. sensor failure). Ideally,CURIOUSshould be
able to detect and react when such situations arise. This
section investigates the resilience of our algorithm to such
perturbations and compares it to theM-UVFA baseline.

We �rst look at a run where forgetting occurs and explain
how CURIOUS detects the situation and reacts. Since for-
getting cannot be triggered, we add more emphasis to a
second experiment, where we simulate a time-locked sen-
sory failure. We present the following setup to the agent:
�rst, it learns about a set of4 modules (Reach, Push, Pick
and Place for cube1, and Push for cube2). Then, a sensory
perturbation is triggered at a precise time (epoch = 250,
episode= 237:5 � 103) such that the perception of cube2
gets shifted by0:05 (simulation units) until the end of the
run. The performance on this module suddenly drops and
we compare the recoveries ofCURIOUSandM-UVFA.

Results - Forgetting. Looking at Fig. 4(a), we can ob-
serve a drop in the competence onM 3 around episode
80 � 103. This phenomenon is usually described ascatas-
trophic forgetting: because it is trained on other modules,
the network can forget about the previously mastered mod-

(a) (b) (c)

Figure 4.Visualization of a single run. a: Module-dependent subjective measures of competence forCURIOUS(1 run). b: Corresponding
module-dependent subjective measures of absolute LP. c: Corresponding probabilitiespLP to select modules to practice or to learn about.

