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Abstract
When observing the actions of others, humans
make inferences about why they acted as they
did, and what this implies about the world; hu-
mans also use the fact that their actions will be
interpreted in this manner, allowing them to act in-
formatively and thereby communicate efficiently
with others. Although learning algorithms have
recently achieved superhuman performance in a
number of two-player, zero-sum games, scalable
multi-agent reinforcement learning algorithms
that can discover effective strategies and conven-
tions in complex, partially observable settings
have proven elusive. We present the Bayesian
action decoder (BAD), a new multi-agent learn-
ing method that uses an approximate Bayesian
update to obtain a public belief that conditions on
the actions taken by all agents in the environment.
BAD introduces a new Markov decision process,
the public belief MDP, in which the action space
consists of all deterministic partial policies, and
exploits the fact that an agent acting only on this
public belief state can still learn to use its private
information if the action space is augmented to
be over all partial policies mapping private infor-
mation into environment actions. The Bayesian
update is closely related to the theory of mind
reasoning that humans carry out when observ-
ing others’ actions. We first validate BAD on a
proof-of-principle two-step matrix game, where
it outperforms policy gradient methods; we then
evaluate BAD on the challenging, cooperative
partial-information card game Hanabi, where, in
the two-player setting, it surpasses all previously
published learning and hand-coded approaches,
establishing a new state of the art.

*Equal contribution 1University of Oxford, UK 2Work done at
DeepMind. JF has since moved to Facebook AI Research, Menlo
Park, USA. 3DeepMind, London, UK. Correspondence to: Jakob
Foerster <jnf@fb.com>, Francis Song <songf@google.com>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

1. Introduction
In multi-agent reinforcement learning (RL), agents must
learn to act in an environment that contains multiple learn-
ing agents, often under partial observability (Littman, 1994).
In recent years, a variety of deep RL methods have been
adapted to this setting (Foerster et al., 2016a; Lowe et al.,
2017; Perolat et al., 2017; Jaderberg et al., 2018). In the par-
ticular case of cooperative, partially observable multi-agent
settings, a key challenge is to discover communication proto-
cols while simultaneously learning policies. Such protocols
are essential for many real-world tasks where agents must
interact and communicate seamlessly with other agents.

State-of-the-art deep RL methods for learning communica-
tion protocols mostly use backpropagation across a com-
munication channel (Sukhbaatar et al., 2016; Foerster et al.,
2016a). This approach has two limitations. First, it can only
be applied to cheap-talk channels in which the communi-
cation action has no effect on the environment. Second, it
misses the conceptual connection between communication
and reasoning over the beliefs of others, which is known to
be important to how humans learn to communicate (Grice,
1975; Frank & Goodman, 2012).

A well-known domain that highlights these challenges is
Hanabi, a popular, fully cooperative card game of incom-
plete information that is difficult even for humans (Hanabi
won the Spiel des Jahres award in 2013). A distinguishing
feature of the game is that players see everyone’s hands but
their own and must find effective conventions for commu-
nication to succeed. Since there is no cheap-talk channel,
most recent methods for emergent communication are inap-
plicable, necessitating a novel approach. Because of these
unique features, Hanabi has recently been proposed as a
new benchmark for multi-agent learning (Bard et al., 2019).

The goal in Hanabi is to play a legal sequence of cards and,
to aid this process, players are allowed to give each other
hints indicating which cards are of a specific rank or colour.
These hints have two levels of semantics. The first level is
the surface-level content of the hint, which is grounded in
the properties of the cards that they describe. This level of
semantics is independent of any possible intent of the agent
in providing the hint, and would be equally meaningful if
provided by a random agent. For example, knowing which
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Figure 1: a) In an MDP the action u is sampled from a policy π that conditions on the state features (here separated into f pub

and fa). The next state is sampled from P (s′|s, u). b) In a PuB-MDP, public features f pub generated by the environment and
the public belief together constitute the Markov state sBAD. The ‘action’ sampled by the BAD agent is in fact a deterministic
partial policy ∆

π ∼ πBAD(
∆

π|sBAD) that maps from private observations fa to actions. Only the acting agent observes fa and
deterministically computes u =

∆

π(fa). u is provided to the environment, which transitions to state s′ and produces the new
observation f pub′ . BAD then uses the public belief update to compute a new belief B′ conditioned on u and ∆

π (Equation 1),
thereby completing the state transition.

cards are of a specific colour often does not indicate whether
they can be safely played or discarded.

A second level of semantics arises from information con-
tained in the actions themselves, i.e., the very fact that an
agent decided to take a particular action and not another,
rather than the information resulting from the state transition
induced by the action. This is essential to the formation of
conventions and to discovering good strategies in Hanabi.

To address these challenges, we propose the Bayesian ac-
tion decoder (BAD), a novel multi-agent RL algorithm for
discovering effective communication protocols and policies
in cooperative, partially observable multi-agent settings. In-
spired by the work of Nayyar et al. (2013), BAD uses all
publicly observable features in the environment to compute
a public belief over the players’ private features. This ef-
fectively defines a new Markov process, the public belief
Markov decision process (PuB-MDP), in which the action
space is the set of deterministic partial policies, parame-
terised by deep neural networks, that can be sampled for a
given public state. By acting in the space of deterministic
partial policies that map from private observations into envi-
ronment actions, an agent acting only on this public belief
state can still learn an optimal policy. Using approximate,
factorised Bayesian updates and deep neural networks, we
show for the first time how a method using the public belief
of Nayyar et al. (2013), can scale to large state spaces and
allow agents to carry out a form of counterfactual reasoning.

When an agent observes the action of another agent, the
public belief is updated by sampling a set of possible private
states from the public belief and filtering for those states in
which the teammate chose the observed action. This process

is closely related to the kind of theory of mind reasoning
that humans routinely undertake (Baker et al., 2017). Such
reasoning seeks to understand why a person took a specific
action among several, and what information this contains
about the distribution over private observations.

We experimentally validate an exact version of BAD on a
simple two-step matrix game, showing that it outperforms
policy gradient methods. We then apply an approximate
version to Hanabi, where BAD achieves an average score of
24.174 points in the two-player setting, surpassing the best
previously published results for learning agents by around
9 points and approaching the best known performance of
24.9 points for (cheating) open-hand gameplay. BAD thus
establishes a current state-of-the-art on the Hanabi Learning
Environment (Bard et al., 2019) for the two player self-
play setting. We further show that the beliefs obtained via
Bayesian reasoning have 40% less uncertainty over possible
hands than those using only grounded information.

2. Background and Setting
Consider a partially observable multi-agent environment
with A agents. At time t each agent a takes action uat
sampled from policy πa(ua|τat ), where τat is its action-
observation history τat = {oa0 , ua0 , .., oat }. Here oat are the
observations of agent a at time t, which is given by the obser-
vation function O(a, st) in state st. The next Markov state
st+1 of the environment is produced by the transition func-
tion P (st+1|st,ut), which conditions on the joint action
ut = {u1t , .., uAt }, where uat ∈ U . In the fully cooperative
setting considered here, each agent receives a per-timestep
team reward rt+1(st,ut) that depends on the last state and
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last joint action. We allow centralised training but require de-
centralised execution, from which follows that the policies
πa are known to all agents. This setting can be formalised
as a Dec-POMDP (Oliehoek, 2012).

The goal of multi-agent RL is to find a set of agent policies
{πa}a=1,...,A that maximise the total expected return per
episode J = Eτ∼P (τ |πa)

[∑
t γ

trt
]
, where γ is the discount

factor. In deep RL, optimisation involves training neural
networks that represent policies and value functions. In par-
tially observable settings, the networks are typically recur-
rent, e.g., LSTMs (Wierstra et al., 2009), as they can learn
to represent a sufficient statistic of the action-observation
history τat in the hidden activations.

Here we consider a setting where the Markov state st con-
sists of a set of discrete features ft, composed of public
features f pub

t and private features f pri
t . The public features

are common knowledge to all agents, while private features
are observable by at least one, but not all, of the agents.
fat are the private features observable by agent a. We use
the notation f pri

t [i] to indicate the i-th private state feature.
For example, in a typical card game the cards being played
openly on the table are part of f pub

t , the cards held by each
player are in f pri

t , fat contains the cards held by agent a,
and f pri

t [i] corresponds to a specific card held by a specific
player. We assume that this separation of state features is
common knowledge to all agents. An example of this sep-
aration for the case of an MDP is illustrated in Figure 1a.
Furthermore, while all our formalisms and methods can be
extended to synchronous action settings, for simplicity we
assume a turn-based setting with one agent acting per step.

3. Method
Below we introduce the Bayesian Action Decoder (BAD).
BAD scales the public belief of Nayyar et al. (2013) to
large state spaces using factorised beliefs, an approximate
Bayesian update, and sampled deterministic policies param-
eterised by deep neural networks.

3.1. Public belief

In single-agent partially observable settings, it is clearly
useful for an agent to maintain beliefs about the hidden
environment state, since this is a sufficient statistic for its
action-observation history (Kaelbling et al., 1998). In multi-
agent settings, however, it is not obvious what the beliefs
should be over. It is not enough to maintain beliefs over the
environment state alone, as other agents also have unobserv-
able internal states. In interactive POMDPs (I-POMDPs;
Gmytrasiewicz & Doshi 2005), agents model each other’s
beliefs, beliefs over these beliefs, and so on, but this is often
computationally intractable.

Fortunately, in our setting the common knowledge described
above makes it possible to compute a public belief, (Nay-
yar et al., 2013), that makes the recursion of I-POMDPs
unnecessary. In our case the public belief Bt is the posterior
over all of the private state features given only the public
features, i.e., Bt = P (f pri

t |f
pub
≤t ), where ≤ t indicates his-

tory: f pub
≤t = (f pub

0 , .., f pub
t ). Because Bt conditions only

on publicly available information, it can be computed inde-
pendently by every agent via a common algorithm, yielding
the same result for all agents. Furthermore, since all agents
know f pub, it suffices for Bt to be a posterior over f pri, not
ft = {f pri, f pub}.

While the public belief avoids recursive reasoning, it is not
obvious how it can be used to guide behaviour: agents that
condition their actions only on the public belief will never
exploit their private observations. As Nayyar et al. (2013)
propose, we can construct a special public agent whose
policy πBAD conditions on the public observation and the
public belief but which nonetheless can generate optimal
behaviour.1 This is possible because an action selected by
πBAD specifies a partial policy, ∆

π : {fa} → U , for the
acting agent, deterministically mapping private observations
to environment actions. The sampling of a deterministic
partial policy also addresses a fundamental tension in using
policy gradients to learn communication protocols, namely,
differentiation and exploration require high-entropy policies,
while communication requires low-entropy policies. By
sampling in the space of deterministic policies, both can be
achieved.

Intuitively, the public agent can be viewed as a third party
that can observe only the public observation and belief.
While πBAD cannot observe the private state, it can tell each
agent what to do for any private observation it might receive.
Thus at each timestep, the public agent selects ∆

π based on Bt
and f pub

t ; the acting agent then selects the action uat =
∆

π(fa)
by supplying the private observation hidden from the public
agent; the public agent then uses the observed action uat to
construct the new belief Bt+1.

3.2. Public Belief MDP

Since ∆

π and uat are public information, observing uat induces
a posterior belief over the possible private state features f pri

t

given by the public belief update:

P (fat |uat ,Bt, f
pub
t ,

∆

π) =
P (uat |fat ,

∆

π)P (fat |Bt, f
pub
t )

P (uat |Bt, f
pub
t ,

∆

π)
(1)

∝ 1(
∆

π(fat ), uat )P (fat |Bt, f
pub
t ).

(2)

1πBAD conditions on the public observation because the public
belief is a sufficient statistic for the public observation, but only
over the private features.
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Using this Bayesian belief update, we can define a new
Markov process, the public belief MDP (PuB-MDP), as
illustrated in Figure 1b. The state sBAD = {B, f pub} of
the PuB-MDP consists of the public observation and pub-
lic belief; the action space is the set of deterministic par-
tial policies that map from private observations to envi-
ronment actions; and the transition function is given by
P (s′BAD|sBAD,

∆

π). The next state contains the new public
belief calculated using the public belief update. The reward
function marginalises over the private state features:

rBAD(sBAD,
∆

π) =
∑
f pri

B(f pri)r(s,
∆

π(f pri)). (3)

Since s′BAD includes the new public belief, and that belief
is computed via an update that conditions on ∆

π, the PuB-
MDP transition function conditions on all of ∆

π, not just the
selected action uat . Thus the state transition depends not just
on the executed action, but on the counterfactual actions:
those specified by ∆

π for private observations other than fat .

In the remainder of this section, we describe how factorised
beliefs and policies can be used to efficiently learn a public
policy πBAD for the PuB-MDP.

3.3. Sampling Deterministic Partial Policies

For each public state, πBAD must select a distribution
πBAD(

∆

π|sBAD) over deterministic partial policies. The size
of this space is exponential in the number of possible private
observations |fa|, but we can reduce this to a linear depen-
dence by assuming a distribution across ∆

π that factorises
across the different private observations, i.e., for all ∆

π,

πBAD(
∆

π|Bt, f pub) :=
∏
fa

πBAD(
∆

π(fa)|Bt, f pub, fa). (4)

With this restriction, we can parameterise πBAD with factors
of the form πθBAD(ua|Bt, f pub, fa) using a function approx-
imator such as a deep neural network. In order for all of
the agents to perform the public belief update, the sampled
∆

π must be public. We resolve this by having ∆

π sampled
deterministically from a given Bt and f pub

t , using a common
knowledge random seed ξt. The seeds are shared prior to
the game so that all agents sample the same ∆

π. This re-
sembles the way humans share common ways of reasoning
in card games and allows the agents to explore alternative
policies jointly as a team. Further details on the mechanics
of parameterising and sampling from πBAD are provided in
the Supplemental Material.

3.4. Factorised Belief Updates.

In general, representing exact beliefs is intractable in all
but the smallest state spaces. For example, in card games
the number of possible hands is typically exponential in
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Figure 2: Payoffs for the toy matrix-like game. The two
outer dimensions correspond to the card held by each player,
the two inner dimensions to the action chosen by each player.
Payouts are structured such that Player 1 must encode in-
formation about their card in the action they chose in order
to obtain maximum payoffs. Although presented here in
matrix form for compactness, this is a two-step, turn-based
game, with Player 1 always taking the first action and Player
2 taking an action after observing Player 1’s action.

the number of cards held by all players. To avoid this un-
favourable scaling, we can instead represent an approximate
factorised belief state

P (f pri
t |f

pub
≤t ) ≈

∏
i

P (f pri
t [i]|f pub

≤t ) =: Bfact
t . (5)

From here on we drop the superscript and use B exclu-
sively to refer to the factorised belief. In a card game each
factor represents per-card probability distributions, assum-
ing approximate independence across the different cards
both within a hand and across players. This approximation
makes it possible to represent and reason over the otherwise
intractably large state spaces that commonly occur in many
settings, including card games.

To carry out the public belief update with a factorised repre-
sentation we maintain factorised likelihood terms Lt[f [i]]
for each private feature that we update recursively:

Lt[f [i]] := P (ua≤t|f [i],B≤t, f pub
≤t ,

∆

π≤t) (6)

≈ Lt−1[f [i]] · P (uat |f [i],Bt, f pub
t ,

∆

πt) (7)

= Lt−1[f [i]] ·
Eft∼Bt

[
1(ft[i], f [i])1(

∆

π(fat ), uat )
]

Eft∼Bt

[
1(ft[i], f [i])

] ,

(8)
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where (7) assumes that actions are (approximately) condi-
tionally independent of the future given the past. As indi-
cated, these likelihood terms are calculated by sampling,
and the more samples the better.

3.5. Self-Consistent Beliefs

This factorisation is only an approximation, even in simple
card games: knowledge that a player is holding a specific
card clearly influences the probability that another player
is holding that same card. Furthermore, our approximation
can yield beliefs that are not even self-consistent, i.e., they
are not the marginalisation of any belief over joint features.
While not central to the key ideas behind BAD, we introduce
a general iterative procedure that can account for feature
interactions in factorised models. Starting with a public
belief B0 = Bt we can iteratively update the belief to make
it more self-consistent through re-marginalisation:

Bk+1(f [i]) =
∑
f [−i]
Bk(f [−i])P (f [i]|f [−i], f pub

≤t , u
a
≤t,

∆

π≤t)

(9)

∝ Ef [−i]∼Bk

[
Lt(f [i])P (f [i]|f [−i], f pub

t )
]
,

(10)

where f [−i] denotes all features excluding f [i]. In the last
step we used the factorised likelihoods from above to con-
vert to an expectation, so that we can use samples to ap-
proximate the intractable sum across features. The notion
of refining the distribution over one feature while keeping
the distribution across all other features fixed is similar to
Expectation Propagation for factor graphs (Minka, 2001).
However, the card counts constitute a global factor, making
the factor graph formulation less useful. While this iterative
update can in principle be carried out until convergence, in
practice we terminate after a fixed number of iterations.

4. Experiments and Results
4.1. Matrix Game

We first present proof-of-principle results for a two-player,
two-step partially observable matrix-like game (Figure 2).
The state consists of 2 random bits (the cards for Player 1
and 2) and the action space consists of 3 discrete actions.
Each player observes its own card, with Player 2 also ob-
serving Player 1’s action before acting, which in princi-
ple allows Player 1 to encode information about its card
with its action. The reward is specified by a payoff tensor,
r = Payoff[card1][card2][u1][u2], where carda and ua are
the card and action of the two players, respectively. The
payout tensor is structured such that the optimal reward can
only be achieved if the two players establish a convention,
in particular if Player 1 chooses informative actions that can
be decoded by Player 2.

Figure 3: BAD, both with and without counterfactual (CF)
gradients, outperforms vanilla policy gradient on the matrix-
like game. Each line is the mean over 1000 games, and the
shade indicates the standard error of the mean (s.e.m.).

As shown in Figure 3, BAD clearly outperforms the base-
line policy-gradient method on the toy matrix game. In this
small, exact setting, it is also possible to estimate counterfac-
tual (CF) policy gradients that reinforce not only the action
taken, but also these counterfactual actions. This can be
achieved by replacing log πa(uat |τa) with logP (

∆

π|Bt, f pub)
in the estimation of the policy gradient. However, the addi-
tional improvement in performance from using CF gradients
is minor compared to the initial performance gain from us-
ing a counterfactual belief state.

Code for the matrix game with a proof-of-principle im-
plementation of BAD is available at https://bit.ly/
2P3YOyd.

4.2. Hanabi

Here we briefly describe the rules of 2-player Hanabi.

There are 5 cards in a hand. For each of the 5 colours there
are three 1s, one 5, and two each of all other ranks, i.e., 10
cards per colour for a total of 50 = 5× 10 cards in the deck.

While this is a modestly large number of cards, even for
2 players it leads to 6.2× 1013 possible joint hands at the
beginning of the game.

4.3. Observations and Actions

Each player observes the hands of all other players, but
not their own. The action space consists of 2 × 5 options
for discarding and playing cards, and 5 + 5 options per
teammate for hinting colours and ranks. Hints reveal all
cards of a specific rank or colour to one of the teammates,

https://bit.ly/2P3YOyd
https://bit.ly/2P3YOyd


Bayesian Action Decoder

e.g., ‘Player 2’s card 3 and 5 are red’. Hinting for colours
and ranks not present in the hand of the teammate (so-called
‘empty hints’) is not allowed.

Each hint costs one hint token. The game starts with 8
hint tokens, which can be recovered by discarding cards.
After a player has played or discarded a card, she draws a
new card from the deck. When a player picks up the last
card, everyone (including that player) takes one more action
before the game terminates. Legal gameplay consists of
building 5 fireworks, which are piles of ascending numbers,
starting at 1, for each colour. When the 5 has been added to
a pile the firework is complete and the team obtains another
hint token (unless they already have 8). A life token is lost
each time a player plays an illegal card; after three mistakes
the game terminates. Players receive 1 point after playing
any playable card, with a perfect score being 25 = 5× 5.

The number of hint and life tokens at any time are observed
by all players, as are the played and discarded cards, the last
action of the acting player and any hints provided.

4.4. Beliefs in Hanabi

The basic belief calculation in Hanabi is straightforward:
f pub
t consists of a vector of ‘candidates’C containing counts

for all remaining cards, and a ‘hint mask’ HM, an ANh ×
(NcolorNrank + 1) binary matrix that is 1 if in a given ‘slot’
the player could be holding a specific card according to the
hints so far, and 0 otherwise; the additional 1 accounts for
the possibility that the card may not exist in the final round
of play. Slots correspond to the features of the private state
space f [i], for example the 3rd card of the second player.
Hints contain both positive and negative information: for
example, the statement ‘the 2nd and 4th cards are red’ also
implies that all other cards are not red.

The basic belief B0 can be calculated as

B0(f [i]) = P (f [i]|f pub) ∝ C(f)× HM(f [i]). (11)

We call this the ‘V0 belief’, in which the belief for each
card depends only on publicly available information for that
card. In our experiments, we focus on baseline agents that
receive this basic belief, rather than the raw hints, as public
observation inputs; while the problem of simply remember-
ing all hints and their most immediate implication for card
counts is potentially challenging for humans in recreational
play, we are here more interested in the problem of forming
effective conventions for high-level play.

As noted above, this basic belief misses an important inter-
action between the hints for different slots. We can calculate
an approximate version of the self-consistent beliefs that
avoids the potentially expensive and noisy sampling step
in Equation 10 (note that this sampling is distinct from the
sampling required to compute the marginal likelihood in

Equation 8). As derived in the Supplemental Material,

Bk+1(f [i]) ∝

(
C(f)−

∑
j 6=i

Bk(f [j])

)
×HM(f [i]). (12)

We call the resulting belief at convergence (or after a max-
imum number of iterations) the ‘V1 belief‘. It does not
condition on the Bayesian probabilities but considers inter-
actions between hints for different cards. In essence, at each
iteration the belief for a given slot is updated by reducing
the candidate count by the number of cards believed to be
held across all other slots.

By running the same algorithm but including L, we obtain
the Bayesian beliefs BB that lie at the core of BAD:

BB0(f [i]) ∝ C(f)× HM(f [i])× L(f [i]), (13)

BBk+1(f [i]) ∝

(
C(f)−

∑
j 6=i

Bk(f [j])

)
× HM(f [i])× L(f [i]). (14)

In practice, to ensure stability, the final ‘V2 belief’ that we
use is an interpolation between the Bayesian belief and the
V1 belief: V2 = (1 − α)BB + αV1 with α = 0.01 (we
found α = 0.1 to also work). For the Bayesian update we
sampled S = 3, 000 hands during training and S = 20, 000
hands for the final test games.

4.5. Architecture Details for Baselines and Method

Advantage actor-critic agents were trained using the
Importance-Weighted Actor-Learner Architecture (Espeholt
et al., 2018), in particular the multi-agent implementation
described in Jaderberg et al. (2018). In this framework,
‘actors’ continually generate trajectories of experience (se-
quences of states, actions, and rewards) by having agents
(self-)playing the game, which are then used by ‘learners’ to
perform batched gradient updates (batch size was 32 for all
agents). Because the policy used to generate the trajectory
can be several gradient updates behind the policy at the time
of the gradient update, V-trace was applied to correct for
the off-policy trajectories. The length of the trajectories, or
rollouts, was 65, the maximum length of a winning game.

Further details for the hyperparameters, architecture, and
training are given in the Supplemental Material.

4.6. Results on Hanabi

The BAD agent achieves a new state-of-the-art mean per-
formance of 24.174 points on two-player Hanabi. In Fig-
ure 4a we show training curves and test performance for
BAD and two LSTM-based baseline methods, as well as the
performance of FireFlower (https://github.com/
lightvector/fireflower), the best known hand-
coded bot for two-player Hanabi. For the LSTM agents,

https://github.com/lightvector/fireflower
https://github.com/lightvector/fireflower
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(a) (b) (c)

Figure 4: a) Hanabi training curves for BAD and the V0 and V1 baseline methods using LSTMs rather than the Bayesian
belief. Thick lines indicate the final evaluated agent for each agent type, with the dots showing the final test score. Error
bars (standard error of the mean, s.e.m.) are smaller than the dots. Upward kinks in the curves are generally due to agents
‘evolving’ in PBT by copying its weights and hyperparameters (plus perturbations) from a superior agent. b) Distribution of
game scores for BAD on Hanabi under testing conditions. BAD achieves a perfect score in almost 60% of the games. The
dashed line shows the proportion of perfect games reported for FireFlower, the best known hard-coded bot for two-player
Hanabi. c) Per-card cross entropy with the true hand for different belief mechanisms during BAD play. V0 is the basic belief
based on hints and card counts, V1 is the self-consistent belief, and V2 is the BAD belief which also includes the Bayesian
update. The BAD agent conveys around 40% of the information via conventions, rather than grounded information.

test performance was obtained by using the greedy version
of the trained policy, resulting in slightly higher scores than
during training. To select the agent, we first performed a
sweep over all agents for 10,000 games, then carried out a
final test run of 100,000 games on the best agent from the
sweep to obtain an unbiased score. For the BAD agent we
also increased the number of sampled hands.

The results for other learning methods from the literature per-
form below the range of the y-axis (far below 20 points) and
are omitted for readability. We note that, under a strict inter-
pretation of the rules of Hanabi, games in which all three er-
ror tokens are exhausted should be awarded a score of 0. Un-
der these rules the same BAD agent achieves 23.917±0.009
s.e.m, the best known score, even though it was not trained
under these conditions. SmartBot and FireFlower achieve
average scores of 22.99 and 22.56 respectively.

While not all of the game play BAD learns is easy to follow,
some conventions can be understood simply from inspecting
the game. Printouts of 100 random games can be found at
https://bit.ly/2zeEShh. One convention stands
out: Hinting for ‘red’ or ‘yellow’ indicates that the newest
card of the other player is playable. We found that in over
80% of cases when an agent hints ‘red’ or ‘yellow’, the next
action of the other agent is to play the newest card. This
convention is very powerful: Typically agents know the
least about the newest card, so by hinting ‘red’ or ‘yellow’,
agents can use a single hint to tell the other agent that the

Agent Learning steps Mean ± s.e.m. Prop. perfect

SmartBot - 23.09 29.52%
FireFlower - 23.37 ± 0.0002 52.6%
V0-LSTM 20.2B 23.622 ± 0.005 36.5%
V1-LSTM 21.1B 23.919 ± 0.004 47.5%

BAD 16.3B 24.174± 0.004 58.6%

Table 1: Test scores on 100K games. The LSTM agents
were tested with a greedy version of the trained policy, while
the final BAD agent was evaluated with V1 mix-in α = 0.01,
20K sampled hands, and inverse softmax temperature 100.0.
The FireFlower bot was evaluated over 25K games.

card is playable. Indeed, the use of two colours to indicate
‘play newest card’ was present all of the highest-performing
agents we studied. Hinting ‘white’ and ‘blue’ are followed
by a discard of the newest card in over 25% of cases. We
also found that the agent sometimes attempts to play cards
which are not playable in order to convey information to
their team mate. In general, unlike human players, agents
play and discard predominantly from the last card. In the
supplementary material we also include a written analysis
of our bot by the creator of FireFlower.

Figure 4c shows the quality of the different beliefs. While
the iterated belief update leads to a reduction in cross en-
tropy compared to the basic belief, a much greater reduction

https://bit.ly/2zeEShh
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in cross entropy is obtained using counterfactual beliefs.
This clearly demonstrates the importance of learning con-
ventions for successful gameplay in Hanabi: Roughly 40%
of the information is obtained through conventions rather
than through the grounded information and card counting.

5. Related Work
5.1. Learning to Communicate

Many works have addressed problem settings where agents
must learn to communicate in order to cooperatively solve
a toy problem. These tasks typically involve a cheap-talk
communication channel that can be modeled as a continu-
ous variable during training, which allows differentiation
through the channel as first proposed by Foerster et al.
(2016a) and Sukhbaatar et al. (2016). In this work we fo-
cused on the case where agents must learn to communicate
via grounded hinting actions and observable environment
actions rather than a cheap-talk channel. This is closest to
the “hat game” of Foerster et al. (2016b), who proposed a
simple extension to recurrent deep Q-networks rather than
explicitly modeling action-conditioned Bayesian beliefs. An
idea similar to the Pub-MDP was introduced in the context
of decentralised stochastic control by Nayyar et al. (2013),
who also formulated a coordinator that uses “common in-
formation” to map local controller information to actions.
However, they did not provide a concrete solution method
that can scale to a high-dimensional problem like Hanabi.

5.2. Hanabi

A number of papers have been published on Hanabi. Baffier
et al. (2016) showed that optimal gameplay in Hanabi is
NP-hard even when players can observe their own cards.
Encoding schemes similar to the hat game essentially solve
the five-player case (Cox et al., 2015), but only achieve
17.8 points in the two-player setting (Bouzy, 2017). Walton-
Rivers et al. (2017) developed a variety of Monte Carlo tree
search and rule-based methods for Hanabi, but the reported
scores were roughly 50% lower than BAD. Osawa (2015)
defined a number of heuristics for the two-player case that
reason over possible hands given the other player’s action.
While this is similar in spirit to our approach, the work was
limited to hand-coded heuristics, and the reported scores
were around 8 points lower than BAD. Eger et al. (2017)
investigated humans playing with hand-coded agents, but no
pairing resulted in scores higher than 15 points on average.

The best result for two-player Hanabi we could find
was for the FireFlower described at github.com/
lightvector/fireflower, which has been reported
to achieve an average of 23.37 points (52.6% perfect games).
While FireFlower uses the same game rules as those used in
our work, it is entirely hand-coded and involves no learning.

5.3. Belief State Methods

The continual re-solving (nested solving) algorithm used by
DeepStack (Moravčı́k et al., 2017) and Libratus (Brown &
Sandholm, 2018) for poker also use a belief state space. Like
BAD, when making a decision in a player state, continual re-
solving considers the belief state associated with the current
player and generates a joint policy across all player states
consistent with this belief. The policy for the actual player
is then selected from this joint policy. Continual re-solving
also does a Bayesian update of the beliefs after an action.
There are key differences, however. Continual re-solving
performa exact belief updates, which requires a joint policy
space small enough to enumerate; belief states are also
augmented with opponent values; continual re-solving is
a value-based method, where the training process consists
of learning the values of belief states under optimal play;
finally, the algorithm is designed for two-player, zero-sum
games, where it can independently consider player state
values while guaranteeing that an optimal choice for the
joint action policy can be found.

6. Conclusion and Future Work
We presented the Bayesian action decoder (BAD), a novel
algorithm for multi-agent reinforcement learning in cooper-
ative partially observable settings. BAD uses a factorised,
approximate belief state that allows agents to efficiently
learn informative actions, leading to the discovery of con-
ventions. We showed that BAD outperforms policy gradi-
ents in a proof-of-principle matrix game, and achieves a
state-of-the-art performance of 24.174 points on average
in the card game Hanabi. We also showed that using the
Bayesian update leads to a reduction in uncertainty across
the private hands in Hanabi by around 40%. To the best of
our knowledge, this is the first instance in which deep RL
has been successfully applied to a problem setting that both
requires the discovery of communication protocols and was
originally designed to be challenging for humans. BAD also
illustrates clearly that using an explicit belief computation
achieves better performance in such settings than current
state-of-the-art RL methods using implicit beliefs, such as
recurrent neural networks.

In the future, we aim to apply BAD to games with more
players and further generalise BAD by learning more of its
components, e.g., the V0-belief. While the belief update
necessarily involves a sampling step, most of the other com-
ponents can likely be learned end-to-end. We also plan to
extend the BAD mechanism to value-based methods and
further investigate the relevance of counterfactual gradients.
Similar to what was suggested as next steps in (Zinkevich
et al., 2011), we hope to extend the setting to a point where
our bots can learn to collaborate with human players.

github.com/lightvector/fireflower
github.com/lightvector/fireflower
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