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Abstract
Multivariate Hawkes processes (MHP) are widely
used in a variety of fields to model the occurrence
of discrete events. Prior work on learning MHPs
has only focused on inference in the presence
of perfect traces without noise. We address the
problem of learning the causal structure of MHPs
when observations are subject to an unknown de-
lay. In particular, we introduce the so-called syn-
chronization noise, where the stream of events
generated by each dimension is subject to a ran-
dom and unknown time shift. We characterize the
robustness of the classic maximum likelihood esti-
mator to synchronization noise, and we introduce
a new approach for learning the causal structure
in the presence of noise. Our experimental re-
sults show that our approach accurately recovers
the causal structure of MHPs for a wide range of
noise levels, and significantly outperforms classic
estimation methods.

1. Introduction
Multivariate Hawkes processes (MHPs) are a type of tem-
poral point process where an arrival in one dimension can
affect future arrivals in other dimensions. The origin of
MHPs dates back to Hawkes (1971), who used them to
statistically model earthquakes. Because of their ability to
capture mutual excitation between different dimensions of a
multivariate counting process, MHPs have become a popular
model in a plethora of applications such as finance (Bacry
et al., 2012; Hardiman et al., 2013; Linderman & Adams,
2014; Bacry et al., 2015; Etesami et al., 2016), computa-
tional biology (Reynaud-Bouret et al., 2010), social network
studies (as an alternative for the contagion model) (Yang &
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Zha, 2013; Farajtabar et al., 2015), and criminology (Mohler
et al., 2011; Porter & White, 2012; Linderman & Adams,
2014; Shelton et al., 2018).

Learning the excitation matrix of a MHP, which encodes the
causal structure between the processes from a set of obser-
vations, has been the focus of recent work (Xu et al., 2016;
Etesami et al., 2016). The main approaches for learning
MHPs are of two flavors. Maximum likelihood-based ap-
proaches estimate the parameters from observations (Ozaki,
1979; Zhou et al., 2013b; Yang et al., 2017); and approaches
based on second-order statistics learn the parameters of in-
terest by solving a set of equations obtained from first and
second-order statistics of the MHP (Hawkes, 1971; Bacry
et al., 2012; Etesami et al., 2016). All the aforementioned
work assumes that the observations are noiseless, that is, the
arrival times of the events are recorded accurately without
any delay. To the best of our knowledge, no work to date
has considered learning the causal structure of a noisy MHP.
Recent studies tackled the inference of Hawkes processes
with missing data (Xu et al., 2017; Shelton et al., 2018), but
did not consider noisy (delayed) observations. The infer-
ence of temporal point processes in the presence of noisy
observations has been studied for non-parametric estimators
of spatial Poisson processes (Cucala, 2008; Bar-Hen et al.,
2013). However, these studies mostly focus on the special
case of independent and known noise and cannot be applied
to MHPs.

We study the problem of learning MHPs in the presence of
observation noise. More precisely, we consider synchroniza-
tion noise, where the stream of events generated by each
source – or dimension – is subject to a random and unknown
time shift. This model captures situations where no perfect
clock time synchronization is available at different sources,
or when the observation process itself introduces source-
dependent delays. As an example of the former, consider a
network of sensors that record events such as neural spikes
or earthquake shocks. It is often the case that the sensors
are not perfectly synchronized, because they each rely on a
local clock to time-stamp events. As an example of the lat-
ter, consider processes where an event can only be observed
indirectly after a delay, such as through the symptoms of
an infectious disease that manifest themselves some time
after the actual infection. We will show that synchroniza-
tion noise can severely harm the estimation performance of
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state-of-the-art learning methods.

1.1. Summary of Results and Organization

Our contribution in this paper is two-fold. First, we show
the vulnerability of the state-of-the-art learning algorithms
to noisy observations. Second, we provide a novel estima-
tion approach for learning the causal structure of a MHP
in the presence of synchronization noise. Unlike previous
works on the inference of point processes with noise (Cu-
cala, 2008; Bar-Hen et al., 2013), our approach does not
assume that the noise is sampled from a known distribution.
Our approach is based on the maximum-likelihood estima-
tion of a novel model called desynchronized multivariate
Hawkes process (DESYNC-MHP) in which the parameters
of interest consist of the MHP parameters along with the
noise. In other words, given a set of observed data, our
approach learns the MHP with synchronization noise that
maximizes the log-likelihood with respect to both the noise
and the MHP parameters. Such log-likelihood function is
smooth with respect to the MHP parameters, yet non-convex
and non-smooth with respect to the noise parameters. We
show that maximizing a smoothed version of this objective
function with respect to both the noise and the MHP param-
eters recovers the excitation matrix and hence the causal
structure of the MHP.

The paper is organized as follows. In Section 2, we provide
some preliminary definitions and notations. We introduce
the synchronization noise in Section 3 and show how it bi-
ases the classic maximum likelihood estimation algorithm
that assumes the observations to be noiseless. In Section 4,
we introduce our methodology to learn Hawkes processes
under synchronization noise. Finally, we demonstrate the
performance of our approach on synthetic simulations, and
we validate it on a dataset of neuronal spike trains in Sec-
tion 5.

2. Preliminaries
Prior to discussing our results, we introduce the basic nota-
tions and definitions used in the paper. Detailed notations
will be introduced along the way.

Multivariate Hawkes process (MHP). Formally, a d-
dimensional MHP is a collection of d univariate temporal
point processes Ni(t), i = 1, . . . , d, also called dimension,
with a particular form of the conditional intensity function

λi(t|Ht) = µi +

d∑
j=1

∑
τ∈Hj

t

κij(t− τ), (1)

whereHjt is the history of the j-th process up to time t and
Ht =

⋃d
i=1Hit. The constant µi is the exogenous part of

the intensity of the i-th process. The excitation function
κij(t) ≥ 0 captures the endogenous dynamics of influence
of the arrivals in the j-th dimension on the intensity of the
i-th dimension.

The matrix K(t) := [κij(t)] is called the excitation matrix.
It has been shown that the support of the excitation matrix
encodes the causal structure of the MHP, i.e., process j
does not cause process i if and only if κij(t) = 0 (Etesami
et al., 2016; Eichler et al., 2017). The causal graph of
a d-dimensional MHP is therefore a directed graph on d
nodes (each dimension is denoted by a node) and there is a
directed edge from node j to node i if and only if κij(t) 6= 0.
For more details on MHPs, we refer the interested reader
to (Liniger, 2009).

A common choice for the excitation function is the expo-
nential kernel

κij(t) = αije
−βt1{t > 0}, (2)

where αij captures the strength of influence and β captures
the time constant (Rasmussen, 2013; Zhou et al., 2013a;
Farajtabar et al., 2014; Yan et al., 2015; Shelton et al., 2018).
We present our learning approach for exponential kernels,
but it is applicable to more general forms of kernels.

Likelihood function of a MHP. Suppose that we ob-
served a sequence of discrete events

t :=
{{
tik
}ni

k=0

}d
i=1

during a time period [t0, T ), where tik denotes the k-th ar-
rival in the i-th dimension. Let θ denote the parameters of
the MHP, which consist of the excitation matrix {αij} and
the background intensities {µi}. Maximum likelihood esti-
mation can be used to learn θ from the observations t (Zhou
et al., 2013a; Farajtabar et al., 2014). The log-likelihood of
t given θ for a MHP is given by

logP(t|θ) =
d∑
i=1

 ∑
τ∈Hi

T

log λi(τ |Hτ )−
∫ T

t0

λi(t|Ht)dt

 .
(3)

It can be shown that the log-likelihood function of Hawkes
processes with exponential kernels is convex if the exponen-
tial decay β is known (Bacry et al., 2015). It is therefore
common practice to define β as a hyper-parameter and to
apply maximum likelihood estimation only to

θ := {{µi}di=1, {αij}di,j=1} ∈ Rd(d+1)
+ .

As noted before, in the remainder of this paper, we assume
that the excitation functions are exponential, as defined
in (2).
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3. Noisy Observation Framework
In this section, we introduce a particular form of noise,
called synchronization noise. We demonstrate its destructive
effect on the classic maximum likelihood (ML) estimation
methodology, which assumes noiseless observations.

3.1. Synchronization Noise

With synchronization noise, all the arrivals within a dimen-
sion are shifted equally by an unknown offset. In other
words, for every dimension i, there exists zi, such that the
observed data is

t̃ :=
{{
t̃ik
}ñi

k=0

}d
i=1

,

where the observed arrival times are not equal to the true
arrival times t but instead are related as

t̃ik − tik = zi ∈ R,∀ i, k.

We denote the collection of noise variables by z = {zi}di=1.
Because of boundary effects due to the finite observation
window, the number of noisy observations ñi may differ
from ni as some events can enter or escape the observation
window.

To make this more concrete, Figure 1a shows a simple exam-
ple of the synchronization noise for a 2-dimensional MHP
{NA, NB}. The synchronization noise {zA, zB} do not
change the relative orders of the arrivals within a dimension
but it affects the relative orders of the arrivals between dif-
ferent dimensions. For instance, in Figure 1a, tA2 < tB1 but
tA2 +zA = t̃A2 > t̃B1 = tB1 +zB . Some events can also enter
(or escape) the observation window, such as tA1 (or tB2 ).

3.2. Effect of Noise on Classic Inference Methods

The synchronization noise may swap the relative order of
arrivals between different dimensions, which results in es-
timation errors for classic inference methods, such as ML
estimation. Consider once again the simple network of two
processes shown in Figure 1a. In this example, the causal
graph contains a single edge NA → NB , implying that
events in process NA cause future events in process NB
(but not the other way around). Figure 1b displays the result
of ML estimation with synchronization noise for these two
processes. When zA < zB , events in NB tend to occur after
their cause (parent) events in NA, which leads ML estima-
tion to correctly identify the causal direction NA → NB .
However, as zA > zB , the causes and effects begin to blur.
This forces ML estimation to learn edges in both directions.
Finally, as the difference between zA and zB gets large,
the inferred dependency between NA and NB decreases.
This is the reason explaining the convergence of the kernel
coefficients to zero.

T

NA

NB

tA1

zA

t̃A1 t̃A2 t̃A3tA2 tA3

tB1 t̃B1 tB2 t̃B2
t0

zA zA

zB zB

(a) Noisy sample for the processes NA and NB . Noisy events
are displayed in solid black ticks while the original events are
shown in dashed gray. The red arrows illustrate the time shift
introduced by the noise.
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(b) Maximum likelihood estimate on the toy example of Fig. 1a
as a function of noise values. When zB − zA < 0, ML detects
edges in both directions, i.e., α̂AB and α̂BA are both positive.

Figure 1: Illustration of the synchronization noise model
on a simple two-dimensional Hawkes process, with process
NA influencing process NB .

4. Inference under Synchronization Noise
In this section, we introduce a new robust inference ap-
proach for learning MHPs in the presence of synchroniza-
tion noise.

4.1. Model: Desynchronized Multivariate Hawkes
Processes (DESYNC-MHP)

We first note that, if the value of the noise z is known,
we can simply subtract the value of the noise from each
arrival time, and the problem reduces to the inference of a
standard (noiseless) MHP. Conditioning on the noise z, the
log-likelihood (3) can hence be written as the conditional
log-likelihood

logP(̃t|z, θ) = logP
(
{{t̃ik − zi}

ñi

k=0}
d
i=1

∣∣∣θ)
=

d∑
i=1

 ∑
τ∈H̃i

T

log λi(τ − zi|H̃τ−zi)−
∫ T−zi

t0−zi
λi(t|H̃t)dt

 ,
(4)

where H̃it = {t̃ik | t̃ik= tik+zi<t} is the history of the i-th
observed (noisy) process up to time t, and H̃t =

⋃d
i=1 H̃it.
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It is important to notice that (4) is a function of the observed
history H̃t due to the conditional intensity function terms.
Since the synchronization noise can change the order of the
arrivals in different dimensions and consequently the value
of the conditional intensity function, it can also change the
above conditional log-likelihood. Hence, the noise offset z
affects the MHP parameters θ maximizing (4).

We define a new multivariate point process called desynchro-
nized multivariate Hawkes process (DESYNC-MHP) that is
a MHP with synchronization noise. The parameters of this
model are (z, θ). In other words, a DESYNC-MHP with
parameters (z, θ) is a MHP with parameter θ, where each di-
mension i is affected by the synchronization noise offset zi.
Therefore, the log-likelihood function of this model, given a
set of observed arrivals t̃, can be written as (4). Hence, ML
estimation for the DESYNC-MHP amounts to solving the
optimization problem

ẑ, θ̂ = argmax
z∈R,θ≥0

logP(̃t|z, θ). (5)

An alternative approach to directly maximizing the log-
likelihood is to consider the noise as a latent variable and to
use the EM algorithm. However, such an approach requires
to evalue the posterior distribution, which is intractable
because of its coupling with the ordering of the events. It
is therefore easier to solve (5) directly. This approach still
introduces new challenges that we will address next.

4.2. Challenges

For a given noise variable z, maximizing (4) with respect
to the Hawkes parameters θ results in the ML estimation
for the noiseless MHP, which can be often solved efficiently.
For instance, in the exponential kernel setting, when θ =
{{µi}di=1, {αij}di,j=1}, the problem is smooth and convex,
and therefore the parameters can be easily estimated using
first-order methods.

In contrast, the objective function in (4) is neither smooth
nor continuous with respect to the noise z. Recall that
the intensity function (1) depends on the history H̃t of the
process. However, synchronization noise can invert the
order of arrivals in different dimensions, and consequently
it can change the past events of some arrivals, which creates
discontinuities in the likelihood.

To observe this concretely, consider a 2-dimensional MHP
with only two arrival times t1 and t2 (t1 < t2), in dimen-
sions 1 and 2, respectively. Suppose that the observed arrival
times t̃1 and t̃2, are such that t̃1 < t̃2. The effect of dimen-
sion 1 on dimension 2 is captured by

κ21(t̃2 − z2 − t̃1 + z1)

= α21 e
−β(t̃2−z2−t̃1+z1) 1{t̃2 − z2 − t̃1 + z1 > 0}.
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Figure 2: Illustration of the discontinuities of the objective
function (4) for a two-dimensional MHP as a function of
z2, when z1 is fixed to its true value and β = 1. The inset
shows a fine zoom on the objective function in 0.5± 0.005.

Hence, for a given z1, as z2 increases, the excitation function
increases until z2 = t̃2− t̃1+z1. At this point, the arrival
orders are switched and the effect of the arrival at t1 on the
arrival at t2 disappears. Formally, at τ = t̃2 − z2 − t̃1 + z1,
we have

lim
τ→0+

κ21(τ) = α21 6= 0 = lim
τ→0−

κ21(τ).

This results in a discontinuity in the objective function.

Figure 2 illustrates the objective function as a function of z2,
when z1 is fixed to its true value, for a two-dimensional pro-
cess. These discontinuities in the conditional log-likelihood
function will prevent gradient-based algorithms from con-
verging. Even worse, the objective function is particularly
ill-conditioned: it decreases at the points of discontinuity,
but increases everywhere in between. The presence of syn-
chronization noise therefore transforms the computationally
efficient estimation of MHP parameters into a particularly
ill-conditioned optimization problem.

Below, we discuss our approach to tackle this issue in two
steps. We first introduce a novel approach for smoothing
the objective function, which allows us to subsequently find
an optimum solution by using stochastic gradient descent.

Smoothing the objective function. Recall that the source
of the discontinuities (jumps) in the objective function are
the swapped arrivals and the discontinuities of the excitation
kernels at t = 0. If the excitation kernels {κij(t)} were dif-
ferentiable for all t ∈ R, such sudden jumps in the intensity
function would be avoided and consequently the likelihood
function would be smooth. This observation leads us to
approximate the excitation kernels with functions that are
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Figure 3: Illustration of the smoothing of the objective
function (4) for a two-dimensional MHP as a function of z2,
when z1 = z∗1 and β = 1. The inset shows a fine zoom on
the objective function in 0.5± 0.005.

differentiable everywhere. For instance, one candidate for
approximating the exponential kernel is

κ̃ij(t) , αij

(
σ(γt)e−βt + (1− σ(γt))eβ

′t
)
, (6)

where σ(t) = 1/(1 + e−t) is the sigmoid function1. Since
limβ′,γ→+∞ κ̃ij(t) = κij(t), the approximated kernel can
be made arbitrarily close to κij(t). Selecting β′ and γ large
enough will therefore preserve the causal structure of the
MHP. Figure 3 illustrates how κ̃ij(t) affects the objective
function for various values of β′ and γ.

Stochastic gradient descent. The kernel approxima-
tion (6) addresses the non-smoothness of the objective func-
tion with respect to the noise z. But the issue of convexity
remains, as illustrated in the inset of Figure 3 for large val-
ues of β′. This means that choosing the right β′ is crucial.
On the one hand, a small β′ makes the objective function
smoother and removes some local minima. On the other
hand, a small β′ degrades the quality of the approxima-
tion and hence introduces a larger bias in the optimization
problem.

Stochastic gradient descent (SGD) is often used to escape
local minima in non-convex optimization. In our case, SGD
randomizes the discontinuities, and hence enables us to
evade the local minima. We apply a mini-batch version of
SGD with a set ofC independent observations {t̃1, . . . , t̃C}.
Due to the ergodicity of stationary MHPs, a set of short in-
dependent observations of an MHP is statistically equivalent
to a single long observation of that MHP.

1Note that this choice of kernel is non-causal, in the sense that
the kernels are non-zero for t < 0.

Algorithm 1 DESYNC-MHP ML estimation

Input: Data {t̃1, . . . , t̃C}, hyper-parameters (β, β′, γ).
Initialize z0 and θ0 to random values
k ← 0
repeat
t̃k ∼ Uniform{t̃1, . . . , t̃C}
zk+1 ← zk + δk ∇z log P̃(̃tk|zk, θk)
θk+1 ←max

(
θk + δk ∇θ logP(̃tk|zk, θk), 0

)
k ← k + 1

until convergence

Algorithm 1 summarizes the steps of our approach2. Since
smoothing is only necessary for optimizing logP(̃t|z, θ)
with respect to z, we use the gradient3 of the smooth approx-
imation of the log-likelihood, denoted by ∇z log P̃(̃t|z, θ),
to update z, and we keep the gradient of the exact log-
likelihood to update the MHP parameters θ, denoted by
∇θ logP(̃tk|zk, θk).

5. Experimental Results
We performed two sets of experiments. First, we used syn-
thetic data to show that, despite the non-smoothness and
non-convexity of (5), our approach can accurately recover
the excitation matrix of the MHP and significantly outper-
form the classic ML estimator. We further investigated the
effects of dimensionality d and the scale of the noise on
the performance of our estimator. Second, we validated our
approach using a dataset of neuronal spike trains obtained
from measurements of the motor cortex of a monkey.

5.1. Experiments on Synthetic Data

We set the exponential decay to β = 1. For smoothing,
we used β′ = 50 and γ = 500, which were found to work
well in practice. For each experiment, we chose small posi-
tive background intensities {µi} and generated a random4

excitation matrices with entries {αij} ∈ {0, 1} by sam-
pling edges randomly with probability 2/d. The average
in-degree and out-degree of each nodes was hence close to
two. We then rescaled the entries to obtain a spectral radius
of 0.95 to ensure that the simulated processes are stable5.
We generated C = 5 realizations of 50, 000 samples from
the MHP using Ogata’s thinning algorithm6 (Ogata, 2006).

2Source code of the algorithm is available publicly.
3The derivation of the gradient with respect to the noise param-

eters and the parameters of MHP is provided in the Appendix.
4Experiments were performed on other random graph models

with qualitatively similar results.
5Experiments were not found to be sensitive to this choice of

value.
6We used the Python library tick to generate synthetic samples

of the processes (Bacry et al., 2017).
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Figure 4: Analysis of the sensitivity to the noise scale with
4 different noise regimes. (d=10 is fixed.)

We repeated each experiment 10 times over 10 different ma-
trices for each set of parameters. We solved the optimization
problem (5) using stochastic gradient descent with Lasso
regularization on the parameters {αij}. We compared our
approach against the state-of-the-art maximum likelihood
estimation method (Zhou et al., 2013a), which solves the
classic maximum likelihood estimation problem with the
same regularization (denoted by the label “classic MLE” in
the figures below).

The accuracy reported on the y-axes of our figures is the per-
centage of correctly identified edges (i.e., non-zero kernels
in the support of the excitation matrix) which is

1−
∑
ij |1{α∗ij > 0} − 1{α̂ij > η}|

d2
,

where {α∗ij} and {α̂ij} denote the ground truth and the
estimated coefficients, respectively. A threshold η = 0.05
was used to zero out the small coefficients.

Sensitivity to the noise level σ2. We studied the sensitiv-
ity of our approach, DESYNC-MHP MLE, to the level of
noise and compared it to the classic ML estimator. Figure 4
shows the mean and standard deviation accuracy for differ-
ence noise variance σ2. We observe four different noise
regimes:

1. In the low-noise regime, virtually no event order is
swapped, meaning that the cause (parent) events al-
ways occur before their effect. Both the classic ML
estimator and our approach therefore recover the causal
structure accurately.

2. When the noise level is increased to σ2 = 1/β = 1
(indicated by the red vertical line in Figure 4), our
approach still recovers the true causal structure with
an accuracy close to 100%, contrary to the classic ML
estimator which misidentifies more than 25% of edges
on average.
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Figure 5: Analysis of the sensitivity to the number of di-
mensions for two values of noise variance: on the top panel
σ2 = 1, and on the bottom panel σ2 = 5.

3. In the third regime, for noise levels between σ2 = 1/β
up to one order of magnitude larger than 1/β, our
approach gets trapped in local optima more frequently,
and hence it loses its accuracy. Yet, it still clearly
outperforms the classic ML estimation.

4. In the high-noise regime, the MHP signal gets com-
pletely lost in the noise. The log-likelihood function
therefore rapidly decreases around the true noise z∗
and becomes more and more flat for all z far from
z∗. Thus, iterative gradient-based algorithms such as
Algorithm 1 and the classic ML estimator stay trapped
around their initial points z0. Note that our algorithm
with fixed z = 0 becomes the classic ML algorithm.
As the noise variance increases, neither of the two esti-
mators is able to correctly learn the causal structure in
the observations, and both algorithms converge toward
sparser excitation matrices. More details are given in
the Appendix.

However, between the 3rd and 4th regimes, the noise is
not strong enough to completely hide the MHP signal.
Consequently, the outputs of the classic ML estimator
and DESYNC-MHP ML estimator are driven mostly
by the noise and their accuracies are worse than random
guesses.

Sensitivity to the number of dimensions d. The num-
ber of parameters to estimate grows quadratically with the
dimensionality of the process (i.e., z ∈ Rd, θ ∈ Rd2+d).
Consequently, the optimization problem becomes harder
for larger-sized problems. However, we analyzed the sen-
sitivity of our approach to the number of dimensions d of
the MHP in Figure 5. We see that the accuracy of our ap-
proach remains fairly constant as we increase the number of
dimensions d.
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Figure 6: Analysis of the sensitivity to the number of real-
izations. (d=10, σ2 = 1 are fixed.)

Sensitivity to the number of realizations C. Recall that
we used SGD in order to evade local minima in the condi-
tional log-likelihood function. Figure 6 shows that with only
C = 3 independent mini-batches each consisting of 50, 000
samples suffice to obtain an accuracy close to 100%.

5.2. Application to Real Data

In addition to simulations on synthetic data, we also evalu-
ated our approach on an experimental dataset of neuronal
spike trains from Wu & Hatsopoulos (2006); Quinn et al.
(2011). The dataset consists in measurements of an elec-
trode array located on the motor cortex of a macaque mon-
key performing a series of tasks involving a specific arm
movement. The local field potentials in the motor cortex
were recorded and processed to obtain the neuronal spike
train data (discrete event times). More details can be found
in (Wu & Hatsopoulos, 2006). The dataset contains the
spike train data from 115 identified neurons for a duration
of an hour, quantized at the resolution of 1 millisecond.
Since each spike train was recorded by an independent sen-
sor, some synchronization noise between the dimensions
could be expected. For ease of visualization, we kept only a
subset of data containing the top d=10 neurons with high-
est number of spikes, leading to a total of 354 285 spikes.
We used the first 70% of the dataset for training and kept the
last 30% for testing. We set the hyper-parameters (β, β′, γ)
to (0.0047, 0.16, 1.6) using grid-search.

We compared the predictive log-likelihood on the test set
for the models learnt by the baseline classic ML estimator
and the DESYNC-MHP ML estimator in Table 1. Since
problem (5) is non-convex, the optimization was started
from multiple starting points and we report both the average
and standard deviation of both estimators.

We see that the DESYNC-MHP ML estimate consistently
improves the predictive log-likelihood over the classic ML
estimate. Our algorithm identifies a small synchronization
noise with an average value of 12.5ms, which is less than
the average inter-event time of 88.9ms. The causal graphs
learned by the two methods is shown in Figure 7. The two

Table 1: Predictive log-likelihood for the models learnt by
both approaches. Results are reported averaged over several
random initialization points (± standard deviation).

Classic MLE DESYNC-MHP MLE

0.4282± 3.5e−5 0.4311± 3.0e−4

graphs agree on 91% of the edges. In a previous analysis of
causality of the dataset, Quinn et al. (2011) identified a dom-
inant direction of influence on both graphs from the lower
left to the upper right corner of the array, which might cor-
respond to the direction of propagating local field potential
waves discussed in Wu & Hatsopoulos (2006). The causal
graphs in Figure 7 are consistent with these findings. A dom-
inant direction is indeed noticeable on both graphs and is
particularly striking on the graph learnt by DESYNC-MHP
MLE in Figure 7b.

To evaluate the robustness of our approach to larger syn-
chronization noise, we added additional shifts the arrivals in
different dimensions randomly with various noise variances
σ2 and computed the predictive log-likelihood both for our
algorithm and for the classic ML estimator. The results are
reported in Figure 8. We identify different noise regimes.
For low noise, with a variance smaller than σ2 = 10ms,
DESYNC-MHP MLE consistently leads to more likely es-
timate than the classic MLE. This is consistent with the
log-likelihood values computed in Table 1. For higher noise
variance, the likelihood of both approaches decreases, but
the DESYNC-MHP ML estimate always outperforms the
classic one. It is interesting to note that, on this dataset, the
shift in noise regime occurs before 1/β. This might come
from the noise initially present in the data.

Although our approach shows better results compared to the
classic MLE, the gains are not as large as in the case of the
synthetic experiments. Since our approach is not limited
to the exponential kernel, results could certainly be im-
proved by using a more flexible form of excitation function.
For instance, using non-parametric learning approaches for
Hawkes processes inspired by Zhou et al. (2013b); Yang
et al. (2017) might better fit the true excitation dynamics of
the neurons.

6. Conclusion
We addressed the problem of learning the causal structure
of multivariate Hawkes processes (MHP) under synchro-
nization noise, which can arise both for technical reasons
or as a feature of the observation process. We showed that
the classic maximum likelihood (ML) estimator fails when
observations are noisy, because delays perturb the order of
events across dimensions. In particular, we showed that,
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(a) Causal graph learned by the classic MLE. (b) Causal graph learned by DESYNC-MHP MLE.

Figure 7: Causal graphs of the neuronal spike train dataset. Each node indicates a different neuron. The relative position
of the nodes corresponds to the relative position of the electrode on the array. The differences between the two graphs is
highlighted with dashed edges. Edges appearing only in the classic ML estimate are highlighted in red in Figure 7a, and
edges appearing only in the DESYNC-MHP ML estimate are highlighted in green in Figure 7b. The labels of the nodes
correspond to the ordering of the neurons sorted by number of observed events.
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Figure 8: Analysis of the sensitivity to the noise scale on
the neuronal spike train dataset.

even with small noise with variance σ2 ≈ 1/β, the classic
ML estimator misidentifies on average more than 25% of
the edges in the causal structure of a random network.

To address the learning problem in the presence of noisy
observations, we introduced a novel multivariate point pro-
cess, called DESYNC-MHP, which is a MHP with synchro-
nization noise. A DESYNC-MHP with parameters (z, θ)
is a MHP with parameters θ, where each dimension i is
affected by the synchronization noise offset zi. The log-
likelihood function of DESYNC-MHP is non-smooth and
non-continuous with respect to the noise, making off-the-
shelf gradient-based approaches infeasible. We introduced
a novel smoothing approach based on a smooth approxi-

mation of the excitation kernels, in conjunction with SGD,
to tackle the problem. The experimental results show that,
despite the non-convexity of the objective, our approach
significantly outperforms the classic ML estimator and ac-
curately recovers the causal structure of MHPs for a wide
range of noise.
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2009.

Mohler, G. O., Short, M. B., Brantingham, P. J., Schoenberg,
F. P., and Tita, G. E. Self-exciting point process modeling
of crime. Journal of the American Statistical Association,
106(493):100–108, 2011.

Ogata, Y. On lewis’ simulation method for point pro-
cesses. IEEE Trans. Inf. Theor., 27(1):23–31, Septem-
ber 2006. ISSN 0018-9448. doi: 10.1109/TIT.1981.
1056305. URL http://dx.doi.org/10.1109/
TIT.1981.1056305.

Ozaki, T. Maximum likelihood estimation of Hawkes’ self-
exciting point processes. Annals of the Institute of Statis-
tical Mathematics, 31(1):145–155, 1979.

Porter, M. D. and White, G. Self-exciting hurdle models
for terrorist activity. Ann. Appl. Stat., 6(1):106–124, 03
2012. doi: 10.1214/11-AOAS513. URL https://
doi.org/10.1214/11-AOAS513.

Quinn, C. J., Coleman, T. P., Kiyavash, N., and Hatsopou-
los, N. G. Estimating the directed information to infer
causal relationships in ensemble neural spike train record-
ings. Journal of computational neuroscience, 30(1):17–
44, 2011.

Rasmussen, J. G. Bayesian inference for hawkes processes.
Methodology and Computing in Applied Probability, 15
(3):623–642, Sep 2013. ISSN 1573-7713. doi: 10.1007/
s11009-011-9272-5.

Reynaud-Bouret, P., Schbath, S., et al. Adaptive estimation
for Hawkes processes; application to genome analysis.
The Annals of Statistics, 38(5):2781–2822, 2010.

Shelton, C. R., Qin, Z., and Shetty, C. Hawkes process
inference with missing data. In Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence, 2018.

Wu, W. and Hatsopoulos, N. G. Evidence against a sin-
gle coordinate system representation in the motor cortex.
Experimental Brain Research, 175:197–210, 2006.

Xu, H., Farajtabar, M., and Zha, H. Learning Granger
causality for Hawkes processes. International Conference
on Machine Learning, 48:1717–1726, 2016.

Xu, H., Luo, D., and Zha, H. Learning hawkes processes
from short doubly-censored event sequences. arXiv
preprint arXiv:1702.07013, 2017.

Yan, J., Zhang, C., Zha, H., Gong, M., Sun, C., Huang,
J., Chu, S., and Yang, X. On machine learning towards
predictive sales pipeline analytics, 2015.

Yang, S.-H. and Zha, H. Mixture of mutually exciting
processes for viral diffusion. International Conference
on Machine Learning, 28:1–9, 2013.

Yang, Y., Etesami, J., He, N., and Kiyavash, N. Online
learning for multivariate Hawkes processes. Neural In-
formation Processing Systems, 2017.

https://doi.org/10.1007/s11222-011-9311-7
https://doi.org/10.1007/s11222-011-9311-7
http://dl.acm.org/citation.cfm?id=3044805.3045050
http://dl.acm.org/citation.cfm?id=3044805.3045050
http://dx.doi.org/10.1109/TIT.1981.1056305
http://dx.doi.org/10.1109/TIT.1981.1056305
https://doi.org/10.1214/11-AOAS513
https://doi.org/10.1214/11-AOAS513


Learning Hawkes Processes Under Synchronization Noise

Zhou, K., Zha, H., and Song, L. Learning social infectiv-
ity in sparse low-rank networks using multi-dimensional
hawkes processes. In AISTATS, volume 31 of JMLR
Workshop and Conference Proceedings, pp. 641–649.
JMLR.org, 2013a.

Zhou, K., Zha, H., and Song, L. Learning triggering kernels
for multi-dimensional Hawkes processes. In International
Conference on Machine Learning, volume 28, pp. 1301–
1309, 2013b.


