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Abstract
Recently, substantial progress has been made in
language modeling by using deep neural net-
works. However, in practice, large scale neural
language models have been shown to be prone
to overfitting. In this paper, we present a simple
yet highly effective adversarial training mech-
anism for regularizing neural language models.
The idea is to introduce adversarial noise to the
output embedding layer while training the mod-
els. We show that the optimal adversarial noise
yields a simple closed form solution, thus al-
lowing us to develop a simple and time effi-
cient algorithm. Theoretically, we show that
our adversarial mechanism effectively encour-
ages the diversity of the embedding vectors, help-
ing to increase the robustness of models. Em-
pirically, we show that our method improves on
the single model state-of-the-art results for lan-
guage modeling on Penn Treebank (PTB) and
Wikitext-2, achieving test perplexity scores of
46.01 and 38.65, respectively. When applied to
machine translation, our method improves over
various transformer-based translation baselines
in BLEU scores on the WMT14 English-German
and IWSLT14 German-English tasks.

1. Introduction
Statistical language modeling is a fundamental task in ma-
chine learning, with wide applications in various areas, in-
cluding automatic speech recognition (e.g., Yu & Deng,
2016), machine translation (e.g., Koehn, 2009) and com-
puter vision (e.g., Xu et al., 2015), to name a few. Re-
cently, deep neural network models, especially recurrent
neural networks (RNN) based models, have emerged to be
one of the most powerful approaches for language model-
ing (e.g., Merity et al., 2018a; Yang et al., 2018; Vaswani
et al., 2017; Anderson et al., 2018).
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Unfortunately, a major challenge in training large scale
RNN-based language models is their tendency to overfit;
this is caused by the high complexity of RNN models and
the discrete nature of language inputs. Although various
regularization techniques, such as early stop and dropout
(e.g., Gal & Ghahramani, 2016), have been investigated,
severe overfitting is still widely observed in state-of-the-art
benchmarks, as evidenced by the large gap between train-
ing and testing performance.

In this paper, we develop a simple yet surprisingly efficient
minimax training strategy for regularization. Our idea is
to inject an adversarial perturbation on the word embed-
ding vectors in the softmax layer of the language models,
and seek to find the optimal parameters that maximize the
worst-case performance subject to the adversarial pertur-
bation. Importantly, we show that the optimal perturbation
vectors yield a simple and computationally efficient form
under our construction, allowing us to derive a simple and
fast training algorithm (see Algorithm 1), which can be eas-
ily implemented based a minor modification of the standard
maximum likelihood training and does not introduce addi-
tional training parameters.

An intriguing theoretical property of our method is that it
provides an effective mechanism to encourage diversity of
word embedding vectors, which is widely observed to yield
better generalization performance in neural language mod-
els (e.g., Mu et al., 2018; Gao et al., 2019; Liu et al., 2018b;
Cogswell et al., 2016; Khodak et al., 2018). In previous
works, the diversity is often enforced explicitly by adding
additional diversity penalty terms (e.g., Gao et al., 2019),
which may impact the likelihood optimization and are com-
putationally expensive when the vocabulary size is large.
Interestingly, we show that our adversarial training effec-
tively enforces diversity without explicitly introducing the
additional diversity penalty, and is significantly more com-
putationally efficient than direct regularizations.

Empirically, we find that our adversarial method can signif-
icantly improve the performance of state-of-the-art large-
scale neural language modeling and machine translation.
For language modeling, we establish a new single model
state-of-the-art result for the Penn Treebank (PTB) and
WikiText-2 (WT2) datasets to the best of our knowledge,
achieving 46.01 and 38.65 test perplexity scores, respec-
tively. On the large scale WikiText-103 (WT3) dataset,
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our method improves the Quasi-recurrent neural networks
(QRNNs) (Merity et al., 2018b) baseline.

To demonstrate the broad applicability of the method, we
also apply our method to improve machine translation, us-
ing Transformer (Vaswani et al., 2017) as our base model.
By incorporating our adversarial training, we improve
a variety of Transformer-based translation baselines on
the WMT2014 English-German and IWSTL2014 German-
English translations.

2. Background: Neural Language Modeling
Typical word-level language models are specified as a
product of conditional probabilities using the chain rule:

p(x1:T ) =

TY
t=1

p(xt j x1:t�1); (1)

where x1:T = [x1; � � � ; xT ] denotes a sentence of length
T , with xt 2 V the t-th word and V the vocabulary set. In
modern deep language models, the conditional probabili-
ties p(xtjx1:t�1) are often specified using recurrent neural
networks (RNNs), in which the context x1:t�1 at each time
t is represented using a hidden state vector ht 2 Rdh de-
fined recursively via

ht = f(xt�1; ht�1;�); (2)

where f is a nonlinear map with a trainable parameter �.
The conditional probabilities are then defined using a soft-
max function:

p(xt j x1:t�1;�;w) = Softmax(xt;w; ht)

:=
exp(w>xt

ht)PjVj
‘=1 exp(w>‘ ht)

;
(3)

where w = fwig � Rd is the coefficient of softmax; wi
can be viewed as an embedding vector for word i 2 V
and ht the embedding vector of context x1:t�1. The in-
ner product w>xt

ht measures the similarity between word
xt and context x1:t�1, which is converted into a probabil-
ity using the softmax function.

In practice, the nonlinear map f is specified by typical
RNN units, such as LSTM (Hochreiter & Schmidhuber,
1997) or GRU (Chung et al., 2014), applied on another set
of embedding vectors w0i 2 Rd0 of the words, that is,

f(xt�1; ht�1; �) = fRNN (w0xt�1
; ht�1; �0);

where �0 is the weight of the RNN unit fRNN , and � =
[w0;�0] is trained jointly with w. Here, w0i is the embed-
ding vector of word , fed into the model from the input side
(and hence called the input embedding), while wi is the
embedding vector from the output side (called the output

embedding). It has been found that it is often useful to tie
the input and output embeddings, that is, setting wi = w0i
(known as the weight-tying trick), which reduces the total
number of free parameters and yields significant improve-
ment of performance (e.g., Press & Wolf, 2016; Inan et al.,
2017).

Given a set of sentences fx‘1:T g‘, the parameters � and w
are jointly trained by maximizing the log-likelihood:

max
θ;w

8<:L(�;w) :=
X
t;‘

log p(x‘t j x‘1:t�1;�;w)

9=; : (4)

This optimization involves joint training of a large num-
ber of parameters [�;w], including both the neural weights
and word embedding vectors, and is hence highly prone to
overfitting in practice.

3. Main Method
We propose a simple algorithm that effectively alleviates
overfitting in deep neural language models, based on in-
jecting adversarial perturbation on the output embedding
vectors wi in the softmax function (Eqn. (3)). Our method
is embarrassingly simple, adding virtually no additional
computational overhead over standard maximum likeli-
hood training, while achieving substantial improvement on
challenging benchmarks (see Section 5). We also draw the-
oretical insights on this simple mechanism, showing that it
implicitly promotes diversity among the output embedding
vectors fwig, which is widely believed to increase robust-
ness of the results (e.g., Cortes & Vapnik, 1995; Liu et al.,
2018b; Gao et al., 2019).

3.1. Adversarial MLE

Our idea is to introduce an adversarial noise on the out-
put embedding vectors w = fwig in maximum likelihood
training (4):

max
θ;w

min
f�j;t;‘g

X
t;‘

log p(x‘t j x‘1:t�1; �; fwj + �j;t;‘g);

s:t: jj�j;t;‘jj � �=2; 8j; t; ‘;
(5)

where �j;t;‘ is an adversarial perturbation applied on the
embedding vector wj of word j 2 V , in the ‘-th sentence
at the t-th location. We use jj � jj to denote the L2 norm
throughout this paper; � controls the magnitude of the ad-
versarial perturbation.

A key property of this formulation is that, with fixed model
parameters [�;w], the adversarial perturbation � = f�i;t;‘g
has an elementary closed form solution, which allows us
to derive a simple and efficient algorithm (Algorithm 1) by
optimizing [�;w] and � alternately.
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Theorem 3.1. For each conditional probability term
p(xt = i j x1:t�1;�;w) = Softmax(i;w; ht) in (3), the
optimization of the adversarial perturbation in (5) is for-
mulated as

min
f�jgj2V

exp((wi + �i)
>h)X

j

exp((wj + �j)
>h)

s:t jj�j jj � �=2; 8j 2 V:

This is equivalent to just adding adversarial perturbation
on wi with magnitude �:

min
�i

exp((wi + �i)
>h)

exp((wi + �i)
>h) +

X
j 6=i

exp(w>j h)
s:t jj�ijj � �;

which is further equivalent to

��i = arg min
jj�ijj��

(wi + �i)
>h = ��h=jjhjj: (6)

As a result, we have

AdvSoft�(i;w; h)

:= min
jj�ijj2��

Softmax(i; fwi + �i; w:ig; h)

=
exp(w>i h� �jjhjj)

exp(w>i h� �jjhjj) +
X
j 6=i

exp(w>j h)
;

(7)

where w:i = fwj : j 6= ig.

In practice, we propose to optimize [�;w] and � = f�i;t;‘g
alternatively. Fixing �, the models parameters [�;w] are
updated using gradient descent as standard maximum like-
lihood training. Fixing [�;w], the adversarial noise � is
updated using the elementary solution in (6), which intro-
duces almost no additional computational cost. See Al-
gorithm 1. Our algorithm can be viewed as an approxi-
mate gradient descent optimization of AdvSoft�(i;w; h),
but without back-propagating through the norm term �jjhjj.
Empirically, we note that back-propagating through �jjhjj
seems to make the performance worse, as the training error
would diverge within a few epochs. This is maybe because
the gradient of �jjhjj forces jjhjj to be large in order to in-
crease AdvSoft�(i;w; h), which is not encouraged in our
setting.

3.2. Diversity of Embedding Vectors

An interesting property of our adversarial strategy is that
it can be viewed as a mechanism to encourage diversity
among word embedding vectors: we show that an embed-
ding vector wi is guaranteed to be separated from the em-
bedding vectors of all the other words by at least distance

Algorithm 1 Adversarial MLE Training
Input Training data D = fx‘1:T g, model parameters
�;w
while not converge do

Sample a mini-batchM from the data D:
For each sentence x‘1:T in the minibatch and t � T ,
set the adversarial noise on p(x‘tjx‘1:t�1) to be

�j;t;‘ =

(
��h‘t=jjh‘tjj; for j = x‘t
0; for j 6= x‘t;

where h‘t is the RNN hidden state related to x‘1:t�1,
define in (2).
Update f�;wg using gradient ascent of log-
likelihood (4) on minibatchM,

end while
Remark. We find it is practically useful to choose � to
adapt with the norm of wi, that is, � = �jjwijj for each
word, and � is a hyperparameter.

�, once there exists a context vector h with which wi domi-
nates the other words according to AdvSoft. This is a sim-
ple property implied by the definition of the adversarial set-
ting: if there exists an wj within the �-ball of wi, then wi
(and wj) can never dominate the other, because the winner
is always penalized by the adversarial perturbation.

Definition 3.2. Given a set of embedding vectors w =
fwigi2V , a word i 2 V is said to be �-recognizable if there
exists a vector h 2 Rd on which wi dominates all the other
words under �-adversarial perturbation, in that

min
jj�ijj��

(wi + �i)
>h = (w>i h� �jjhjj)

> w>j h; 8j 2 V; j 6= i:

In this case, we have AdvSoft�(i;w; h) � 1=jVj, and wi
would be classified to be the target word of context h, de-
spite the adversarial perturbation.

Theorem 3.3. Given a set of embedding vectors w =
fwigi2V , if a word wi is �-recognizable, then we must have

min
j 6=i
jjwj � wijj > �;

that is, wi is separated from the embedding vectors of all
other words by at least � distance.

Proof. If there exists j 6= i such that jjwj � wijj � �,
following the adversarial optimization, we must have

w>j h � min
jj�ijj��

(wi + �i)
>h > w>j h:

which forms a contradiction.
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Note that maximizing the adversarial training objective
function can be viewed as enforcing each wi to be �-
recognized by its corresponding context vector h, and
hence implicitly enforces diversity between the recognized
words and the other words. We should remark that the con-
text vector h in Definition 3.2 does not have to exist in the
training set, although it will more likely happen in the train-
ing set due to the training.

In fact, we can draw a more explicit connection between
pairwise distance and adversarial softmax function.

Theorem 3.4. Following the definition in (7), we have

AdvSoft�(i;w; h) � � (�(i;w; jjhjj)) ;

where �(t) = 1=(1 + exp(�t)) is the sigmoid function
and �(i;w; �) is an “energy function” that measures the
distance from wi to the other words wj , 8j 6= i:

�(i;w; �) = � log
X
j 6=i

exp(��(jjwi � wj jj � �))

� �min
j 6=i

(jjwi � wj jj � �):

Proof. We have

AdvSoft�(i;w; h)

=
exp(w>i h� �jjhjj)

exp(w>i h� �jjhjj) +
X
j 6=i

exp(w>j h)

= � (	(i;w; h)) ;

where

	(i;w; h) = � log
X
j 6=i

exp((wj � wi)>h+ �jjhjj):

Note that (wj � wi)>h � �jjwj � wijj � jjhjj, we have

	(i;w; h) = � log
X
j 6=i

exp((wj � wi)>h+ �jjhjj)

� � log
X
j 6=i

exp(�jjwj � wijj � jjhjj+ �jjhjj)

= �(i;w; jjhjj):

Therefore, maximizing AdvSoft�(i;w; h), as our algo-
rithm advocates, also maximizes the energy function
�(i;w; jjhjj) to enforce minj 6=i(jjwi � wj jj) larger than
� by placing a higher penalty on cases in which this is vio-
lated.

4. Related Works and Discussions
Adversarial training Adversarial machine learning has
been an active research area recently (Szegedy et al., 2013;
Goodfellow et al., 2015; Athalye et al., 2018), in which al-
gorithms are developed to either attack existing models by
constructing adversarial examples, or train robust models
to defend adversarial attacks. More related to our work,
(Sankaranarayanan et al., 2018) proposes a layer-wise ad-
versarial training method to regularize deep neural net-
works. In statistics learning and robust statistics, various
adversarial-like ideas are also leveraged to construct effi-
cient and robust estimators, mostly for preventing model
specification or data corruption (e.g., Maronna et al., 2018;
Duchi et al., 2016). Compared to these works, our work
leverages the adversarial idea as a regularization technique
specifically for neural language models and focuses on in-
troducing adversarial noise only on the softmax layers, so
that a simple closed form solution can be obtained.

Direct Diversity Regularization There has been a body
of literature on increasing the robustness by directly adding
various forms of diversity-enforcing penalty functions
(e.g., Elsayed et al., 2018; Xie et al., 2017; Liu et al., 2016;
2017; Chen et al., 2017; Wang et al., 2018). In the par-
ticular setting of enforcing diversity of word embeddings,
Gao et al. (2019) show that adding a cosine similarity reg-
ularizer improves language modeling performance, which
has the form

PjVj
i=1

PjVj
j 6=i

w>i wj

jjwijj jjwj jj :However, in language
modeling, one disadvantage of the direct diversity regular-
ization approach is that the vocabulary size jVj can be huge,
and calculating the summation term exactly at each step is
not feasible, while approximation with mini-batch samples
may make it ineffective. Our method promotes diversity
implicitly with theoretical guarantees and does not intro-
duce computational overhead.

Large-margin classification In a general sense, our
method can be seen as an instance of constructing large-
margin classifiers by enforcing the distance of a word to its
neighbors larger than a margin if it’s recognized by any
context. Learning large-margin classifiers has been ex-
tensively studied in the literature; see e.g., Weston et al.
(1999); Tsochantaridis et al. (2005); Jiang et al. (2018); El-
sayed et al. (2018); Liu et al. (2016; 2017).

Other Regularization Techniques for Language Mod-
els Various other techniques have been also developed to
address overfitting in RNN language models. For exam-
ple, Gal & Ghahramani (2016) propose to use variational
inference-based dropout (Srivastava et al., 2014) on recur-
rent neural networks, in which the same dropout mask is
repeated at each time step for inputs, outputs, and recurrent
layers for regularizing RNN models. Merity et al. (2018a)
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Figure 1. (a) Kernel density estimation of the Euclidean distance to the nearest neighbor for each word; (b) Logarithmic scale singular
values of embedding matrix. We normalize the singular values of each matrix so that the largest one is 1; (c) Training and validation
perplexities vs. training epochs for AWD-LSTM (Merity et al., 2018a) and our approach on the Wikitext-2(WT2) datasets. We follow
the training settings reported in Merity et al. (2018a). The kink in the middle represents the start of fine-tuning.

suggest to use DropConnect (Wan et al., 2013) on the re-
current weight matrices and report a series of encouraging
benchmark results. Other types of regularization include
activation regularization (Merity et al., 2017a), layer nor-
malization (Ba et al., 2016), and frequency agnostic train-
ing (Gong et al., 2018), etc. Our work is orthogonal to these
regularization and optimization techniques and can be eas-
ily combined with them to achieve further improvements,
as we demonstrate in our experiments.

5. Empirical Results
We demonstrate the effectiveness of our method in two ap-
plications: neural language modeling and neural machine
translation, and compare them with state-of-the-art archi-
tectures and learning methods. All models are trained with
the weight-tying trick (Press & Wolf, 2016; Inan et al.,
2017). Our code is available at: https://github.
com/ChengyueGongR/advsoft.

5.1. Experiments on Language Modeling

We test our method on three benchmark datasets: Penn
Treebank (PTB), Wikitext-2 (WT2) and Wikitext-103
(WT103).

PTB The PTB corpus (Marcus et al., 1993) has been a
standard dataset used for benchmarking language models.
It consists of 923k training, 73k validation and 82k test
words. We use the processed version provided by Mikolov
et al. (2010) that is widely used for this dataset (e.g., Mer-
ity et al., 2018a; Yang et al., 2018; Kanai et al., 2018; Gong
et al., 2019).

WT2 and WT103 The WT2 and WT103 datasets are
introduced in Merity et al. (2017b) as an alternative to
the PTB dataset, and which contain lightly pre-possessed
Wikipedia articles. The WT2 and WT103 contain approxi-
mately 2 million and 103 million words, respectively.

Experimental settings For the PTB and WT2 datasets,
we closely follow the regularization and optimization tech-
niques introduced in AWD-LSTM (Merity et al., 2018a),
which stacks a three-layer LSTM and performs optimiza-
tion with a bag of tricks.

The WT103 corpus contains around 103 million tokens,
which is significantly larger than the PTB and WT2
datasets. In this case, we use Quasi-Recurrent neural
networks (QRNN)-based language models (Merity et al.,
2018b; Bradbury et al., 2017) as our base model for ef-
ficiency. QRNN allows for parallel computation across
both time-step and minibatch dimensions, enabling high
throughput and good scaling for long sequences and large
datasets.

Yang et al. (2018) show that softmax-based language mod-
els yield low-rank approximations and do not have enough
capacity to model complex natural language. They propose
a mixture of softmax (MoS) to break the softmax bottle-
neck and achieve significant improvements. We also eval-
uated our method within the MoS framework by directly
following the experimental settings in Yang et al. (2018),
except we replace the original softmax function with our
adversarial softmax function.

The training procedure of AWD-LSTM-based language
models can be decoupled into two stages: 1) optimizing the
model with SGD and averaged SGD (ASGD); 2) restart-
ing ASGD for fine-tuning. We report the perplexity scores
at the end of both stages. We also report the perplexity
scores with a recent proposed post-process method, dynam-
ical evaluation (Krause et al., 2018) after fine-tuning.

Applying Adversarial MLE training To investigate the
effectiveness of our approach, we simply replace the soft-
max layer of baseline methods with our adversarial softmax
function, with all other the parameters and architectures
untouched. We empirically found that adding small an-
nealed Gaussian noise in the input embedding layer makes


