Volume 1: Gaussian Processes in Practice, 12-13 June 2006, Bletchley Park, UK

[edit]

Editors: Neil D. Lawrence, Anton Schwaighofer, Joaquin QuiƱonero Candela

[bib][citeproc]

Gaussian Process Approximations of Stochastic Differential Equations

Cedric Archambeau, Dan Cornford, Manfred Opper, John Shawe-Taylor ; PMLR 1:1-16

Multi-class Semi-supervised Learning with the e-truncated Multinomial Probit Gaussian Process

Simon Rogers, Mark Girolami ; PMLR 1:17-32

Learning RoboCup-Keepaway with Kernels

Tobias Jung, Daniel Polani ; PMLR 1:33-57

Salient Point and Scale Detection by Minimum Likelihood

Kim S. Pedersen, Marco Loog, Pieter Dorst ; PMLR 1:59-72

Sparse Log Gaussian Processes via MCMC for Spatial Epidemiology

Jarno Vanhatalo, Aki Vehtari ; PMLR 1:73-89

subscribe via RSS

This site last compiled Mon, 29 May 2017 07:15:10 +0000
Github Account Copyright © PMLR 2017. All rights reserved.