[edit]
Curious iLQR: Resolving Uncertainty in Model-based RL
Proceedings of the Conference on Robot Learning, PMLR 100:162-171, 2020.
Abstract
Curiosity as a means to explore during reinforcement learning problems has recently become very popular. However, very little progress has been made in utilizing curiosity for learning control. In this work, we propose a model-based reinforcement learning (MBRL) framework that combines Bayesian modeling of the system dynamics with curious iLQR , an iterative LQR approach that considers model uncertainty. During trajectory optimization the curious iLQR attempts to minimize both the task-dependent cost and the uncertainty in the dynamics model. We demonstrate the approach on reaching tasks with 7-DoF manipulators in simulation and on a real robot. Our experiments show that MBRL with curious iLQR reaches desired end-effector targets more reliably and with less system rollouts when learning a new task from scratch, and that the learned model generalizes better to new reaching tasks.