Uncertainty Quantification for Deep Context-Aware Mobile Activity Recognition and Unknown Context Discovery

[edit]

Zepeng Huo, Arash PakBin, Xiaohan Chen, Nathan Hurley, Ye Yuan, Xiaoning Qian, Zhangyang Wang, Shuai Huang, Bobak Mortazavi ;
Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics, PMLR 108:3894-3904, 2020.

Abstract

Activity recognition in wearable computing faces two key challenges: i) activity characteristics may be context-dependent and change under different contexts or situations; ii) unknown contexts and activities may occur from time to time, requiring flexibility and adaptability of the algorithm. We develop a context-aware mixture of deep models termed the $\alpha$-$\beta$ network coupled with uncertainty quantification (UQ) based upon maximum entropy to enhance human activity recognition performance. We improve accuracy and F score by 10% by identifying high-level contexts in a data-driven way to guide model development. In order to ensure training stability, we have used a clustering-based pre-training in both public and in-house datasets, demonstrating improved accuracy through unknown context discovery.

Related Material