More Powerful Selective Kernel Tests for Feature Selection

Jen Ning Lim, Makoto Yamada, Wittawat Jitkrittum, Yoshikazu Terada, Shigeyuki Matsui, Hidetoshi Shimodaira
; Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics, PMLR 108:820-830, 2020.

Abstract

Refining one’s hypotheses in light of data is a commonplace scientific practice, however,this approach introduces selection bias and can lead to specious statisticalanalysis.One approach of addressing this phenomena is via conditioning on the selection procedure, i.e., how we have used the data to generate our hypotheses, and prevents information to be used again after selection.Many selective inference (a.k.a. post-selection inference) algorithms typically take this approach but will “over-condition”for sake of tractability. While this practice obtains well calibrated $p$-values,it can incur a major loss in power. In our work, we extend two recent proposals for selecting features using the Maximum Mean Discrepancyand Hilbert Schmidt Independence Criterion to condition on the minimalconditioning event. We show how recent advances inmultiscale bootstrap makesthis possible and demonstrate our proposal over a range of synthetic and real world experiments.Our results show that our proposed test is indeed more powerful in most scenarios.

Cite this Paper


BibTeX
@InProceedings{pmlr-v108-lim20a, title = {More Powerful Selective Kernel Tests for Feature Selection}, author = {Lim, Jen Ning and Yamada, Makoto and Jitkrittum, Wittawat and Terada, Yoshikazu and Matsui, Shigeyuki and Shimodaira, Hidetoshi}, pages = {820--830}, year = {2020}, editor = {Silvia Chiappa and Roberto Calandra}, volume = {108}, series = {Proceedings of Machine Learning Research}, address = {Online}, month = {26--28 Aug}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v108/lim20a/lim20a.pdf}, url = {http://proceedings.mlr.press/v108/lim20a.html}, abstract = {Refining one’s hypotheses in light of data is a commonplace scientific practice, however,this approach introduces selection bias and can lead to specious statisticalanalysis.One approach of addressing this phenomena is via conditioning on the selection procedure, i.e., how we have used the data to generate our hypotheses, and prevents information to be used again after selection.Many selective inference (a.k.a. post-selection inference) algorithms typically take this approach but will “over-condition”for sake of tractability. While this practice obtains well calibrated $p$-values,it can incur a major loss in power. In our work, we extend two recent proposals for selecting features using the Maximum Mean Discrepancyand Hilbert Schmidt Independence Criterion to condition on the minimalconditioning event. We show how recent advances inmultiscale bootstrap makesthis possible and demonstrate our proposal over a range of synthetic and real world experiments.Our results show that our proposed test is indeed more powerful in most scenarios.} }
Endnote
%0 Conference Paper %T More Powerful Selective Kernel Tests for Feature Selection %A Jen Ning Lim %A Makoto Yamada %A Wittawat Jitkrittum %A Yoshikazu Terada %A Shigeyuki Matsui %A Hidetoshi Shimodaira %B Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics %C Proceedings of Machine Learning Research %D 2020 %E Silvia Chiappa %E Roberto Calandra %F pmlr-v108-lim20a %I PMLR %J Proceedings of Machine Learning Research %P 820--830 %U http://proceedings.mlr.press %V 108 %W PMLR %X Refining one’s hypotheses in light of data is a commonplace scientific practice, however,this approach introduces selection bias and can lead to specious statisticalanalysis.One approach of addressing this phenomena is via conditioning on the selection procedure, i.e., how we have used the data to generate our hypotheses, and prevents information to be used again after selection.Many selective inference (a.k.a. post-selection inference) algorithms typically take this approach but will “over-condition”for sake of tractability. While this practice obtains well calibrated $p$-values,it can incur a major loss in power. In our work, we extend two recent proposals for selecting features using the Maximum Mean Discrepancyand Hilbert Schmidt Independence Criterion to condition on the minimalconditioning event. We show how recent advances inmultiscale bootstrap makesthis possible and demonstrate our proposal over a range of synthetic and real world experiments.Our results show that our proposed test is indeed more powerful in most scenarios.
APA
Lim, J.N., Yamada, M., Jitkrittum, W., Terada, Y., Matsui, S. & Shimodaira, H.. (2020). More Powerful Selective Kernel Tests for Feature Selection. Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics, in PMLR 108:820-830

Related Material